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Diabetes mellitus constitutes a persistent condition that disrupts glucose regulation and
produces significant consequences across multiple species. Among experimental animals,
rats are frequently employed as indispensable models in biomedical research for elucidating
disease mechanisms and evaluating therapeutic strategies. The ability to detect diabetes in
these models at an early and precise stage is essential for supporting preclinical
investigations and advancing therapeutic development. In this study, we suggest a
framework that employs deep learning methodologies to strengthen and automate the
recognition of diabetes in rat cohorts through the integration of multimodal clinical
information. Specifically, numerical values derived from biochemical blood test results of
50 diabetic and 50 non-diabetic subjects were transformed into image representations. Using
data augmentation, these arrays were expanded and subsequently processed with a
convolutional neural network (CNN)-based architectures. Model evaluation was conducted
through established indicators, including accuracy and the area under the receiver operating
characteristic (ROC) curve. Three alternative approaches—Support Vector Machine
(SVM), ResNet18, and MobileNetV2—were implemented. Among them, MobileNetV2
exhibited the best overall effectiveness, reaching 97.39% accuracy and outperforming
conventional machine learning methods. The findings underscore the strong potential of
deep learning as a rapid, non-invasive, and reliable diagnostic solution for rodent diabetes
models. Furthermore, the proposed strategy not only provides opportunities for accelerating
research into disease mechanisms and therapy screening but also offers a transferable
foundation for developing computer-aided diagnostic systems for human diabetes and other
small-animal disease studies.

1. INTRODUCTION

time-consuming, and may induce additional stress in the test
subjects, thereby influencing physiological outcomes [4].

Diabetes mellitus is widely acknowledged as a leading
metabolic situation/disorder, manifesting through persistent
elevation of blood glucose levels due to deficiencies in insulin
secretion, impaired insulin activity, or a combination of both
mechanisms [1]. Beyond its critical impact on human health,
this disease has significant relevance for experimental studies,
where rats are routinely employed as model organisms for
examining diabetic physiology, validating pharmacological
treatments, and investigating preventive strategies [2]. Both
genetically modified strains and nutritionally induced models
have made notable contributions to our understanding of the
mechanisms underlying diabetes. Accordingly, the capacity to
achieve rapid and reliable identification of diabetes in these
models is a prerequisite for ensuring reproducibility in
laboratory studies and supporting translational research.

Conventional approaches for diagnosing diabetes in rats
typically involve invasive testing procedures, fasting plasma
glucose determination, insulin assays, and histopathological
assessments [3]. Although these methods yield essential
diagnostic information, they are often resource-intensive,
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Moreover, early and subtle variations in behavior, morphology,
or metabolic parameters are frequently overlooked during
visual or manual inspections. These limitations highlight the
urgent requirement for objective, automated, and non-invasive
diagnostic solutions capable of continuously monitoring
disease development and progression in rodent models [5].

Recent developments in the area of artificial intelligence
(Al), particularly within deep learning (DL) research, have
gained importance via medical data analysis. DL architectures
have demonstrated human-level performance in a wide
spectrum of diagnostic applications, including biomedical
imaging and disease prediction [6, 7]. These models are
especially powerful when dealing with high-dimensional
information such as imaging data, temporal physiological
signals, or integrated multimodal datasets, making them
highly suitable for identifying diabetic characteristics in rat
populations.

The present investigation addresses this need by
implementing advanced deep learning algorithms to classify
diabetic and non-diabetic rat groups using biochemical blood
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data converted into two-dimensional images. By employing
robust neural architectures and multimodal data
transformation, the objective is to design an automated
diagnostic framework capable of recognizing diabetic
phenotypes with high precision, tracking disease dynamics,
and potentially identifying novel biomarker relationships [8].
Such an individual approach can enhance the efficiency and
consistency of preclinical studies while also laying the
groundwork for comparable applications in other animal
models and human clinical investigations [9].

In this study, two groups of rats—diabetic and control—
were analyzed based on an openly accessible dataset
containing blood chemistry measurements. Eleven
biochemical features, including AST, ALT, cholesterol,
triglycerides, HDL, VLDL, LDL, glucose, body weight, Total
Antioxidant Status (TAS), and Total Oxidant Status (TOS),
were utilized. A statistically validated subset of 50 cases from
each group was randomly selected for analysis. These numeric
datasets were restructured into arrays and subsequently
transformed into two-dimensional colored “.png” images,
each representing diabetic or non-diabetic groups. The
generated images were evaluated using three computational
approaches: Support Vector Machine (SVM), ResNet18, and
MobileNetV2. A comprehensive performance assessment was
performed to compare classification accuracy across models.

Furthermore, this study emphasizes the importance of
explainable artificial intelligence in biomedical applications.
By integrating interpretability techniques, the analysis aims to
provide a successful decision-making process of deep learning
models, thereby improving trustworthiness and advancing
scientific understanding. Ultimately, the framework bridges
computational predictions with biological interpretation,
supporting a more integrative strategy for diabetes research in
experimental animal models. Moreover, below, the literature
review is given.

In this research, deep learning methodologies are applied to
forecast diabetes by utilizing an openly available dataset
consisting of rat blood test results. Broadly, investigations into
diabetes prediction have made use of both conventional
machine learning strategies and advanced deep learning
models. A number of studies have focused on applying
machine learning techniques to publicly accessible datasets
with encouraging results. For example, Madan et al. [10]
developed an ensemble framework that integrated a Support
Vector Machine (SVM) with a feedforward neural network.
By combining the decisions of individual classifiers through a
majority voting mechanism, the ensemble system delivered
improved predictive capability, achieving an accuracy of
88.04%.

In a related effort, Sneha and Gangil [11] evaluated several
machine learning algorithms—including Naive Bayes (NB),
SVM, and logistic regression—for diabetes classification
tasks. Their analysis demonstrated that SVM provided the best
outcome, with a recorded accuracy of 77.37%. They further
enhanced the results by implementing feature selection
techniques that removed attributes showing weak correlations
within the PIMA dataset.

In another comparative investigation, Edeh et al. [12]
assessed the performance of four classifiers—Bayes, decision
tree (DT), SVM, and random forest (RF)—across two separate
datasets for diabetes prediction. Their findings revealed that
SVM once again achieved the highest accuracy on the PIMA
dataset, reaching 83.1%, thereby confirming its effectiveness
in this domain.
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2. MATERIAL AND METHODS

The present investigation was designed as a retrospective
study that utilized blood chemistry data collected over five
years from an openly accessible dataset of Wistar rats [13].
Because the dataset was publicly available, the use of ethical
approval procedures was not required. Before analysis, the
records were anonymized to safeguard confidentiality.
Subsequently, several preprocessing operations were
performed, including the elimination of noise, application of
normalization procedures, and extraction of key diagnostic
features. After these steps, the data were divided into separate
subsets for model training and testing, with a conventional
split ratio of 70% for training and 30% for evaluation.

2.1 Dataset used 1n the study

A comprehensive overview of the dataset employed in this
study is presented below. It consisted of blood test results from
a total of 100 rats, evenly divided into 50 diabetic and 50 non-
diabetic cases, which were used to train and evaluate the
models. Each record included measurements across eleven
biochemical and physiological indicators. These values were
further compared with reference ranges obtained from non-
obese healthy rats to establish baseline metrics [14]. The
features incorporated into the analysis are described as follows:

Cholesterol: A lipid-based compound synthesized
primarily in the liver and circulating in the bloodstream, often
considered a major component in metabolic health.

Triglycerides: A class of lipids distinct from cholesterol,
functioning as an essential energy storage form in the body.

LDL Cholesterol: Low-Density Lipoprotein (LDL)
cholesterol, commonly termed ‘bad cholesterol,” serves as the
principal carrier of cholesterol molecules from hepatic tissues
to peripheral cells, thereby facilitating cholesterol distribution
throughout the systemic circulation.

HDL Cholesterol: High-Density Lipoprotein cholesterol,
known as “good cholesterol,” which facilitates the clearance
of excess cholesterol by carrying it back to the liver for
elimination.

VLDL Cholesterol: Very-Low-Density Lipoproteins are
responsible for distributing triglycerides synthesized in the
liver to different tissues throughout the body.

Glucose: The primary source of energy for cellular
metabolism, stored in the liver and muscles in the form of
glycogen when present in excess.

Body Weight: A fundamental biological characteristic
frequently measured in animal studies, serving as an indicator
of metabolic health, growth, and overall physiological
condition.

Total Antioxidant Status (TAS): A measure representing
the cumulative capacity of an organism’s defense mechanisms
to counterbalance oxidative stress and maintain cellular
stability.

Total Oxidant Status (TOS): A parameter that reflects the
overall oxidative load within biological systems, indicating the
extent of free radical activity and potential cellular damage.

2.2 Methods of the study

2.2.1 Data pre-processing

This part of the study outlines the methodological
framework adopted to determine the diabetic status of the rat
groups. The overall workflow of the proposed system is



summarized in Figure 1. As an initial step, the numerical
dataset was standardized, ensuring that the ranges of all
features were adjusted to enable effective transformation of
tabular values into image representations. To improve the
accuracy of the deep Ilearning models, several data
augmentation strategies were subsequently applied. In the
final phase, the processed datasets were subjected to
classification using the three convolutional neural network
(CNN)-based models selected for this research. Each
component of the procedure is explained in detail in the
following subsections.

In addition, the process of normalization was applied, as it
represents a widely used and essential procedure in artificial
intelligence—based studies involving multi-feature datasets
[15]. Since individual attributes often differ considerably in
their value ranges, rescaling them to a uniform or comparable
scale is necessary to prevent disproportionate influence during

model training. Standardizing features in this way
significantly improves both the efficiency and accuracy of the
learning algorithms. In the case of our dataset, the included
variables demonstrated distinct minimum and maximum
values, which are summarized in Table 1. This variability
made the normalization step indispensable for ensuring
balanced representation of all features during analysis.

Within the framework of the proposed approach,
normalization is a fundamental step that enables the
transformation of numerical attributes into image-based
representations. In this process, the magnitude of each feature
dictates the brightness level of its corresponding pixel, where
higher values appear as lighter intensities in the constructed
image [16]. For the visualization to remain consistent and
comparable, all features must be adjusted to the same
numerical range [17].
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Figure 1. The steps involved in the proposed approach

Table 1. Minimum and maximum value ranges of dataset features (first eight correspond to the diabetes group; the remaining
eight to the normal group)

AST ALT  Cholesterol Triglycerides = HDL VLDL LDL  Weight Glucose  TAS TOS
190 64 53 48 49 9.6 15.6 216 282 0.3 8.64
165 62 48 52 48 10.4 10.4 134 265 0.21 9.77
191 38 94 41 83 8.2 12.8 258 306 0.58 432
159 67 51 33 46 6.6 16 213 325 0.32 5.23
140 99 45 48 41 9.6 15.6 286 136 0.53 6.25
190 91 56 60 55 12 11 130 141 0.33 4.55
185 79 32 54 38 10.8 16.8 290 N/A 0.38 10.34
200 70 N/A 50 N/A 10 10 180 N/A 0.28 N/A
124 80 95 49 63 9.8 12.2 258 89 0.81 2.84
120 31 78 55 69 11 12 286 83 0.45 6.36
113 53 65 47 59 9.4 13.4 272 78 0.39 2.95
124 36 49 47 45 9.4 15.4 241 102 0.41 5.34
115 52 60 49 57 9.8 16.8 284 95 0.71 7.5

134 50 77 48 65 9.6 12.4 302 76 0.53 6.82
114 39 65 43 61 8.6 14.6 327 91 0.47 3.98
128 51 73 55 64 11 12 340 62 0.5 N/A

3127



In this study, normalization was performed using the feature
scaling technique, specifically the min—max method [18]. This
approach converts raw feature values into a standardized
interval, typically ranging from 0 to 1. The normalized value
of a given observation (xn) is obtained by applying the
minimum (xmin) and maximum (xmax) limits of that feature.
Through this procedure, every attribute is rescaled into the
same interval, ensuring homogeneity across the dataset and
enabling uniform pixel-based image construction. The
mathematical expression of this process is provided in Eq. (1):

(x - xn)

(xmax - xmin)

(1

Xn

2.2.2 Numeric to image data conversion

Although the availability of medical imaging data has
grown substantially in recent years, a considerable portion of
clinical information is still recorded in purely numerical form
[19]. Such data are relatively inexpensive and straightforward
to obtain; however, their evaluation is most often performed
with conventional machine learning methods [20]. More
recently, certain deep learning frameworks have introduced
one-dimensional convolutional neural networks (1D-CNN5s)
to address numerical datasets. Nevertheless, the CNN
architectures that have led to breakthroughs in computer vision
were specifically designed for two-dimensional image inputs,
making them unsuitable for direct application to one-
dimensional numerical records [21].

3
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Figure 2. (a) Normal conversion color image
(b) Diabetes conversion color image

To overcome this limitation, the present study applied a
transformation strategy to its dataset, which consisted
exclusively of numerical attributes, to render it compatible
with image-based deep learning models. The conversion
process was carried out within the MATLAB 2024a
environment. Figure 2 presents representative examples of the
resulting color images, showing samples from both the normal
group (a) and the diabetic group (b).

The converted images, which embed all the selected
features, were prepared in a format compatible with
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convolutional neural networks (CNNs) that operate on two-
dimensional inputs. Beyond this transformation, conventional
augmentation strategies commonly applied in image analysis
can also be employed on these generated datasets. To ensure
the effectiveness of augmentation, the image structure was
deliberately arranged asymmetrically. This design choice
guarantees that each augmented version preserves distinct
characteristics, thereby maintaining diversity throughout the
data enrichment process [22].

2.2.3 Data augmentation process

The evaluation metrics of deep learning algorithms is
strongly influenced by the volume of training data available.
Yet, assembling sufficiently large datasets is often challenging
in practical research contexts. To compensate for this
limitation, investigators typically enlarge their datasets by
producing modified versions of existing images, a procedure
referred to as data augmentation [23].

In the present work, the dataset contained 100 numerical
samples (50 representing non-diabetic rats and 50 representing
diabetic rats), which were converted into a total of 500 image
files. Since this quantity remained relatively limited for
training deep neural networks, augmentation techniques were
introduced to artificially expand the dataset. To enhance
variability and support more robust model training, four
augmentation strategies—namely rotation, scaling, reflection,
and translation—were systematically applied to each image.
The parameter ranges for these operations are listed in Table
2, and representative augmented images from the diabetes
group are illustrated in Figure 3.

Table 2. Data augmentation parameters used in this study

Parameter Lower Value Upper Value
Rotation -45 45
Reflection - -
Scale 0.8 1.2
Translation -20 20
||
RAW IMAGE

|
| |
- El L

REFLECTION

ROTATION

SCALE TRANSLATION

Figure 3. Data augmentation sample results

2.2.4 Diabetes prediction via DL models

After the augmentation procedures, the dataset was
partitioned into two subsets, allocating 70% for training and
30% for testing. The generated images were subsequently
introduced into the convolutional neural network (CNN)—
based models. Instead of developing a completely new CNN
design, this research relied on established architectures—
Support  Vector Machine (SVM), ResNetl8, and
MobileNetV2—for diabetes classification, with only minor
modifications introduced through fine-tuning.



(1) SVM model

Support Vector Machine (SVM) is a widely recognized
supervised learning approach that has been extensively used
for classification tasks, including applications in medical
image analysis [24]. In this study, the features derived from
the pre-processed and augmented images were applied to train
the SVM classifier, chosen for its reliability and its
effectiveness in complex high-dimensional data [25]. The
training set was composed of 500 augmented samples,
designed to represent a broad range of case variations.

The classification relied on the radial basis function (RBF)
kernel, which is among the most frequently employed variants
of the Gaussian kernel in SVM studies [26]. In practice, this
linear division corresponds to a non-linear decision boundary
in the original data space. Such flexibility is particularly
advantageous in medical image classification, where intricate
and non-linear associations often exist between features.
Minor variations in pixel intensity, texture, and spatial
structures play a crucial role in differentiating disease-related
classes, making the RBF kernel an appropriate choice for this
task [27].

(2) ResNet-18 model

The ResNet-18 architecture, consisting of 18 layers, was
applied in this study to automatically extract and learn
discriminative 1image features. The design integrates
convolutional layers, batch normalization operations, and fully
connected layers [28].

Convolutional layers: These layers perform feature
extraction from input images. The transformation can be
expressed as Eq. (2):

Y=f(X*W+Db) 2)

where,

X: input image,

W: convolution filter,

B: bias term,

f: activation function,

*: convolution operation.

Residual blocks: To facilitate training in deeper
architectures, skip connections are introduced. This can be

Preprocessing

Convolutional
Layers

: i

ResNet Residual

represented as Eq. (3):
Y = fX+F(X) 3)

where,

X: input image,

F(X): residual function,

f: activation function.

Fully connected layers: The final stage of classification is
conducted by fully connected layers. The operation is given by

Eq. (4):
Z=ad(W-Y +b) “4)

where,

Y: feature vector,

W: weight matrix,

b: bias,

o: activation function. Indeed, the structural outline of
ResNet-18 used in this study is illustrated in Figure 4.

(3) MobileNetV2 model

MobileNetV2 is recognized as a lightweight and
computationally  efficient deep learning framework,
specifically designed for specific applications [29]. Its
efficiency stems from the use of depthwise separable
convolutions, in which the traditional convolutional process is
decomposed into two operations: depthwise convolution and
pointwise convolution. This decomposition dramatically
decreases both parameter count and computational demand,
while still preserving the model’s capacity [30].

Another important innovation within the MobileNetV2
design is the incorporation of inverted residual connections
and linear bottlenecks. These structural components allow the
network to effectively retain compact, low-dimensional
information while simultaneously learning rich, high-level
abstractions. The combination of these mechanisms ensures
that the architecture remains highly expressive without
sacrificing efficiency, making it particularly advantageous for
medical image analysis, where computational resources and
response time are critical considerations [31].

Feature Classification

Model Blocks

| |

Pooling
Layers

Extraction i Layer

Figure 4. The ResNet18 network structure mentioned in the study



For this study, MobileNetV2 was adapted to the dataset
through transfer learning. Pre-trained parameters originally
optimized on the ImageNet dataset were fine-tuned for the
classification of diabetic versus non-diabetic rat data. The
uppermost layers of the network were replaced with a newly
added fully connected layer, a softmax function, and a two-
class output layer tailored to the specific requirements of this
task. To further strengthen the model’s generalization ability,
advanced augmentation methods—such as random rotations,
rescaling, and brightness modification—were applied during
training. An overview of the MobileNetV2 network structure
utilized in this work is illustrated in Figure 5.

Add Conv 1x1, SeLU

A

dwise 3x3,
Stride=2
SeLU

A

Conv 1x1, Linear

A

Conv 3x3, SeLU
T

Conv 1x1, Linear

Conv 1x1, Linear

Stride=1 Stride=2

Figure 5. MobileNetV2 network structure

3. RESULTS

After the completion of the training stage, the performance
of the models was thoroughly assessed using an independent
test set composed of 20 randomly selected images that had not
been included in the training process. The purpose of this
evaluation was to determine the ability of the trained SVM
classifier to extend its decision boundaries to unfamiliar
samples.

In the experimental design, the dataset was partitioned into
two subsets, with 70% allocated for training and 30% reserved
for testing. Both the ResNet18 and MobileNetV2 architectures
were fine-tuned using the training portion and subsequently
evaluated on the test set. To strengthen generalization and
improve predictive performance, data augmentation strategies
were incorporated, thereby expanding the variability within
the training data and allowing the models to adapt more
effectively to unseen inputs.

During optimization, training was adapted to the specific
characteristics of each model. For ResNetl8, stochastic
gradient descent (SGD) was applied, iteratively updating the
network’s parameters to minimize loss. In contrast,
MobileNetV2 employed the Adam optimizer, selected for its
adaptive learning rate mechanism, which is particularly
advantageous for lightweight neural architectures. Both
optimization schemes were further regulated through learning
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rate scheduling to promote efficient convergence and stability.

The MobileNetV2 model was trained with an input
resolution of 224x224 pixels. To improve robustness,
augmentation operations such as random rotation, translation,
and scaling were applied. These steps enabled the network to
cope with variations likely to appear in real-world datasets,
thereby improving its ability to generalize across different
conditions.

Upon analyzing performance metrics, the findings
highlighted the crucial role of feature extraction quality and
kernel selection in SVM classification. The radial basis
function (RBF) kernel, in particular, allowed the model to
accommodate the non-linear complexity inherent in medical
image data, achieving high classification accuracy and
demonstrating its applicability to practical clinical contexts. A
visual summary of the SVM results is provided in the
confusion matrix displayed in Figure 6.

The ResNetl8 model attained an accuracy of 96.88%,
demonstrating its capacity to capture complex structures and
intricate relationships within the dataset. In comparison,
MobileNetV2, optimized for efficiency, reached a slightly
higher accuracy of 97.39%. This marginal improvement
underscores the capability of the lightweight architecture to
deliver superior predictive performance while preserving
computational efficiency. A graphical representation of
accuracy and loss trends for ResNet18 is provided in Figure 7.

A notable strength of the MobileNetV2 architecture lies in
its high computational efficiency. Owing to its streamlined
design and the use of depthwise separable convolutions, the
model completed training in nearly half the time required by
ResNetl8. This characteristic makes MobileNetV2
particularly well-suited for scenarios demanding real-time
predictions or deployment in environments with constrained
computational capacity. The corresponding accuracy and loss
curves for MobileNetV2 are illustrated in Figure 8.
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Figure 6. Confusion matrix of SVM classification
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Prospective research could investigate the integration of
ResNet18 and MobileNetV2 through ensemble strategies or
hybridized network architectures, thereby leveraging the
complementary strengths of both models. Furthermore,
enlarging the dataset and testing additional lightweight
frameworks—such as EfficientNet or ShuffleNet—may yield
deeper insights into achieving an optimal balance between
predictive accuracy and computational efficiency in medical
image classification tasks.

In terms of performance comparison, the conventional
approach produced an accuracy of 76.92% on the test set. By
contrast, the ResNetl8 network achieved 96.88%, and
MobileNetV2 delivered an even higher score of 97.39%. This
pronounced difference clearly illustrates the superiority of
deep learning techniques over traditional methods for
diagnostic purposes.

The enhanced performance of ResNet18 can be attributed to
its deep-layered structure, which enables hierarchical feature
extraction from raw images. Its convolutional layers
successfully identify low- to high-level features, while
residual connections support stable training in deeper
networks, thereby capturing intricate dependencies in the
dataset. MobileNetV2, in comparison, reached slightly better
results while preserving computational efficiency by relying
on lightweight mechanisms such as depthwise separable
convolutions. This design allowed precise feature
representation and robust generalization across unseen
samples. Both models further benefited from the application
of data augmentation, which increased diversity in the training
set and strengthened their ability to generalize beyond the
original dataset.

4. DISCUSSION

The findings of this research provide clear evidence of the
performance of deep learning architectures—specifically
ResNetl8 and MobileNetV2—when compared with
conventional segmentation techniques. MobileNetV2, in
particular, achieved an accuracy of 97.39%, and its high
computational efficiency further underscores its suitability for
incorporation into clinical diagnostic pipelines. Unlike
traditional approaches that depend heavily on predefined or
manually engineered features, these deep learning frameworks
are capable of extracting and learning discriminative features
directly from raw input data. This inherent ability to
automatically capture complex and subtle patterns enhances
diagnostic precision and reduces reliance on human
intervention. A summary of the performance outcomes is
presented in Table 3.

Table 3. Comparative results of the three models used in this

study
Model Accuracy
SVM 76,92%
ResNet18 96,88%
MobileNetV2 97,39%

ResNet18 relies on convolutional layers to progressively
capture features at multiple abstraction levels. This innovation
helps mitigate the vanishing gradient problem—a
phenomenon where gradients become too small to update
weights effectively, hindering learning in very deep networks.
By allowing gradients to propagate through alternative
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pathways, residual blocks ensure that deep networks can be
trained efficiently and retain learning capacity.

In contrast, MobileNetV2 employs a streamlined design
tailored for speed and efficiency. Furthermore, MobileNetV2
integrates inverted residual connections and linear bottlenecks.
These components preserve the richness of feature
representations while maintaining low model complexity.
Linear bottlenecks, in particular, retain critical information by
avoiding unnecessary non-linear transformations at block
outputs, thereby reducing the risk of information loss.

To strengthen robustness, both models were trained with
data augmentation strategies. Operations such as rotation,
scaling, and flipping artificially increased the dataset size by
creating alternative versions of the original images. This
approach exposed the models to a wider variety of patterns,
enabling them to generalize more effectively. For example,
rotations simulated different perspectives, while flips
accounted for natural orientation variations.

The integration of these architectures into clinical
workflows offers considerable benefits. MobileNetV2, with an
accuracy of 97.39% alongside superior efficiency,
demonstrates particular promise as a scalable diagnostic tool.
Early and precise detection of conditions such as strokes or
brain tumors can facilitate timely interventions, reducing
morbidity and mortality rates.

Findings from earlier studies further validate these results.
For instance, Zhang et al. reported tumor segmentation
accuracies exceeding 90% using CNN-based models, while Li
et al. [31] gave significant improvements in stroke detection
through deep learning methods.

Traditional approaches and SVM classifiers, while useful,
show limitations in comparison. In this work, the SVM
classifier achieved 76.92% accuracy using manually extracted
features such as intensity distributions and area measurements.
The performance depended heavily on feature engineering,
which can miss important hidden patterns. In contrast,
MobileNetV2’s automatic hierarchical feature learning
allowed it to surpass SVM by capturing both simple and
complex structures, thereby managing variability in the data
more effectively.

The discussion underscores the ability of deep learning
models to enhance diagnostic workflows and reduce reliance
on manual analysis. In clinical practice, they could be
incorporated into computer-aided diagnosis (CAD) systems,
assisting radiologists by highlighting regions of interest, pre-
processing images, and generating preliminary assessments.
Such integration could accelerate diagnostic processes, reduce
error rates, and ultimately improve patient outcomes.

Overall, ResNetl8 and MobileNetV2 exhibit both
efficiency and precision, making them well-suited for
diagnostic imaging applications. Augmentation strategies
further improved resilience, enabling them to perform reliably
on novel datasets. With their high predictive performance,
these models can support radiologists, ensure consistency, and
enhance diagnostic quality. As deep learning technology
continues to evolve, its adoption in clinical workflows is
expected to revolutionize medical diagnostics.

4.1 Limitations and future directions

Despite strong results, several constraints of this study must
be acknowledged. First, the dataset size, although sufficient
for the scope of this research, is modest compared to the large-
scale datasets typically employed in deep learning studies.

Second, this investigation focused on only two architectures:



ResNet18 and MobileNetV2. While both have shown
excellent results in tumor and stroke classification, other
promising networks could provide further benefits. For
example, EfficientNet offers scalable models that balance
accuracy with efficiency; DenseNet strengthens feature
propagation and reduces vanishing gradients; and transformer-
based models like Vision Transformers (ViT) capture long-
range dependencies that may enhance diagnostic tasks.
Exploring these alternatives could extend the findings of this
study and potentially yield superior results.

Finally, the study relied primarily on standard augmentation
strategies, including flipping, scaling, and rotation. Although
these methods are effective, more advanced techniques could
further improve model generalization. Generative adversarial
networks (GANSs), for instance, can generate synthetic samples
closely resembling real data, effectively enlarging the dataset
and reducing the challenges associated with limited training
material. GAN-based augmentation would not only increase
diversity but also help prepare models for unexpected
variations in real-world scenarios.

5. CONCLUSION

This research evaluated the performance of conventional
segmentation techniques against modern deep learning
frameworks, the models of ResNet18 and MobileNetV2, in the
diagnosis of neurological conditions. MobileNetV2 achieved
the highest accuracy at 97.39%, followed closely by ResNet18
with 96.88%, whereas the SVM baseline reached only 76.92%.
These outcomes emphasize the disruptive potential of deep
learning approaches in medical image analysis, particularly in
tasks involving the detection of brain tumors and strokes.

The superior accuracy of these architectures demonstrates
their capability to automatically extract hierarchical feature
representations directly from raw data, offering a level of
generalization and effectiveness that conventional, manually
engineered methods cannot match. MobileNetV2, in particular,
stands out due to its compact architecture and efficiency,
making it especially well-suited for environments where
computational resources are limited, such as real-time
diagnostic systems or mobile healthcare platforms.

Looking ahead, future investigations should concentrate on
enlarging the dataset, testing additional network families, and
applying ensemble or hybrid strategies to further enhance
predictive performance. With the rapid evolution of artificial
intelligence technologies, such innovations hold the potential
to transform diagnostic practices by improving accuracy,
reducing workload, and ultimately advancing patient care
outcomes.
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