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The rapid growth of Android applications has made mobile devices increasingly
vulnerable to malware attacks. Existing detection models often struggle due to ineffective
feature selection, limiting their accuracy. This paper analyzes Android malware detection
techniques using machine learning (ML) and deep learning (DL) approaches, evaluating
models based on parameters such as accuracy, precision, recall, F1-score, root mean
squared error (RMSE), mean absolute error (MAE), log loss, area under the curve (AUC),
and execution time. Experimental results show that the random forest (RF) classifier
achieves the highest detection performance with 88.17% accuracy, 0.575 precision, 0.582
recall, and an AUC of 0.772, outperforming other evaluated models. These findings
highlight the potential of RF for efficient and reliable Android malware classification.

1. INTRODUCTION

Malware is a program or file that is intentionally written to
cause harm to a system/network, ranging from user
information stealing to cyber espionage. Malware is regarded
as one of the main causes of many Internet security problems
and a serious threat to computer security. The use of mobile
devices is increasing as a replacement for laptops and desktop
computers for a large range of day-to-day activities, including
e-banking, social networking, mobile payments, office work,
and a range of other applications. Android continued to be the
most widely used mobile operating system worldwide, with a
71.8% market share in the first quarter of 2025, as shown in
Figure 1 [1]. The proliferation of Android devices has made
them a high-value target for cybercriminals, resulting in a
proliferation of malware attacks to steal user data, financial
resources, and system vulnerabilities. Android has seen a
range of sophisticated malware families in recent years that
reflect the dynamic threat horizon. The dramatic growth in the
number of malwares poses a serious challenge to secure
Android systems. Malware detection in Android phones is the
process of monitoring and protecting against unusual behavior
due to malicious activities of malware such as Trojans,
ransomware, and spyware. As shown in Figure 2, the Avast
Threat Report (Jan—Mar 2024) provides insights into mobile
malware [2]. It was observed that approximately 2-3 attacks
per month were detected on Android mobiles.

Android malware results in significant risks to user privacy,
security of data, and the performance of the device. Malware
often targets sensitive data such as login credentials, financial
information, and personal files. Certain types of malwares,
such as ransomware and SMS Trojans, would result in
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financial losses for users [3].

Malware can invade users' privacy by monitoring their
activities, tracking their location, and accessing sensitive
information without their consent. Malware may gain
unauthorized access to Android devices, allowing attackers to
control them remotely. Some malware disrupts the normal
functionality of Android devices by displaying unwanted
advertisements, redirecting users to malicious websites, or
interfering with the operation of legitimate apps [4]. Falling
victim to Android malware can damage a user's reputation,
particularly if sensitive or embarrassing information is exposed
as a result of a malware infection. In certain instances, the
effects of Android malware infections may extend beyond the
individual user to legal and regulatory consequences. For
example, businesses may face damages for data breaches that
lead to malware infections on employee-owned devices used
for work purposes. Threat actors continuously adapt their
tactics, successfully uploading malicious apps to the Google
Play Store—examples include Joker, Facestealer, and Coper,
all known for their sophisticated banking and data-stealing
capabilities. As smartphones are one of the major requirements
in human life, it is necessary to significantly improve the
performance of the Android malware detection system. It is
crucial for Android users to take proactive steps to protect their
devices from malware.

Malware detection methods can generally be divided into
three  groups:  signature-based, heuristic-based, and
specification-based [5]. In the signature-based method,
malware is detected depending on known patterns. One
example is antivirus programs. In the Heuristic-based method,
malware is detected depending on the behavior of the malware.
In specification-based detection techniques, applications are
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monitored according to their specification and then checked for
normal and abnormal behavior. To mitigate and monitor
Android malware, Al-powered solutions are in demand. Recent
studies have introduced machine learning (ML) and deep
learning (DL) models to detect unknown malware variants.
However, many existing methods face challenges such as poor
feature selection, overfitting, high computational complexity,
incomplete evaluation metrics, and limited generalization.
Also, prior studies rely solely on either static or dynamic
analysis, which restricts their ability to detect sophisticated or
obfuscated malware. The use of limited datasets or evaluating
a narrow set of ML models reduces the generalizability and
robustness of the existing findings. Furthermore, comparative
evaluations across diverse ML and DL models are often
lacking, and the models’ scalability and applicability to real-
world malware detection scenarios are still a challenge.

In this paper, the following research inquiries were

formulated and assessed:

RQl: What form of malware compromises an Android
system?

RQ2: Which methods have been applied in ML/DL to find
patterns connected to Android malware?

RQ3: Which methods perform better in terms of classifying
accuracy than others?

RQ4: Which model is the optimal model in handling noisy,
unbalanced datasets with high-dimensional static features?

The remaining part of the paper is arranged as follows:
Section 2 discusses the malware analysis methods, malware
types, attacks, general features used to categorize Android
malware, and analysis of existing schemes. Section 3 portrays
the ML model for categorizing malware on Android devices.
Section 4 discusses the results and discussion, and the
conclusion and future scope are given in Section 5.
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Figure 1. Market share of Android phones in Q1 2025 [1]
M°b|le malware types 2. MALWARE ANALYSIS, TYPES, AND ATTACKS
Android malware can be analyzed by static analysis,
Risk Q/Q dynamic analysis, and hybrid analysis [5]. The method of
ratio  change identifying a computer program/code without executing a
program (samples) is called static analysis. A technique of
Scam 7.9% .~ 61.1% identifying a computer program/code while executing a
program is called dynamic analysis. A technique of performing
Phishing 5.4% . 19.1% an examination ofa computer program/coFie after carrying ogt
the program in a real/virtual processor is known as hybrid
analysis.
Malwertising F 2.8% ~ 19.2% Android systems are susceptible to various kinds of
malware [6]. Some common types of malwares that can affect
m ‘ Android devices are shown in Figure 3.
Adware 1.0% *-50.3% e Trojans: Users are tricked by a Trojan horse that
7 impersonates genuine software by executing malicious
Dropper 0.2% ‘~-16.2% grograms/sofMare on a computer. Ex: Emotet, banking
rojan.

Figure 2. Malware statistics for Q1 of 2024 [2]
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Spyware: Spyware collects sensitive information such
as credit card numbers, users' personal information, and
browser data. Ex: Password Stealers.
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Figure 3. Different types of malwares

e Rootkit: Rootkits enable unauthorized users to access a
user’s computer. Ex: Avatar rootkit.

e Adware: Adware displays uninvited advertisements on
the smartphone as pop-up ads or notifications and
displays unsolicited advertisements. It collects user
data without consent.

e Ransomware: Ransomware is specially designed to
encrypt files, block access to user accounts, and
demand ransom to access their files. Ex: Petya.

e Botnets: A network of hacked devices under the
direction of one person. Android devices can be
infected and added to botnets, allowing attackers to
remotely control them for nefarious activities.

Numerous malware attacks targeting Android devices have

occurred over the years. Some general types of Android
malware attacks that have been prevalent in recent years
include ransomware, banking Trojans, spyware, adware, SMS
Trojans, fake apps, supply chain attacks, etc. Table 1 lists the
recent Android malware attacks that have happened over the
years.

Table 1. Recent Android malware attacks

Ref. Android Malware

Remarks

An Android banking Trojan that spreads via SMS phishing (smishing) messages, tricking users into installing

[7] Fh?BOt fake delivery tracking apps. Once installed, it steals credentials, contact lists, and can send SMS to propagate
(Year: 2020) itself
[8] BlackMamba Al-powered ransomware is capable of capturing keystrokes using ML and potentially exploiting Android OS
(Year: 2023) vulnerabilities.
Coper A malware that targets Android devices with a combination of fake apps and trojanized apps. Once installed,
[9] .p it steals banking information, displays fake login pages, and can intercept and modify SMS messages. It also
(Year: 2023) . .
provides attackers with remote control.
[10] Antidote A Trojan that impersonates the Google Play Store interface to trick users into granting permissions and
(Year: 2024) downloading additional malicious payloads.
An Android banking Trojan that employs overlay attacks on banking apps. It uses credential harvesting
Xenomorph . . L . .
[11] (Year: 2024) techniques, enabling attackers to steal banking information and transfer funds. It also includes advanced

evasion techniques to avoid detection.

Static Analysis Features  Dynamic Analysis Features  Hybrid Features Metadata Features  Graph-Based Features

Combining Static | |* App Metadata * Call Graphs
& Dynamic
Analysis * Market Metadata ||* Control Flow
Graphs

Feature Fusion

* Permissions * Network Traffic )
* APl Calls * System Calls

* Manifest File * Behavioural Patterns )
* Intent Filters * Resource Utilization

* Code Obfuscation

Figure 4. Features used to classify Android malware

2.1 General features used to classify Android malware

Android malware classification is usually performed with
the features shown in Figure 4. It includes static, dynamic,
hybrid, metadata, and graph-based features [12]. The
following are the typical characteristics of the features:

2.1.1 Characteristics of static analysis
e Used permissions: The permissions that the app's code
actually makes use of Manifest Document, Declared
Components, details regarding services, providers of

material, broadcast receivers, and actions, can highlight
anomalous activity.

e Intent filters: Particular actions or categories of data
that the application is set up to process.

e Interpretation of code: Some API requests (such as
those for sending SMS, gaining access to contacts, or
using the internet) may be a sign of malevolent intent.

e Code obfuscation refers to methods that impede
examination, such as reflection, text encryption, or
dynamically loaded code.
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Table 2. Analysis of existing malware detection schemes

Input

Ref. Statlc. Dynam.lc ML/DL Accuracy File Class1ﬁ.c ation Dataset Advantages Disadvantages
Analysis Analysis  Approches Type Algorithm
. High detection .
Dynamic: . Requires real
[13] X v bL I(:titteful 97.8%, APK Deep Neural 30.000+ samples rgtenzrs:l?cg devices and
pu* Combined: files Network ’ P Y limited static
Generation) features; real- .
99.6% . . analysis
device testing
Dynamic
analysis only,
Bi- Effective for P iﬁ?;lstilzgy
[14] X v directional 97.22% APK Bi-directional 21,000 samples cpde. patterns or
files LSTM localization,
LSTM hich accurac features
& Y detectable
through static
analysis
Random Random Comprehensive Limited to
Forest, Upto APK Forest, evaluation; selected
[13] v v Ensemble 96.8% files Ensemble 124,000 samples balanced r?;?deérzi?zye
Models Models dataset & .
to all scenarios
ML Categ((])ry: > . CCC-CIC- .ngh accuracy Dyn?mlc
. 96%, APK Various ML in category and  analysis only;
[16] X v (Dynamic Ty > fil loorith AndMal2020 famil . .
Analysis) Family: iles algorithms dataset amily may miss static
99% detection indicators
Accuracy not
. specified; may
[17] v v Neural Not APK Neural Omnidroid ;Zlb r;is require
Networks specified files Networks dataset Y significant
approach .
computational
resources
Category: High accuracy A hybrid
. o . .
[18] v v Varlogs ML 96.9/),. APK Varlogs ML Not specified in category and approach may
algorithms Family: files algorithms family increase
88.9% detection complexity
High detection Limited to
0, . 1 ]
98.08.A> APK Deep Neural rate; effectlve dyna}mlc
[19] X v DL detection files Network 13,533 samples against analysis; may
rate obfuscated not detect static
malware indicators
Random Complexit
Forest, Deep Random High accuracy; . P y
Neural Up to APK Forest, Deep . clustering 1nereases WIFh
[20] v v 99.6% ’ Not specified . clustering; it
Network AUC files Neural improves may reauire
with Network detection ¥ red
. more resources
Clustering
Accuracy not
Not  apg VoML o require
[21] v v ML and DL . and DL Not specified : red
specified files . dynamic significant
algorithms . .
analysis computational
resources
Complex model
DLwith g9 700 k1. APK  Deep Neural ~ CICMaldroid2020 11gh aceuracy; - fusion may
[22] v v Model explainable require high
) score files Networks dataset .
Fusion model computational
resources
- Good
accuracy &
B . performance
DL-LSTM LSTM DREBIN-215: - Optimized Only static
and LSTM: (Recurrent . .
o APK 15,036 apps using analysis used
Feedforward 99.24% . Neural . .
[23] v - . static (5,560 malware +  GridSearchCV (no dynamic
Neural NN: Network) . : .
o features 9,476 benign), - SMOTE is behavior
Network 99.18% - Feedforward . .
215 static features  used for class tracking)
(NN) NN .
balancing
- Fast training
using TPU
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2.1.2 Characteristics of dynamic analysis

e Network traffic: Detects suspicious patterns like
communication with known malicious IPs or abnormal
data uploads.
System calls: Logs the calls made by the app to the
operating system.
Behavioral patterns: Captures the app's behavior over
time, such as repeated background activity, access to
sensors, or device modifications.
Resource utilization: Measures CPU, memory, battery
usage, and storage access.

2.1.3 Characteristics of hybrid features

Hybrid features combine both static and dynamic elements,
often based on specific triggers. Static analysis is employed to
identify potential trigger points, while dynamic analysis is
used to assess whether and how these triggers are activated
during runtime. ML models that leverage both static
features—such as permissions and API calls—and dynamic
behaviors—Ilike runtime actions and network patterns—are
referred to as hybrid models.

2.1.4 Characteristics of metadata features

Metadata elements provide additional context regarding the
origin, structure, and distribution of an app; they are essential
in the categorization of Android malware. Combining these
features with dynamic and static analysis can improve
malware detection accuracy. Several crucial metadata
attributes are employed in the categorization of Android
malware. Features of Metadata for Applications:
Package name: The app's distinct identifier that can be
compared to databases of known malware.
Version information: The version name and version
code might tell you whether the app is a customized
version or a known version of a genuine app.
Application name: The name that the application is
displayed under, which occasionally mimics the names
of real programs or is deceptive.

2.1.5 Characteristics of graph-based features

The relationships and order of the API calls that the
application makes are shown in the API Call Graph.
The call flow is represented by edges, while API calls
are represented by nodes.

Function call graph: Edges show calls made between
the app's functions, while nodes represent the functions
themselves.

Control flow graphs (CFG): Basic Blocks and Edges:
Nodes stand for basic blocks, which are code segments
that are linear and do not branch, while edges stand for
routes that govern flow, such as loops, conditionals,
and jumps.

2.2 Analysis of existing malware analysis schemes

Various ML and DL approaches have been employed for
malware classification, combining static and dynamic analysis
techniques. Table 2 shows the comparison analysis of existing
malware analysis. The table considered the type (static or
dynamic), approach applied (ML/DL), accuracy obtained,
classification algorithm used, dataset used, advantages, and
drawbacks of the schemes.

Table 2 points out different methods for Android malware
detection, with the focus on integrating static, dynamic, and
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hybrid analysis techniques. Static analysis can be helpful in
detecting known malware signatures and behaviors without
running the app, but it can fail to detect obfuscated or
sophisticated malware behaviors that only appear at runtime.
Dynamic analysis, however, enables a better understanding of
an app's behavior in real-time, identifying malicious activities
that static analysis cannot detect. But dynamic analysis is time
and resource-intensive, as it involves actually running the
application. By fusing both, hybrid analysis offers more
effective detection process that reduces the disadvantages of
each stand-alone approach. On the front of ML and DL
algorithms, DL models, particularly neural networks, are now
becoming the go-to choice because they provide very high
accuracy in classification and can deal with complex data
patterns. Specifically, methods that combine ML and DL with
hybrid analysis methods provide the highest performance,
yielding high detection rates while mitigating the limitations
of both individual methods. Thus, hybrid methods that are
based on ML/DL algorithms have become the most adopted
and most effective for detecting Android malware.

3. ANDROID MALWARE CLASSIFICATION

The methodology employed in this study involves several
critical phases to predict Android malware using a diverse array
of ML and DL algorithms. The process begins with problem
identification, followed by data collection, exploratory data
analysis, model selection, training, evaluation, performance
comparison, and in-depth analysis. Figure 5 shows the
architecture for Android malware classification. Each of these
stages is meticulously detailed below, with visual aids such as
correlation heatmaps enhancing the understanding of the
dataset and model outcomes.

The proposed model relies on ML to detect Android
malware in real time by analyzing the behavior of APKs. The
malware analysis consists of the following steps: In the Initial
step, the data is taken from the dataset, and Initial preprocessing
will be performed to remove duplicates in the next step.
Features are selected carefully and then applied with various
ML/DL models to classify the Android malware.

] MMalware Dataset
Data Preprocessing

Feature - Handling
Selection unbalanced Data
IModel Building

ML Algorithm

Figure 5. Architecture for Android malware classification
3.1 Data collection

The analysis leverages the Android Malware.csv dataset, a



publicly available resource obtained from Kaggle, containing
86 columns and 355,650 entries. This dataset includes an
extensive set of network traffic features extracted from
Android devices, such as packet lengths, flow durations,
protocol types, inter-arrival times, packet rates, header lengths,
flag counts, and other statistical metrics, selected for their
well-documented association with malware detection
behaviors. The target variable, indicative of malware presence
or absence, supports both binary and multi-class classification
tasks, allowing for a nuanced analysis of malicious activities.
The dataset initially included columns such as Flow ID,
Source IP, Destination IP, and Timestamp, which contained
specific values for all data entries, potentially contributing to
overfitting in initial model evaluations.

Before applying learning models, the dataset undergoes a
series of rigorous preprocessing steps to ensure data quality
and compatibility. Missing values are systematically imputed
with the mean of their respective features to maintain dataset
integrity. Non-numeric attributes, such as protocol types or
categorical labels, are encoded into numerical form using a
factorization approach to align with algorithmic requirements.
Continuous features, including packet lengths and flow
durations, are normalized using Min-Max scaling to eliminate
scale disparities that could disproportionately influence model
performance. This normalization process ensures that all
features contribute equitably to the predictive modeling.
Additionally, to address overfitting observed in preliminary
models, the columns Flow ID, Source IP, Destination IP, and
Timestamp were removed. This adjustment resulted in a
significant decrease in the accuracy of overfitting-prone
models (e.g., decision tree, extra trees), as these columns
provided unique identifiers and temporal data that the models
over-relied upon, leading to poor generalization on unseen
data.

3.2 Feature selection

A correlation matrix is computed and visualized using a
Python-based data visualization library to uncover
relationships between the remaining features, offering critical
insights into their interdependencies and relevance to malware
detection. The resulting heatmap (as depicted in Figure 6)
highlights strong positive and negative correlations, with color
intensity reflecting the strength of these relationships. For
example, features such as Total Fwd Packets and Total Length
of Bwd Packets exhibit high positive correlations, suggesting
that increased packet activity in both forward and backward
directions may be indicative of malicious traffic. Conversely,
negative correlations, such as between Fwd IAT Mean
(forward inter-arrival time) and Bwd IAT Total (backward
inter-arrival time total), may indicate differing temporal
patterns between benign and malicious flows. Highly
correlated features, particularly those exceeding a threshold
(e.g., 0.9), are identified for potential removal to mitigate
multicollinearity, enhancing model robustness. This heatmap
serves as a foundational tool for feature selection and informs
subsequent modeling strategies.

The heatmap visualizes the Pearson correlation coefficients
between all feature pairs, with a color gradient from blue
(negative correlation, e.g., -0.6) to red (positive correlation,
e.g., 1.0). Key observations include strong positive
correlations among packet-related features (e.g., Total Fwd
Packets and Subflow Fwd Packets) and notable negative
correlations between temporal features (e.g., Fwd IAT Mean
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and Idle Std), guiding the preprocessing and feature
engineering process.

The study explores a comprehensive set of ML and DL
algorithms to predict Android malware based on network
traffic data. The selected models span traditional statistical
methods, ensemble techniques, and advanced neural network
architectures, chosen for their ability to capture a wide range
of patterns and their varying computational demands. The
study considered ten models for evaluation including logistic
regression (LR), decision tree (DT), random forest (RF), extra
trees (ET), gradient boosting (GB), extreme gradient boosting
(XGBoost), light gradient boosting machine (LightGBM),
multilayer perceptron (MLP), and convolutional neural
network (CNN) and long short-term memory network (LSTM)
[24, 25].

1) Logistic regression (LR): A linear model that estimates
the probability of malware presence using a logistic function.
It is computationally efficient and provides a baseline for
comparison, though it assumes a linear relationship between
features and the target.

2) Decision tree (DT): A tree-based model that recursively
partitions data based on feature thresholds. It offers
interpretability and is prone to overfitting unless pruned,
utilizing impurity measures such as the Gini index or entropy
to optimize splits.

3) Random forest (RF): An ensemble model that constructs
multiple DTs on random subsets of data and features,
averaging predictions to improve accuracy and mitigate
overfitting through diversification.

4) Extra trees (ET): An enhanced version of RF that
introduces additional randomness in tree construction by
considering random feature splits, enhancing generalization
across diverse datasets.

5) Gradient boosting (GB): A sequential ensemble
technique that builds DTs iteratively, with each tree correcting
the errors of its predecessors. It excels with complex data but
requires meticulous hyperparameter tuning.

6) Extreme gradient boosting (XGBoost): An optimized GB
framework  that incorporates  parallel  processing,
regularization, and GPU acceleration, offering superior
performance on large-scale datasets.

7) Light gradient boosting machine (LightGBM): A GB
variant designed for speed and scalability, employing
histogram-based learning to efficiently handle high-
dimensional data.

8) Multilayer perceptron (MLP): A feed-forward neural
network with multiple dense layers, adept at modeling non-
linear relationships but demanding significant computational
resources and training time.

9) Convolutional neural network (CNN): A DL model
featuring convolutional layers to extract spatial hierarchies
from reshaped input data, followed by dense layers for
classification, ideal for pattern recognition in sequential data.

10) Long short-term memory network (LSTM): A recurrent
neural network variant designed to capture long-term
dependencies in sequential data, utilizing multiple LSTM
layers to model temporal patterns effectively.

The dataset is partitioned into training (80%) and testing
(20%) sets, with a fixed random seed ensuring reproducibility.
This split allows models to be trained on a substantial portion
of the data and evaluated on unseen instances, providing a
robust assessment of generalization capability. The model
configuration parameters considered are tabulated in Table 3.
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Figure 6. Heatmap illustrating the correlation between network traffic features

Table 3. Model configuration parameters

Model Name
Logistic Regression
Decision Tree
Random Forest
Extra Trees

Simplified Configuration
Log Loss with L2 Regularization
Single Tree, Gini/Entropy, Pruning
100 Trees, Gini/Entropy, Bagging
100 Trees, Gini/Entropy, Extra

Randomness
Gradient Boosting 100 Trees, Depth 6, LR 0.1, Gradient
Boosting
XGBoost 100 Trees, Depth 6, LR 0.1, L1/L.2
Regularization
LightGBM 100 Trees, Depth 6, LR 0.1, Histogram-
based
Multilayer ReLU, 3 Layers (64, 32, Output),
Perceptron Dropout, Adam, 10 Epochs
Convolutional Conv + Dense Layers, ReLU, Dropout,
Neural Network Adam, 10 Epochs
Long Short-Term 2 LSTM + 1 Dense, Units: 50, Dropout,
Memory Adam, 10 Epochs

3.3 Model evaluation

Following training, the models are evaluated using a
comprehensive suite of performance metrics to provide a
thorough assessment of their predictive capability and
computational efficiency. The metrics include accuracy,
precision, recall, F1-score, root mean squared error (RMSE),
mean absolute error (MAE), log loss, area under the curve -
receiver operating characteristic (AUC-ROC), and training
time.

Among the obtained Model Configuration Results, the RF
gives good accuracy. The model consists of 100 DTs, each
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trained on a randomly sampled subset of the dataset. Trees are
allowed to grow fully until leaves are pure or the minimum
split threshold is reached. This enables capturing complex
feature interactions without predefined depth restrictions.
Both Gini Impurity and Entropy criteria were tested for
optimal node splitting. These measures assess the quality of a
split by evaluating class purity in child nodes. Bootstrap
Aggregation (Bagging) ensures that each DT is trained on
different random subsets of the data with feature randomness.
This reduces overfitting and improves generalization across
unseen malware samples.

The feature importance of the dataset is shown in Figure 7.
The relative importance of attributes is evaluated using a tree-
based ensemble method, with the top features identified and
depicted graphically to underscore their predictive power in
malware detection, as shown in Figure 7.

A correlation matrix is computed and visualized to explore
relationships  between attributes, with the heatmap
highlighting strongly correlated features. This analysis
informs feature selection by identifying redundant or highly
interdependent variables. The confusion matrix shown in
Figure 8 represents the performance of an RF classification
model across four classes (labeled 0 to 3). The Precision-recall
curve presented in Figure 9 for the RF model provides insight
into the classification performance across the four classes. The
Prediction Error Distribution plot shown in Figure 10 for the
RF model reveals how the model's classification errors are
distributed. The ROC curve shown in Figure 11 for the RF
model illustrates its classification performance for each class
regarding the trade-off between the true positive rate
(sensitivity) and the false positive rate.
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The pair plot shown in Figure 12 provides a comprehensive
view of feature relationships and class separability across
several selected variables used by the RF model: Source Port,
Flow IAT Min, Flow Duration, Flow IAT Mean, and Fwd
Packets. Each plot illustrates pairwise scatter distributions
color-coded by class labels (0 to 3), offering insights into how
classes.

well the features distinguish between This

Saurce Part

Flow 1AT Min

visualization underlines the importance of feature scaling,
outlier handling, or dimensionality reduction techniques like
PCA to improve separability and model accuracy.
Additionally, it reinforces the need for advanced techniques
(e.g., feature engineering or ensemble strategies) to better
distinguish between the overlapping class regions.
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4. RESULTS AND DISCUSSION

Table 4 shows the results obtained by applying various ML
models. RF is performing well compared to other ML models.
RF is reliable, accurate, and simple to use; it is frequently
selected over other ML models for Android malware
detection. Given the noisy and unbalanced nature of Android
malware datasets, RF's ability to successfully limit the danger
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of overfitting as an ensemble method that creates many DTs
and mixes their outputs makes it particularly useful. Because
of its high-dimensional data performance, it can be used to
analyze a variety of app aspects, including permissions, API
requests, and intents. The modeling procedure is made simpler
by the RF's natural handling of both binary and categorical
variables, in contrast to models that necessitate intensive
preprocessing.



Table 4. Model configuration results

Algorithm Accuracy Precision Recall F1-Score RMSE MAE LogLoss AUC Time
Random Forest 0.8817 0.5753 0.5817  0.5739 09815  0.57 1.3021 0.7724  169.301
Logistic Regression 0.4814 0.5062 0.4814  0.4039 1.1596  0.75 1.1143 0.6201 11.5473
Decision Tree 0.5595 0.5618 0.5595  0.5605 1.0439  0.63 15472 0.6771 19.8875
Random Forest 0.8817 0.5753 0.5817  0.5739 0.9815  0.57 1.3021 0.7724  169.301
Extra Trees 0.5679 0.5614 0.5679  0.5624 1.0075 0.6 2.8532  0.7543  83.9693
Gradient Boosting 0.5047 0.5707 0.5047 0.453 1.1081  0.71 1.0639  0.6949 1205.19
XGBoost (GPU) 0.5561 0.5986 0.5561 0.5295 1.0233  0.62 0.9859  0.7547 5.43423
LightGBM 0.5466 0.5976 0.5466 0.514 1.0443  0.64 1.0008 0.7472  29.2756
MLP 0.4951 0.4962 0.4951 0.4487 1.1119  0.71 1.0677  0.6601 347.891
CNN 0.4967 0.5082 0.4967  0.4297 1.1355 0.73 1.0667  0.6643 318.952
LSTM 0.4809 0.4929 0.4809  0.3854 1.1764  0.77 1.1028 0.6217 823.831

Further, to evaluate the robustness of the RF model, an
uncertainty analysis is conducted by training the model using
five different random seeds: 21, 42, 77, 100, and 123. The
accuracy and AUC scores showed minimal variation across
these runs, indicating stable and consistent model behaviour
regardless of initial data splits. Table 5 summarizes the results.

Table 5. Model performance with different random seeds

Random Seed Accuracy AUC
21 88.15%  0.770
42 88.17%  0.772
77 88.10%  0.769
100 88.21%  0.773
123 88.12%  0.771

The model’s ability to interpret feature importance also aids
security analysts in understanding key behavioral patterns,
such as abnormal packet lengths and flow timings, which are
often indicative of malicious activities. These findings suggest
that this ensemble method can be both effective and practical
for deployment in mobile security environments. Looking
forward, future research can explore online learning
techniques that enable continuous adaptation to newly
emerging malware patterns in real-time. Integrating hybrid
architectures, such as combining RF with DL models, may
also enhance detection accuracy while addressing evolving
threats and concept drift in dynamic environments.
Additionally, incorporating more granular features, such as
app permissions or API call graphs, may further improve
model generalization and detection precision.

5. CONCLUSION AND FUTURE SCOPE

This study presents a comprehensive framework for
Android malware detection using a combination of ML and
DL models. The primary contribution lies in evaluating ten
different models and with static features like permissions and
API calls, the RF classifier achieves the best overall
performance, with an accuracy of 88.17%, precision of 0.575,
recall 0f0.582, F1-score of 0.574, and an AUC of 0.772. These
results highlight its effectiveness in detecting malicious
behaviors in Android applications while maintaining
computational efficiency. Its ensemble nature allowed it to
handle high-dimensional feature spaces, reduce overfitting,
and provide interpretable feature importance scores, making it
one of the suitable approaches for real-world malware
detection systems.

But there are still issues like false positives, dataset
restrictions, and changing virus tactics. To improve detection
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accuracy and flexibility in real-world settings, future research
will concentrate on incorporating dynamic analysis, increasing
dataset diversity, and investigating hybrid models.
Additionally, by creating lightweight variations or employing
feature selection strategies to lower overhead, future research
could investigate optimizing RF for on-device detection,
where computational resources are constrained.
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