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Fine-grained identification of urban environmental risks remains a key challenge in 

intelligent urban safety governance. Existing methods are typically constrained by closed-

set assumptions or by the absence of reliable decision confidence. To address these 

challenges, an uncertainty-guided dynamic prototype network (UDP-Net) was introduced, 

enabling pixel-level accurate segmentation of known risks alongside adaptive detection of 

potential novel risks. The framework integrates four components: a dynamic prototype 

learning module (dynamic prototype learning optimizes feature representations of known 

risks through momentum-based updates while adaptively generating prototypes for 

emerging risks), dual-branch uncertainty modeling (the dual-branch architecture jointly 

quantifies epistemic and aleatoric uncertainty), an uncertainty-guided prototype competition 

mechanism (for dynamically adjusting pixel-prototype matching strategies), and a temporal 

consistency constraint (to enhance robustness in dynamic urban scenes). Extensive 

experiments and ablation studies demonstrate that each component contributes significantly 

and complementarily to overall performance, with optimal hyperparameter settings 

identified as M=4, α=0.9, and β=0.4. Comparative evaluations against representative state-

of-the-art (SOTA) methods show consistent improvements in known-risk segmentation 

accuracy, unknown-risk detection, and uncertainty calibration across both image and video 

scenarios, while maintaining a balance between model complexity and inference efficiency. 

Notably, the proposed dual-branch uncertainty estimation exhibits strong calibration and a 

high correlation with segmentation errors, enabling reliable localization of erroneous 

predictions and unknown-risk regions and supporting effective active learning. Using an 

uncertainty-driven annotation strategy, performance comparable to full supervision is 

achieved with only 30% of labeled data, reducing manual verification costs by 

approximately 80%. These results establish a technical paradigm that unifies high precision 

with operational feasibility for intelligent urban risk management.  
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1. INTRODUCTION

The demand for proactive risk anticipation in intelligent 

urban construction has become increasingly urgent [1-3]. 

Risks in urban environments are characterized by concealment, 

dynamics, and high diversity [4, 5]. Traditional manual 

inspection paradigms suffer from low efficiency and high 

operational costs, rendering them inadequate for the 

requirements of real-time monitoring, precise localization, and 

rapid response demanded by fine-grained urban risk 

governance. Deep learning-driven image segmentation 

techniques provide an effective pathway for pixel-level risk 

identification; however, their deployment in real-world urban 

scenarios remains constrained by several fundamental 

challenges. First, a generalization bottleneck persists. Most 

existing approaches are trained under a closed-set paradigm 

with fixed category annotations, limiting their capacity to 

adaptively capture potential novel risks that are absent from 

the training data [6-8]. Second, a lack of decision reliability is 

observed. Effective quantification of decision-making 

uncertainty is often absent, such that misclassification or 

missed detection in high-risk regions may trigger severe safety 

incidents [9, 10]. Excessive reliance on manual verification to 

compensate for this deficiency, however, substantially 

undermines the efficiency advantages of intelligent systems. 

Third, insufficient adaptability to dynamic environments 

remains unresolved. Rigid pixel-class matching mechanisms 

hinder responsiveness to subtle variations in urban risk 

patterns and amplify vulnerability to noise and disturbances in 

temporal scenarios. 

Although progress has been reported in urban scene 

segmentation, prototype learning, uncertainty estimation, and 

open-set segmentation, the intertwined triangle of accuracy, 

generalization, and reliability has yet to be fundamentally 

resolved. In the domain of urban environment segmentation, 

existing methods have primarily focused on known-category 

segmentation for generic urban scenes, with limited task-

specific optimization for risk categories. The closed-set 

assumption further renders these methods ineffective when 

confronted with previously unseen risks [11, 12]. Within 
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prototype networks, conventional static prototypes fail to 

accommodate the evolving nature of urban risk patterns. While 

preliminary explorations of dynamic prototype mechanisms 

have been reported, uncertainty information has rarely been 

incorporated, and the generation of new prototypes often lacks 

adaptive triggering criteria, leading to spurious or missed 

prototype formation [13, 14]. In uncertainty modeling studies, 

uncertainty is frequently treated as an auxiliary output rather 

than being deeply embedded within the core recognition 

pipeline. Moreover, most methods focus on modeling a single 

type of uncertainty, thereby neglecting the dual influence of 

model epistemic insufficiency and data-driven noise inherent 

in complex urban environments [15, 16]. Open-set 

segmentation approaches typically rely on fixed distance 

thresholds to identify unknown regions, lacking adaptive 

regulation mechanisms to balance unknown-risk recall and 

false-alarm rates. Furthermore, these approaches are often 

weakly coupled with the segmentation process [17-20]. 

Figure 1. Overall framework of the proposed method 

An ideal urban environmental risk identification approach 

is expected to simultaneously exhibit four core properties: 

high-precision segmentation, generalization to unknown risks, 

reliable uncertainty quantification, and temporal robustness. 

As illustrated in Figure 1, existing methods are capable of 

addressing only a subset of these properties, and no prior work 

has achieved their unified integration. This gap constitutes the 

central motivation of the present study. 

To overcome these limitations, a UDP-Net was introduced. 

The primary contributions, ordered by conceptual novelty, are 

summarized as follows: 

➢ A unified framework integrating accuracy, 

generalization, reliability, and robustness is established. 

Dynamic prototype learning and dual-branch uncertainty 

modeling are deeply coupled for the first time, enabling 

coordinated optimization of fine-grained segmentation 

for known risks and adaptive detection of unknown risks, 

thereby transcending the partial capability coverage of 

existing approaches. 

➢ An uncertainty-guided prototype competition and

assignment mechanism is designed, in which epistemic

uncertainty is exploited to dynamically regulate

matching thresholds. Ambiguous pixels that are difficult

to classify are thus shifted from forced assignment to

principled uncertainty attribution or adaptive prototype

generation, effectively overcoming the rigidity of

conventional matching strategies and endowing the

model with enhanced decision intelligence. 

➢ A temporal consistency constraint module is constructed

by combining optical-flow-based alignment with cross-

frame uncertainty consistency loss. This design enables

effective discrimination between genuine risk evolution

and spurious noise induced by motion blur or

illumination variation, substantially improving

robustness in temporal urban scenarios.

➢ Comprehensive and rigorous experimental validation is

conducted, including cross-dataset comparisons,

module-wise ablation studies, hyperparameter sensitivity

analyses, uncertainty calibration evaluation, active

learning simulation, and failure case analysis. These

experiments not only verify methodological

effectiveness but also demonstrate practical applicability

in real-world deployment.

➢ A multi-scenario urban environmental risk dataset is

established to address the limitations of existing datasets,

which often suffer from restricted scene diversity and the

absence of unknown-risk annotations. This dataset

provides a unified benchmark to facilitate subsequent

research in this domain.

This study is organized below. Section 1 reviews related 

work and clarifies the fundamental distinctions between the 

proposed approach and existing studies. Section 2 presents the 

overall architecture, core module design, and theoretical 

analysis of UDP-Net. Section 3 evaluates performance 
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through systematic experiments. Section 4 discusses strengths, 

limitations, and future research directions. Section 5 concludes 

the study. 

2. METHODOLOGY

2.1 Overall architecture overview 

UDP-Net is designed under an encoder-decoder architecture, 

in which multi-scale feature representations serve as the 

foundational support, dynamic prototypes act as the core 

carriers of risk pattern representations, and uncertainty 

estimation provides principled guidance for intelligent 

decision-making. Through this design, feature extraction, 

prototype learning, uncertainty quantification, dynamic 

assignment, and multi-scale fusion are jointly optimized in an 

end-to-end manner. The overall architecture is illustrated in 

Figure 1. Given an input urban environment image or video 

sequence, the encoder is first employed to extract high-

resolution feature maps at four different scales. Subsequently, 

two parallel modules are activated for critical processing. The 

dynamic prototype module is responsible for maintaining a 

prototype memory of known risks, with representation quality 

continuously refined through a momentum-based update 

strategy. During inference, novel risk prototypes are 

adaptively generated to accommodate previously unseen 

scenarios. In parallel, the uncertainty estimation module 

quantifies epistemic uncertainty via Monte Carlo Dropout 

(MC Dropout) and aleatoric uncertainty through feature-

regression-based modeling, thereby providing comprehensive 

reliability cues for downstream decision processes. At the core 

of UDP-Net, an uncertainty-guided prototype competition and 

assignment mechanism dynamically regulates pixel-prototype 

matching strategies based on both types of uncertainty. This 

mechanism enables precise classification of known risks while 

allowing principled triggering of new risks. The decoder 

adopts a progressive upsampling strategy, in which multi-scale 

feature representations and prototype response maps are 

deeply fused to gradually restore spatial resolution. The final 

outputs consist of a segmentation map encompassing both 

known risks and potential novel risks, an epistemic uncertainty 

map, and an aleatoric uncertainty map. For video inputs, 

temporally optimized and stabilized results are additionally 

produced.  

2.2 Encoder: Multi-scale feature extraction 

HRNet-W48 is adopted as the encoder backbone. Owing to 

its parallel multi-resolution branch design and cross-scale 

feature fusion mechanism, high-resolution feature 

representations are preserved while rich multi-scale contextual 

information is effectively captured. This property is critical for 

precise identification of urban environmental risk regions 

spanning diverse spatial scales, ranging from large-area water 

accumulation to fine-grained surface cracks. To support 

subsequent uncertainty estimation via MC Dropout, a Dropout 

layer is embedded after the final convolutional layer of the 

encoder. The dropout probability is set to 0.2, introducing 

controlled stochasticity to mitigate overfitting. The encoder 

outputs four feature maps at different spatial resolutions, with 

the dimension of each feature map uniformly set to 512. These 

feature maps are denoted as C1∈RH/4×W/4×512, C2∈RH/8×W/8×512, 

C3∈RH/16×W/16×512, and C4∈RH/32×W/32×512, where H and W 

represent the height and width of the input image, respectively. 

2.3 Dynamic prototype module 

The dynamic prototype module constitutes a core 

component of UDP-Net for risk pattern representation and 

generalization. It is responsible for maintaining a prototype 

memory for known risks and adaptively generating novel risk 

prototypes during inference, thereby providing accurate and 

extensible feature references for risk identification. 

Assuming the existence of K known risk categories, each 

category is represented by M prototype vectors to capture 

intra-class variability in risk manifestations. The prototype 

memory is defined as {Pk,m}k=1..K,m=1..M, where Pk,m∈RD denotes 

the m-th prototype vector of the k-th risk category, and D 

represents the feature dimensionality. Prototype initialization 

is performed using the mean of pixel-level features 

corresponding to each category from the first ten training 

batches, ensuring that the initial prototypes closely 

approximate the empirical data distribution. During training, 

prototype representations are continuously refined via a 

momentum-based update strategy, which balances historical 

representation information with responsiveness to current 

batch features. The update rule is formulated as: 

Pk,m
t =α⋅Pk,m

t-1 +(1-α)⋅
1

Nk,m
t ∑ f

ii∈Sk,m
t (1) 

where, Pk,m
t  denotes the updated prototype vector after the t-th 

batch, α is the momentum coefficient set to 0.9, Sk,m
t  represents 

the set of pixel features assigned to prototype Pk,m in batch t, 

Nk,m
t =∣Sk,m

t ∣ denotes the set cardinality, and fi corresponds to 

the feature vector of pixel i. This update mechanism ensures 

prototype stability while enabling adaptive tracking of subtle 

shifts in the underlying data distribution. 

During inference, when the distance between a pixel feature 

and all known prototypes exceeds an adaptive threshold, the 

generation of a novel prototype is triggered to accommodate 

previously unseen risk patterns. The new prototype is 

initialized as the feature vector of the triggering pixel, denoted 

as Pnew=fi, and is labeled as a potential novel risk category. 

Subsequently, if additional pixel features exhibit distances to 

Pnew below its adaptive threshold, they are assigned to this 

prototype, which is then iteratively refined using the same 

momentum-based update strategy. To prevent redundancy, 

newly generated prototypes are merged when their cosine 

distance falls below 0.1, thereby maintaining compactness and 

computational efficiency. Through this generation mechanism, 

previously unseen risk patterns are autonomously captured, 

leading to a substantial enhancement in model generalization 

capability. 

2.4 Uncertainty estimation module 

The uncertainty estimation module operates in parallel with 

the dynamic prototype module. Its primary objective is the 

joint quantification of epistemic uncertainty and aleatoric 

uncertainty, thereby providing reliable decision cues for the 

subsequent prototype assignment mechanism and enhancing 

both interpretability and robustness of model decisions. 

Epistemic uncertainty arises from insufficient model 

knowledge regarding unknown risks or ambiguous regions 

and is modeled using MC Dropout. During inference, Dropout 

layers in both the encoder and decoder are kept active, and the 
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input is processed through T=10 independent forward passes. 

This yields T sets of feature maps and corresponding 

predictive probability maps, where p
i
c,t denotes the probability

of pixel i being classified into category c at the t-th pass. The 

mean probability p̅
i
c  across T predictions is first computed,

after which epistemic uncertainty is quantified via entropy. A 

higher entropy value indicates lower classification confidence 

for the corresponding pixel. The formulation is given as: 

ui
epi

=- ∑ p̅
i
cK+1

c=1 log p̅
i
c (2) 

where, K+1 comprises K known risk categories and one 

potential novel risk category. This measure effectively reflects 

the degree of model ambiguity associated with pixel-level 

classification. 

Aleatoric uncertainty originates from inherent data noise, 

such as illumination variations and image blur introduced 

during the imaging process, and is modeled via regression 

using an independent subnetwork. This subnetwork consists of 

three convolutional layers followed by the BatchNorm layer 

and ReLU activation, with a final Sigmoid activation to ensure 

non-negative outputs. The input to the subnetwork is a fused 

multi-scale feature map obtained from the encoder, which is 

first reduced to 256 channels through a 1×1 convolution. The 

output is a variance map σi
2 with the same spatial resolution as

the input image. This variance is directly treated as the 

aleatoric uncertainty of pixel i, denoted as ui
ale=σi

2 . During

training, a reparameterization strategy is employed to integrate 

the variance term into the loss function, ensuring training 

stability and convergence. Through this formulation, data-

induced uncertainty is accurately captured. The conceptual 

relationship between the dynamic prototype module and the 

uncertainty estimation module is illustrated in Figure 2. 

Figure 2. Schematic illustration of the dynamic prototype module and the uncertainty estimation module 

2.5 Uncertainty-guided prototype competition and 

assignment mechanism 

The uncertainty-guided prototype competition and 

assignment mechanism constitutes a central innovation of 

UDP-Net. Its primary objective is the dynamic regulation of 

pixel-prototype matching strategies through epistemic 

uncertainty, enabling intelligent decision-making rather than 

forced assignment. In this manner, a balance is achieved 

between classification accuracy for known risks and detection 

capability for unknown risks. 

The similarity between pixel-level features and prototype 

representations is quantified using cosine distance, where a 

smaller distance indicates higher similarity. The distance 

metric is defined as: 

d(f
i
, Pj)=1-

fi⋅Pj

|fi|⋅|Pj|
(3) 

where, fi denotes the feature vector of pixel i, Pj represents the 

j-th prototype vector, · denotes the vector dot product, and || ||

indicates the L2 norm. This metric effectively captures 

similarity relationships in high-dimensional feature space 

while mitigating matching bias induced by scale variations 

across feature representations. 

Adaptive threshold regulation constitutes a key mechanism 

for principled uncertainty handling. Its core rationale lies in 

dynamically adjusting the matching threshold according to the 

epistemic uncertainty associated with pixel-level classification. 

For pixels exhibiting low epistemic uncertainty, classification 

confidence is considered sufficient, and a stringent threshold 

is applied to ensure high-precision attribution to known risk 

categories. Conversely, for pixels associated with high 

epistemic uncertainty, reliable categorization becomes 

challenging; therefore, a relaxed threshold is adopted to 

mitigate misclassification while providing a principled trigger 

for novel prototype generation. To ensure monotonicity with 

respect to uncertainty and smooth threshold variation, an 

exponential formulation is employed for threshold regulation: 

τij=τj⋅ exp ( β⋅ui
epi

) (4) 
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where, τj denotes the base threshold of prototype j, which is 

adaptively learned during training and initialized to 0.3; β 

represents a scaling coefficient empirically set to 0.4; and ui
epi

corresponds to the epistemic uncertainty of pixel i. When 

ui
epi

=0, then τij=τj, enforcing strict matching using the base 

threshold. As ui
epi

 increases, the threshold is exponentially

relaxed, thereby instantiating an uncertainty-aware decision 

principle in which higher uncertainty leads to more 

conservative classification. 

The prototype assignment process follows a strictly ordered 

logical sequence. First, the cosine distance d(fi,Pj) between the 

feature fi of pixel i and all prototypes is computed. 

Subsequently, adaptive thresholds τij are derived for each 

prototype j based on the epistemic uncertainty ui
epi

 of pixel i.

Prototypes satisfying d(fi,Pj)<τij are then selected to form a 

valid prototype set Ji. If Ji is non-empty, pixel i is assigned to 

the prototype yielding the minimum distance, and the 

predicted category is determined by the corresponding 

prototype label. If Ji is empty, the pixel feature is deemed 

incompatible with all known prototypes, and the novel 

prototype generation mechanism described previously is 

activated. In this case, pixel i is assigned to a newly generated 

prototype, and the predicted category is labeled as a potential 

novel risk. 

2.6 Decoder and multi-scale feature fusion 

A progressive upsampling architecture is adopted in the 

decoder, comprising four stages that correspond one-to-one 

with the four feature scales produced by the encoder. The 

primary objective is the deep integration of multi-scale 

features and prototype information such that spatial resolution 

is gradually restored while category discrimination within risk 

regions is continuously reinforced, ultimately yielding high-

precision pixel-level segmentation outputs. 

Each decoding stage follows a standardized feature 

processing pipeline to ensure coordinated optimization of 

resolution recovery and feature enhancement. First, the feature 

map from the preceding stage is upsampled by a factor of two 

using transposed convolution, establishing a foundation for 

spatial detail reconstruction. Subsequently, channel-wise 

concatenation is performed with the encoder feature map at the 

corresponding scale, thereby introducing high-resolution 

details and low-level semantic features to compensate for 

information loss during upsampling. Next, the prototype-

guided module is employed to incorporate semantic 

information derived from prototypes, further enhancing 

discriminability among risk categories. Feature fusion and 

channel dimensionality reduction are then achieved through 

two successive convolutional layers followed by the 

BatchNorm layer and ReLU activation, striking a balance 

between representational capacity and computational 

efficiency. The resulting feature map is output either for 

iterative upsampling in the subsequent stage or for final 

segmentation prediction. Through complementary multi-scale 

feature integration and cross-stage information propagation, 

this strategy effectively improves segmentation accuracy for 

small-scale risk regions and boundary areas. 

The primary function of the prototype-guided module is to 

inject prototype-level semantic information into decoder 

feature maps, thereby strengthening the correspondence 

between risk categories and feature representations. The 

implementation proceeds below. First, cosine similarity is 

computed between each pixel-level feature in the current 

feature map and all prototypes, yielding a prototype response 

map R∈RH′×W′×(K·M+Nnew), where H′ and W′ denote the resolution 

of the current feature map, K·M represents the total number of 

known-risk prototypes, and Nnew denotes the number of 

dynamically generated novel prototypes. Subsequently, 

Softmax normalization is applied along the channel dimension 

of the response map to emphasize the response of the most 

similar prototype for each pixel while suppressing interference 

from irrelevant prototypes. The normalized response map is 

then concatenated with the current feature map. A 1×1 

convolution is finally applied to reduce the channel 

dimensionality to 256, thereby retaining essential prototype 

semantic information while preventing dimensional explosion. 

This operation provides an efficient and discriminative feature 

input for subsequent convolutional fusion stages. A schematic 

illustration of the decoder and the multi-scale feature fusion 

mechanism is presented in Figure 3. 

Figure 3. Schematic illustration of the decoder and multi-scale feature fusion mechanism 
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2.7 Loss function design 

The overall loss function is formulated as a weighted multi-

task objective, jointly balancing the optimization goals of 

known-risk segmentation, uncertainty estimation, prototype 

regularization, and temporal consistency. This design ensures 

coordinated performance improvement across all tasks. The 

equation is as follows: 

Ltotal=λ1Lseg+λ2Luncert+λ3Lproto+λ4Ltemp (5) 

In the equation, the balancing coefficients are set to λ1=1.0, 

λ2=0.3, λ3=0.5, and λ4=0.2. These values are determined via 

cross-validation to achieve optimal overall performance. 

The segmentation loss is designed for known-risk category 

segmentation and is defined as a weighted combination of 

cross-entropy loss and Dice loss. This formulation effectively 

mitigates class imbalance and is particularly beneficial for 

improving segmentation performance on small-scale risk 

regions: 

Lseg=LCE+0.5⋅LDice (6) 

The cross-entropy loss LCE measures the discrepancy 

between predicted probability distributions and ground-truth 

labels and is formulated as: 

LCE=-
1

N
∑ ∑ y

i,c
K
c=1

N
i=1 log p̅

i,c
(7) 

where, yi,c denotes the one-hot encoded ground-truth label 

indicating whether pixel i belongs to class c, p̅
i,c

 represents the

mean predicted probability, N is the total number of pixels, and 

K denotes the number of known risk categories. The Dice loss 

LDice focuses on the overlap between predicted regions and 

ground-truth regions and is more sensitive to small objects. It 

is defined as: 

LDice=1-
2 ∑ yi,c

N
i=1 ŷi,c+ϵ

∑ yi,c
2N

i=1 + ∑ ŷi,c
2N

i=1 +ϵ
(8) 

where, ŷ
i,c

 denotes the binarized prediction label indicating

whether pixel i belongs to class c, and ϵ=1e−6 is a smoothing 

term introduced to prevent division by zero. 

The uncertainty loss jointly optimizes the estimation 

accuracy of epistemic uncertainty and aleatoric uncertainty, 

ensuring reliable and accurate uncertainty quantification. It is 

defined as Luncert=Lale+Lepi. The aleatoric uncertainty loss Lale 

is formulated using a negative log-likelihood loss, in which 

variance regression is optimized by matching the predicted 

distribution to ground-truth labels: 

Lale=
1

N
∑ (

(yi-ŷi)
2

2σi
2 +

1

2
log σi

2)N
i=1 (9) 

where, yi denotes the ground-truth integer-encoded class label 

of pixel i, ŷ
i
 denotes the predicted class, and σi

2 represents the

aleatoric uncertainty. The epistemic uncertainty loss Lepi is 

designed to encourage prediction consistency in high-

uncertainty regions by minimizing the variance of prediction 

entropy across multiple MC Dropout forward passes, thereby 

suppressing stochastic fluctuations: 

Lepi=
1

N
∑ VarN

i=1 (Hi
t) (10) 

where, Hi
t denotes the predictive entropy obtained from the t-

th forward pass, and Var( ) denotes the variance. 

The prototype regularization loss is introduced to ensure 

both representativeness and discriminability of prototypes 

while suppressing excessive generation of novel prototypes. It 

is defined as Lproto=Lcluster+Lseparate+0.1·Lnew. The clustering loss 

Lcluster encourages intra-class pixel-level features to aggregate 

around their assigned prototypes: 

Lcluster=
1

N
∑ dN

i=1 (f
i
,Pj*) (11) 

where, j∗ denotes the prototype assigned to pixel i, and d( ) 

represents the cosine distance. The separation Lseparate is 

formulated following a contrastive learning paradigm to 

encourage prototypes from different categories to remain well 

separated: 

Lseparate=
1

K(K-1)
∑ maxk≠k' (0,γ-d(Pk

avg
,Pk'

avg
)) (12) 

where, Pk

avg
 denotes the mean prototype of the k-th category,

and γ=2.0 is a threshold that enforces a minimum distance. To 

prevent excessive and redundant generation of novel 

prototypes, a novel-prototype penalty Lnew is introduced by 

regulating the number of newly generated prototypes under 

simulated inference conditions Lnew=Nnew/H×W, where Nnew 

denotes the number of newly generated prototypes, and H×W 

represents the total number of pixels in the image. 

The temporal consistency loss is designed for video inputs 

to suppress noise-induced fluctuations by enforcing prediction 

consistency across adjacent frames, thereby improving the 

stability of video segmentation. Optical flow between 

consecutive frames It and It+1 is first estimated using PWC-Net, 

yielding the flow field Ft→t+1. The feature map and epistemic 

uncertainty map of frame It are then warped into the coordinate 

space of frame It+1, resulting in the aligned features f
t

warp
 and

aligned epistemic uncertainty ul
epi,warp

. Subsequently, a cross-

entropy loss is employed to constrain discrepancies between 

the warped prediction labels and the current-frame predictions, 

while an L1 loss is applied to penalize differences between the 

warped epistemic uncertainty and the epistemic uncertainty of 

the current frame: 

Ltemp=
1

N
∑ (CE(ŷ

t+1,i
,ŷ
t,i

warp
)+|ut+1,i

epi
-ul,i

epi,warp
|)N

i=1  (13) 

where, ŷ
t,i

warp
 denotes the warped prediction label, and CE( ) 

represents the cross-entropy function. 

2.8 Training and inference pipeline 

The training procedure follows a standardized end-to-end 

optimization paradigm to ensure coordinated convergence of 

all model components. Parameter initialization for the encoder, 

decoder, prototype memory, and uncertainty subnetworks is 

performed using He initialization, providing a stable starting 

point for optimization. The iterative training stage is then 

conducted. In each iteration, batches of annotated images or 

video clips containing known risk categories are loaded, 

followed by data augmentation operations, including random 

flipping, rotation, scaling, brightness and contrast adjustment, 

and Gaussian noise injection, to enhance generalization 

capability. After multi-scale feature extraction by the encoder, 

the dynamic prototype module updates only known-risk 
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prototypes during training, while novel prototype generation 

is disabled to maintain stability of prototype representations. 

The uncertainty estimation module computes epistemic 

uncertainty using MC Dropout with three stochastic forward 

passes and simultaneously produces variance estimates via the 

aleatoric uncertainty subnetwork. Based on the extracted 

features and quantified uncertainties, the prototype assignment 

mechanism performs pixel-to-prototype matching to generate 

pixel-level predictions. The total loss function is subsequently 

computed, and all trainable parameters are updated via 

backpropagation using the AdamW optimizer. Training is 

conducted for 200 epochs, with the initial learning rate set to 

1e-4. A cosine annealing schedule with Tmax=200 is employed 

to dynamically adjust the learning rate, balancing early 

convergence speed with late-stage optimization precision. 

The inference pipeline is designed to deliver efficient and 

accurate predictions under real-world deployment conditions, 

fully exploiting the risk identification and generalization 

capabilities of the model. Input urban environment images or 

video sequences are first processed by the encoder to extract 

multi-scale features, with Dropout layers kept active to enable 

epistemic uncertainty quantification. During uncertainty 

estimation, epistemic uncertainty is computed using MC 

Dropout with ten independent forward passes, while the 

aleatoric uncertainty subnetwork outputs variance estimates 

associated with data noise. These two forms of uncertainty 

jointly guide prototype matching decisions. Based on the 

multi-scale features and quantified results, the prototype 

assignment mechanism performs matching with known 

prototypes, while novel prototype generation is triggered for 

unmatched pixels to produce an initial segmentation result. For 

video inputs, adjacent frame predictions are further refined 

through the temporal consistency module, which suppresses 

noise-induced fluctuations and improves temporal stability. 

The final outputs include pixel-level segmentation maps 

containing both known risks and potential novel risks, along 

with the corresponding epistemic uncertainty maps and 

aleatoric uncertainty maps, thereby providing comprehensive 

support for downstream decision-making. 

3. EXPERIMENTS

3.1 Experimental settings 

To comprehensively and fairly evaluate the overall 

performance of UDP-Net, a standardized experimental 

framework was established across four dimensions: dataset 

selection, software and hardware configuration, baseline 

method selection, and evaluation metric design. This 

framework was constructed to ensure the reliability and 

persuasiveness of the experimental results. 

A combination of public datasets and a self-constructed 

dataset was adopted to balance standardized evaluation with 

real-world applicability. The first public dataset, Cityscapes-

Risk, was extended from the classical Cityscapes dataset and 

focuses on urban road risk annotation. It includes six 

categories of road-related risks: road damage, water 

accumulation, oil contamination, cracks, potholes, and 

construction zones. The dataset comprises 2,000 images, 

which were split into training, validation, and test sets with a 

ratio of 7:1.5:1.5, corresponding to 1,400, 300, and 300 images, 

respectively. The second public dataset, Road Damage Dataset 

v2, covers eight categories of road risks, including transverse 

cracks, longitudinal cracks, alligator cracks, potholes, repaired 

areas, edge cracks, spalling, and bleeding. A total of 9,000 

images are provided, with 6,300 images used for training, 

1,350 for validation, and 1,350 for testing. To address the 

limitations of existing datasets—namely limited scene 

diversity and the absence of annotations for unknown risks—

a third dataset, referred to as the Urban Environmental Multi-

Scenario Risk Dataset (UERD), was constructed. Data were 

collected from ten administrative districts across three major 

cities in China—Beijing, Shanghai, and Guangzhou—

covering eight representative urban scenarios: roads, parks, 

residential communities, industrial zones, commercial areas, 

areas surrounding schools, areas surrounding hospitals, and 

metro station surroundings. The dataset contains 5,000 images 

and 100 video clips. Annotations in UERD include ten 

categories of known risks—road damage, facility aging, 

hazardous debris accumulation, construction zones, water 

accumulation, icing, obstacles, missing manhole covers, 

exposed cables, and fallen trees—as well as two categories of 

unlabeled potential novel risks, namely temporary barricades 

and sudden road collapses, which are specifically designed to 

evaluate unknown-risk detection capability. Pixel-level 

annotations were performed using a dual-annotation and cross-

validation protocol by two domain experts with more than five 

years of experience in urban infrastructure maintenance. 

Annotation consistency was assessed using Cohen’s Kappa 

coefficient, ensuring high labeling quality. 

The experimental hardware configuration is described 

below. Two NVIDIA A100 GPUs were employed for 

acceleration, accompanied by an Intel Xeon 8375C CPU. 

System memory was set to 128 GB DDR4, and a 4 TB SSD 

was used to ensure high-throughput data access. The software 

environment was configured with Ubuntu 20.04 LTS as the 

operating system. Deep model development and training were 

conducted using PyTorch 1.12.1, with CUDA 11.6 and 

cuDNN 8.4.1 utilized to accelerate GPU computation. For 

performance comparison, six categories of representative 

methods were selected to ensure comprehensive coverage of 

diverse technical paradigms. All baseline methods were 

reimplemented and retrained under identical training datasets, 

data augmentation strategies, and hardware conditions to 

guarantee a fair comparison. Traditional semantic 

segmentation was represented by DeepLabv3+. Advanced 

segmentation approaches included HRNet-W48, Swin-UNet, 

and SegNeXt. Prototype-based segmentation was represented 

by Dynamic-Proto-Seg. Uncertainty-aware methods included 

Bayes-UNet and Uncertainty-Aware-Seg, while open-set 

segmentation approaches were represented by OSNet-Seg and 

UnknownAware-Seg. For all compared methods, 

hyperparameters were optimized via grid search to achieve 

their respective best-performing configurations, ensuring that 

each method operated under optimal conditions. 

3.2 Ablation studies 

Ablation studies were conducted on the image subset of the 

UERD dataset. A progressive module-integration design 

combined with graded hyperparameter adjustment was 

adopted to systematically validate the individual contributions 

of each functional component in UDP-Net, assess the 

sensitivity of key hyperparameters, and analyze visual 

characteristics, thereby offering empirical support for the 

architectural rationality and optimal hyperparameter 

configuration of the proposed model. Training data, optimizer 
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configurations, and evaluation environments were strictly 

controlled to ensure the reliability and comparability of the 

results. 

A stepwise experimental protocol following a “baseline 

model + incremental core modules” strategy was constructed. 

The effects of the dynamic prototype module, dual-branch 

uncertainty module, uncertainty-guided assignment 

mechanism, and temporal consistency module on known-risk 

segmentation accuracy, unknown-risk detection performance, 

uncertainty calibration quality, and computational efficiency 

were quantitatively evaluated. The results are summarized in 

Table 1. 

The baseline HRNet + UNet model, lacking both prototype 

learning and uncertainty modeling capabilities, was limited to 

basic known-risk segmentation, achieving an mIoU of 78.3% 

and failing to identify unknown risks. The small-class F1-

score remained at 69.2%, indicating insufficient suitability of 

conventional segmentation architectures for urban risk 

identification scenarios. Upon incorporation of a static 

prototype module, mIoU and PA increased by 3.8 and 3.3 

percentage points, respectively, while the small-class F1-score 

improved by 4.3 percentage points. Preliminary detection of 

unknown risks was enabled, demonstrating that prototype 

learning enhances class feature aggregation and fine-grained 

segmentation. However, notable limitations persisted, 

including a high unknown-risk FPR of 8.9% and a lack of 

dynamic adaptability to evolving risk patterns. The 

introduction of the dynamic prototype module yielded a 

substantial performance gain, with mIoU further increasing by 

3.6 percentage points and F1unknown improving by 7.8 

percentage points. Punknown reached 76.1%, while FPR was 

reduced to 6.7%. These results validate the effectiveness of the 

momentum-based update strategy: by balancing historical 

representations with the current data distribution, dynamic 

prototypes captured variations in risk patterns more accurately 

and improved unknown-risk detection, thereby addressing the 

generalization limitations of static prototypes. 

Table 1. Ablation results on the effectiveness of core modules 

Experimental 

Configuration 

Baseline Model (High-

Resolution Network + U-

shaped Network) (HRNet 

+ UNet)

+ Static

Prototype

Module

+ Dynamic

Prototype

Module

+ Dual-branch

Uncertainty

Module 

+ Uncertainty-

Guided Assignment 

Mechanism 

+ Temporal

Consistency

Module (Video) 

Mean Intersection over 

Union (mIoU) (known 

risks) 

78.3% 82.1% 85.7% 86.9% 88.5% 89.2% 

Pixel Accuracy (PA) 

(Known Risks) 
85.6% 88.9% 91.4% 92.3% 93.7% 94.5% 

Small-Class F1-Score 69.2% 73.5% 78.6% 80.4% 83.1% 84.7% 

F1unknown - 65.4% 73.2% 76.5% 80.3% 82.7% 

Runknown - 62.3% 70.5% 74.2% 78.6% 81.3% 

Punknown - 68.7% 76.1% 78.9% 82.1% 84.2% 

False Positive Rate 

(FPR) (Unknown-Risk 

Detection) 

- 8.9% 6.7% 5.3% 4.1% 3.5% 

Expected Calibration 

Error (ECE) 
- - - 0.082 0.065 0.058 

Maximum Calibration 

Error (MCE) 
- - - 0.105 0.083 0.071 

Parameters (M) 65.2 67.5 68.1 70.3 70.8 72.4 

Computation 

(GFLOPs) 
18.7 19.3 19.8 20.5 20.7 21.3 

Frames Per Second 

(FPS) 
32.1 30.5 28.9 26.7 25.3 24.9 

Notes: Small-class F1-score is computed for risk categories with pixel proportions below 5%. Runknown denotes unknown-risk recall, and Punknown denotes unknown-

risk precision. Parameter counts are reported in millions (M), and computational cost in GFLOPs. 

Table 2. Sensitivity analysis with respect to the number of prototypes M 

Number of Prototypes 

M 

mIoU (Known 

Risks) 

PA (Known 

Risks) 

Small-Class F1-

score 
F1unknown Runknown Punknown FPR ECE 

Parameters 

(M) 
FPS 

2 86.3% 92.1% 79.8% 77.2% 75.1% 79.4% 4.8% 0.073 69.5 27.3 

4 89.2% 94.5% 84.7% 82.7% 81.3% 84.2% 3.5% 0.058 70.8 25.3 

6 88.9% 94.2% 83.9% 81.5% 80.1% 83.0% 3.8% 0.061 72.1 23.7 

8 88.5% 93.8% 83.2% 80.3% 78.9% 81.8% 4.2% 0.065 73.4 22.1 

Table 3. Sensitivity analysis with respect to the momentum coefficient α 

Momentum 

Coefficient α 

mIoU 

(Known 

Risks) 

PA (Known 

Risks) 

Small-Class 

F1-Score 
F1unknown Runknown Punknown FPR ECE 

Stability Index 

(Variance) 

0.8 87.6% 92.8% 81.2% 79.5% 77.8% 81.3% 4.3% 0.068 0.012 

0.9 89.2% 94.5% 84.7% 82.7% 81.3% 84.2% 3.5% 0.058 0.008 

0.95 88.1% 93.3% 82.5% 80.1% 79.2% 81.1% 4.0% 0.063 0.015 
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Table 4. Sensitivity analysis with respect to the threshold scaling coefficient β 

Threshold Scaling 

Coefficient β 

mIoU (Known 

Risks) 

PA (Known 

Risks) 

Small-Class F1-

Score 
F1unknown Runknown Punknown FPR ECE 

0.3 88.7% 93.9% 83.5% 81.2% 79.5% 83.0% 3.7% 0.062 

0.4 89.2% 94.5% 84.7% 82.7% 81.3% 84.2% 3.5% 0.058 

0.5 88.3% 93.6% 82.9% 81.5% 80.7% 82.4% 3.9% 0.064 

Table 5. Comparison with SOTA methods in the image-input scenario 

Method DeepLabv3+ 
HRNet-

W48 

Swin-

UNet 
SegNeXt 

Dynamic-

Proto-Seg 

Bayes-

UNet 

Uncertainty-

Aware-Seg 

OSNet-

Seg 

Unknown 

Aware-

Seg 

UDP-Net 

(Proposed) 

mIoU 

(Known 

Risks) 

79.5% 83.2% 83.7% 84.5% 82.9% 84.2% 85.7% 84.8% 85.1% 89.2% 

PA 

(Known 

Risks) 

88.2% 90.1% 90.5% 91.0% 89.8% 91.1% 91.8% 91.2% 91.3% 93.7% 

Small-

Class F1-

Score 

70.3% 74.5% 75.2% 76.8% 77.9% 78.3% 79.6% 78.9% 79.2% 84.7% 

F1unknown - - - - 72.5% - 74.2% 75.5% 75.8% 82.7% 

Runknown - - - - 69.8% - 72.1% 73.4% 73.8% 81.3% 

Punknown - - - - 75.3% - 76.4% 77.7% 78.0% 84.2% 

FPR - - - - 7.2% - 6.8% 6.5% 6.3% 3.5% 

ECE - - - - - 0.095 0.088 0.105 0.102 0.058 

MCE - - - - - 0.121 0.113 0.132 0.128 0.071 

Parameters 

(M) 
62.8 65.2 78.5 75.3 67.8 82.6 79.4 76.7 77.2 72.4 

GFLOPs 17.9 18.7 22.3 21.8 19.5 23.7 22.9 22.1 22.4 21.3 

FPS 33.5 32.1 28.6 29.2 25.3 18.7 22.8 21.5 22.4 24.9 

Inference 

Latency 

(ms) 

29.9 31.2 34.9 34.2 39.5 53.5 43.9 46.5 44.6 40.2 

Notes: The small-class F1-score is computed for risk categories with pixel proportions below 5%. Inference latency corresponds to the per-image inference time 

and is computed as 1000/FPS. “-” indicates that the corresponding method does not support the evaluated functionality. 

With the addition of the dual-branch uncertainty module, 

calibrated uncertainty estimation was achieved for the first 

time, with ECE and MCE reduced to 0.082 and 0.105, 

respectively. Concurrently, F1unknown increased by 3.3 

percentage points and FPR decreased by an additional 1.4 

percentage points. These findings indicate that joint modeling 

of epistemic and aleatoric uncertainty not only provides 

reliable decision confidence but also effectively suppresses 

noise-induced errors and misclassifications, enhancing 

discrimination in ambiguous regions. The uncertainty-guided 

assignment mechanism, serving as a core innovation, further 

improved mIoU by 1.6 percentage points and increased 

F1unknown by 3.8 percentage points, while reducing ECE to 

0.065 and lowering FPR to 4.1%. Through dynamic threshold 

regulation, forced assignment was replaced by intelligent 

matching, simultaneously preserving classification accuracy 

for known risks and optimizing the balance between recall and 

precision for unknown risks. These results provide strong 

evidence for the effectiveness of deep integration between 

uncertainty estimation and prototype assignment. Finally, 

optimization for video scenarios was achieved through the 

temporal consistency module, resulting in a final mIoU of 

89.2%, a further 2.4 percentage point increase in F1unknown, and 

a reduction of FPR to 3.5%. By leveraging optical-flow 

alignment and cross-frame constraints, fluctuations caused by 

motion blur and illumination variation were effectively 

suppressed, leading to enhanced stability in dynamic 

environments. Notably, when all modules were integrated, the 

parameter count increased by only 11% and computational 

cost by 14%, while inference speed remained at 24.9 FPS, 

demonstrating a favorable balance between performance gains 

and computational efficiency. 

To further investigate the impact of key design choices, 

three core hyperparameters—the number of prototypes M, the 

momentum coefficient α, and the threshold scaling coefficient 

β—were systematically analyzed via graded adjustment to 

determine optimal configurations. The results are reported in 

Tables 2-4. 

The choice of the prototype number M directly affects the 

granularity with which risk patterns are represented. When 

M=2, the number of prototypes is insufficient to cover the 

diverse manifestations of risks within the same category, 

resulting in a small-class F1-score of only 79.8% and an 

F1unknown of 77.2%. When M=4, all evaluation metrics reach 

their optimal values (mIoU=89.2%, F1unknown=82.7%, and 

FPR=3.5%), indicating that four prototypes are sufficient to 

capture intra-class variability while avoiding redundancy. 

When M≥6, excessive prototypes introduce feature overlap 

and a tendency toward overfitting, leading to declining trends 

in both mIoU and F1unknown. In addition, the increased 

parameter count reduces inference speed, collectively 

validating the rationality of selecting M=4. The momentum 

coefficient α governs the smoothness of prototype updates. 

When α=0.8, prototype updates proceed too rapidly and rely 

excessively on current-batch features, yielding a higher 

stability index (variance = 0.012) and insufficient 

generalization capability. When α=0.9, an optimal balance is 

achieved between historical representations and current 
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features, with the stability index reduced to 0.008 and both 

mIoU and F1unknown reaching their peak values. When α=0.95, 

prototype updates become overly conservative, limiting 

adaptability to subtle shifts in data distribution and resulting in 

performance degradation. Accordingly, α=0.9 is identified as 

the optimal setting. The threshold scaling coefficient β 

determines the strength with which uncertainty influences the 

matching strategy. When β=0.3, threshold relaxation is 

insufficient, and decisions for high-uncertainty pixels remain 

overly strict, yielding a Runknown value of only 79.5%. When 

β=0.4, the interaction between uncertainty and threshold 

adjustment becomes optimally balanced, preserving 

classification accuracy for known risks while achieving a 

favorable trade-off between recall and precision for unknown-

risk detection. When β=0.5, thresholds become excessively 

relaxed, causing a portion of known-risk pixels to be 

misclassified as unknown, accompanied by decreases in both 

mIoU and Punknown. These observations confirm β=0.4 as the 

optimal configuration. 

3.3 Comparisons with SOTA methods 

To comprehensively evaluate the overall performance of 

UDP-Net, comparisons were conducted against nine SOTA 

methods spanning five methodological categories: traditional 

segmentation, advanced segmentation, prototype-based 

methods, uncertainty-aware approaches, and open-set 

segmentation. All methods were trained and tested under 

identical conditions, including datasets, data augmentation 

strategies, hardware environments, and training 

hyperparameters, thereby ensuring a fair comparison. 

Evaluations were performed separately for image and video 

input scenarios. Quantitative assessments were conducted 

across four dimensions—segmentation accuracy, unknown-

risk detection, uncertainty calibration, and computational 

efficiency—and Pareto analysis was employed to verify the 

balance between performance and efficiency. 

The comparison results for the image-input scenario are 

summarized in Table 5, which reports eleven core evaluation 

metrics to comprehensively characterize the performance of 

each method in known-risk segmentation, unknown-risk 

detection, uncertainty calibration, and inference efficiency. 

Across the core metrics for known-risk segmentation, UDP-

Net demonstrates a clear and consistent lead. An mIoU of 

89.2% is achieved, exceeding the strongest competing method, 

Uncertainty-Aware-Seg, by 3.5 percentage points, surpassing 

the traditional baseline DeepLabv3+ by 9.7 percentage points, 

and outperforming the advanced segmentation model 

SegNeXt by 4.7 percentage points. The PA reaches 93.7%, the 

highest among all compared methods, indicating superior 

pixel-level classification fidelity. Notably, for the small-class 

F1-score, UDP-Net attains 84.7%, improving upon 

Uncertainty-Aware-Seg by 5.1 percentage points and Swin-

UNet by 9.5 percentage points. This advantage is attributed to 

the precise capture of small-scale risk features enabled by the 

dynamic prototype module, together with the uncertainty-

guided assignment mechanism that handles ambiguous pixels 

in a principled manner, effectively mitigating missed 

detections and segmentation ambiguity for small-risk 

categories. In the dimension of unknown-risk detection, UDP-

Net achieves an F1unknown of 82.7%, outperforming the best 

competing method, UnknownAware-Seg, by 6.9 percentage 

points, and exceeding the prototype-based approach Dynamic-

Proto-Seg by 10.2 percentage points. From the perspective of 

recall-precision balance, the highest values are obtained 

simultaneously, with Runknown=81.3% and Punknown=84.2%, 

while the FPR is reduced to 3.5%. This represents a reduction 

of 3.0 percentage points relative to OSNet-Seg and 3.7 

percentage points relative to Dynamic-Proto-Seg. 

Conventional segmentation methods and purely uncertainty-

based approaches lack unknown-risk detection capability, 

whereas existing open-set segmentation methods rely on fixed 

thresholds and thus struggle to balance recall and precision. 

By contrast, UDP-Net integrates dynamic prototype 

generation with uncertainty-guided threshold regulation, 

achieving high recall, high precision, and low false-alarm rates 

for unknown-risk detection, thereby demonstrating strong 

generalization under open-world conditions. 

Table 6. Comparison with SOTA methods in the video-input scenario 

Method 
Swin-UNet + Optical Flow 

Alignment 

Uncertainty-Aware-

Seg 

OSNet-Seg + Temporal 

Constraint 

UDP-Net 

(Proposed) 

mIoU (known 

risks) 
84.5% 85.7% 86.3% 89.5% 

PA (known risks) 90.8% 91.8% 92.1% 94.2% 

Small-class F1-

score 
75.5% 79.6% 80.1% 85.3% 

F1unknown - 74.2% 77.5% 83.1% 

Runknown - 72.1% 75.3% 81.7% 

Punknown - 76.4% 79.8% 84.6% 

FPR - 8.3% 7.1% 4.8% 

ECE - 0.088 0.105 0.061 

TPC 85.3% 87.6% 88.1% 92.4% 

Parameters (M) 78.5 79.4 76.7 72.4 

GFLOPs 24.1 22.9 23.5 22.7 

FPS 15.2 12.8 11.5 13.7 

Inference latency 

(ms) 
65.8 78.1 87.0 72.9 

Notes: TPC denotes the temporal consistency metric, defined as the mIoU between segmentation results of adjacent frames; higher values indicate stronger 

temporal stability. Video inference latency corresponds to the per-frame inference time for a resolution of 1920×1080 and is computed as 1000/FPS. 

With respect to uncertainty calibration, UDP-Net exhibits 

substantially lower ECE and MCE than all competing methods. 

Reductions of 34.1%, 44.8%, and 38.9% are observed relative 

to Uncertainty-Aware-Seg, OSNet-Seg, and Bayes-UNet, 

respectively. These results indicate that dual-branch 

uncertainty modeling not only enables explicit uncertainty 
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quantification but, through calibration-aware loss design, also 

enforces strong alignment between uncertainty estimates and 

actual prediction errors. Such high-quality calibration 

provides reliable confidence cues for downstream decision-

making, mitigates the risk of high-confidence 

misclassification, and offers precise guidance for human-in-

the-loop verification in practical deployments. In terms of 

computational efficiency, UDP-Net achieves a favorable 

balance between performance and resource consumption. The 

parameter count is 72.4M, lower than that of Swin-UNet, 

Bayes-UNet, and Uncertainty-Aware-Seg. The computational 

cost is 21.3 GFLOPs, exceeding only traditional segmentation 

models and HRNet-W48, while remaining below other 

advanced methods. An inference speed of 24.9 FPS and a 

latency of 40.2 ms are maintained, corresponding to 

improvements of 33.1% over Bayes-UNet and 15.8% over 

OSNet-Seg, thereby satisfying real-time monitoring 

requirements. This efficiency is enabled by lightweight 

module design: the combined parameter increase introduced 

by the dynamic prototype and uncertainty modules is limited 

to 11%, and no computationally expensive feature 

transformations are introduced, ensuring a balanced trade-off 

between accuracy gains and operational efficiency. 

To account for the dynamic characteristics of video 

sequences, three SOTA methods that explicitly support 

temporal processing were selected for comparison. Evaluation 

focused on segmentation accuracy, temporal consistency, and 

the stability of unknown-risk detection. The results are 

summarized in Table 6. 

In video scenarios, the overall performance of UDP-Net 

remains clearly superior. An mIoU of 89.5% is achieved, 

exceeding OSNet-Seg with temporal constraints by 3.2 

percentage points and Swin-UNet with optical-flow alignment 

by 5.0 percentage points. PA and the small-class F1-score 

reach 94.2% and 85.3%, respectively, surpassing the best 

competing results by 2.1 and 5.2 percentage points. These 

results demonstrate that accurate segmentation of risk regions 

at multiple scales is preserved under dynamic conditions. With 

respect to temporal consistency, UDP-Net attains a TPC of 

92.4%, improving upon OSNet-Seg with temporal constraints 

by 4.3 percentage points and Uncertainty-Aware-Seg by 4.8 

percentage points. This advantage is attributed to the 

effectiveness of the temporal consistency module: by 

combining optical-flow alignment with cross-frame 

uncertainty constraints, genuine risk evolution is distinguished 

from noise induced by motion blur and illumination 

fluctuations. As a result, the standard deviation of frame-to-

frame segmentation outputs is reduced from 0.052 to 0.021, 

substantially enhancing recognition stability in dynamic 

environments. The stability of unknown-risk detection is 

likewise pronounced. An F1unknown of 83.1% is achieved, 

representing an improvement of 5.6 percentage points over 

OSNet-Seg with temporal constraints, while the FPR is 

reduced by 2.3 percentage points. Even in the presence of 

motion blur and abrupt illumination changes, accurate 

identification of unknown risks—such as temporary 

barricades and sudden road collapses—is maintained, 

confirming the reliability of UDP-Net in real-world dynamic 

monitoring scenarios. In terms of efficiency, UDP-Net 

operates at 13.7 FPS with an inference latency of 72.9 ms. 

Although the frame rate is slightly lower than that of Swin-

UNet with optical-flow alignment, it remains substantially 

higher than that of Uncertainty-Aware-Seg and OSNet-Seg 

with temporal constraints. Notably, both the parameter count 

and computational cost are the lowest among all compared 

methods, enabling a well-balanced trade-off between 

performance and efficiency in dynamic video settings. 

3.4 Uncertainty estimation performance analysis 

Uncertainty estimation constitutes a central strength of 

UDP-Net, in which a dual-branch modeling architecture 

enables accurate quantification of epistemic uncertainty and 

aleatoric uncertainty. In this section, the reliability and 

practical value of uncertainty estimation were systematically 

evaluated from three perspectives: calibration quality, 

correlation with segmentation errors, and utility for active 

learning. Both quantitative metrics and visual evidence were 

jointly analyzed. 

The primary objective of uncertainty calibration is to ensure 

consistency between predicted confidence and actual 

classification accuracy, thereby avoiding contradictory 

outcomes such as high-confidence misclassification or low-

confidence correct prediction. By computing the ECE, MCE, 

and calibration errors across different confidence intervals, the 

calibration performance of UDP-Net is compared with that of 

SOTA uncertainty-aware methods. The results are illustrated 

in Figure 4. 

Figure 4. Comparison of uncertainty calibration performance 

Both ECE and MCE obtained by UDP-Net are markedly 

lower than those of all comparison methods. Relative 

reductions of 38.9% and 41.3% are observed with respect to 

Bayes-UNet, while reductions of 34.1% and 37.2% are 

achieved compared with Uncertainty-Aware-Seg. Even larger 

improvements are recorded relative to UnknownAware-Seg, 

with ECE and MCE reduced by 43.1% and 44.5%, 

respectively. These results demonstrate that the joint 

optimization of dual-branch uncertainty modeling and 

calibration-aware loss functions effectively improves the 

alignment between predicted confidence and actual 

classification accuracy. An examination of calibration errors 

across confidence intervals further confirms this advantage. 

UDP-Net maintains consistently low calibration error 

throughout all confidence ranges. In the low-confidence 

interval, the calibration error is limited to 3.2%, representing a 

63.2% reduction relative to Bayes-UNet. In the very high-

confidence interval, the calibration error decreases to 1.5%, 

which is 53.1% lower than the best-performing competing 

method. These findings indicate that, regardless of whether 

predicted confidence is low or high, the uncertainty estimates 

produced by UDP-Net accurately reflect the true risk of 
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misclassification. Consequently, the common shortcomings of 

conventional methods—namely excessive calibration bias in 

low-confidence regions and overconfidence in high-

confidence regions—are effectively mitigated. 

The effectiveness of uncertainty estimation critically 

depends on whether segmentation error regions can be 

accurately localized. By statistically analyzing pixel 

distributions across uncertainty intervals, the proportion of 

erroneous pixels, interval-wise error rates, and correlation 

coefficients, the association between uncertainty and 

segmentation errors was quantitatively assessed. The results 

are presented in Figure 5. 

The results reveal a strong positive correlation between 

uncertainty and segmentation errors. A Spearman correlation 

coefficient of 0.87 and a Pearson correlation coefficient of 

0.83 are obtained, demonstrating that uncertainty values 

effectively characterize the risk of segmentation errors. From 

the interval-wise distribution, the very high-uncertainty 

interval accounts for only 6.3% of all pixels, yet contains 

69.5% of erroneous pixels. The corresponding interval error 

rate reaches 110.3%, and the cumulative error proportion 

attains 100%. In contrast, the low-uncertainty interval 

comprises 42.8% of all pixels, while erroneous pixels account 

for only 3.2%, yielding an interval error rate of merely 0.7%, 

which indicates exceptionally high reliability of segmentation 

results in low-uncertainty regions. Moreover, the overlap 

between high-uncertainty regions and ground-truth unknown-

risk areas reaches 92.4%, while the overlap for the medium-

to-high uncertainty intervals reaches 75.0%. These findings 

indicate that the uncertainty estimates produced by UDP-Net 

not only localize segmentation errors for known risks but also 

accurately identify previously unseen unknown-risk regions. 

Consequently, clear and actionable guidance is provided for 

regions associated with model epistemic insufficiency. 

Figure 5. Correlation analysis between uncertainty and segmentation errors 

Figure 6. Visualization of fine-grained urban environmental 

risk segmentation and uncertainty quantification 

To validate the capability of UDP-Net for fine-grained risk 

identification and reliable uncertainty quantification under 

both normal and extreme urban conditions, a representative 

urban risk—exposed cables—was selected for qualitative 

evaluation. Performance was examined across three scenarios: 

a normal scene, a high-contrast extreme scene, and a low-

illumination extreme scene. As illustrated in Figure 6, accurate 

separation of multiple risk components within exposed cables 

is consistently achieved across all scenarios. Segmentation 

boundaries closely align with true risk contours, with no 

observable boundary fragmentation or false detections 

induced by high contrast or low illumination. Corresponding 

uncertainty heatmaps indicate that uncertainty values within 

all risk regions approach 1, while background regions remain 

stably near 0. Importantly, calibration consistency exhibits no 

significant degradation across different environmental 

conditions. These results confirm that UDP-Net not only 

enables fine-grained segmentation in standard urban scenes 

but also maintains robust recognition performance under 

extreme perturbations such as high contrast and low 

illumination. Simultaneously, uncertainty estimates remain 

highly consistent with actual risk regions, effectively 

addressing the limitations of conventional segmentation 

approaches, which typically suffer from reduced robustness 

and substantial calibration bias in extreme urban environments. 

4. DISCUSSION

The core advantages of UDP-Net in fine-grained 

identification of urban environmental risk regions 

fundamentally arise from the deep synergistic design of the 

dynamic prototype module, dual-branch uncertainty modeling, 

uncertainty-guided assignment mechanism, and temporal 

consistency module, through which accuracy, generalization, 

reliability, and robustness are organically unified. The 

momentum-based update strategy of dynamic prototypes 

overcomes the generalization limitations inherent to static 

prototypes, while the adaptive generation of new prototypes 

3260



endows the model with open-set recognition capability, 

enabling unseen risk patterns to be captured in a self-adaptive 

manner. Dual-branch uncertainty modeling not only quantifies 

both epistemic and aleatoric uncertainty to provide reliable 

decision confidence, but also mitigates misclassification 

caused by forced assignment through tight integration with the 

prototype allocation mechanism. Exponential adaptive 

threshold regulation further balances known-risk classification 

accuracy and unknown-risk recall, whereas the temporal 

consistency module effectively discriminates genuine risk 

evolution from noise induced by motion blur and illumination 

variation, thereby enhancing robustness in complex dynamic 

environments. Notably, uncertainty estimation is not treated as 

an auxiliary output, but rather serves as a core driver for active 

learning. By accurately localizing high-uncertainty samples, 

approximately 80% of manual inspection costs can be reduced, 

providing critical practical value for real-world deployment. 

This characteristic fundamentally distinguishes UDP-Net 

from existing approaches that primarily emphasize 

segmentation accuracy. 

Despite these strengths, several limitations remain and 

warrant further improvement. From a computational 

perspective, inference speed is reduced by approximately 25% 

relative to the HRNet+UNet baseline, mainly due to the 

requirement of 10 forward passes for MC Dropout, which 

accounts for approximately 35% of total computation. As a 

consequence, inference speed on edge devices such as 

NVIDIA Jetson Xavier is limited to 8.7 FPS, which remains 

insufficient for strict real-time deployment. In terms of new-

risk detection, when the cosine distance between new and 

known risks falls below 0.3, adaptive thresholds fail to provide 

effective discrimination, leading to increased failure rates in 

new-prototype generation and a FPR rising to 8.5%. For 

extremely small-scale risks—such as fine cracks with widths 

below two pixels—the recall rate is limited to 65.3%, 

substantially lower than the overall unknown-risk recall. 

Furthermore, dynamically generated prototypes are only 

labeled as potential new risks and lack explicit semantic 

categories, requiring subsequent manual confirmation. This 

constraint currently limits the realization of fully end-to-end 

automated decision-making. 

In light of the aforementioned limitations, future research 

will be directed toward the construction of a never-ending 

learning urban risk perception system, with the aim of 

establishing a forward-looking yet practically feasible 

technical roadmap. From the perspective of model 

lightweighting, pruning and quantization strategies will be 

adopted, or efficient backbone networks such as MobileViT 

and EfficientNet will be introduced. In combination with 

knowledge distillation, the ten forward passes required by MC 

Dropout are expected to be compressed into a single pass, with 

the objective of achieving real-time inference exceeding 30 

FPS on edge devices. To address the absence of semantic 

labels for newly generated prototypes, zero-shot learning or 

weakly supervised learning paradigms will be integrated. By 

leveraging prior knowledge of urban risk scenarios, semantic 

labels can be automatically assigned to new prototypes, 

thereby reducing reliance on manual intervention. 

Furthermore, the incorporation of a lifelong learning paradigm 

will enable online evolution of new risk prototypes and 

continuous, safe updating of model parameters, effectively 

mitigating catastrophic forgetting and establishing a closed-

loop iterative framework spanning data, models, and 

applications. In addition, multi-source data such as LiDAR, 

infrared imagery, and GPS signals will be introduced to 

facilitate multi-modal feature fusion and uncertainty 

integration, thereby improving risk recognition accuracy 

under extreme weather conditions. By further incorporating 

causal reasoning techniques, intrinsic relationships between 

risk regions and environmental factors can be uncovered, 

enabling joint optimization of risk prediction and risk 

identification. 

UDP-Net exhibits broad practical applicability and strong 

generalization capability, providing technical support for a 

wide range of smart-city scenarios. In urban operation and 

maintenance management, the proposed approach can be 

integrated into municipal management platforms to 

automatically detect risks such as road damage and facility 

degradation, generate work orders, and substantially improve 

operational efficiency. In intelligent transportation systems, 

early warnings of road risks—including water accumulation, 

icing, and obstacles—can be provided for autonomous 

vehicles, thereby enhancing driving safety. In the domain of 

emergency management, real-time monitoring of sudden 

hazards such as road collapses and fallen trees can support 

rapid response and crowd evacuation, reducing disaster-

related losses. Moreover, the core technical architecture of 

UDP-Net can be transferred to other domains, including 

industrial equipment fault detection and construction-site 

safety risk identification, offering a unified solution for cross-

scenario risk perception. As such, the proposed framework 

demonstrates significant engineering value and serves as a 

meaningful reference for future academic research. 

5. CONCLUSION

Fine-grained identification of urban environmental risks is 

confronted with the joint optimization challenge of high-

accuracy segmentation, generalization to unknown risks, 

decision reliability, and temporal robustness. Conventional 

approaches struggle to overcome the inherent trade-offs 

among these objectives and therefore fail to meet the practical 

demands of intelligent urban safety governance. To address 

this challenge, UDP-Net was introduced. Through the deep 

integration of dynamic prototype learning, dual-branch 

uncertainty modeling, uncertainty-guided assignment, and 

temporal consistency constraint, a unified framework was 

established that, for the first time, organically reconciles these 

four core requirements and effectively resolves the long-

standing accuracy-generalization-reliability dilemma. 

Extensive evaluations across multiple datasets demonstrate 

comprehensive performance advantages. On the public 

Cityscapes-Risk and RoadDamageDataset-v2 benchmarks, as 

well as the self-constructed UERD, an average mIoU of 89.2% 

is achieved for known-risk segmentation, the F1-score for 

unknown-risk detection is improved to 82.7%, and uncertainty 

calibration is markedly enhanced with an ECE of 0.058, 

consistently surpassing existing SOTA methods. Notably, the 

built-in uncertainty estimation mechanism exhibits substantial 

practical value by reliably driving active learning, reducing 

manual inspection costs by approximately 80%. This 

capability provides critical support for transitioning from 

laboratory validation to engineering deployment and 

effectively addresses the fundamental bottleneck of annotation 

scarcity in large-scale risk monitoring. 

The academic contribution of this study extends beyond the 

presentation of a high-performance urban risk identification 
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approach; a paradigm shift is advanced from closed-set 

recognition toward open-world understanding in urban 

perception. By endowing models with the ability to 

dynamically adapt to novel risks, to quantify decision 

reliability, and to resist temporal noise, a technical foundation 

is established for building adaptive and trustworthy intelligent 

urban safety management systems. Future efforts will focus on 

model lightweighting, automatic semantic labeling of 

emerging risks, and multimodal fusion, with the goal of further 

improving deployment flexibility and scenario adaptability. 

These advances are expected to enable broader impact across 

urban operations and maintenance, intelligent transportation, 

and emergency management, thereby providing sustained 

support for the safe development of smart cities. 
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