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Fine-grained identification of urban environmental risks remains a key challenge in
intelligent urban safety governance. Existing methods are typically constrained by closed-
set assumptions or by the absence of reliable decision confidence. To address these
challenges, an uncertainty-guided dynamic prototype network (UDP-Net) was introduced,
enabling pixel-level accurate segmentation of known risks alongside adaptive detection of
potential novel risks. The framework integrates four components: a dynamic prototype
learning module (dynamic prototype learning optimizes feature representations of known
risks through momentum-based updates while adaptively generating prototypes for
emerging risks), dual-branch uncertainty modeling (the dual-branch architecture jointly
quantifies epistemic and aleatoric uncertainty), an uncertainty-guided prototype competition
mechanism (for dynamically adjusting pixel-prototype matching strategies), and a temporal
consistency constraint (to enhance robustness in dynamic urban scenes). Extensive
experiments and ablation studies demonstrate that each component contributes significantly
and complementarily to overall performance, with optimal hyperparameter settings
identified as M=4, 0=0.9, and p=0.4. Comparative evaluations against representative state-
of-the-art (SOTA) methods show consistent improvements in known-risk segmentation
accuracy, unknown-risk detection, and uncertainty calibration across both image and video
scenarios, while maintaining a balance between model complexity and inference efficiency.
Notably, the proposed dual-branch uncertainty estimation exhibits strong calibration and a
high correlation with segmentation errors, enabling reliable localization of erroneous
predictions and unknown-risk regions and supporting effective active learning. Using an
uncertainty-driven annotation strategy, performance comparable to full supervision is
achieved with only 30% of labeled data, reducing manual verification costs by
approximately 80%. These results establish a technical paradigm that unifies high precision
with operational feasibility for intelligent urban risk management.

1. INTRODUCTION

uncertainty is often absent, such that misclassification or
missed detection in high-risk regions may trigger severe safety

The demand for proactive risk anticipation in intelligent
urban construction has become increasingly urgent [1-3].
Risks in urban environments are characterized by concealment,
dynamics, and high diversity [4, 5]. Traditional manual
inspection paradigms suffer from low efficiency and high
operational costs, rendering them inadequate for the
requirements of real-time monitoring, precise localization, and
rapid response demanded by fine-grained urban risk
governance. Deep learning-driven image segmentation
techniques provide an effective pathway for pixel-level risk
identification; however, their deployment in real-world urban
scenarios remains constrained by several fundamental
challenges. First, a generalization bottleneck persists. Most
existing approaches are trained under a closed-set paradigm
with fixed category annotations, limiting their capacity to
adaptively capture potential novel risks that are absent from
the training data [6-8]. Second, a lack of decision reliability is
observed. Effective quantification of decision-making
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incidents [9, 10]. Excessive reliance on manual verification to
compensate for this deficiency, however, substantially
undermines the efficiency advantages of intelligent systems.
Third, insufficient adaptability to dynamic environments
remains unresolved. Rigid pixel-class matching mechanisms
hinder responsiveness to subtle variations in urban risk
patterns and amplify vulnerability to noise and disturbances in
temporal scenarios.

Although progress has been reported in urban scene
segmentation, prototype learning, uncertainty estimation, and
open-set segmentation, the intertwined triangle of accuracy,
generalization, and reliability has yet to be fundamentally
resolved. In the domain of urban environment segmentation,
existing methods have primarily focused on known-category
segmentation for generic urban scenes, with limited task-
specific optimization for risk categories. The closed-set
assumption further renders these methods ineffective when
confronted with previously unseen risks [11, 12]. Within
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prototype networks, conventional static prototypes fail to
accommodate the evolving nature of urban risk patterns. While
preliminary explorations of dynamic prototype mechanisms
have been reported, uncertainty information has rarely been
incorporated, and the generation of new prototypes often lacks
adaptive triggering criteria, leading to spurious or missed
prototype formation [13, 14]. In uncertainty modeling studies,
uncertainty is frequently treated as an auxiliary output rather
than being deeply embedded within the core recognition

Input: urban environment
images of video sequences

e

pipeline. Moreover, most methods focus on modeling a single
type of uncertainty, thereby neglecting the dual influence of
model epistemic insufficiency and data-driven noise inherent
in complex urban environments [15, 16]. Open-set
segmentation approaches typically rely on fixed distance
thresholds to identify unknown regions, lacking adaptive
regulation mechanisms to balance unknown-risk recall and
false-alarm rates. Furthermore, these approaches are often
weakly coupled with the segmentation process [17-20].
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Figure 1. Overall framework of the proposed method

An ideal urban environmental risk identification approach
is expected to simultaneously exhibit four core properties:
high-precision segmentation, generalization to unknown risks,
reliable uncertainty quantification, and temporal robustness.
As illustrated in Figure 1, existing methods are capable of
addressing only a subset of these properties, and no prior work
has achieved their unified integration. This gap constitutes the
central motivation of the present study.

To overcome these limitations, a UDP-Net was introduced.
The primary contributions, ordered by conceptual novelty, are
summarized as follows:

» A unified framework integrating  accuracy,
generalization, reliability, and robustness is established.
Dynamic prototype learning and dual-branch uncertainty
modeling are deeply coupled for the first time, enabling
coordinated optimization of fine-grained segmentation
for known risks and adaptive detection of unknown risks,
thereby transcending the partial capability coverage of
existing approaches.

An uncertainty-guided prototype competition and
assignment mechanism is designed, in which epistemic
uncertainty is exploited to dynamically regulate
matching thresholds. Ambiguous pixels that are difficult
to classify are thus shifted from forced assignment to
principled uncertainty attribution or adaptive prototype
generation, effectively overcoming the rigidity of
conventional matching strategies and endowing the
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model with enhanced decision intelligence.
A temporal consistency constraint module is constructed
by combining optical-flow-based alignment with cross-
frame uncertainty consistency loss. This design enables
effective discrimination between genuine risk evolution
and spurious noise induced by motion blur or
illumination  variation,  substantially  improving
robustness in temporal urban scenarios.
Comprehensive and rigorous experimental validation is
conducted, including cross-dataset comparisons,
module-wise ablation studies, hyperparameter sensitivity
analyses, uncertainty calibration evaluation, active
learning simulation, and failure case analysis. These
experiments not only verify methodological
effectiveness but also demonstrate practical applicability
in real-world deployment.
A multi-scenario urban environmental risk dataset is
established to address the limitations of existing datasets,
which often suffer from restricted scene diversity and the
absence of unknown-risk annotations. This dataset
provides a unified benchmark to facilitate subsequent
research in this domain.
This study is organized below. Section 1 reviews related
work and clarifies the fundamental distinctions between the
proposed approach and existing studies. Section 2 presents the
overall architecture, core module design, and theoretical
analysis of UDP-Net. Section 3 evaluates performance



through systematic experiments. Section 4 discusses strengths,
limitations, and future research directions. Section 5 concludes
the study.

2. METHODOLOGY
2.1 Overall architecture overview

UDP-Net is designed under an encoder-decoder architecture,
in which multi-scale feature representations serve as the
foundational support, dynamic prototypes act as the core
carriers of risk pattern representations, and uncertainty
estimation provides principled guidance for intelligent
decision-making. Through this design, feature extraction,
prototype learning, uncertainty quantification, dynamic
assignment, and multi-scale fusion are jointly optimized in an
end-to-end manner. The overall architecture is illustrated in
Figure 1. Given an input urban environment image or video
sequence, the encoder is first employed to extract high-
resolution feature maps at four different scales. Subsequently,
two parallel modules are activated for critical processing. The
dynamic prototype module is responsible for maintaining a
prototype memory of known risks, with representation quality
continuously refined through a momentum-based update
strategy. During inference, novel risk prototypes are
adaptively generated to accommodate previously unseen
scenarios. In parallel, the uncertainty estimation module
quantifies epistemic uncertainty via Monte Carlo Dropout
(MC Dropout) and aleatoric uncertainty through feature-
regression-based modeling, thereby providing comprehensive
reliability cues for downstream decision processes. At the core
of UDP-Net, an uncertainty-guided prototype competition and
assignment mechanism dynamically regulates pixel-prototype
matching strategies based on both types of uncertainty. This
mechanism enables precise classification of known risks while
allowing principled triggering of new risks. The decoder
adopts a progressive upsampling strategy, in which multi-scale
feature representations and prototype response maps are
deeply fused to gradually restore spatial resolution. The final
outputs consist of a segmentation map encompassing both
known risks and potential novel risks, an epistemic uncertainty
map, and an aleatoric uncertainty map. For video inputs,
temporally optimized and stabilized results are additionally
produced.

2.2 Encoder: Multi-scale feature extraction

HRNet-W48 is adopted as the encoder backbone. Owing to
its parallel multi-resolution branch design and cross-scale
feature  fusion mechanism, high-resolution feature
representations are preserved while rich multi-scale contextual
information is effectively captured. This property is critical for
precise identification of urban environmental risk regions
spanning diverse spatial scales, ranging from large-area water
accumulation to fine-grained surface cracks. To support
subsequent uncertainty estimation via MC Dropout, a Dropout
layer is embedded after the final convolutional layer of the
encoder. The dropout probability is set to 0.2, introducing
controlled stochasticity to mitigate overfitting. The encoder
outputs four feature maps at different spatial resolutions, with
the dimension of each feature map uniformly set to 512. These
feature maps are denoted as C;ERFVWHS12 - C,eRHBWIBSI2)
C3ERHNGWNESI2  ang  C,eRHPPWE2SI2 where H and W
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represent the height and width of the input image, respectively.
2.3 Dynamic prototype module

The dynamic prototype module constitutes a core
component of UDP-Net for risk pattern representation and
generalization. It is responsible for maintaining a prototype
memory for known risks and adaptively generating novel risk
prototypes during inference, thereby providing accurate and
extensible feature references for risk identification.

Assuming the existence of K known risk categories, each
category is represented by M prototype vectors to capture
intra-class variability in risk manifestations. The prototype
memory is defined as {Pr}ie1. km=1.1, Where Pr,,ERP denotes
the m-th prototype vector of the k-th risk category, and D
represents the feature dimensionality. Prototype initialization
is performed using the mean of pixel-level features
corresponding to each category from the first ten training
batches, ensuring that the initial prototypes closely
approximate the empirical data distribution. During training,
prototype representations are continuously refined via a
momentum-based update strategy, which balances historical
representation information with responsiveness to current
batch features. The update rule is formulated as:

_ -1 1
Pltc,m_a'P;gm+(1'a)'quziESZ’mﬁ (1)

where, Pfgm denotes the updated prototype vector after the -th
batch, a is the momentum coefficient set to 0.9, S}, represents
the set of pixel features assigned to prototype P, in batch ¢,
Nfﬁm=|S,ijml denotes the set cardinality, and f; corresponds to
the feature vector of pixel i. This update mechanism ensures
prototype stability while enabling adaptive tracking of subtle
shifts in the underlying data distribution.

During inference, when the distance between a pixel feature
and all known prototypes exceeds an adaptive threshold, the
generation of a novel prototype is triggered to accommodate
previously unseen risk patterns. The new prototype is
initialized as the feature vector of the triggering pixel, denoted
as Prew=fi, and is labeled as a potential novel risk category.
Subsequently, if additional pixel features exhibit distances to
Prew below its adaptive threshold, they are assigned to this
prototype, which is then iteratively refined using the same
momentum-based update strategy. To prevent redundancy,
newly generated prototypes are merged when their cosine
distance falls below 0.1, thereby maintaining compactness and
computational efficiency. Through this generation mechanism,
previously unseen risk patterns are autonomously captured,
leading to a substantial enhancement in model generalization
capability.

2.4 Uncertainty estimation module

The uncertainty estimation module operates in parallel with
the dynamic prototype module. Its primary objective is the
joint quantification of epistemic uncertainty and aleatoric
uncertainty, thereby providing reliable decision cues for the
subsequent prototype assignment mechanism and enhancing
both interpretability and robustness of model decisions.

Epistemic uncertainty arises from insufficient model
knowledge regarding unknown risks or ambiguous regions
and is modeled using MC Dropout. During inference, Dropout
layers in both the encoder and decoder are kept active, and the



input is processed through 7=10 independent forward passes.
This yields 7 sets of feature maps and corresponding
predictive probability maps, where pf” denotes the probability
of pixel i being classified into category c at the #-th pass. The
mean probability p? across T predictions is first computed,
after which epistemic uncertainty is quantified via entropy. A
higher entropy value indicates lower classification confidence
for the corresponding pixel. The formulation is given as:

epi_
i

K+1 (2)
where, K+1 comprises K known risk categories and one
potential novel risk category. This measure effectively reflects
the degree of model ambiguity associated with pixel-level
classification.

Aleatoric uncertainty originates from inherent data noise,
such as illumination variations and image blur introduced
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during the imaging process, and is modeled via regression
using an independent subnetwork. This subnetwork consists of
three convolutional layers followed by the BatchNorm layer
and ReL U activation, with a final Sigmoid activation to ensure
non-negative outputs. The input to the subnetwork is a fused
multi-scale feature map obtained from the encoder, which is
first reduced to 256 channels through a 1x1 convolution. The
output is a variance map o7 with the same spatial resolution as
the input image. This variance is directly treated as the
aleatoric uncertainty of pixel 7, denoted as u¥“=¢7?. During
training, a reparameterization strategy is employed to integrate
the variance term into the loss function, ensuring training
stability and convergence. Through this formulation, data-
induced uncertainty is accurately captured. The conceptual
relationship between the dynamic prototype module and the
uncertainty estimation module is illustrated in Figure 2.
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Figure 2. Schematic illustration of the dynamic prototype module and the uncertainty estimation module

2.5 Uncertainty-guided prototype competition and
assignment mechanism
The uncertainty-guided prototype competition and

assignment mechanism constitutes a central innovation of
UDP-Net. Its primary objective is the dynamic regulation of
pixel-prototype matching strategies through epistemic
uncertainty, enabling intelligent decision-making rather than
forced assignment. In this manner, a balance is achieved
between classification accuracy for known risks and detection
capability for unknown risks.

The similarity between pixel-level features and prototype
representations is quantified using cosine distance, where a
smaller distance indicates higher similarity. The distance
metric is defined as:

d(f, P)=1-21
(f ) r; \ \P \ 3)
where, f; denotes the feature vector of pixel i, P; represents the

Jj-th prototype vector, - denotes the vector dot product, and || ||

indicates the L2 norm. This metric effectively captures
similarity relationships in high-dimensional feature space
while mitigating matching bias induced by scale variations
across feature representations.

Adaptive threshold regulation constitutes a key mechanism
for principled uncertainty handling. Its core rationale lies in
dynamically adjusting the matching threshold according to the
epistemic uncertainty associated with pixel-level classification.
For pixels exhibiting low epistemic uncertainty, classification
confidence is considered sufficient, and a stringent threshold
is applied to ensure high-precision attribution to known risk
categories. Conversely, for pixels associated with high
epistemic uncertainty, reliable categorization becomes
challenging; therefore, a relaxed threshold is adopted to
mitigate misclassification while providing a principled trigger
for novel prototype generation. To ensure monotonicity with
respect to uncertainty and smooth threshold variation, an
exponential formulation is employed for threshold regulation:

t;=t exp (ful") 4)
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where, 7; denotes the base threshold of prototype j, which is
adaptively learned during training and initialized to 0.3; f
represents a scaling coefficient empirically set to 0.4; and "'
corresponds to the epistemic uncertainty of pixel i. When
u”'=0, then 7;=7;, enforcing strict matching using the base
threshold. As u;”" increases, the threshold is exponentially
relaxed, thereby instantiating an uncertainty-aware decision
principle in which higher uncertainty leads to more
conservative classification.

The prototype assignment process follows a strictly ordered
logical sequence. First, the cosine distance d(f;,P;) between the
feature f; of pixel i and all prototypes is computed.
Subsequently, adaptive thresholds 7; are derived for each
prototype j based on the epistemic uncertainty u;”"* of pixel i.
Prototypes satisfying d(f;,P;)<tz; are then selected to form a
valid prototype set J;. If J; is non-empty, pixel i is assigned to
the prototype yielding the minimum distance, and the
predicted category is determined by the corresponding
prototype label. If J; is empty, the pixel feature is deemed
incompatible with all known prototypes, and the novel
prototype generation mechanism described previously is
activated. In this case, pixel i is assigned to a newly generated
prototype, and the predicted category is labeled as a potential
novel risk.

2.6 Decoder and multi-scale feature fusion

A progressive upsampling architecture is adopted in the
decoder, comprising four stages that correspond one-to-one
with the four feature scales produced by the encoder. The
primary objective is the deep integration of multi-scale
features and prototype information such that spatial resolution
is gradually restored while category discrimination within risk
regions is continuously reinforced, ultimately yielding high-
precision pixel-level segmentation outputs.

Each decoding stage follows a standardized feature
processing pipeline to ensure coordinated optimization of
resolution recovery and feature enhancement. First, the feature
map from the preceding stage is upsampled by a factor of two
using transposed convolution, establishing a foundation for

spatial detail reconstruction. Subsequently, channel-wise
concatenation is performed with the encoder feature map at the
corresponding scale, thereby introducing high-resolution
details and low-level semantic features to compensate for
information loss during upsampling. Next, the prototype-
guided module is employed to incorporate semantic
information derived from prototypes, further enhancing
discriminability among risk categories. Feature fusion and
channel dimensionality reduction are then achieved through
two successive convolutional layers followed by the
BatchNorm layer and ReLU activation, striking a balance
between representational capacity and computational
efficiency. The resulting feature map is output either for
iterative upsampling in the subsequent stage or for final
segmentation prediction. Through complementary multi-scale
feature integration and cross-stage information propagation,
this strategy effectively improves segmentation accuracy for
small-scale risk regions and boundary areas.

The primary function of the prototype-guided module is to
inject prototype-level semantic information into decoder
feature maps, thereby strengthening the correspondence
between risk categories and feature representations. The
implementation proceeds below. First, cosine similarity is
computed between each pixel-level feature in the current
feature map and all prototypes, yielding a prototype response
map RERH W EMiNnew) ywhere H' and W' denote the resolution
of the current feature map, K- M represents the total number of
known-risk prototypes, and Npew denotes the number of
dynamically generated novel prototypes. Subsequently,
Softmax normalization is applied along the channel dimension
of the response map to emphasize the response of the most
similar prototype for each pixel while suppressing interference
from irrelevant prototypes. The normalized response map is
then concatenated with the current feature map. A 1x1
convolution is finally applied to reduce the channel
dimensionality to 256, thereby retaining essential prototype
semantic information while preventing dimensional explosion.
This operation provides an efficient and discriminative feature
input for subsequent convolutional fusion stages. A schematic
illustration of the decoder and the multi-scale feature fusion
mechanism is presented in Figure 3.
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2.7 Loss function design

The overall loss function is formulated as a weighted multi-
task objective, jointly balancing the optimization goals of
known-risk segmentation, uncertainty estimation, prototype
regularization, and temporal consistency. This design ensures
coordinated performance improvement across all tasks. The
equation is as follows:

Liotar=t1Lsegt72L

4l (5)

seg uncert+/13 ‘proto temp

In the equation, the balancing coefficients are set to 1,=1.0,
4:=0.3, 15=0.5, and 14=0.2. These values are determined via
cross-validation to achieve optimal overall performance.

The segmentation loss is designed for known-risk category
segmentation and is defined as a weighted combination of
cross-entropy loss and Dice loss. This formulation effectively
mitigates class imbalance and is particularly beneficial for
improving segmentation performance on small-scale risk
regions:

L LCE+O 5 Lche

seg (6)

The cross-entropy loss Lce measures the discrepancy

between predicted probability distributions and ground-truth
labels and is formulated as:

Leg=+ Z, 1261y, log B, (N

where, yi. denotes the one-hot encoded ground-truth label

indicating whether pixel i belongs to class ¢, p, . represents the

mean predicted probability, N is the total number of pixels, and
K denotes the number of known risk categories. The Dice loss
Lpice focuses on the overlap between predicted regions and
ground-truth regions and is more sensitive to small objects. It
is defined as:

N -
2 Zl 1 yz,cyi,chE

Lpie=l-———>5—
ice N 2
Y lyzﬁzi=|yi,c+5

®)

where, 3, = denotes the binarized prediction label indicating

whether pixel i belongs to class ¢, and e=1¢®
term introduced to prevent division by zero.

The uncertainty loss jointly optimizes the estimation
accuracy of epistemic uncertainty and aleatoric uncertainty,
ensuring reliable and accurate uncertainty quantification. It is
defined as Luncer=LaictLepi. The aleatoric uncertainty loss Laie
is formulated using a negative log-likelihood loss, in which
variance regression is optimized by matching the predicted
distribution to ground-truth labels:

ec7)

((yzi; +-1lo
where, y; denotes the ground-truth integer-encoded class label
of pixel i, §, denotes the predicted class, and o7 represents the
aleatoric uncertainty. The epistemic uncertainty loss Lepi is
designed to encourage prediction consistency in high-
uncertainty regions by minimizing the variance of prediction
entropy across multiple MC Dropout forward passes, thereby
suppressing stochastic fluctuations:

is a smoothing

Ly
yi-1

L )

ale™

Z, \ Var (HY) (10)

epz
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where, H; denotes the predictive entropy obtained from the #-
th forward pass, and Var( ) denotes the variance.

The prototype regularization loss is introduced to ensure
both representativeness and discriminability of prototypes
while suppressing excessive generation of novel prototypes. It
is defined as Lproto=LeclusterLseparatet0. 1 Lnew. The clustering loss
Lewsier encourages intra-class pixel-level features to aggregate
around their assigned prototypes:

Lclmter N d(f P*) (11)
where, j* denotes the prototype assigned to pixel i, and d( )
represents the cosine distance. The separation Lscparate 1S
formulated following a contrastive learning paradigm to
encourage prototypes from different categories to remain well

separated:

L —— Y e max (0,y-d(P; ¢ ,P®)) (12)

sepamte K(K 1)
where, P} denotes the mean prototype of the k-th category,
and y=2.0 is a threshold that enforces a minimum distance. To
prevent excessive and redundant generation of novel
prototypes, a novel-prototype penalty Lyew is introduced by
regulating the number of newly generated prototypes under
simulated inference conditions Lpew=Nnew/H*W, where Npew
denotes the number of newly generated prototypes, and HxW
represents the total number of pixels in the image.

The temporal consistency loss is designed for video inputs
to suppress noise-induced fluctuations by enforcing prediction
consistency across adjacent frames, thereby improving the
stability of video segmentation. Optical flow between
consecutive frames /; and /;+ is first estimated using PWC-Net,
yielding the flow field F;—.1. The feature map and epistemic
uncertainty map of frame /; are then warped into the coordinate
space of frame /.1, resulting in the aligned features /“” and

aligned epistemic uncertainty ue‘” Lwarp . Subsequently, a cross-
entropy loss is employed to constrain discrepancies between
the warped prediction labels and the current-frame predictions,
while an L1 loss is applied to penalize differences between the
warped epistemic uncertainty and the epistemic uncertainty of
the current frame:

where, 7" denotes the warped prediction label, and CE( )

epz
t+1,i

epi,wa
u[plu p

Liony= 2 (CEG@,,, 90 (13)

represents the cross-entropy function.
2.8 Training and inference pipeline

The training procedure follows a standardized end-to-end
optimization paradigm to ensure coordinated convergence of
all model components. Parameter initialization for the encoder,
decoder, prototype memory, and uncertainty subnetworks is
performed using He initialization, providing a stable starting
point for optimization. The iterative training stage is then
conducted. In each iteration, batches of annotated images or
video clips containing known risk categories are loaded,
followed by data augmentation operations, including random
flipping, rotation, scaling, brightness and contrast adjustment,
and Gaussian noise injection, to enhance generalization
capability. After multi-scale feature extraction by the encoder,
the dynamic prototype module updates only known-risk



prototypes during training, while novel prototype generation
is disabled to maintain stability of prototype representations.
The uncertainty estimation module computes epistemic
uncertainty using MC Dropout with three stochastic forward
passes and simultaneously produces variance estimates via the
aleatoric uncertainty subnetwork. Based on the extracted
features and quantified uncertainties, the prototype assignment
mechanism performs pixel-to-prototype matching to generate
pixel-level predictions. The total loss function is subsequently
computed, and all trainable parameters are updated via
backpropagation using the AdamW optimizer. Training is
conducted for 200 epochs, with the initial learning rate set to
le™. A cosine annealing schedule with 7,,,=200 is employed
to dynamically adjust the learning rate, balancing early
convergence speed with late-stage optimization precision.

The inference pipeline is designed to deliver efficient and
accurate predictions under real-world deployment conditions,
fully exploiting the risk identification and generalization
capabilities of the model. Input urban environment images or
video sequences are first processed by the encoder to extract
multi-scale features, with Dropout layers kept active to enable
epistemic uncertainty quantification. During uncertainty
estimation, epistemic uncertainty is computed using MC
Dropout with ten independent forward passes, while the
aleatoric uncertainty subnetwork outputs variance estimates
associated with data noise. These two forms of uncertainty
jointly guide prototype matching decisions. Based on the
multi-scale features and quantified results, the prototype
assignment mechanism performs matching with known
prototypes, while novel prototype generation is triggered for
unmatched pixels to produce an initial segmentation result. For
video inputs, adjacent frame predictions are further refined
through the temporal consistency module, which suppresses
noise-induced fluctuations and improves temporal stability.
The final outputs include pixel-level segmentation maps
containing both known risks and potential novel risks, along
with the corresponding epistemic uncertainty maps and
aleatoric uncertainty maps, thereby providing comprehensive
support for downstream decision-making.

3. EXPERIMENTS
3.1 Experimental settings

To comprehensively and fairly evaluate the overall
performance of UDP-Net, a standardized experimental
framework was established across four dimensions: dataset
selection, software and hardware configuration, baseline
method selection, and evaluation metric design. This
framework was constructed to ensure the reliability and
persuasiveness of the experimental results.

A combination of public datasets and a self-constructed
dataset was adopted to balance standardized evaluation with
real-world applicability. The first public dataset, Cityscapes-
Risk, was extended from the classical Cityscapes dataset and
focuses on urban road risk annotation. It includes six
categories of road-related risks: road damage, water
accumulation, oil contamination, cracks, potholes, and
construction zones. The dataset comprises 2,000 images,
which were split into training, validation, and test sets with a
ratio of 7:1.5:1.5, corresponding to 1,400, 300, and 300 images,
respectively. The second public dataset, Road Damage Dataset
v2, covers eight categories of road risks, including transverse
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cracks, longitudinal cracks, alligator cracks, potholes, repaired
areas, edge cracks, spalling, and bleeding. A total of 9,000
images are provided, with 6,300 images used for training,
1,350 for validation, and 1,350 for testing. To address the
limitations of existing datasets—namely limited scene
diversity and the absence of annotations for unknown risks—
a third dataset, referred to as the Urban Environmental Multi-
Scenario Risk Dataset (UERD), was constructed. Data were
collected from ten administrative districts across three major
cities in China—Beijing, Shanghai, and Guangzhou—
covering eight representative urban scenarios: roads, parks,
residential communities, industrial zones, commercial areas,
areas surrounding schools, areas surrounding hospitals, and
metro station surroundings. The dataset contains 5,000 images
and 100 video clips. Annotations in UERD include ten
categories of known risks—road damage, facility aging,
hazardous debris accumulation, construction zones, water
accumulation, icing, obstacles, missing manhole covers,
exposed cables, and fallen trees—as well as two categories of
unlabeled potential novel risks, namely temporary barricades
and sudden road collapses, which are specifically designed to
evaluate unknown-risk detection capability. Pixel-level
annotations were performed using a dual-annotation and cross-
validation protocol by two domain experts with more than five
years of experience in urban infrastructure maintenance.
Annotation consistency was assessed using Cohen’s Kappa
coefficient, ensuring high labeling quality.

The experimental hardware configuration is described
below. Two NVIDIA A100 GPUs were employed for
acceleration, accompanied by an Intel Xeon 8375C CPU.
System memory was set to 128 GB DDR4, and a 4 TB SSD
was used to ensure high-throughput data access. The software
environment was configured with Ubuntu 20.04 LTS as the
operating system. Deep model development and training were
conducted using PyTorch 1.12.1, with CUDA 11.6 and
cuDNN 8.4.1 utilized to accelerate GPU computation. For
performance comparison, six categories of representative
methods were selected to ensure comprehensive coverage of
diverse technical paradigms. All baseline methods were
reimplemented and retrained under identical training datasets,
data augmentation strategies, and hardware conditions to
guarantee a fair comparison. Traditional semantic
segmentation was represented by DeepLabv3+. Advanced
segmentation approaches included HRNet-W48, Swin-UNet,
and SegNeXt. Prototype-based segmentation was represented
by Dynamic-Proto-Seg. Uncertainty-aware methods included
Bayes-UNet and Uncertainty-Aware-Seg, while open-set
segmentation approaches were represented by OSNet-Seg and
UnknownAware-Seg. For all compared methods,
hyperparameters were optimized via grid search to achieve
their respective best-performing configurations, ensuring that
each method operated under optimal conditions.

3.2 Ablation studies

Ablation studies were conducted on the image subset of the
UERD dataset. A progressive module-integration design
combined with graded hyperparameter adjustment was
adopted to systematically validate the individual contributions
of each functional component in UDP-Net, assess the
sensitivity of key hyperparameters, and analyze visual
characteristics, thereby offering empirical support for the
architectural rationality and optimal hyperparameter
configuration of the proposed model. Training data, optimizer



configurations, and evaluation environments were strictly
controlled to ensure the reliability and comparability of the
results.

A stepwise experimental protocol following a “baseline
model + incremental core modules” strategy was constructed.
The effects of the dynamic prototype module, dual-branch
uncertainty  module,  uncertainty-guided  assignment
mechanism, and temporal consistency module on known-risk
segmentation accuracy, unknown-risk detection performance,
uncertainty calibration quality, and computational efficiency
were quantitatively evaluated. The results are summarized in
Table 1.

The baseline HRNet + UNet model, lacking both prototype
learning and uncertainty modeling capabilities, was limited to
basic known-risk segmentation, achieving an mloU of 78.3%
and failing to identify unknown risks. The small-class F1-
score remained at 69.2%, indicating insufficient suitability of
conventional segmentation architectures for urban risk
identification scenarios. Upon incorporation of a static

prototype module, mloU and PA increased by 3.8 and 3.3
percentage points, respectively, while the small-class F1-score
improved by 4.3 percentage points. Preliminary detection of
unknown risks was enabled, demonstrating that prototype
learning enhances class feature aggregation and fine-grained
segmentation. However, notable limitations persisted,
including a high unknown-risk FPR of 8.9% and a lack of
dynamic adaptability to evolving risk patterns. The
introduction of the dynamic prototype module yielded a
substantial performance gain, with mloU further increasing by
3.6 percentage points and Flugmown improving by 7.8
percentage points. Pumknown reached 76.1%, while FPR was
reduced to 6.7%. These results validate the effectiveness of the
momentum-based update strategy: by balancing historical
representations with the current data distribution, dynamic
prototypes captured variations in risk patterns more accurately
and improved unknown-risk detection, thereby addressing the
generalization limitations of static prototypes.

Table 1. Ablation results on the effectiveness of core modules

. Baselll_le Model (High- + Static + Dynamic  + Dual-branch + Uncertainty- + Temporal
Experimental Resolution Network + U- R . . .
Configuration shaped Network) (HRNet Prototype Prototype Uncertainty Guided Assignment  Consistency

g P + UNet) Module Module Module Mechanism Module (Video)
Mean Intersection over
Union (mlIoU) (known 78.3% 82.1% 85.7% 86.9% 88.5% 89.2%
risks)
Pixel Accuracy (PA) 85.6% 88.9% 91.4% 92.3% 93.7% 94.5%
(Known Risks)

Small-Class F1-Score 69.2% 73.5% 78.6% 80.4% 83.1% 84.7%
Flunknown - 65.4% 73.2% 76.5% 80.3% 82.7%
Runknown - 62.3% 70.5% 74.2% 78.6% 81.3%
Punknown - 68.7% 76.1% 78.9% 82.1% 84.2%

False Positive Rate
(FPR) (Unknown-Risk - 8.9% 6.7% 5.3% 4.1% 3.5%
Detection)
Expected Calibration
Error (ECE) - - - 0.082 0.065 0.058
Maximum Calibration
Error (MCE) - - - 0.105 0.083 0.071
Parameters (M) 65.2 67.5 68.1 70.3 70.8 72.4
Computation
(GFLOPs) 18.7 19.3 19.8 20.5 20.7 21.3
Frames Per Second 32.1 30.5 28.9 26.7 253 24.9

(FPS)

Notes: Small-class F1-score is computed for risk categories with pixel proportions below 5%. Rynnown denotes unknown-risk recall, and Pypknown denotes unknown-
risk precision. Parameter counts are reported in millions (M), and computational cost in GFLOPs.

Table 2. Sensitivity analysis with respect to the number of prototypes M

Number ojf;rototypes mlogigllfsr;own PA R(il;l(lso)wn Smalls-cCol:\ess F1- Flusknonn Runkaown Punknonn FPR ECE Parz(llr\n/l;zters FPS
2 86.3% 92.1% 79.8% 772% 75.1% 79.4% 4.8%0.073 69.5 273
4 89.2% 94.5% 84.7% 82.7% 81.3% 84.2% 3.5%0.058 70.8 253
6 88.9% 94.2% 83.9% 81.5% 80.1% 83.0% 3.8%0.061 72.1 23.7
8 88.5% 93.8% 83.2% 80.3% 78.9% 81.8% 4.2%0.065 734 22.1
Table 3. Sensitivity analysis with respect to the momentum coefficient a
Momentum mloU PA (Known Small-Class Stability Inde
. u (Known N W Flunknown Runknown Punknown FPR ECE . .y X
Coefficient a Risks) Risks) F1-Score (Variance)
0.8 87.6% 92.8% 81.2% 79.5% 77.8% 81.3%  4.3% 0.068 0.012
0.9 89.2% 94.5% 84.7% 82.7% 81.3% 84.2%  3.5% 0.058 0.008
0.95 88.1% 93.3% 82.5% 80.1% 79.2% 81.1% 4.0% 0.063 0.015
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Table 4. Sensitivity analysis with respect to the threshold scaling coefficient S

Threshold Scaling mloU (Known PA (Known Small-Class F1-
Coefﬁcient/)' RiSkS) RiSkS) Score Flunknown  Runknown  Punknown FPR ECE
0.3 88.7% 93.9% 83.5% 81.2% 79.5% 83.0% 3.7% 0.062
0.4 89.2% 94.5% 84.7% 82.7% 81.3% 84.2%  3.5% 0.058
0.5 88.3% 93.6% 82.9% 81.5% 80.7% 824% 3.9% 0.064
Table 5. Comparison with SOTA methods in the image-input scenario
HRNet- Swin- Dynamic- Bayes- Uncertainty- OSNet- Unknown UDP-Net
Method DeepLabv3+ W48 UNet SegNeXt Proto-Seg  UNet Aware-Seg Seg AVSV:;_ (Proposed)
mloU
(Known 79.5% 832%  83.7% 84.5% 82.9% 84.2% 85.7% 84.8% 85.1% 89.2%
Risks)
PA
(Known 88.2% 90.1%  90.5%  91.0% 89.8% 91.1% 91.8% 91.2% 91.3% 93.7%
Risks)
Small-
Class F1- 70.3% 74.5%  752%  76.8% 77.9% 78.3% 79.6% 78.9% 79.2% 84.7%
Score
F Lunknown - - - - 72.5% - 74.2% 75.5% 75.8% 82.7%
Runknown - - - - 69.8% - 72.1% 73.4% 73.8% 81.3%
Punknown - - - - 75.3% - 76.4% 77.7% 78.0% 84.2%
FPR - - - - 7.2% - 6.8% 6.5% 6.3% 3.5%
ECE - - - - - 0.095 0.088 0.105 0.102 0.058
MCE - - - - - 0.121 0.113 0.132 0.128 0.071
Par‘(‘%ters 62.8 652 785 753 67.8 82.6 79.4 76.7 77.2 72.4
GFLOPs 17.9 18.7 223 21.8 19.5 23.7 22.9 22.1 224 213
FPS 335 32.1 28.6 29.2 253 18.7 22.8 21.5 224 24.9
Inference
Latency 29.9 31.2 34.9 342 39.5 535 439 46.5 44.6 40.2
(ms)

Notes: The small-class F1-score is computed for risk categories with pixel proportions below 5%. Inference latency corresponds to the per-image inference time
and is computed as 1000/FPS. “-” indicates that the corresponding method does not support the evaluated functionality.

With the addition of the dual-branch uncertainty module,
calibrated uncertainty estimation was achieved for the first
time, with ECE and MCE reduced to 0.082 and 0.105,
respectively. Concurrently, Flummown increased by 3.3
percentage points and FPR decreased by an additional 1.4
percentage points. These findings indicate that joint modeling
of epistemic and aleatoric uncertainty not only provides
reliable decision confidence but also effectively suppresses
noise-induced errors and misclassifications, enhancing
discrimination in ambiguous regions. The uncertainty-guided
assignment mechanism, serving as a core innovation, further
improved mloU by 1.6 percentage points and increased
Flunknown by 3.8 percentage points, while reducing ECE to
0.065 and lowering FPR to 4.1%. Through dynamic threshold
regulation, forced assignment was replaced by intelligent
matching, simultaneously preserving classification accuracy
for known risks and optimizing the balance between recall and
precision for unknown risks. These results provide strong
evidence for the effectiveness of deep integration between
uncertainty estimation and prototype assignment. Finally,
optimization for video scenarios was achieved through the
temporal consistency module, resulting in a final mloU of
89.2%, a further 2.4 percentage point increase in F1unknown, and
a reduction of FPR to 3.5%. By leveraging optical-flow
alignment and cross-frame constraints, fluctuations caused by
motion blur and illumination variation were effectively
suppressed, leading to enhanced stability in dynamic
environments. Notably, when all modules were integrated, the
parameter count increased by only 11% and computational
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cost by 14%, while inference speed remained at 24.9 FPS,
demonstrating a favorable balance between performance gains
and computational efficiency.

To further investigate the impact of key design choices,
three core hyperparameters—the number of prototypes M, the
momentum coefficient a, and the threshold scaling coefficient
p—were systematically analyzed via graded adjustment to
determine optimal configurations. The results are reported in
Tables 2-4.

The choice of the prototype number M directly affects the
granularity with which risk patterns are represented. When
M=2, the number of prototypes is insufficient to cover the
diverse manifestations of risks within the same category,
resulting in a small-class Fl-score of only 79.8% and an
Flunknown 0of 77.2%. When M=4, all evaluation metrics reach
their optimal values (mIoU=89.2%, F1unknown=82.7%, and
FPR=3.5%), indicating that four prototypes are sufficient to
capture intra-class variability while avoiding redundancy.
When M>6, excessive prototypes introduce feature overlap
and a tendency toward overfitting, leading to declining trends
in both mloU and Flumknown. In addition, the increased
parameter count reduces inference speed, collectively
validating the rationality of selecting M=4. The momentum
coefficient o governs the smoothness of prototype updates.
When a=0.8, prototype updates proceed too rapidly and rely
excessively on current-batch features, yielding a higher
stability index (variance 0.012) and insufficient
generalization capability. When a=0.9, an optimal balance is
achieved between historical representations and current



features, with the stability index reduced to 0.008 and both
mloU and F1unknown reaching their peak values. When a=0.95,
prototype updates become overly conservative, limiting
adaptability to subtle shifts in data distribution and resulting in
performance degradation. Accordingly, a=0.9 is identified as
the optimal setting. The threshold scaling coefficient S
determines the strength with which uncertainty influences the
matching strategy. When f=0.3, threshold relaxation is
insufficient, and decisions for high-uncertainty pixels remain
overly strict, yielding a Runknown value of only 79.5%. When
p=0.4, the interaction between uncertainty and threshold
adjustment becomes optimally balanced, preserving
classification accuracy for known risks while achieving a
favorable trade-off between recall and precision for unknown-
risk detection. When f=0.5, thresholds become excessively
relaxed, causing a portion of known-risk pixels to be
misclassified as unknown, accompanied by decreases in both
mloU and Pusknown. These observations confirm $=0.4 as the
optimal configuration.

3.3 Comparisons with SOTA methods

To comprehensively evaluate the overall performance of
UDP-Net, comparisons were conducted against nine SOTA
methods spanning five methodological categories: traditional
segmentation, advanced segmentation, prototype-based
methods, uncertainty-aware approaches, and open-set
segmentation. All methods were trained and tested under
identical conditions, including datasets, data augmentation
strategies, = hardware  environments, and training
hyperparameters, thereby ensuring a fair comparison.
Evaluations were performed separately for image and video
input scenarios. Quantitative assessments were conducted
across four dimensions—segmentation accuracy, unknown-
risk detection, uncertainty calibration, and computational
efficiency—and Pareto analysis was employed to verify the
balance between performance and efficiency.

The comparison results for the image-input scenario are
summarized in Table 5, which reports eleven core evaluation

metrics to comprehensively characterize the performance of
each method in known-risk segmentation, unknown-risk
detection, uncertainty calibration, and inference efficiency.

Across the core metrics for known-risk segmentation, UDP-
Net demonstrates a clear and consistent lead. An mloU of
89.2% is achieved, exceeding the strongest competing method,
Uncertainty-Aware-Seg, by 3.5 percentage points, surpassing
the traditional baseline DeepLabv3+ by 9.7 percentage points,
and outperforming the advanced segmentation model
SegNeXt by 4.7 percentage points. The PA reaches 93.7%, the
highest among all compared methods, indicating superior
pixel-level classification fidelity. Notably, for the small-class
Fl-score, UDP-Net attains 84.7%, improving upon
Uncertainty-Aware-Seg by 5.1 percentage points and Swin-
UNet by 9.5 percentage points. This advantage is attributed to
the precise capture of small-scale risk features enabled by the
dynamic prototype module, together with the uncertainty-
guided assignment mechanism that handles ambiguous pixels
in a principled manner, effectively mitigating missed
detections and segmentation ambiguity for small-risk
categories. In the dimension of unknown-risk detection, UDP-
Net achieves an Flynknown of 82.7%, outperforming the best
competing method, UnknownAware-Seg, by 6.9 percentage
points, and exceeding the prototype-based approach Dynamic-
Proto-Seg by 10.2 percentage points. From the perspective of
recall-precision balance, the highest values are obtained
simultaneously, with Runknown=81.3% and Punknown=84.2%,
while the FPR is reduced to 3.5%. This represents a reduction
of 3.0 percentage points relative to OSNet-Seg and 3.7
percentage  points relative to  Dynamic-Proto-Seg.
Conventional segmentation methods and purely uncertainty-
based approaches lack unknown-risk detection capability,
whereas existing open-set segmentation methods rely on fixed
thresholds and thus struggle to balance recall and precision.
By contrast, UDP-Net integrates dynamic prototype
generation with uncertainty-guided threshold regulation,
achieving high recall, high precision, and low false-alarm rates
for unknown-risk detection, thereby demonstrating strong
generalization under open-world conditions.

Table 6. Comparison with SOTA methods in the video-input scenario

Swin-UNet + Optical Flow Uncertainty-Aware- OSNet-Seg + Temporal UDP-Net
Method
Alignment Seg Constraint (Proposed)
ml"[rjis(kksr;own 84.5% 85.7% 86.3% 89.5%
PA (known risks) 90.8% 91.8% 92.1% 94.2%
Small-class F1- 75.5% 79.6% 80.1% 85.3%
score
Flunknown - 74.2% 77.5% 83.1%
Runknown - 72.1% 75.3% 81.7%
Punknown - 76.4% 79.8% 84.6%
FPR - 8.3% 7.1% 4.8%
ECE - 0.088 0.105 0.061
TPC 85.3% 87.6% 88.1% 92.4%
Parameters (M) 78.5 79.4 76.7 72.4
GFLOPs 24.1 229 23.5 22.7
FPS 15.2 12.8 11.5 13.7
Inference latency 65.8 78.1 87.0 72.9
(ms)

Notes: TPC denotes the temporal consistency metric, defined as the mloU between segmentation results of adjacent frames; higher values indicate stronger
temporal stability. Video inference latency corresponds to the per-frame inference time for a resolution of 1920x1080 and is computed as 1000/FPS.

With respect to uncertainty calibration, UDP-Net exhibits
substantially lower ECE and MCE than all competing methods.
Reductions of 34.1%, 44.8%, and 38.9% are observed relative
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to Uncertainty-Aware-Seg, OSNet-Seg, and Bayes-UNet,
respectively. These results indicate that dual-branch
uncertainty modeling not only enables explicit uncertainty



quantification but, through calibration-aware loss design, also
enforces strong alignment between uncertainty estimates and
actual prediction errors. Such high-quality calibration
provides reliable confidence cues for downstream decision-
making, mitigates the risk of  high-confidence
misclassification, and offers precise guidance for human-in-
the-loop verification in practical deployments. In terms of
computational efficiency, UDP-Net achieves a favorable
balance between performance and resource consumption. The
parameter count is 72.4M, lower than that of Swin-UNet,
Bayes-UNet, and Uncertainty-Aware-Seg. The computational
cost is 21.3 GFLOPs, exceeding only traditional segmentation
models and HRNet-W48, while remaining below other
advanced methods. An inference speed of 24.9 FPS and a
latency of 40.2 ms are maintained, corresponding to
improvements of 33.1% over Bayes-UNet and 15.8% over
OSNet-Seg, thereby satisfying real-time monitoring
requirements. This efficiency is enabled by lightweight
module design: the combined parameter increase introduced
by the dynamic prototype and uncertainty modules is limited
to 11%, and no computationally expensive feature
transformations are introduced, ensuring a balanced trade-off
between accuracy gains and operational efficiency.

To account for the dynamic characteristics of video
sequences, three SOTA methods that explicitly support
temporal processing were selected for comparison. Evaluation
focused on segmentation accuracy, temporal consistency, and
the stability of unknown-risk detection. The results are
summarized in Table 6.

In video scenarios, the overall performance of UDP-Net
remains clearly superior. An mloU of 89.5% is achieved,
exceeding OSNet-Seg with temporal constraints by 3.2
percentage points and Swin-UNet with optical-flow alignment
by 5.0 percentage points. PA and the small-class F1-score
reach 94.2% and 85.3%, respectively, surpassing the best
competing results by 2.1 and 5.2 percentage points. These
results demonstrate that accurate segmentation of risk regions
at multiple scales is preserved under dynamic conditions. With
respect to temporal consistency, UDP-Net attains a TPC of
92.4%, improving upon OSNet-Seg with temporal constraints
by 4.3 percentage points and Uncertainty-Aware-Seg by 4.8
percentage points. This advantage is attributed to the
effectiveness of the temporal consistency module: by
combining optical-flow alignment with cross-frame
uncertainty constraints, genuine risk evolution is distinguished
from noise induced by motion blur and illumination
fluctuations. As a result, the standard deviation of frame-to-
frame segmentation outputs is reduced from 0.052 to 0.021,
substantially enhancing recognition stability in dynamic
environments. The stability of unknown-risk detection is
likewise pronounced. An Flusknown Of 83.1% is achieved,
representing an improvement of 5.6 percentage points over
OSNet-Seg with temporal constraints, while the FPR is
reduced by 2.3 percentage points. Even in the presence of
motion blur and abrupt illumination changes, accurate
identification of unknown risks—such as temporary
barricades and sudden road collapses—is maintained,
confirming the reliability of UDP-Net in real-world dynamic
monitoring scenarios. In terms of efficiency, UDP-Net
operates at 13.7 FPS with an inference latency of 72.9 ms.
Although the frame rate is slightly lower than that of Swin-
UNet with optical-flow alignment, it remains substantially
higher than that of Uncertainty-Aware-Seg and OSNet-Seg
with temporal constraints. Notably, both the parameter count
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and computational cost are the lowest among all compared
methods, enabling a well-balanced trade-off between
performance and efficiency in dynamic video settings.

3.4 Uncertainty estimation performance analysis

Uncertainty estimation constitutes a central strength of
UDP-Net, in which a dual-branch modeling architecture
enables accurate quantification of epistemic uncertainty and
aleatoric uncertainty. In this section, the reliability and
practical value of uncertainty estimation were systematically
evaluated from three perspectives: calibration quality,
correlation with segmentation errors, and utility for active
learning. Both quantitative metrics and visual evidence were
jointly analyzed.

The primary objective of uncertainty calibration is to ensure
consistency between predicted confidence and actual
classification accuracy, thereby avoiding contradictory
outcomes such as high-confidence misclassification or low-
confidence correct prediction. By computing the ECE, MCE,
and calibration errors across different confidence intervals, the
calibration performance of UDP-Net is compared with that of
SOTA uncertainty-aware methods. The results are illustrated
in Figure 4.

Calibration error across confidence intervals (%)

1 I
0
UDP-Net (proposad)

Bayes-UNet Uncertainty-Aware-Seg  UnknownAware-Seg

Low confidence (0-0.2) Medium confidence (0.2-0.4) High confidence (0.4-0.6)

m Very high confidence (0.6-1.0) ——ECE MCE

Figure 4. Comparison of uncertainty calibration performance

Both ECE and MCE obtained by UDP-Net are markedly
lower than those of all comparison methods. Relative
reductions of 38.9% and 41.3% are observed with respect to
Bayes-UNet, while reductions of 34.1% and 37.2% are
achieved compared with Uncertainty-Aware-Seg. Even larger
improvements are recorded relative to UnknownAware-Seg,
with  ECE and MCE reduced by 43.1% and 44.5%,
respectively. These results demonstrate that the joint
optimization of dual-branch uncertainty modeling and
calibration-aware loss functions effectively improves the
alignment between predicted confidence and actual
classification accuracy. An examination of calibration errors
across confidence intervals further confirms this advantage.
UDP-Net maintains consistently low calibration error
throughout all confidence ranges. In the low-confidence
interval, the calibration error is limited to 3.2%, representing a
63.2% reduction relative to Bayes-UNet. In the very high-
confidence interval, the calibration error decreases to 1.5%,
which is 53.1% lower than the best-performing competing
method. These findings indicate that, regardless of whether
predicted confidence is low or high, the uncertainty estimates
produced by UDP-Net accurately reflect the true risk of



misclassification. Consequently, the common shortcomings of
conventional methods—namely excessive calibration bias in
low-confidence regions and overconfidence in high-
confidence regions—are effectively mitigated.

The effectiveness of uncertainty estimation critically
depends on whether segmentation error regions can be
accurately localized. By statistically analyzing pixel
distributions across uncertainty intervals, the proportion of
erroneous pixels, interval-wise error rates, and correlation
coefficients, the association between uncertainty and
segmentation errors was quantitatively assessed. The results
are presented in Figure 5.

The results reveal a strong positive correlation between
uncertainty and segmentation errors. A Spearman correlation
coefficient of 0.87 and a Pearson correlation coefficient of
0.83 are obtained, demonstrating that uncertainty values
effectively characterize the risk of segmentation errors. From
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m 0-0.2 (Low uncertainty)

Interval error rate (%)
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the interval-wise distribution, the very high-uncertainty
interval accounts for only 6.3% of all pixels, yet contains
69.5% of erroneous pixels. The corresponding interval error
rate reaches 110.3%, and the cumulative error proportion
attains 100%. In contrast, the low-uncertainty interval
comprises 42.8% of all pixels, while erroneous pixels account
for only 3.2%, yielding an interval error rate of merely 0.7%,
which indicates exceptionally high reliability of segmentation
results in low-uncertainty regions. Moreover, the overlap
between high-uncertainty regions and ground-truth unknown-
risk areas reaches 92.4%, while the overlap for the medium-
to-high uncertainty intervals reaches 75.0%. These findings
indicate that the uncertainty estimates produced by UDP-Net
not only localize segmentation errors for known risks but also
accurately identify previously unseen unknown-risk regions.
Consequently, clear and actionable guidance is provided for
regions associated with model epistemic insufficiency.

Cumulative eror proportion (%) Overlap with unknown-risk regions
(%)

0.4-0.6 (High uncertainty) =0.6 (Very high uncertainty)

Figure 5. Correlation analysis between uncertainty and segmentation errors
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Figure 6. Visualization of fine-grained urban environmental
risk segmentation and uncertainty quantification

To validate the capability of UDP-Net for fine-grained risk
identification and reliable uncertainty quantification under
both normal and extreme urban conditions, a representative
urban risk—exposed cables—was selected for qualitative
evaluation. Performance was examined across three scenarios:
a normal scene, a high-contrast extreme scene, and a low-
illumination extreme scene. As illustrated in Figure 6, accurate
separation of multiple risk components within exposed cables
is consistently achieved across all scenarios. Segmentation
boundaries closely align with true risk contours, with no
observable boundary fragmentation or false detections
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induced by high contrast or low illumination. Corresponding
uncertainty heatmaps indicate that uncertainty values within
all risk regions approach 1, while background regions remain
stably near 0. Importantly, calibration consistency exhibits no
significant degradation across different environmental
conditions. These results confirm that UDP-Net not only
enables fine-grained segmentation in standard urban scenes
but also maintains robust recognition performance under
extreme perturbations such as high contrast and low
illumination. Simultaneously, uncertainty estimates remain
highly consistent with actual risk regions, effectively
addressing the limitations of conventional segmentation
approaches, which typically suffer from reduced robustness
and substantial calibration bias in extreme urban environments.

4. DISCUSSION
The core advantages of UDP-Net in fine-grained
identification of wurban environmental risk regions

fundamentally arise from the deep synergistic design of the
dynamic prototype module, dual-branch uncertainty modeling,
uncertainty-guided assignment mechanism, and temporal
consistency module, through which accuracy, generalization,
reliability, and robustness are organically unified. The
momentum-based update strategy of dynamic prototypes
overcomes the generalization limitations inherent to static
prototypes, while the adaptive generation of new prototypes



endows the model with open-set recognition capability,
enabling unseen risk patterns to be captured in a self-adaptive
manner. Dual-branch uncertainty modeling not only quantifies
both epistemic and aleatoric uncertainty to provide reliable
decision confidence, but also mitigates misclassification
caused by forced assignment through tight integration with the
prototype allocation mechanism. Exponential adaptive
threshold regulation further balances known-risk classification
accuracy and unknown-risk recall, whereas the temporal
consistency module effectively discriminates genuine risk
evolution from noise induced by motion blur and illumination
variation, thereby enhancing robustness in complex dynamic
environments. Notably, uncertainty estimation is not treated as
an auxiliary output, but rather serves as a core driver for active
learning. By accurately localizing high-uncertainty samples,
approximately 80% of manual inspection costs can be reduced,
providing critical practical value for real-world deployment.
This characteristic fundamentally distinguishes UDP-Net
from existing approaches that primarily emphasize
segmentation accuracy.

Despite these strengths, several limitations remain and
warrant further improvement. From a computational
perspective, inference speed is reduced by approximately 25%
relative to the HRNet+UNet baseline, mainly due to the
requirement of 10 forward passes for MC Dropout, which
accounts for approximately 35% of total computation. As a
consequence, inference speed on edge devices such as
NVIDIA Jetson Xavier is limited to 8.7 FPS, which remains
insufficient for strict real-time deployment. In terms of new-
risk detection, when the cosine distance between new and
known risks falls below 0.3, adaptive thresholds fail to provide
effective discrimination, leading to increased failure rates in
new-prototype generation and a FPR rising to 8.5%. For
extremely small-scale risks—such as fine cracks with widths
below two pixels—the recall rate is limited to 65.3%,
substantially lower than the overall unknown-risk recall.
Furthermore, dynamically generated prototypes are only
labeled as potential new risks and lack explicit semantic
categories, requiring subsequent manual confirmation. This
constraint currently limits the realization of fully end-to-end
automated decision-making.

In light of the aforementioned limitations, future research
will be directed toward the construction of a never-ending
learning urban risk perception system, with the aim of
establishing a forward-looking yet practically feasible
technical roadmap. From the perspective of model
lightweighting, pruning and quantization strategies will be
adopted, or efficient backbone networks such as MobileViT
and EfficientNet will be introduced. In combination with
knowledge distillation, the ten forward passes required by MC
Dropout are expected to be compressed into a single pass, with
the objective of achieving real-time inference exceeding 30
FPS on edge devices. To address the absence of semantic
labels for newly generated prototypes, zero-shot learning or
weakly supervised learning paradigms will be integrated. By
leveraging prior knowledge of urban risk scenarios, semantic
labels can be automatically assigned to new prototypes,
thereby reducing reliance on manual intervention.
Furthermore, the incorporation of a lifelong learning paradigm
will enable online evolution of new risk prototypes and
continuous, safe updating of model parameters, effectively
mitigating catastrophic forgetting and establishing a closed-
loop iterative framework spanning data, models, and
applications. In addition, multi-source data such as LiDAR,
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infrared imagery, and GPS signals will be introduced to
facilitate multi-modal feature fusion and uncertainty
integration, thereby improving risk recognition accuracy
under extreme weather conditions. By further incorporating
causal reasoning techniques, intrinsic relationships between
risk regions and environmental factors can be uncovered,
enabling joint optimization of risk prediction and risk
identification.

UDP-Net exhibits broad practical applicability and strong
generalization capability, providing technical support for a
wide range of smart-city scenarios. In urban operation and
maintenance management, the proposed approach can be
integrated into municipal management platforms to
automatically detect risks such as road damage and facility
degradation, generate work orders, and substantially improve
operational efficiency. In intelligent transportation systems,
early warnings of road risks—including water accumulation,
icing, and obstacles—can be provided for autonomous
vehicles, thereby enhancing driving safety. In the domain of
emergency management, real-time monitoring of sudden
hazards such as road collapses and fallen trees can support
rapid response and crowd evacuation, reducing disaster-
related losses. Moreover, the core technical architecture of
UDP-Net can be transferred to other domains, including
industrial equipment fault detection and construction-site
safety risk identification, offering a unified solution for cross-
scenario risk perception. As such, the proposed framework
demonstrates significant engineering value and serves as a
meaningful reference for future academic research.

5. CONCLUSION

Fine-grained identification of urban environmental risks is
confronted with the joint optimization challenge of high-
accuracy segmentation, generalization to unknown risks,
decision reliability, and temporal robustness. Conventional
approaches struggle to overcome the inherent trade-offs
among these objectives and therefore fail to meet the practical
demands of intelligent urban safety governance. To address
this challenge, UDP-Net was introduced. Through the deep
integration of dynamic prototype learning, dual-branch
uncertainty modeling, uncertainty-guided assignment, and
temporal consistency constraint, a unified framework was
established that, for the first time, organically reconciles these
four core requirements and effectively resolves the long-
standing accuracy-generalization-reliability dilemma.

Extensive evaluations across multiple datasets demonstrate
comprehensive performance advantages. On the public
Cityscapes-Risk and RoadDamageDataset-v2 benchmarks, as
well as the self-constructed UERD, an average mloU of 89.2%
is achieved for known-risk segmentation, the Fl-score for
unknown-risk detection is improved to 82.7%, and uncertainty
calibration is markedly enhanced with an ECE of 0.058,
consistently surpassing existing SOTA methods. Notably, the
built-in uncertainty estimation mechanism exhibits substantial
practical value by reliably driving active learning, reducing
manual inspection costs by approximately 80%. This
capability provides critical support for transitioning from
laboratory validation to engineering deployment and
effectively addresses the fundamental bottleneck of annotation
scarcity in large-scale risk monitoring.

The academic contribution of this study extends beyond the
presentation of a high-performance urban risk identification



approach; a paradigm shift is advanced from closed-set
recognition toward open-world understanding in urban
perception. By endowing models with the ability to
dynamically adapt to novel risks, to quantify decision
reliability, and to resist temporal noise, a technical foundation
is established for building adaptive and trustworthy intelligent
urban safety management systems. Future efforts will focus on

model

lightweighting, automatic semantic labeling of

emerging risks, and multimodal fusion, with the goal of further
improving deployment flexibility and scenario adaptability.
These advances are expected to enable broader impact across
urban operations and maintenance, intelligent transportation,
and emergency management, thereby providing sustained
support for the safe development of smart cities.
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