
Application of Machine Learning and Deep Learning Techniques for Android Malware

Detection

Sangeetha Shivananda* , Pramod Tumkur Channabasavanna

Department of Computer Science & Engineering, Siddaganga Institute of Technology, Visvesvaraya Technological University

(VTU), Belagavi 590018, India

Corresponding Author Email: sangeethakeerthi2021@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.150809 ABSTRACT

Received: 30 June 2025

Revised: 25 July 2025

Accepted: 4 August 2025

Available online: 31 August 2025

The rapid growth of Android applications has made mobile devices increasingly

vulnerable to malware attacks. Existing detection models often struggle due to ineffective

feature selection, limiting their accuracy. This paper analyzes Android malware detection

techniques using machine learning (ML) and deep learning (DL) approaches, evaluating

models based on parameters such as accuracy, precision, recall, F1-score, root mean

squared error (RMSE), mean absolute error (MAE), log loss, area under the curve (AUC),

and execution time. Experimental results show that the random forest (RF) classifier

achieves the highest detection performance with 88.17% accuracy, 0.575 precision, 0.582

recall, and an AUC of 0.772, outperforming other evaluated models. These findings

highlight the potential of RF for efficient and reliable Android malware classification.

Keywords:

APK behavior analysis, Android malware,

machine learning, deep learning, random

forest, static and dynamic malware analysis

1. INTRODUCTION

Malware is a program or file that is intentionally written to

cause harm to a system/network, ranging from user

information stealing to cyber espionage. Malware is regarded

as one of the main causes of many Internet security problems

and a serious threat to computer security. The use of mobile

devices is increasing as a replacement for laptops and desktop

computers for a large range of day-to-day activities, including

e-banking, social networking, mobile payments, office work,

and a range of other applications. Android continued to be the

most widely used mobile operating system worldwide, with a

71.8% market share in the first quarter of 2025, as shown in

Figure 1 [1]. The proliferation of Android devices has made

them a high-value target for cybercriminals, resulting in a

proliferation of malware attacks to steal user data, financial

resources, and system vulnerabilities. Android has seen a

range of sophisticated malware families in recent years that

reflect the dynamic threat horizon. The dramatic growth in the

number of malwares poses a serious challenge to secure

Android systems. Malware detection in Android phones is the

process of monitoring and protecting against unusual behavior

due to malicious activities of malware such as Trojans,

ransomware, and spyware. As shown in Figure 2, the Avast

Threat Report (Jan–Mar 2024) provides insights into mobile

malware [2]. It was observed that approximately 2-3 attacks

per month were detected on Android mobiles.

Android malware results in significant risks to user privacy,

security of data, and the performance of the device. Malware

often targets sensitive data such as login credentials, financial

information, and personal files. Certain types of malwares,

such as ransomware and SMS Trojans, would result in

financial losses for users [3].

Malware can invade users' privacy by monitoring their

activities, tracking their location, and accessing sensitive

information without their consent. Malware may gain

unauthorized access to Android devices, allowing attackers to

control them remotely. Some malware disrupts the normal

functionality of Android devices by displaying unwanted

advertisements, redirecting users to malicious websites, or

interfering with the operation of legitimate apps [4]. Falling

victim to Android malware can damage a user's reputation,

particularly if sensitive or embarrassing information is exposed

as a result of a malware infection. In certain instances, the

effects of Android malware infections may extend beyond the

individual user to legal and regulatory consequences. For

example, businesses may face damages for data breaches that

lead to malware infections on employee-owned devices used

for work purposes. Threat actors continuously adapt their

tactics, successfully uploading malicious apps to the Google

Play Store—examples include Joker, Facestealer, and Coper,

all known for their sophisticated banking and data-stealing

capabilities. As smartphones are one of the major requirements

in human life, it is necessary to significantly improve the

performance of the Android malware detection system. It is

crucial for Android users to take proactive steps to protect their

devices from malware.

Malware detection methods can generally be divided into

three groups: signature-based, heuristic-based, and

specification-based [5]. In the signature-based method,

malware is detected depending on known patterns. One

example is antivirus programs. In the Heuristic-based method,

malware is detected depending on the behavior of the malware.

In specification-based detection techniques, applications are

International Journal of Safety and Security Engineering
Vol. 15, No. 8, August, 2025, pp. 1635-1645

Journal homepage: http://iieta.org/journals/ijsse

1635

https://orcid.org/0009-0006-8192-3473
https://orcid.org/0000-0002-9022-3464
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/ijsse.150809&domain=pdf

monitored according to their specification and then checked for

normal and abnormal behavior. To mitigate and monitor

Android malware, AI-powered solutions are in demand. Recent

studies have introduced machine learning (ML) and deep

learning (DL) models to detect unknown malware variants.

However, many existing methods face challenges such as poor

feature selection, overfitting, high computational complexity,

incomplete evaluation metrics, and limited generalization.

Also, prior studies rely solely on either static or dynamic

analysis, which restricts their ability to detect sophisticated or

obfuscated malware. The use of limited datasets or evaluating

a narrow set of ML models reduces the generalizability and

robustness of the existing findings. Furthermore, comparative

evaluations across diverse ML and DL models are often

lacking, and the models’ scalability and applicability to real-

world malware detection scenarios are still a challenge.

In this paper, the following research inquiries were

formulated and assessed:

RQ1: What form of malware compromises an Android

system?

RQ2: Which methods have been applied in ML/DL to find

patterns connected to Android malware?

RQ3: Which methods perform better in terms of classifying

accuracy than others?

RQ4: Which model is the optimal model in handling noisy,

unbalanced datasets with high-dimensional static features?

The remaining part of the paper is arranged as follows:

Section 2 discusses the malware analysis methods, malware

types, attacks, general features used to categorize Android

malware, and analysis of existing schemes. Section 3 portrays

the ML model for categorizing malware on Android devices.

Section 4 discusses the results and discussion, and the

conclusion and future scope are given in Section 5.

Figure 1. Market share of Android phones in Q1 2025 [1]

Figure 2. Malware statistics for Q1 of 2024 [2]

2. MALWARE ANALYSIS, TYPES, AND ATTACKS

Android malware can be analyzed by static analysis,

dynamic analysis, and hybrid analysis [5]. The method of

identifying a computer program/code without executing a

program (samples) is called static analysis. A technique of

identifying a computer program/code while executing a

program is called dynamic analysis. A technique of performing

an examination of a computer program/code after carrying out

the program in a real/virtual processor is known as hybrid

analysis.

Android systems are susceptible to various kinds of

malware [6]. Some common types of malwares that can affect

Android devices are shown in Figure 3.

• Trojans: Users are tricked by a Trojan horse that

impersonates genuine software by executing malicious

programs/software on a computer. Ex: Emotet, banking

Trojan.

• Spyware: Spyware collects sensitive information such

as credit card numbers, users' personal information, and

browser data. Ex: Password Stealers.

1636

Figure 3. Different types of malwares

• Rootkit: Rootkits enable unauthorized users to access a

user’s computer. Ex: Avatar rootkit.

• Adware: Adware displays uninvited advertisements on

the smartphone as pop-up ads or notifications and

displays unsolicited advertisements. It collects user

data without consent.

• Ransomware: Ransomware is specially designed to

encrypt files, block access to user accounts, and

demand ransom to access their files. Ex: Petya.

• Botnets: A network of hacked devices under the

direction of one person. Android devices can be

infected and added to botnets, allowing attackers to

remotely control them for nefarious activities.

Numerous malware attacks targeting Android devices have

occurred over the years. Some general types of Android

malware attacks that have been prevalent in recent years

include ransomware, banking Trojans, spyware, adware, SMS

Trojans, fake apps, supply chain attacks, etc. Table 1 lists the

recent Android malware attacks that have happened over the

years.

Table 1. Recent Android malware attacks

Ref. Android Malware Remarks

[7]
FluBot

(Year: 2020)

An Android banking Trojan that spreads via SMS phishing (smishing) messages, tricking users into installing

fake delivery tracking apps. Once installed, it steals credentials, contact lists, and can send SMS to propagate

itself.

[8]
BlackMamba

(Year: 2023)

AI-powered ransomware is capable of capturing keystrokes using ML and potentially exploiting Android OS

vulnerabilities.

[9]
Coper

(Year: 2023)

A malware that targets Android devices with a combination of fake apps and trojanized apps. Once installed,

it steals banking information, displays fake login pages, and can intercept and modify SMS messages. It also

provides attackers with remote control.

[10]
Antidote

(Year: 2024)

A Trojan that impersonates the Google Play Store interface to trick users into granting permissions and

downloading additional malicious payloads.

[11]
Xenomorph

(Year: 2024)

An Android banking Trojan that employs overlay attacks on banking apps. It uses credential harvesting

techniques, enabling attackers to steal banking information and transfer funds. It also includes advanced

evasion techniques to avoid detection.

Figure 4. Features used to classify Android malware

2.1 General features used to classify Android malware

Android malware classification is usually performed with

the features shown in Figure 4. It includes static, dynamic,

hybrid, metadata, and graph-based features [12]. The

following are the typical characteristics of the features:

2.1.1 Characteristics of static analysis

• Used permissions: The permissions that the app's code

actually makes use of Manifest Document, Declared

Components, details regarding services, providers of

material, broadcast receivers, and actions, can highlight

anomalous activity.

• Intent filters: Particular actions or categories of data

that the application is set up to process.

• Interpretation of code: Some API requests (such as

those for sending SMS, gaining access to contacts, or

using the internet) may be a sign of malevolent intent.

• Code obfuscation refers to methods that impede

examination, such as reflection, text encryption, or

dynamically loaded code.

1637

Table 2. Analysis of existing malware detection schemes

Ref.
Static

Analysis

Dynamic

Analysis

ML/DL

Approches
Accuracy

Input

File

Type

Classification

Algorithm
Dataset Advantages Disadvantages

[13] ✘ ✔

DL (Stateful

Input

Generation)

Dynamic:

97.8%,

Combined:

99.6%

APK

files

Deep Neural

Network
30,000+ samples

High detection

rate using

dynamic

features; real-

device testing

Requires real

devices and

limited static

analysis

[14] ✘ ✔

Bi-

directional

LSTM

97.22%
APK

files

Bi-directional

LSTM
21,000 samples

Effective for

code

localization,

high accuracy

Dynamic

analysis only,

potentially

missing

patterns or

features

detectable

through static

analysis

[15] ✔ ✔

Random

Forest,

Ensemble

Models

Up to

96.8%

APK

files

Random

Forest,

Ensemble

Models

124,000 samples

Comprehensive

evaluation;

balanced

dataset

Limited to

selected

models; may

not generalize

to all scenarios

[16] ✘ ✔

ML

(Dynamic

Analysis)

Category: >

96%,

Family: >

99%

APK

files

Various ML

algorithms

CCC-CIC-

AndMal2020

dataset

High accuracy

in category and

family

detection

Dynamic

analysis only;

may miss static

indicators

[17] ✔ ✔
Neural

Networks

Not

specified

APK

files

Neural

Networks

Omnidroid

dataset

Hybrid

analysis

approach

Accuracy not

specified; may

require

significant

computational

resources

[18] ✔ ✔
Various ML

algorithms

Category:

96.9%,

Family:

88.9%

APK

files

Various ML

algorithms
Not specified

High accuracy

in category and

family

detection

A hybrid

approach may

increase

complexity

[19] ✘ ✔ DL

98.08%

detection

rate

APK

files

Deep Neural

Network
13,533 samples

High detection

rate; effective

against

obfuscated

malware

Limited to

dynamic

analysis; may

not detect static

indicators

[20] ✔ ✔

Random

Forest, Deep

Neural

Network

with

Clustering

Up to

99.6%

AUC

APK

files

Random

Forest, Deep

Neural

Network

Not specified

High accuracy;

clustering

improves

detection

Complexity

increases with

clustering; it

may require

more resources

[21] ✔ ✔ ML and DL
Not

specified

APK

files

Various ML

and DL

algorithms

Not specified

Combines

static and

dynamic

analysis

Accuracy not

specified; may

require

significant

computational

resources

[22] ✔ ✔

DL with

Model

Fusion

99.97% F1-

score

APK

files

Deep Neural

Networks

CICMaldroid2020

dataset

High accuracy;

explainable

model

Complex model

fusion may

require high

computational

resources

[23] ✔ -

DL – LSTM

and

Feedforward

Neural

Network

(NN)

LSTM:

99.24%

NN:

99.18%

APK

static

features

- LSTM

(Recurrent

Neural

Network)

- Feedforward

NN

DREBIN-215:

15,036 apps

(5,560 malware +

9,476 benign),

215 static features

- Good

accuracy &

performance

- Optimized

using

GridSearchCV

- SMOTE is

used for class

balancing

- Fast training

using TPU

Only static

analysis used

(no dynamic

behavior

tracking)

1638

2.1.2 Characteristics of dynamic analysis

• Network traffic: Detects suspicious patterns like

communication with known malicious IPs or abnormal

data uploads.

• System calls: Logs the calls made by the app to the

operating system.

• Behavioral patterns: Captures the app's behavior over

time, such as repeated background activity, access to

sensors, or device modifications.

• Resource utilization: Measures CPU, memory, battery

usage, and storage access.

2.1.3 Characteristics of hybrid features

Hybrid features combine both static and dynamic elements,

often based on specific triggers. Static analysis is employed to

identify potential trigger points, while dynamic analysis is

used to assess whether and how these triggers are activated

during runtime. ML models that leverage both static

features—such as permissions and API calls—and dynamic

behaviors—like runtime actions and network patterns—are

referred to as hybrid models.

2.1.4 Characteristics of metadata features

Metadata elements provide additional context regarding the

origin, structure, and distribution of an app; they are essential

in the categorization of Android malware. Combining these

features with dynamic and static analysis can improve

malware detection accuracy. Several crucial metadata

attributes are employed in the categorization of Android

malware. Features of Metadata for Applications:

• Package name: The app's distinct identifier that can be

compared to databases of known malware.

• Version information: The version name and version

code might tell you whether the app is a customized

version or a known version of a genuine app.

• Application name: The name that the application is

displayed under, which occasionally mimics the names

of real programs or is deceptive.

2.1.5 Characteristics of graph-based features

• The relationships and order of the API calls that the

application makes are shown in the API Call Graph.

The call flow is represented by edges, while API calls

are represented by nodes.

• Function call graph: Edges show calls made between

the app's functions, while nodes represent the functions

themselves.

• Control flow graphs (CFG): Basic Blocks and Edges:

Nodes stand for basic blocks, which are code segments

that are linear and do not branch, while edges stand for

routes that govern flow, such as loops, conditionals,

and jumps.

2.2 Analysis of existing malware analysis schemes

Various ML and DL approaches have been employed for

malware classification, combining static and dynamic analysis

techniques. Table 2 shows the comparison analysis of existing

malware analysis. The table considered the type (static or

dynamic), approach applied (ML/DL), accuracy obtained,

classification algorithm used, dataset used, advantages, and

drawbacks of the schemes.

Table 2 points out different methods for Android malware

detection, with the focus on integrating static, dynamic, and

hybrid analysis techniques. Static analysis can be helpful in

detecting known malware signatures and behaviors without

running the app, but it can fail to detect obfuscated or

sophisticated malware behaviors that only appear at runtime.

Dynamic analysis, however, enables a better understanding of

an app's behavior in real-time, identifying malicious activities

that static analysis cannot detect. But dynamic analysis is time

and resource-intensive, as it involves actually running the

application. By fusing both, hybrid analysis offers more

effective detection process that reduces the disadvantages of

each stand-alone approach. On the front of ML and DL

algorithms, DL models, particularly neural networks, are now

becoming the go-to choice because they provide very high

accuracy in classification and can deal with complex data

patterns. Specifically, methods that combine ML and DL with

hybrid analysis methods provide the highest performance,

yielding high detection rates while mitigating the limitations

of both individual methods. Thus, hybrid methods that are

based on ML/DL algorithms have become the most adopted

and most effective for detecting Android malware.

3. ANDROID MALWARE CLASSIFICATION

The methodology employed in this study involves several

critical phases to predict Android malware using a diverse array

of ML and DL algorithms. The process begins with problem

identification, followed by data collection, exploratory data

analysis, model selection, training, evaluation, performance

comparison, and in-depth analysis. Figure 5 shows the

architecture for Android malware classification. Each of these

stages is meticulously detailed below, with visual aids such as

correlation heatmaps enhancing the understanding of the

dataset and model outcomes.

The proposed model relies on ML to detect Android

malware in real time by analyzing the behavior of APKs. The

malware analysis consists of the following steps: In the Initial

step, the data is taken from the dataset, and Initial preprocessing

will be performed to remove duplicates in the next step.

Features are selected carefully and then applied with various

ML/DL models to classify the Android malware.

Figure 5. Architecture for Android malware classification

3.1 Data collection

The analysis leverages the Android_Malware.csv dataset, a

1639

publicly available resource obtained from Kaggle, containing

86 columns and 355,650 entries. This dataset includes an

extensive set of network traffic features extracted from

Android devices, such as packet lengths, flow durations,

protocol types, inter-arrival times, packet rates, header lengths,

flag counts, and other statistical metrics, selected for their

well-documented association with malware detection

behaviors. The target variable, indicative of malware presence

or absence, supports both binary and multi-class classification

tasks, allowing for a nuanced analysis of malicious activities.

The dataset initially included columns such as Flow ID,

Source IP, Destination IP, and Timestamp, which contained

specific values for all data entries, potentially contributing to

overfitting in initial model evaluations.

Before applying learning models, the dataset undergoes a

series of rigorous preprocessing steps to ensure data quality

and compatibility. Missing values are systematically imputed

with the mean of their respective features to maintain dataset

integrity. Non-numeric attributes, such as protocol types or

categorical labels, are encoded into numerical form using a

factorization approach to align with algorithmic requirements.

Continuous features, including packet lengths and flow

durations, are normalized using Min-Max scaling to eliminate

scale disparities that could disproportionately influence model

performance. This normalization process ensures that all

features contribute equitably to the predictive modeling.

Additionally, to address overfitting observed in preliminary

models, the columns Flow ID, Source IP, Destination IP, and

Timestamp were removed. This adjustment resulted in a

significant decrease in the accuracy of overfitting-prone

models (e.g., decision tree, extra trees), as these columns

provided unique identifiers and temporal data that the models

over-relied upon, leading to poor generalization on unseen

data.

3.2 Feature selection

A correlation matrix is computed and visualized using a

Python-based data visualization library to uncover

relationships between the remaining features, offering critical

insights into their interdependencies and relevance to malware

detection. The resulting heatmap (as depicted in Figure 6)

highlights strong positive and negative correlations, with color

intensity reflecting the strength of these relationships. For

example, features such as Total Fwd Packets and Total Length

of Bwd Packets exhibit high positive correlations, suggesting

that increased packet activity in both forward and backward

directions may be indicative of malicious traffic. Conversely,

negative correlations, such as between Fwd IAT Mean

(forward inter-arrival time) and Bwd IAT Total (backward

inter-arrival time total), may indicate differing temporal

patterns between benign and malicious flows. Highly

correlated features, particularly those exceeding a threshold

(e.g., 0.9), are identified for potential removal to mitigate

multicollinearity, enhancing model robustness. This heatmap

serves as a foundational tool for feature selection and informs

subsequent modeling strategies.

The heatmap visualizes the Pearson correlation coefficients

between all feature pairs, with a color gradient from blue

(negative correlation, e.g., -0.6) to red (positive correlation,

e.g., 1.0). Key observations include strong positive

correlations among packet-related features (e.g., Total Fwd

Packets and Subflow Fwd Packets) and notable negative

correlations between temporal features (e.g., Fwd IAT Mean

and Idle Std), guiding the preprocessing and feature

engineering process.

The study explores a comprehensive set of ML and DL

algorithms to predict Android malware based on network

traffic data. The selected models span traditional statistical

methods, ensemble techniques, and advanced neural network

architectures, chosen for their ability to capture a wide range

of patterns and their varying computational demands. The

study considered ten models for evaluation including logistic

regression (LR), decision tree (DT), random forest (RF), extra

trees (ET), gradient boosting (GB), extreme gradient boosting

(XGBoost), light gradient boosting machine (LightGBM),

multilayer perceptron (MLP), and convolutional neural

network (CNN) and long short-term memory network (LSTM)

[24, 25].

1) Logistic regression (LR): A linear model that estimates

the probability of malware presence using a logistic function.

It is computationally efficient and provides a baseline for

comparison, though it assumes a linear relationship between

features and the target.

2) Decision tree (DT): A tree-based model that recursively

partitions data based on feature thresholds. It offers

interpretability and is prone to overfitting unless pruned,

utilizing impurity measures such as the Gini index or entropy

to optimize splits.

3) Random forest (RF): An ensemble model that constructs

multiple DTs on random subsets of data and features,

averaging predictions to improve accuracy and mitigate

overfitting through diversification.

4) Extra trees (ET): An enhanced version of RF that

introduces additional randomness in tree construction by

considering random feature splits, enhancing generalization

across diverse datasets.

5) Gradient boosting (GB): A sequential ensemble

technique that builds DTs iteratively, with each tree correcting

the errors of its predecessors. It excels with complex data but

requires meticulous hyperparameter tuning.

6) Extreme gradient boosting (XGBoost): An optimized GB

framework that incorporates parallel processing,

regularization, and GPU acceleration, offering superior

performance on large-scale datasets.

7) Light gradient boosting machine (LightGBM): A GB

variant designed for speed and scalability, employing

histogram-based learning to efficiently handle high-

dimensional data.

8) Multilayer perceptron (MLP): A feed-forward neural

network with multiple dense layers, adept at modeling non-

linear relationships but demanding significant computational

resources and training time.

9) Convolutional neural network (CNN): A DL model

featuring convolutional layers to extract spatial hierarchies

from reshaped input data, followed by dense layers for

classification, ideal for pattern recognition in sequential data.

10) Long short-term memory network (LSTM): A recurrent

neural network variant designed to capture long-term

dependencies in sequential data, utilizing multiple LSTM

layers to model temporal patterns effectively.

The dataset is partitioned into training (80%) and testing

(20%) sets, with a fixed random seed ensuring reproducibility.

This split allows models to be trained on a substantial portion

of the data and evaluated on unseen instances, providing a

robust assessment of generalization capability. The model

configuration parameters considered are tabulated in Table 3.

1640

Figure 6. Heatmap illustrating the correlation between network traffic features

Table 3. Model configuration parameters

Model Name Simplified Configuration

Logistic Regression Log Loss with L2 Regularization

Decision Tree Single Tree, Gini/Entropy, Pruning

Random Forest 100 Trees, Gini/Entropy, Bagging

Extra Trees 100 Trees, Gini/Entropy, Extra

Randomness

Gradient Boosting 100 Trees, Depth 6, LR 0.1, Gradient

Boosting

XGBoost 100 Trees, Depth 6, LR 0.1, L1/L2

Regularization

LightGBM 100 Trees, Depth 6, LR 0.1, Histogram-

based

Multilayer

Perceptron

ReLU, 3 Layers (64, 32, Output),

Dropout, Adam, 10 Epochs

Convolutional

Neural Network

Conv + Dense Layers, ReLU, Dropout,

Adam, 10 Epochs

Long Short-Term

Memory

2 LSTM + 1 Dense, Units: 50, Dropout,

Adam, 10 Epochs

3.3 Model evaluation

Following training, the models are evaluated using a

comprehensive suite of performance metrics to provide a

thorough assessment of their predictive capability and

computational efficiency. The metrics include accuracy,

precision, recall, F1-score, root mean squared error (RMSE),

mean absolute error (MAE), log loss, area under the curve -

receiver operating characteristic (AUC-ROC), and training

time.

Among the obtained Model Configuration Results, the RF

gives good accuracy. The model consists of 100 DTs, each

trained on a randomly sampled subset of the dataset. Trees are

allowed to grow fully until leaves are pure or the minimum

split threshold is reached. This enables capturing complex

feature interactions without predefined depth restrictions.

Both Gini Impurity and Entropy criteria were tested for

optimal node splitting. These measures assess the quality of a

split by evaluating class purity in child nodes. Bootstrap

Aggregation (Bagging) ensures that each DT is trained on

different random subsets of the data with feature randomness.

This reduces overfitting and improves generalization across

unseen malware samples.

The feature importance of the dataset is shown in Figure 7.

The relative importance of attributes is evaluated using a tree-

based ensemble method, with the top features identified and

depicted graphically to underscore their predictive power in

malware detection, as shown in Figure 7.

A correlation matrix is computed and visualized to explore

relationships between attributes, with the heatmap

highlighting strongly correlated features. This analysis

informs feature selection by identifying redundant or highly

interdependent variables. The confusion matrix shown in

Figure 8 represents the performance of an RF classification

model across four classes (labeled 0 to 3). The Precision-recall

curve presented in Figure 9 for the RF model provides insight

into the classification performance across the four classes. The

Prediction Error Distribution plot shown in Figure 10 for the

RF model reveals how the model's classification errors are

distributed. The ROC curve shown in Figure 11 for the RF

model illustrates its classification performance for each class

regarding the trade-off between the true positive rate

(sensitivity) and the false positive rate.

1641

Figure 7. Feature importance w.r.t RF

Figure 8. Confusion matrix of RF

Figure 9. Precision-recall curve of RF

Figure 10. Prediction error distribution of RF

Figure 11. ROC curve

1642

The pair plot shown in Figure 12 provides a comprehensive

view of feature relationships and class separability across

several selected variables used by the RF model: Source Port,

Flow IAT Min, Flow Duration, Flow IAT Mean, and Fwd

Packets. Each plot illustrates pairwise scatter distributions

color-coded by class labels (0 to 3), offering insights into how

well the features distinguish between classes. This

visualization underlines the importance of feature scaling,

outlier handling, or dimensionality reduction techniques like

PCA to improve separability and model accuracy.

Additionally, it reinforces the need for advanced techniques

(e.g., feature engineering or ensemble strategies) to better

distinguish between the overlapping class regions.

Figure 12. Pair plot of the top 5 features

4. RESULTS AND DISCUSSION

Table 4 shows the results obtained by applying various ML

models. RF is performing well compared to other ML models.

RF is reliable, accurate, and simple to use; it is frequently

selected over other ML models for Android malware

detection. Given the noisy and unbalanced nature of Android

malware datasets, RF's ability to successfully limit the danger

of overfitting as an ensemble method that creates many DTs

and mixes their outputs makes it particularly useful. Because

of its high-dimensional data performance, it can be used to

analyze a variety of app aspects, including permissions, API

requests, and intents. The modeling procedure is made simpler

by the RF's natural handling of both binary and categorical

variables, in contrast to models that necessitate intensive

preprocessing.

1643

Table 4. Model configuration results

Algorithm Accuracy Precision Recall F1-Score RMSE MAE Log Loss AUC Time

Random Forest 0.8817 0.5753 0.5817 0.5739 0.9815 0.57 1.3021 0.7724 169.301

Logistic Regression 0.4814 0.5062 0.4814 0.4039 1.1596 0.75 1.1143 0.6201 11.5473

Decision Tree 0.5595 0.5618 0.5595 0.5605 1.0439 0.63 15.472 0.6771 19.8875

Random Forest 0.8817 0.5753 0.5817 0.5739 0.9815 0.57 1.3021 0.7724 169.301

Extra Trees 0.5679 0.5614 0.5679 0.5624 1.0075 0.6 2.8532 0.7543 83.9693

Gradient Boosting 0.5047 0.5707 0.5047 0.453 1.1081 0.71 1.0639 0.6949 1205.19

XGBoost (GPU) 0.5561 0.5986 0.5561 0.5295 1.0233 0.62 0.9859 0.7547 5.43423

LightGBM 0.5466 0.5976 0.5466 0.514 1.0443 0.64 1.0008 0.7472 29.2756

MLP 0.4951 0.4962 0.4951 0.4487 1.1119 0.71 1.0677 0.6601 347.891

CNN 0.4967 0.5082 0.4967 0.4297 1.1355 0.73 1.0667 0.6643 318.952

LSTM 0.4809 0.4929 0.4809 0.3854 1.1764 0.77 1.1028 0.6217 823.831

Further, to evaluate the robustness of the RF model, an

uncertainty analysis is conducted by training the model using

five different random seeds: 21, 42, 77, 100, and 123. The

accuracy and AUC scores showed minimal variation across

these runs, indicating stable and consistent model behaviour

regardless of initial data splits. Table 5 summarizes the results.

Table 5. Model performance with different random seeds

Random Seed Accuracy AUC

21 88.15% 0.770
42 88.17% 0.772
77 88.10% 0.769

100 88.21% 0.773
123 88.12% 0.771

The model’s ability to interpret feature importance also aids

security analysts in understanding key behavioral patterns,

such as abnormal packet lengths and flow timings, which are

often indicative of malicious activities. These findings suggest

that this ensemble method can be both effective and practical

for deployment in mobile security environments. Looking

forward, future research can explore online learning

techniques that enable continuous adaptation to newly

emerging malware patterns in real-time. Integrating hybrid

architectures, such as combining RF with DL models, may

also enhance detection accuracy while addressing evolving

threats and concept drift in dynamic environments.

Additionally, incorporating more granular features, such as

app permissions or API call graphs, may further improve

model generalization and detection precision.

5. CONCLUSION AND FUTURE SCOPE

This study presents a comprehensive framework for

Android malware detection using a combination of ML and

DL models. The primary contribution lies in evaluating ten

different models and with static features like permissions and

API calls, the RF classifier achieves the best overall

performance, with an accuracy of 88.17%, precision of 0.575,

recall of 0.582, F1-score of 0.574, and an AUC of 0.772. These

results highlight its effectiveness in detecting malicious

behaviors in Android applications while maintaining

computational efficiency. Its ensemble nature allowed it to

handle high-dimensional feature spaces, reduce overfitting,

and provide interpretable feature importance scores, making it

one of the suitable approaches for real-world malware

detection systems.

But there are still issues like false positives, dataset

restrictions, and changing virus tactics. To improve detection

accuracy and flexibility in real-world settings, future research

will concentrate on incorporating dynamic analysis, increasing

dataset diversity, and investigating hybrid models.

Additionally, by creating lightweight variations or employing

feature selection strategies to lower overhead, future research

could investigate optimizing RF for on-device detection,

where computational resources are constrained.

REFERENCES

[1] Data Security Council of India (DSCI). (2023). India

cyber threat report 2023.

https://www.dsci.in/files/content/knowledge-

centre/2023/India_Cyber_Threat_Report_2023.pdf,

accessed on Apr. 18, 2025.

[2] AVG Signal. Malware and virus statistics 2025: The

trends you need to know about.

https://www.avg.com/en/signal/malware-statistics,

accessed on Apr. 18, 2025.

[3] Dahiya, A., Singh, S., Shrivastava, G. (2025). Android

malware analysis and detection: A systematic review.

Expert Systems, 42(1): e13488.

https://doi.org/10.1111/exsy.13488

[4] Seraj, S., Pavlidis, M., Trovati, M., Polatidis, N. (2024).

MadDroid: Malicious adware detection in Android using

deep learning. Journal of Cyber Security Technology,

8(3): 163-190.

https://doi.org/10.1080/23742917.2023.2247197

[5] Manzil, H.H.R., Naik, S.M. (2024). Detection

approaches for android malware: Taxonomy and review

analysis. Expert Systems with Applications, 238:

122255. https://doi.org/10.1016/j.eswa.2023.122255

[6] Alzahrani, S., Xiao, Y., Asiri, S., Zheng, J., Li, T. (2025).

A survey of ransomware detection methods. IEEE

Access, 13: 57943-57982.

https://doi.org/10.1109/ACCESS.2025.3556187

[7] Salsabila, H., Mardhiyah, S., Hadiprakoso, R.B. (2022).

Flubot malware hybrid analysis on android operating

system. In 2022 International Conference on Informatics,

Multimedia, Cyber and Information System (ICIMCIS),

Jakarta, Indonesia, pp. 202-206.

https://doi.org/10.1109/ICIMCIS56303.2022.10017486

[8] Ferdous, J., Islam, R., Mahboubi, A., Islam, M.Z. (2023).

A review of state-of-the-art malware attack trends and

defense mechanisms. IEEE Access, 11: 121118-121141.

https://doi.org/10.1109/ACCESS.2023.3328351

[9] Dr.Web. The coper — A new Android banking Trojan

targeting Colombian users.

https://news.drweb.com/show/?i=14259&lng=en&c=5,

1644

accessed on Apr. 11, 2023.

[10] Patel, A., Kumar, N., Handa, A., K Shukla, S. (2023).

AProctor — A practical on-device antidote for Android

malware. In Proceedings of the 2023 Australasian

Computer Science Week, pp. 82-91.

https://doi.org/10.1145/3579375.3579386

[11] Spiceworks News & Insights. Xenomorph banking

Trojan infects 50,000 Android devices to steal banking

credentials. https://www.spiceworks.com/it-

security/vulnerability-management/news/xenomorph-

android-banking-trojan/, accessed on Apr. 18, 2025.

[12] Muzaffar, A., Hassen, H.R., Lones, M.A., Zantout, H.

(2022). An in-depth review of machine learning based

Android malware detection. Computers & Security, 121:

102833. https://doi.org/10.1016/j.cose.2022.102833

[13] Kumar, G.S., Bagane, P. (2020). Detection of malware

using deep learning techniques. International Journal of

Scientific and Technology Research, 9(1): 1688-1691.

https://d1wqtxts1xzle7.cloudfront.net/75816567/Detecti

on-Of-Malware-Using-Deep-Learning-Techniques-

libre.pdf.

[14] Gibert Llauradó, D., Mateu Piñol, C., Planes Cid, J.

(2020). The rise of machine learning for detection and

classification of malware: Research developments,

trends and challenge. Journal of Network and Computer

Applications, 153: 102526.

https://doi.org/10.1016/j.jnca.2019.102526

[15] Sandeep, H.R. (2019). Static analysis of Android

malware detection using deep learning. In 2019

International Conference on Intelligent Computing and

Control Systems (ICCS), Madurai, India, pp. 841-845.

https://doi.org/10.1109/ICCS45141.2019.9065765

[16] Vinayakumar, R., Alazab, M., Soman, K.P.,

Poornachandran, P., Venkatraman, S. (2019). Robust

intelligent malware detection using deep learning. IEEE

Access, 7: 46717-46738.

https://doi.org/10.1109/ACCESS.2019.2906934

[17] Niveditha, V.R., Ananthan, T.V. (2019). Detection of

Malware attacks in smart phones using Machine

Learning. International Journal of Innovative

Technology and Exploring Engineering, 9(1): 4396-

4400. https://doi.org/10.35940/ijitee.A5082.119119

[18] Sabhadiya, S., Barad, J., Gheewala, J. (2019). Android

malware detection using deep learning. In 2019 3rd

International Conference on Trends in Electronics and

Informatics (ICOEI), Tirunelveli, India, pp. 1254-1260.

https://doi.org/10.1109/ICOEI.2019.8862633

[19] Liu, Y., Wang, Y. (2019). A robust malware detection

system using deep learning on API calls. In 2019 IEEE

3rd Information Technology, Networking, Electronic

and Automation Control Conference (ITNEC), Chengdu,

China, pp. 1456-1460.

https://doi.org/10.1109/ITNEC.2019.8728992

[20] Bensaoud, A., Abudawaood, N., Kalita, J. (2020).

Classifying malware images with convolutional neural

network models. International Journal of Network

Security, 22(6): 1022-1031.

https://doi.org/10.6633/IJNS.202011_22(6).17

[21] McGiff, J., Hatcher, W.G., Nguyen, J., Yu, W., et al.

(2019). Towards multimodal learning for Android

malware detection. In 2019 International Conference on

Computing, Networking and Communications (ICNC),

Honolulu, HI, USA, pp. 432-436.

https://doi.org/10.1109/ICCNC.2019.8685502

[22] Sun, Y., Chen, Y., Pan, Y., Wu, L. (2019). Android

malware family classification based on deep learning of

code images. IAENG International Journal of Computer

Science, 46(4): 524-533.

[23] Alhussen, A. (2024). Advanced Android malware

detection through deep learning optimization.

Engineering, Technology & Applied Science Research,

14(3): 14552-14557. https://doi.org/10.48084/etasr.7443

[24] Liu, K., Xu, S., Xu, G., Zhang, M., et al. (2020). A review

of Android malware detection approaches based on

machine learning. IEEE Access, 8: 124579-124607.

https://doi.org/10.1109/ACCESS.2020.3006143

[25] Liu, Y., Tantithamthavorn, C., Li, L., Liu, Y. (2022).

Deep learning for Android malware defenses: A

systematic literature review. ACM Computing Surveys,

55(8): 1-36. https://doi.org/10.1145/3544968

1645

