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Diabetes mellitus constitutes a persistent condition that disrupts glucose regulation and 

produces significant consequences across multiple species. Among experimental animals, 

rats are frequently employed as indispensable models in biomedical research for elucidating 

disease mechanisms and evaluating therapeutic strategies. The ability to detect diabetes in 

these models at an early and precise stage is essential for supporting preclinical 

investigations and advancing therapeutic development. In this study, we suggest a 

framework that employs deep learning methodologies to strengthen and automate the 

recognition of diabetes in rat cohorts through the integration of multimodal clinical 

information. Specifically, numerical values derived from biochemical blood test results of 

50 diabetic and 50 non-diabetic subjects were transformed into image representations. Using 

data augmentation, these arrays were expanded and subsequently processed with a 

convolutional neural network (CNN)–based architectures. Model evaluation was conducted 

through established indicators, including accuracy and the area under the receiver operating 

characteristic (ROC) curve. Three alternative approaches—Support Vector Machine 

(SVM), ResNet18, and MobileNetV2—were implemented. Among them, MobileNetV2 

exhibited the best overall effectiveness, reaching 97.39% accuracy and outperforming 

conventional machine learning methods. The findings underscore the strong potential of 

deep learning as a rapid, non-invasive, and reliable diagnostic solution for rodent diabetes 

models. Furthermore, the proposed strategy not only provides opportunities for accelerating 

research into disease mechanisms and therapy screening but also offers a transferable 

foundation for developing computer-aided diagnostic systems for human diabetes and other 

small-animal disease studies. 
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1. INTRODUCTION

Diabetes mellitus is widely acknowledged as a leading 

metabolic situation/disorder, manifesting through persistent 

elevation of blood glucose levels due to deficiencies in insulin 

secretion, impaired insulin activity, or a combination of both 

mechanisms [1]. Beyond its critical impact on human health, 

this disease has significant relevance for experimental studies, 

where rats are routinely employed as model organisms for 

examining diabetic physiology, validating pharmacological 

treatments, and investigating preventive strategies [2]. Both 

genetically modified strains and nutritionally induced models 

have made notable contributions to our understanding of the 

mechanisms underlying diabetes. Accordingly, the capacity to 

achieve rapid and reliable identification of diabetes in these 

models is a prerequisite for ensuring reproducibility in 

laboratory studies and supporting translational research. 

Conventional approaches for diagnosing diabetes in rats 

typically involve invasive testing procedures, fasting plasma 

glucose determination, insulin assays, and histopathological 

assessments [3]. Although these methods yield essential 

diagnostic information, they are often resource-intensive, 

time-consuming, and may induce additional stress in the test 

subjects, thereby influencing physiological outcomes [4]. 

Moreover, early and subtle variations in behavior, morphology, 

or metabolic parameters are frequently overlooked during 

visual or manual inspections. These limitations highlight the 

urgent requirement for objective, automated, and non-invasive 

diagnostic solutions capable of continuously monitoring 

disease development and progression in rodent models [5]. 

Recent developments in the area of artificial intelligence 

(AI), particularly within deep learning (DL) research, have 

gained importance via medical data analysis. DL architectures 

have demonstrated human-level performance in a wide 

spectrum of diagnostic applications, including biomedical 

imaging and disease prediction [6, 7]. These models are 

especially powerful when dealing with high-dimensional 

information such as imaging data, temporal physiological 

signals, or integrated multimodal datasets, making them 

highly suitable for identifying diabetic characteristics in rat 

populations. 

The present investigation addresses this need by 

implementing advanced deep learning algorithms to classify 

diabetic and non-diabetic rat groups using biochemical blood 
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data converted into two-dimensional images. By employing 

robust neural architectures and multimodal data 

transformation, the objective is to design an automated 

diagnostic framework capable of recognizing diabetic 

phenotypes with high precision, tracking disease dynamics, 

and potentially identifying novel biomarker relationships [8]. 

Such an individual approach can enhance the efficiency and 

consistency of preclinical studies while also laying the 

groundwork for comparable applications in other animal 

models and human clinical investigations [9]. 

In this study, two groups of rats—diabetic and control—

were analyzed based on an openly accessible dataset 

containing blood chemistry measurements. Eleven 

biochemical features, including AST, ALT, cholesterol, 

triglycerides, HDL, VLDL, LDL, glucose, body weight, Total 

Antioxidant Status (TAS), and Total Oxidant Status (TOS), 

were utilized. A statistically validated subset of 50 cases from 

each group was randomly selected for analysis. These numeric 

datasets were restructured into arrays and subsequently 

transformed into two-dimensional colored “.png” images, 

each representing diabetic or non-diabetic groups. The 

generated images were evaluated using three computational 

approaches: Support Vector Machine (SVM), ResNet18, and 

MobileNetV2. A comprehensive performance assessment was 

performed to compare classification accuracy across models. 

Furthermore, this study emphasizes the importance of 

explainable artificial intelligence in biomedical applications. 

By integrating interpretability techniques, the analysis aims to 

provide a successful decision-making process of deep learning 

models, thereby improving trustworthiness and advancing 

scientific understanding. Ultimately, the framework bridges 

computational predictions with biological interpretation, 

supporting a more integrative strategy for diabetes research in 

experimental animal models. Moreover, below, the literature 

review is given. 

In this research, deep learning methodologies are applied to 

forecast diabetes by utilizing an openly available dataset 

consisting of rat blood test results. Broadly, investigations into 

diabetes prediction have made use of both conventional 

machine learning strategies and advanced deep learning 

models. A number of studies have focused on applying 

machine learning techniques to publicly accessible datasets 

with encouraging results. For example, Madan et al. [10] 

developed an ensemble framework that integrated a Support 

Vector Machine (SVM) with a feedforward neural network. 

By combining the decisions of individual classifiers through a 

majority voting mechanism, the ensemble system delivered 

improved predictive capability, achieving an accuracy of 

88.04%. 

In a related effort, Sneha and Gangil [11] evaluated several 

machine learning algorithms—including Naïve Bayes (NB), 

SVM, and logistic regression—for diabetes classification 

tasks. Their analysis demonstrated that SVM provided the best 

outcome, with a recorded accuracy of 77.37%. They further 

enhanced the results by implementing feature selection 

techniques that removed attributes showing weak correlations 

within the PIMA dataset. 

In another comparative investigation, Edeh et al. [12] 

assessed the performance of four classifiers—Bayes, decision 

tree (DT), SVM, and random forest (RF)—across two separate 

datasets for diabetes prediction. Their findings revealed that 

SVM once again achieved the highest accuracy on the PIMA 

dataset, reaching 83.1%, thereby confirming its effectiveness 

in this domain. 

2. MATERIAL AND METHODS

The present investigation was designed as a retrospective 

study that utilized blood chemistry data collected over five 

years from an openly accessible dataset of Wistar rats [13]. 

Because the dataset was publicly available, the use of ethical 

approval procedures was not required. Before analysis, the 

records were anonymized to safeguard confidentiality. 

Subsequently, several preprocessing operations were 

performed, including the elimination of noise, application of 

normalization procedures, and extraction of key diagnostic 

features. After these steps, the data were divided into separate 

subsets for model training and testing, with a conventional 

split ratio of 70% for training and 30% for evaluation. 

2.1 Dataset used ın the study 

A comprehensive overview of the dataset employed in this 

study is presented below. It consisted of blood test results from 

a total of 100 rats, evenly divided into 50 diabetic and 50 non-

diabetic cases, which were used to train and evaluate the 

models. Each record included measurements across eleven 

biochemical and physiological indicators. These values were 

further compared with reference ranges obtained from non-

obese healthy rats to establish baseline metrics [14]. The 

features incorporated into the analysis are described as follows: 

Cholesterol: A lipid-based compound synthesized 

primarily in the liver and circulating in the bloodstream, often 

considered a major component in metabolic health. 

Triglycerides: A class of lipids distinct from cholesterol, 

functioning as an essential energy storage form in the body. 

LDL Cholesterol: Low-Density Lipoprotein (LDL) 

cholesterol, commonly termed ‘bad cholesterol,’ serves as the 

principal carrier of cholesterol molecules from hepatic tissues 

to peripheral cells, thereby facilitating cholesterol distribution 

throughout the systemic circulation. 

HDL Cholesterol: High-Density Lipoprotein cholesterol, 

known as “good cholesterol,” which facilitates the clearance 

of excess cholesterol by carrying it back to the liver for 

elimination. 

VLDL Cholesterol: Very-Low-Density Lipoproteins are 

responsible for distributing triglycerides synthesized in the 

liver to different tissues throughout the body. 

Glucose: The primary source of energy for cellular 

metabolism, stored in the liver and muscles in the form of 

glycogen when present in excess. 

Body Weight: A fundamental biological characteristic 

frequently measured in animal studies, serving as an indicator 

of metabolic health, growth, and overall physiological 

condition. 

Total Antioxidant Status (TAS): A measure representing 

the cumulative capacity of an organism’s defense mechanisms 

to counterbalance oxidative stress and maintain cellular 

stability. 

Total Oxidant Status (TOS): A parameter that reflects the 

overall oxidative load within biological systems, indicating the 

extent of free radical activity and potential cellular damage. 

2.2 Methods of the study 

2.2.1 Data pre-processing 

This part of the study outlines the methodological 

framework adopted to determine the diabetic status of the rat 

groups. The overall workflow of the proposed system is 
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summarized in Figure 1. As an initial step, the numerical 

dataset was standardized, ensuring that the ranges of all 

features were adjusted to enable effective transformation of 

tabular values into image representations. To improve the 

accuracy of the deep learning models, several data 

augmentation strategies were subsequently applied. In the 

final phase, the processed datasets were subjected to 

classification using the three convolutional neural network 

(CNN)-based models selected for this research. Each 

component of the procedure is explained in detail in the 

following subsections. 

In addition, the process of normalization was applied, as it 

represents a widely used and essential procedure in artificial 

intelligence–based studies involving multi-feature datasets 

[15]. Since individual attributes often differ considerably in 

their value ranges, rescaling them to a uniform or comparable 

scale is necessary to prevent disproportionate influence during 

model training. Standardizing features in this way 

significantly improves both the efficiency and accuracy of the 

learning algorithms. In the case of our dataset, the included 

variables demonstrated distinct minimum and maximum 

values, which are summarized in Table 1. This variability 

made the normalization step indispensable for ensuring 

balanced representation of all features during analysis. 

Within the framework of the proposed approach, 

normalization is a fundamental step that enables the 

transformation of numerical attributes into image-based 

representations. In this process, the magnitude of each feature 

dictates the brightness level of its corresponding pixel, where 

higher values appear as lighter intensities in the constructed 

image [16]. For the visualization to remain consistent and 

comparable, all features must be adjusted to the same 

numerical range [17]. 

Figure 1. The steps involved in the proposed approach 

Table 1. Minimum and maximum value ranges of dataset features (first eight correspond to the diabetes group; the remaining 

eight to the normal group) 

AST ALT Cholesterol Triglycerides HDL VLDL LDL Weight Glucose TAS TOS 

190 64 53 48 49 9.6 15.6 216 282 0.3 8.64 

165 62 48 52 48 10.4 10.4 134 265 0.21 9.77 

191 38 94 41 83 8.2 12.8 258 306 0.58 4.32 

159 67 51 33 46 6.6 16 213 325 0.32 5.23 

140 99 45 48 41 9.6 15.6 286 136 0.53 6.25 

190 91 56 60 55 12 11 130 141 0.33 4.55 

185 79 32 54 38 10.8 16.8 290 N/A 0.38 10.34 

200 70 N/A 50 N/A 10 10 180 N/A 0.28 N/A 

124 80 95 49 63 9.8 12.2 258 89 0.81 2.84 

120 31 78 55 69 11 12 286 83 0.45 6.36 

113 53 65 47 59 9.4 13.4 272 78 0.39 2.95 

124 36 49 47 45 9.4 15.4 241 102 0.41 5.34 

115 52 60 49 57 9.8 16.8 284 95 0.71 7.5 

134 50 77 48 65 9.6 12.4 302 76 0.53 6.82 

114 39 65 43 61 8.6 14.6 327 91 0.47 3.98 

128 51 73 55 64 11 12 340 62 0.5 N/A 
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In this study, normalization was performed using the feature 

scaling technique, specifically the min–max method [18]. This 

approach converts raw feature values into a standardized 

interval, typically ranging from 0 to 1. The normalized value 

of a given observation (xn) is obtained by applying the 

minimum (xmin) and maximum (xmax) limits of that feature. 

Through this procedure, every attribute is rescaled into the 

same interval, ensuring homogeneity across the dataset and 

enabling uniform pixel-based image construction. The 

mathematical expression of this process is provided in Eq. (1): 

𝑥𝑛 =
(𝑥 − 𝑥𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
(1) 

2.2.2 Numeric to ımage data conversion 

Although the availability of medical imaging data has 

grown substantially in recent years, a considerable portion of 

clinical information is still recorded in purely numerical form 

[19]. Such data are relatively inexpensive and straightforward 

to obtain; however, their evaluation is most often performed 

with conventional machine learning methods [20]. More 

recently, certain deep learning frameworks have introduced 

one-dimensional convolutional neural networks (1D-CNNs) 

to address numerical datasets. Nevertheless, the CNN 

architectures that have led to breakthroughs in computer vision 

were specifically designed for two-dimensional image inputs, 

making them unsuitable for direct application to one-

dimensional numerical records [21]. 

(a) 

(b) 

Figure 2. (a) Normal conversion color image 

(b) Diabetes conversion color image

To overcome this limitation, the present study applied a 

transformation strategy to its dataset, which consisted 

exclusively of numerical attributes, to render it compatible 

with image-based deep learning models. The conversion 

process was carried out within the MATLAB 2024a 

environment. Figure 2 presents representative examples of the 

resulting color images, showing samples from both the normal 

group (a) and the diabetic group (b). 

The converted images, which embed all the selected 

features, were prepared in a format compatible with 

convolutional neural networks (CNNs) that operate on two-

dimensional inputs. Beyond this transformation, conventional 

augmentation strategies commonly applied in image analysis 

can also be employed on these generated datasets. To ensure 

the effectiveness of augmentation, the image structure was 

deliberately arranged asymmetrically. This design choice 

guarantees that each augmented version preserves distinct 

characteristics, thereby maintaining diversity throughout the 

data enrichment process [22]. 

2.2.3 Data augmentation process 

The evaluation metrics of deep learning algorithms is 

strongly influenced by the volume of training data available. 

Yet, assembling sufficiently large datasets is often challenging 

in practical research contexts. To compensate for this 

limitation, investigators typically enlarge their datasets by 

producing modified versions of existing images, a procedure 

referred to as data augmentation [23]. 

In the present work, the dataset contained 100 numerical 

samples (50 representing non-diabetic rats and 50 representing 

diabetic rats), which were converted into a total of 500 image 

files. Since this quantity remained relatively limited for 

training deep neural networks, augmentation techniques were 

introduced to artificially expand the dataset. To enhance 

variability and support more robust model training, four 

augmentation strategies—namely rotation, scaling, reflection, 

and translation—were systematically applied to each image. 

The parameter ranges for these operations are listed in Table 

2, and representative augmented images from the diabetes 

group are illustrated in Figure 3. 

Table 2. Data augmentation parameters used in this study 

Parameter Lower Value Upper Value 

Rotation -45 45 

Reflection - - 

Scale 0.8 1.2 

Translation -20 20 

Figure 3. Data augmentation sample results 

2.2.4 Diabetes prediction via DL models 

After the augmentation procedures, the dataset was 

partitioned into two subsets, allocating 70% for training and 

30% for testing. The generated images were subsequently 

introduced into the convolutional neural network (CNN)–

based models. Instead of developing a completely new CNN 

design, this research relied on established architectures—

Support Vector Machine (SVM), ResNet18, and 

MobileNetV2—for diabetes classification, with only minor 

modifications introduced through fine-tuning. 
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(1) SVM model

Support Vector Machine (SVM) is a widely recognized

supervised learning approach that has been extensively used 

for classification tasks, including applications in medical 

image analysis [24]. In this study, the features derived from 

the pre-processed and augmented images were applied to train 

the SVM classifier, chosen for its reliability and its 

effectiveness in complex high-dimensional data [25]. The 

training set was composed of 500 augmented samples, 

designed to represent a broad range of case variations. 

The classification relied on the radial basis function (RBF) 

kernel, which is among the most frequently employed variants 

of the Gaussian kernel in SVM studies [26]. In practice, this 

linear division corresponds to a non-linear decision boundary 

in the original data space. Such flexibility is particularly 

advantageous in medical image classification, where intricate 

and non-linear associations often exist between features. 

Minor variations in pixel intensity, texture, and spatial 

structures play a crucial role in differentiating disease-related 

classes, making the RBF kernel an appropriate choice for this 

task [27]. 

(2) ResNet-18 model

The ResNet-18 architecture, consisting of 18 layers, was

applied in this study to automatically extract and learn 

discriminative image features. The design integrates 

convolutional layers, batch normalization operations, and fully 

connected layers [28]. 

Convolutional layers: These layers perform feature 

extraction from input images. The transformation can be 

expressed as Eq. (2): 

𝑌 = 𝑓(𝑋 ∗ 𝑊 + 𝑏) (2) 

where, 

X: input image, 

W: convolution filter, 

B: bias term, 

f: activation function, 

∗: convolution operation. 

Residual blocks: To facilitate training in deeper 

architectures, skip connections are introduced. This can be 

represented as Eq. (3): 

𝑌 = 𝑓(𝑋 + 𝐹(𝑋)) (3) 

where, 

X: input image, 

F(X): residual function, 

f: activation function. 

Fully connected layers: The final stage of classification is 

conducted by fully connected layers. The operation is given by 

Eq. (4): 

𝑍 = 𝜎(𝑊 ⋅ 𝑌 + 𝑏) (4) 

where, 

Y: feature vector, 

W: weight matrix, 

b: bias, 

σ: activation function. Indeed, the structural outline of 

ResNet-18 used in this study is illustrated in Figure 4. 

(3) MobileNetV2 model

MobileNetV2 is recognized as a lightweight and

computationally efficient deep learning framework, 

specifically designed for specific applications [29]. Its 

efficiency stems from the use of depthwise separable 

convolutions, in which the traditional convolutional process is 

decomposed into two operations: depthwise convolution and 

pointwise convolution. This decomposition dramatically 

decreases both parameter count and computational demand, 

while still preserving the model’s capacity [30]. 

Another important innovation within the MobileNetV2 

design is the incorporation of inverted residual connections 

and linear bottlenecks. These structural components allow the 

network to effectively retain compact, low-dimensional 

information while simultaneously learning rich, high-level 

abstractions. The combination of these mechanisms ensures 

that the architecture remains highly expressive without 

sacrificing efficiency, making it particularly advantageous for 

medical image analysis, where computational resources and 

response time are critical considerations [31]. 

Figure 4. The ResNet18 network structure mentioned in the study 
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For this study, MobileNetV2 was adapted to the dataset 

through transfer learning. Pre-trained parameters originally 

optimized on the ImageNet dataset were fine-tuned for the 

classification of diabetic versus non-diabetic rat data. The 

uppermost layers of the network were replaced with a newly 

added fully connected layer, a softmax function, and a two-

class output layer tailored to the specific requirements of this 

task. To further strengthen the model’s generalization ability, 

advanced augmentation methods—such as random rotations, 

rescaling, and brightness modification—were applied during 

training. An overview of the MobileNetV2 network structure 

utilized in this work is illustrated in Figure 5. 

Figure 5. MobileNetV2 network structure 

3. RESULTS

After the completion of the training stage, the performance 

of the models was thoroughly assessed using an independent 

test set composed of 20 randomly selected images that had not 

been included in the training process. The purpose of this 

evaluation was to determine the ability of the trained SVM 

classifier to extend its decision boundaries to unfamiliar 

samples. 

In the experimental design, the dataset was partitioned into 

two subsets, with 70% allocated for training and 30% reserved 

for testing. Both the ResNet18 and MobileNetV2 architectures 

were fine-tuned using the training portion and subsequently 

evaluated on the test set. To strengthen generalization and 

improve predictive performance, data augmentation strategies 

were incorporated, thereby expanding the variability within 

the training data and allowing the models to adapt more 

effectively to unseen inputs. 

During optimization, training was adapted to the specific 

characteristics of each model. For ResNet18, stochastic 

gradient descent (SGD) was applied, iteratively updating the 

network’s parameters to minimize loss. In contrast, 

MobileNetV2 employed the Adam optimizer, selected for its 

adaptive learning rate mechanism, which is particularly 

advantageous for lightweight neural architectures. Both 

optimization schemes were further regulated through learning 

rate scheduling to promote efficient convergence and stability. 

The MobileNetV2 model was trained with an input 

resolution of 224×224 pixels. To improve robustness, 

augmentation operations such as random rotation, translation, 

and scaling were applied. These steps enabled the network to 

cope with variations likely to appear in real-world datasets, 

thereby improving its ability to generalize across different 

conditions. 

Upon analyzing performance metrics, the findings 

highlighted the crucial role of feature extraction quality and 

kernel selection in SVM classification. The radial basis 

function (RBF) kernel, in particular, allowed the model to 

accommodate the non-linear complexity inherent in medical 

image data, achieving high classification accuracy and 

demonstrating its applicability to practical clinical contexts. A 

visual summary of the SVM results is provided in the 

confusion matrix displayed in Figure 6. 

The ResNet18 model attained an accuracy of 96.88%, 

demonstrating its capacity to capture complex structures and 

intricate relationships within the dataset. In comparison, 

MobileNetV2, optimized for efficiency, reached a slightly 

higher accuracy of 97.39%. This marginal improvement 

underscores the capability of the lightweight architecture to 

deliver superior predictive performance while preserving 

computational efficiency. A graphical representation of 

accuracy and loss trends for ResNet18 is provided in Figure 7. 

A notable strength of the MobileNetV2 architecture lies in 

its high computational efficiency. Owing to its streamlined 

design and the use of depthwise separable convolutions, the 

model completed training in nearly half the time required by 

ResNet18. This characteristic makes MobileNetV2 

particularly well-suited for scenarios demanding real-time 

predictions or deployment in environments with constrained 

computational capacity. The corresponding accuracy and loss 

curves for MobileNetV2 are illustrated in Figure 8. 

Figure 6. Confusion matrix of SVM classification 
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Figure 7. Performance results of DL model of ResNet18 

Figure 8. Performance results of DL model of MobileNetV2 
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Prospective research could investigate the integration of 

ResNet18 and MobileNetV2 through ensemble strategies or 

hybridized network architectures, thereby leveraging the 

complementary strengths of both models. Furthermore, 

enlarging the dataset and testing additional lightweight 

frameworks—such as EfficientNet or ShuffleNet—may yield 

deeper insights into achieving an optimal balance between 

predictive accuracy and computational efficiency in medical 

image classification tasks. 

In terms of performance comparison, the conventional 

approach produced an accuracy of 76.92% on the test set. By 

contrast, the ResNet18 network achieved 96.88%, and 

MobileNetV2 delivered an even higher score of 97.39%. This 

pronounced difference clearly illustrates the superiority of 

deep learning techniques over traditional methods for 

diagnostic purposes. 

The enhanced performance of ResNet18 can be attributed to 

its deep-layered structure, which enables hierarchical feature 

extraction from raw images. Its convolutional layers 

successfully identify low- to high-level features, while 

residual connections support stable training in deeper 

networks, thereby capturing intricate dependencies in the 

dataset. MobileNetV2, in comparison, reached slightly better 

results while preserving computational efficiency by relying 

on lightweight mechanisms such as depthwise separable 

convolutions. This design allowed precise feature 

representation and robust generalization across unseen 

samples. Both models further benefited from the application 

of data augmentation, which increased diversity in the training 

set and strengthened their ability to generalize beyond the 

original dataset. 

4. DISCUSSION

The findings of this research provide clear evidence of the 

performance of deep learning architectures—specifically 

ResNet18 and MobileNetV2—when compared with 

conventional segmentation techniques. MobileNetV2, in 

particular, achieved an accuracy of 97.39%, and its high 

computational efficiency further underscores its suitability for 

incorporation into clinical diagnostic pipelines. Unlike 

traditional approaches that depend heavily on predefined or 

manually engineered features, these deep learning frameworks 

are capable of extracting and learning discriminative features 

directly from raw input data. This inherent ability to 

automatically capture complex and subtle patterns enhances 

diagnostic precision and reduces reliance on human 

intervention. A summary of the performance outcomes is 

presented in Table 3. 

Table 3. Comparative results of the three models used in this 

study 

Model Accuracy 

SVM 76,92% 

ResNet18 96,88% 

MobileNetV2 97,39% 

ResNet18 relies on convolutional layers to progressively 

capture features at multiple abstraction levels. This innovation 

helps mitigate the vanishing gradient problem—a 

phenomenon where gradients become too small to update 

weights effectively, hindering learning in very deep networks. 

By allowing gradients to propagate through alternative 

pathways, residual blocks ensure that deep networks can be 

trained efficiently and retain learning capacity. 

In contrast, MobileNetV2 employs a streamlined design 

tailored for speed and efficiency. Furthermore, MobileNetV2 

integrates inverted residual connections and linear bottlenecks. 

These components preserve the richness of feature 

representations while maintaining low model complexity. 

Linear bottlenecks, in particular, retain critical information by 

avoiding unnecessary non-linear transformations at block 

outputs, thereby reducing the risk of information loss. 

To strengthen robustness, both models were trained with 

data augmentation strategies. Operations such as rotation, 

scaling, and flipping artificially increased the dataset size by 

creating alternative versions of the original images. This 

approach exposed the models to a wider variety of patterns, 

enabling them to generalize more effectively. For example, 

rotations simulated different perspectives, while flips 

accounted for natural orientation variations. 

The integration of these architectures into clinical 

workflows offers considerable benefits. MobileNetV2, with an 

accuracy of 97.39% alongside superior efficiency, 

demonstrates particular promise as a scalable diagnostic tool. 

Early and precise detection of conditions such as strokes or 

brain tumors can facilitate timely interventions, reducing 

morbidity and mortality rates. 

Findings from earlier studies further validate these results. 

For instance, Zhang et al. reported tumor segmentation 

accuracies exceeding 90% using CNN-based models, while Li 

et al. [31] gave significant improvements in stroke detection 

through deep learning methods. 

Traditional approaches and SVM classifiers, while useful, 

show limitations in comparison. In this work, the SVM 

classifier achieved 76.92% accuracy using manually extracted 

features such as intensity distributions and area measurements. 

The performance depended heavily on feature engineering, 

which can miss important hidden patterns. In contrast, 

MobileNetV2’s automatic hierarchical feature learning 

allowed it to surpass SVM by capturing both simple and 

complex structures, thereby managing variability in the data 

more effectively. 

The discussion underscores the ability of deep learning 

models to enhance diagnostic workflows and reduce reliance 

on manual analysis. In clinical practice, they could be 

incorporated into computer-aided diagnosis (CAD) systems, 

assisting radiologists by highlighting regions of interest, pre-

processing images, and generating preliminary assessments. 

Such integration could accelerate diagnostic processes, reduce 

error rates, and ultimately improve patient outcomes. 

Overall, ResNet18 and MobileNetV2 exhibit both 

efficiency and precision, making them well-suited for 

diagnostic imaging applications. Augmentation strategies 

further improved resilience, enabling them to perform reliably 

on novel datasets. With their high predictive performance, 

these models can support radiologists, ensure consistency, and 

enhance diagnostic quality. As deep learning technology 

continues to evolve, its adoption in clinical workflows is 

expected to revolutionize medical diagnostics. 

4.1 Limitations and future directions 

Despite strong results, several constraints of this study must 

be acknowledged. First, the dataset size, although sufficient 

for the scope of this research, is modest compared to the large-

scale datasets typically employed in deep learning studies. 

Second, this investigation focused on only two architectures: 
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ResNet18 and MobileNetV2. While both have shown 

excellent results in tumor and stroke classification, other 

promising networks could provide further benefits. For 

example, EfficientNet offers scalable models that balance 

accuracy with efficiency; DenseNet strengthens feature 

propagation and reduces vanishing gradients; and transformer-

based models like Vision Transformers (ViT) capture long-

range dependencies that may enhance diagnostic tasks. 

Exploring these alternatives could extend the findings of this 

study and potentially yield superior results. 

Finally, the study relied primarily on standard augmentation 

strategies, including flipping, scaling, and rotation. Although 

these methods are effective, more advanced techniques could 

further improve model generalization. Generative adversarial 

networks (GANs), for instance, can generate synthetic samples 

closely resembling real data, effectively enlarging the dataset 

and reducing the challenges associated with limited training 

material. GAN-based augmentation would not only increase 

diversity but also help prepare models for unexpected 

variations in real-world scenarios. 

5. CONCLUSION

This research evaluated the performance of conventional 

segmentation techniques against modern deep learning 

frameworks, the models of ResNet18 and MobileNetV2, in the 

diagnosis of neurological conditions. MobileNetV2 achieved 

the highest accuracy at 97.39%, followed closely by ResNet18 

with 96.88%, whereas the SVM baseline reached only 76.92%. 

These outcomes emphasize the disruptive potential of deep 

learning approaches in medical image analysis, particularly in 

tasks involving the detection of brain tumors and strokes. 

The superior accuracy of these architectures demonstrates 

their capability to automatically extract hierarchical feature 

representations directly from raw data, offering a level of 

generalization and effectiveness that conventional, manually 

engineered methods cannot match. MobileNetV2, in particular, 

stands out due to its compact architecture and efficiency, 

making it especially well-suited for environments where 

computational resources are limited, such as real-time 

diagnostic systems or mobile healthcare platforms. 

Looking ahead, future investigations should concentrate on 

enlarging the dataset, testing additional network families, and 

applying ensemble or hybrid strategies to further enhance 

predictive performance. With the rapid evolution of artificial 

intelligence technologies, such innovations hold the potential 

to transform diagnostic practices by improving accuracy, 

reducing workload, and ultimately advancing patient care 

outcomes. 
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