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The rapid growth of Android applications has made mobile devices increasingly 

vulnerable to malware attacks. Existing detection models often struggle due to ineffective 

feature selection, limiting their accuracy. This paper analyzes Android malware detection 

techniques using machine learning (ML) and deep learning (DL) approaches, evaluating 

models based on parameters such as accuracy, precision, recall, F1-score, root mean 

squared error (RMSE), mean absolute error (MAE), log loss, area under the curve (AUC), 

and execution time. Experimental results show that the random forest (RF) classifier 

achieves the highest detection performance with 88.17% accuracy, 0.575 precision, 0.582 

recall, and an AUC of 0.772, outperforming other evaluated models. These findings 

highlight the potential of RF for efficient and reliable Android malware classification. 
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1. INTRODUCTION

Malware is a program or file that is intentionally written to 

cause harm to a system/network, ranging from user 

information stealing to cyber espionage. Malware is regarded 

as one of the main causes of many Internet security problems 

and a serious threat to computer security. The use of mobile 

devices is increasing as a replacement for laptops and desktop 

computers for a large range of day-to-day activities, including 

e-banking, social networking, mobile payments, office work,

and a range of other applications. Android continued to be the

most widely used mobile operating system worldwide, with a

71.8% market share in the first quarter of 2025, as shown in

Figure 1 [1]. The proliferation of Android devices has made

them a high-value target for cybercriminals, resulting in a

proliferation of malware attacks to steal user data, financial

resources, and system vulnerabilities. Android has seen a

range of sophisticated malware families in recent years that

reflect the dynamic threat horizon. The dramatic growth in the

number of malwares poses a serious challenge to secure

Android systems. Malware detection in Android phones is the

process of monitoring and protecting against unusual behavior

due to malicious activities of malware such as Trojans,

ransomware, and spyware. As shown in Figure 2, the Avast

Threat Report (Jan–Mar 2024) provides insights into mobile

malware [2]. It was observed that approximately 2-3 attacks

per month were detected on Android mobiles.

Android malware results in significant risks to user privacy, 

security of data, and the performance of the device. Malware 

often targets sensitive data such as login credentials, financial 

information, and personal files. Certain types of malwares, 

such as ransomware and SMS Trojans, would result in 

financial losses for users [3]. 

Malware can invade users' privacy by monitoring their 

activities, tracking their location, and accessing sensitive 

information without their consent. Malware may gain 

unauthorized access to Android devices, allowing attackers to 

control them remotely. Some malware disrupts the normal 

functionality of Android devices by displaying unwanted 

advertisements, redirecting users to malicious websites, or 

interfering with the operation of legitimate apps [4]. Falling 

victim to Android malware can damage a user's reputation, 

particularly if sensitive or embarrassing information is exposed 

as a result of a malware infection. In certain instances, the 

effects of Android malware infections may extend beyond the 

individual user to legal and regulatory consequences. For 

example, businesses may face damages for data breaches that 

lead to malware infections on employee-owned devices used 

for work purposes. Threat actors continuously adapt their 

tactics, successfully uploading malicious apps to the Google 

Play Store—examples include Joker, Facestealer, and Coper, 

all known for their sophisticated banking and data-stealing 

capabilities. As smartphones are one of the major requirements 

in human life, it is necessary to significantly improve the 

performance of the Android malware detection system. It is 

crucial for Android users to take proactive steps to protect their 

devices from malware. 

Malware detection methods can generally be divided into 

three groups: signature-based, heuristic-based, and 

specification-based [5]. In the signature-based method, 

malware is detected depending on known patterns. One 

example is antivirus programs. In the Heuristic-based method, 

malware is detected depending on the behavior of the malware. 

In specification-based detection techniques, applications are 
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monitored according to their specification and then checked for 

normal and abnormal behavior. To mitigate and monitor 

Android malware, AI-powered solutions are in demand. Recent 

studies have introduced machine learning (ML) and deep 

learning (DL) models to detect unknown malware variants. 

However, many existing methods face challenges such as poor 

feature selection, overfitting, high computational complexity, 

incomplete evaluation metrics, and limited generalization. 

Also, prior studies rely solely on either static or dynamic 

analysis, which restricts their ability to detect sophisticated or 

obfuscated malware. The use of limited datasets or evaluating 

a narrow set of ML models reduces the generalizability and 

robustness of the existing findings. Furthermore, comparative 

evaluations across diverse ML and DL models are often 

lacking, and the models’ scalability and applicability to real-

world malware detection scenarios are still a challenge. 

In this paper, the following research inquiries were 

formulated and assessed: 

RQ1: What form of malware compromises an Android 

system? 

RQ2: Which methods have been applied in ML/DL to find 

patterns connected to Android malware? 

RQ3: Which methods perform better in terms of classifying 

accuracy than others? 

RQ4: Which model is the optimal model in handling noisy, 

unbalanced datasets with high-dimensional static features? 

The remaining part of the paper is arranged as follows: 

Section 2 discusses the malware analysis methods, malware 

types, attacks, general features used to categorize Android 

malware, and analysis of existing schemes. Section 3 portrays 

the ML model for categorizing malware on Android devices. 

Section 4 discusses the results and discussion, and the 

conclusion and future scope are given in Section 5. 

 

 
 

Figure 1. Market share of Android phones in Q1 2025 [1] 

 

 
 

Figure 2. Malware statistics for Q1 of 2024 [2] 

2. MALWARE ANALYSIS, TYPES, AND ATTACKS 
 

Android malware can be analyzed by static analysis, 

dynamic analysis, and hybrid analysis [5]. The method of 

identifying a computer program/code without executing a 

program (samples) is called static analysis. A technique of 

identifying a computer program/code while executing a 

program is called dynamic analysis. A technique of performing 

an examination of a computer program/code after carrying out 

the program in a real/virtual processor is known as hybrid 

analysis.  

Android systems are susceptible to various kinds of 

malware [6]. Some common types of malwares that can affect 

Android devices are shown in Figure 3. 

• Trojans: Users are tricked by a Trojan horse that 

impersonates genuine software by executing malicious 

programs/software on a computer. Ex: Emotet, banking 

Trojan. 

• Spyware: Spyware collects sensitive information such 

as credit card numbers, users' personal information, and 

browser data. Ex: Password Stealers. 
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Figure 3. Different types of malwares 

• Rootkit: Rootkits enable unauthorized users to access a 

user’s computer. Ex: Avatar rootkit. 

• Adware: Adware displays uninvited advertisements on 

the smartphone as pop-up ads or notifications and 

displays unsolicited advertisements. It collects user 

data without consent. 

• Ransomware: Ransomware is specially designed to 

encrypt files, block access to user accounts, and 

demand ransom to access their files. Ex: Petya. 

• Botnets: A network of hacked devices under the 

direction of one person. Android devices can be 

infected and added to botnets, allowing attackers to 

remotely control them for nefarious activities. 

Numerous malware attacks targeting Android devices have 

occurred over the years. Some general types of Android 

malware attacks that have been prevalent in recent years 

include ransomware, banking Trojans, spyware, adware, SMS 

Trojans, fake apps, supply chain attacks, etc. Table 1 lists the 

recent Android malware attacks that have happened over the 

years. 

 

Table 1. Recent Android malware attacks 

 
Ref. Android Malware Remarks 

[7] 
FluBot 

(Year: 2020) 

An Android banking Trojan that spreads via SMS phishing (smishing) messages, tricking users into installing 

fake delivery tracking apps. Once installed, it steals credentials, contact lists, and can send SMS to propagate 

itself. 

[8] 
BlackMamba 

(Year: 2023) 

AI-powered ransomware is capable of capturing keystrokes using ML and potentially exploiting Android OS 

vulnerabilities. 

[9] 
Coper 

(Year: 2023) 

A malware that targets Android devices with a combination of fake apps and trojanized apps. Once installed, 

it steals banking information, displays fake login pages, and can intercept and modify SMS messages. It also 

provides attackers with remote control. 

[10] 
Antidote 

(Year: 2024) 

A Trojan that impersonates the Google Play Store interface to trick users into granting permissions and 

downloading additional malicious payloads. 

[11] 
Xenomorph 

(Year: 2024) 

An Android banking Trojan that employs overlay attacks on banking apps. It uses credential harvesting 

techniques, enabling attackers to steal banking information and transfer funds. It also includes advanced 

evasion techniques to avoid detection. 

 

 
 

Figure 4. Features used to classify Android malware 

 

2.1 General features used to classify Android malware 

 

Android malware classification is usually performed with 

the features shown in Figure 4. It includes static, dynamic, 

hybrid, metadata, and graph-based features [12]. The 

following are the typical characteristics of the features: 

 

2.1.1 Characteristics of static analysis 

• Used permissions: The permissions that the app's code 

actually makes use of Manifest Document, Declared 

Components, details regarding services, providers of 

material, broadcast receivers, and actions, can highlight 

anomalous activity.  

• Intent filters: Particular actions or categories of data 

that the application is set up to process.  

• Interpretation of code: Some API requests (such as 

those for sending SMS, gaining access to contacts, or 

using the internet) may be a sign of malevolent intent. 

• Code obfuscation refers to methods that impede 

examination, such as reflection, text encryption, or 

dynamically loaded code.  
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Table 2. Analysis of existing malware detection schemes 

 

Ref. 
Static 

Analysis 

Dynamic 

Analysis 

ML/DL 

Approches 
Accuracy 

Input 

File 

Type 

Classification 

Algorithm 
Dataset Advantages Disadvantages 

[13] ✘ ✔ 

DL (Stateful 

Input 

Generation) 

Dynamic: 

97.8%, 

Combined: 

99.6% 

APK 

files 

Deep Neural 

Network 
30,000+ samples 

High detection 

rate using 

dynamic 

features; real-

device testing 

Requires real 

devices and 

limited static 

analysis 

[14]  ✘ ✔ 

Bi-

directional 

LSTM 

97.22% 
APK 

files 

Bi-directional 

LSTM 
21,000 samples 

Effective for 

code 

localization, 

high accuracy 

Dynamic 

analysis only, 

potentially 

missing 

patterns or 

features 

detectable 

through static 

analysis 

[15]  ✔ ✔ 

Random 

Forest, 

Ensemble 

Models 

Up to 

96.8% 

APK 

files 

Random 

Forest, 

Ensemble 

Models 

124,000 samples 

Comprehensive 

evaluation; 

balanced 

dataset 

Limited to 

selected 

models; may 

not generalize 

to all scenarios 

[16]  ✘ ✔ 

ML 

(Dynamic 

Analysis) 

Category: > 

96%, 

Family: > 

99% 

APK 

files 

Various ML 

algorithms 

CCC-CIC-

AndMal2020 

dataset 

High accuracy 

in category and 

family 

detection 

Dynamic 

analysis only; 

may miss static 

indicators 

[17]  ✔ ✔ 
Neural 

Networks 

Not 

specified 

APK 

files 

Neural 

Networks 

Omnidroid 

dataset 

Hybrid 

analysis 

approach 

Accuracy not 

specified; may 

require 

significant 

computational 

resources 

[18]  ✔ ✔ 
Various ML 

algorithms 

Category: 

96.9%, 

Family: 

88.9% 

APK 

files 

Various ML 

algorithms 
Not specified 

High accuracy 

in category and 

family 

detection 

A hybrid 

approach may 

increase 

complexity 

[19]  ✘ ✔ DL 

98.08% 

detection 

rate 

APK 

files 

Deep Neural 

Network 
13,533 samples 

High detection 

rate; effective 

against 

obfuscated 

malware 

Limited to 

dynamic 

analysis; may 

not detect static 

indicators 

[20]  ✔ ✔ 

Random 

Forest, Deep 

Neural 

Network 

with 

Clustering 

Up to 

99.6% 

AUC 

APK 

files 

Random 

Forest, Deep 

Neural 

Network 

Not specified 

High accuracy; 

clustering 

improves 

detection 

Complexity 

increases with 

clustering; it 

may require 

more resources 

[21] ✔ ✔ ML and DL 
Not 

specified 

APK 

files 

Various ML 

and DL 

algorithms 

Not specified 

Combines 

static and 

dynamic 

analysis 

Accuracy not 

specified; may 

require 

significant 

computational 

resources 

[22]  ✔ ✔ 

DL with 

Model 

Fusion 

99.97% F1-

score 

APK 

files 

Deep Neural 

Networks 

CICMaldroid2020 

dataset 

High accuracy; 

explainable 

model 

Complex model 

fusion may 

require high 

computational 

resources 

[23] ✔ - 

DL – LSTM 

and 

Feedforward 

Neural 

Network 

(NN) 

LSTM: 

99.24% 

NN: 

99.18% 

APK 

static 

features  

- LSTM 

(Recurrent 

Neural 

Network) 

- Feedforward 

NN 

DREBIN-215: 

15,036 apps 

(5,560 malware + 

9,476 benign), 

215 static features 

- Good 

accuracy & 

performance 

- Optimized 

using 

GridSearchCV 

- SMOTE is 

used for class 

balancing 

- Fast training 

using TPU 

Only static 

analysis used 

(no dynamic 

behavior 

tracking) 
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2.1.2 Characteristics of dynamic analysis  

• Network traffic: Detects suspicious patterns like 

communication with known malicious IPs or abnormal 

data uploads. 

• System calls: Logs the calls made by the app to the 

operating system. 

• Behavioral patterns: Captures the app's behavior over 

time, such as repeated background activity, access to 

sensors, or device modifications. 

• Resource utilization: Measures CPU, memory, battery 

usage, and storage access. 

 

2.1.3 Characteristics of hybrid features 

Hybrid features combine both static and dynamic elements, 

often based on specific triggers. Static analysis is employed to 

identify potential trigger points, while dynamic analysis is 

used to assess whether and how these triggers are activated 

during runtime. ML models that leverage both static 

features—such as permissions and API calls—and dynamic 

behaviors—like runtime actions and network patterns—are 

referred to as hybrid models.  

 

2.1.4 Characteristics of metadata features 

Metadata elements provide additional context regarding the 

origin, structure, and distribution of an app; they are essential 

in the categorization of Android malware. Combining these 

features with dynamic and static analysis can improve 

malware detection accuracy. Several crucial metadata 

attributes are employed in the categorization of Android 

malware. Features of Metadata for Applications: 

• Package name: The app's distinct identifier that can be 

compared to databases of known malware. 

• Version information: The version name and version 

code might tell you whether the app is a customized 

version or a known version of a genuine app. 

• Application name: The name that the application is 

displayed under, which occasionally mimics the names 

of real programs or is deceptive. 

 

2.1.5 Characteristics of graph-based features  

• The relationships and order of the API calls that the 

application makes are shown in the API Call Graph. 

The call flow is represented by edges, while API calls 

are represented by nodes.  

• Function call graph: Edges show calls made between 

the app's functions, while nodes represent the functions 

themselves.  

• Control flow graphs (CFG): Basic Blocks and Edges: 

Nodes stand for basic blocks, which are code segments 

that are linear and do not branch, while edges stand for 

routes that govern flow, such as loops, conditionals, 

and jumps.  

 

2.2 Analysis of existing malware analysis schemes 

 

Various ML and DL approaches have been employed for 

malware classification, combining static and dynamic analysis 

techniques. Table 2 shows the comparison analysis of existing 

malware analysis. The table considered the type (static or 

dynamic), approach applied (ML/DL), accuracy obtained, 

classification algorithm used, dataset used, advantages, and 

drawbacks of the schemes. 

Table 2 points out different methods for Android malware 

detection, with the focus on integrating static, dynamic, and 

hybrid analysis techniques. Static analysis can be helpful in 

detecting known malware signatures and behaviors without 

running the app, but it can fail to detect obfuscated or 

sophisticated malware behaviors that only appear at runtime. 

Dynamic analysis, however, enables a better understanding of 

an app's behavior in real-time, identifying malicious activities 

that static analysis cannot detect. But dynamic analysis is time 

and resource-intensive, as it involves actually running the 

application. By fusing both, hybrid analysis offers more 

effective detection process that reduces the disadvantages of 

each stand-alone approach. On the front of ML and DL 

algorithms, DL models, particularly neural networks, are now 

becoming the go-to choice because they provide very high 

accuracy in classification and can deal with complex data 

patterns. Specifically, methods that combine ML and DL with 

hybrid analysis methods provide the highest performance, 

yielding high detection rates while mitigating the limitations 

of both individual methods. Thus, hybrid methods that are 

based on ML/DL algorithms have become the most adopted 

and most effective for detecting Android malware. 

 

 

3. ANDROID MALWARE CLASSIFICATION 

 

The methodology employed in this study involves several 

critical phases to predict Android malware using a diverse array 

of ML and DL algorithms. The process begins with problem 

identification, followed by data collection, exploratory data 

analysis, model selection, training, evaluation, performance 

comparison, and in-depth analysis. Figure 5 shows the 

architecture for Android malware classification. Each of these 

stages is meticulously detailed below, with visual aids such as 

correlation heatmaps enhancing the understanding of the 

dataset and model outcomes. 

The proposed model relies on ML to detect Android 

malware in real time by analyzing the behavior of APKs. The 

malware analysis consists of the following steps: In the Initial 

step, the data is taken from the dataset, and Initial preprocessing 

will be performed to remove duplicates in the next step. 

Features are selected carefully and then applied with various 

ML/DL models to classify the Android malware. 

 

 
 

Figure 5. Architecture for Android malware classification 

 

3.1 Data collection 

 

The analysis leverages the Android_Malware.csv dataset, a 
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publicly available resource obtained from Kaggle, containing 

86 columns and 355,650 entries. This dataset includes an 

extensive set of network traffic features extracted from 

Android devices, such as packet lengths, flow durations, 

protocol types, inter-arrival times, packet rates, header lengths, 

flag counts, and other statistical metrics, selected for their 

well-documented association with malware detection 

behaviors. The target variable, indicative of malware presence 

or absence, supports both binary and multi-class classification 

tasks, allowing for a nuanced analysis of malicious activities. 

The dataset initially included columns such as Flow ID, 

Source IP, Destination IP, and Timestamp, which contained 

specific values for all data entries, potentially contributing to 

overfitting in initial model evaluations. 

Before applying learning models, the dataset undergoes a 

series of rigorous preprocessing steps to ensure data quality 

and compatibility. Missing values are systematically imputed 

with the mean of their respective features to maintain dataset 

integrity. Non-numeric attributes, such as protocol types or 

categorical labels, are encoded into numerical form using a 

factorization approach to align with algorithmic requirements. 

Continuous features, including packet lengths and flow 

durations, are normalized using Min-Max scaling to eliminate 

scale disparities that could disproportionately influence model 

performance. This normalization process ensures that all 

features contribute equitably to the predictive modeling. 

Additionally, to address overfitting observed in preliminary 

models, the columns Flow ID, Source IP, Destination IP, and 

Timestamp were removed. This adjustment resulted in a 

significant decrease in the accuracy of overfitting-prone 

models (e.g., decision tree, extra trees), as these columns 

provided unique identifiers and temporal data that the models 

over-relied upon, leading to poor generalization on unseen 

data. 

 

3.2 Feature selection 

 

A correlation matrix is computed and visualized using a 

Python-based data visualization library to uncover 

relationships between the remaining features, offering critical 

insights into their interdependencies and relevance to malware 

detection. The resulting heatmap (as depicted in Figure 6) 

highlights strong positive and negative correlations, with color 

intensity reflecting the strength of these relationships. For 

example, features such as Total Fwd Packets and Total Length 

of Bwd Packets exhibit high positive correlations, suggesting 

that increased packet activity in both forward and backward 

directions may be indicative of malicious traffic. Conversely, 

negative correlations, such as between Fwd IAT Mean 

(forward inter-arrival time) and Bwd IAT Total (backward 

inter-arrival time total), may indicate differing temporal 

patterns between benign and malicious flows. Highly 

correlated features, particularly those exceeding a threshold 

(e.g., 0.9), are identified for potential removal to mitigate 

multicollinearity, enhancing model robustness. This heatmap 

serves as a foundational tool for feature selection and informs 

subsequent modeling strategies. 

The heatmap visualizes the Pearson correlation coefficients 

between all feature pairs, with a color gradient from blue 

(negative correlation, e.g., -0.6) to red (positive correlation, 

e.g., 1.0). Key observations include strong positive 

correlations among packet-related features (e.g., Total Fwd 

Packets and Subflow Fwd Packets) and notable negative 

correlations between temporal features (e.g., Fwd IAT Mean 

and Idle Std), guiding the preprocessing and feature 

engineering process. 

The study explores a comprehensive set of ML and DL 

algorithms to predict Android malware based on network 

traffic data. The selected models span traditional statistical 

methods, ensemble techniques, and advanced neural network 

architectures, chosen for their ability to capture a wide range 

of patterns and their varying computational demands. The 

study considered ten models for evaluation including logistic 

regression (LR), decision tree (DT), random forest (RF), extra 

trees (ET), gradient boosting (GB), extreme gradient boosting 

(XGBoost), light gradient boosting machine (LightGBM), 

multilayer perceptron (MLP), and convolutional neural 

network (CNN) and long short-term memory network (LSTM) 

[24, 25]. 

1) Logistic regression (LR): A linear model that estimates 

the probability of malware presence using a logistic function. 

It is computationally efficient and provides a baseline for 

comparison, though it assumes a linear relationship between 

features and the target. 

2) Decision tree (DT): A tree-based model that recursively 

partitions data based on feature thresholds. It offers 

interpretability and is prone to overfitting unless pruned, 

utilizing impurity measures such as the Gini index or entropy 

to optimize splits. 

3) Random forest (RF): An ensemble model that constructs 

multiple DTs on random subsets of data and features, 

averaging predictions to improve accuracy and mitigate 

overfitting through diversification. 

4) Extra trees (ET): An enhanced version of RF that 

introduces additional randomness in tree construction by 

considering random feature splits, enhancing generalization 

across diverse datasets. 

5) Gradient boosting (GB): A sequential ensemble 

technique that builds DTs iteratively, with each tree correcting 

the errors of its predecessors. It excels with complex data but 

requires meticulous hyperparameter tuning. 

6) Extreme gradient boosting (XGBoost): An optimized GB 

framework that incorporates parallel processing, 

regularization, and GPU acceleration, offering superior 

performance on large-scale datasets. 

7) Light gradient boosting machine (LightGBM): A GB 

variant designed for speed and scalability, employing 

histogram-based learning to efficiently handle high-

dimensional data. 

8) Multilayer perceptron (MLP): A feed-forward neural 

network with multiple dense layers, adept at modeling non-

linear relationships but demanding significant computational 

resources and training time. 

9) Convolutional neural network (CNN): A DL model 

featuring convolutional layers to extract spatial hierarchies 

from reshaped input data, followed by dense layers for 

classification, ideal for pattern recognition in sequential data. 

10) Long short-term memory network (LSTM): A recurrent 

neural network variant designed to capture long-term 

dependencies in sequential data, utilizing multiple LSTM 

layers to model temporal patterns effectively. 

The dataset is partitioned into training (80%) and testing 

(20%) sets, with a fixed random seed ensuring reproducibility. 

This split allows models to be trained on a substantial portion 

of the data and evaluated on unseen instances, providing a 

robust assessment of generalization capability. The model 

configuration parameters considered are tabulated in Table 3. 
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Figure 6. Heatmap illustrating the correlation between network traffic features 

 

Table 3. Model configuration parameters 

 
Model Name Simplified Configuration 

Logistic Regression Log Loss with L2 Regularization 

Decision Tree Single Tree, Gini/Entropy, Pruning 

Random Forest 100 Trees, Gini/Entropy, Bagging 

Extra Trees 100 Trees, Gini/Entropy, Extra 

Randomness 

Gradient Boosting 100 Trees, Depth 6, LR 0.1, Gradient 

Boosting 

XGBoost 100 Trees, Depth 6, LR 0.1, L1/L2 

Regularization 

LightGBM 100 Trees, Depth 6, LR 0.1, Histogram-

based 

Multilayer 

Perceptron 

ReLU, 3 Layers (64, 32, Output), 

Dropout, Adam, 10 Epochs 

Convolutional 

Neural Network 

Conv + Dense Layers, ReLU, Dropout, 

Adam, 10 Epochs 

Long Short-Term 

Memory 

2 LSTM + 1 Dense, Units: 50, Dropout, 

Adam, 10 Epochs 

 

3.3 Model evaluation 

 

Following training, the models are evaluated using a 

comprehensive suite of performance metrics to provide a 

thorough assessment of their predictive capability and 

computational efficiency. The metrics include accuracy, 

precision, recall, F1-score, root mean squared error (RMSE), 

mean absolute error (MAE), log loss, area under the curve - 

receiver operating characteristic (AUC-ROC), and training 

time. 

Among the obtained Model Configuration Results, the RF 

gives good accuracy. The model consists of 100 DTs, each 

trained on a randomly sampled subset of the dataset. Trees are 

allowed to grow fully until leaves are pure or the minimum 

split threshold is reached. This enables capturing complex 

feature interactions without predefined depth restrictions. 

Both Gini Impurity and Entropy criteria were tested for 

optimal node splitting. These measures assess the quality of a 

split by evaluating class purity in child nodes. Bootstrap 

Aggregation (Bagging) ensures that each DT is trained on 

different random subsets of the data with feature randomness. 

This reduces overfitting and improves generalization across 

unseen malware samples. 

The feature importance of the dataset is shown in Figure 7. 

The relative importance of attributes is evaluated using a tree-

based ensemble method, with the top features identified and 

depicted graphically to underscore their predictive power in 

malware detection, as shown in Figure 7. 

A correlation matrix is computed and visualized to explore 

relationships between attributes, with the heatmap 

highlighting strongly correlated features. This analysis 

informs feature selection by identifying redundant or highly 

interdependent variables. The confusion matrix shown in 

Figure 8 represents the performance of an RF classification 

model across four classes (labeled 0 to 3). The Precision-recall 

curve presented in Figure 9 for the RF model provides insight 

into the classification performance across the four classes. The 

Prediction Error Distribution plot shown in Figure 10 for the 

RF model reveals how the model's classification errors are 

distributed. The ROC curve shown in Figure 11 for the RF 

model illustrates its classification performance for each class 

regarding the trade-off between the true positive rate 

(sensitivity) and the false positive rate.  
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Figure 7. Feature importance w.r.t RF 

 

 
 

Figure 8. Confusion matrix of RF 

 

 
 

Figure 9. Precision-recall curve of RF 

 
 

Figure 10. Prediction error distribution of RF 

 

 
 

Figure 11. ROC curve 
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The pair plot shown in Figure 12 provides a comprehensive 

view of feature relationships and class separability across 

several selected variables used by the RF model: Source Port, 

Flow IAT Min, Flow Duration, Flow IAT Mean, and Fwd 

Packets. Each plot illustrates pairwise scatter distributions 

color-coded by class labels (0 to 3), offering insights into how 

well the features distinguish between classes. This 

visualization underlines the importance of feature scaling, 

outlier handling, or dimensionality reduction techniques like 

PCA to improve separability and model accuracy. 

Additionally, it reinforces the need for advanced techniques 

(e.g., feature engineering or ensemble strategies) to better 

distinguish between the overlapping class regions. 

 

 
 

Figure 12. Pair plot of the top 5 features 

 

 

4. RESULTS AND DISCUSSION 
 

Table 4 shows the results obtained by applying various ML 

models. RF is performing well compared to other ML models. 

RF is reliable, accurate, and simple to use; it is frequently 

selected over other ML models for Android malware 

detection. Given the noisy and unbalanced nature of Android 

malware datasets, RF's ability to successfully limit the danger 

of overfitting as an ensemble method that creates many DTs 

and mixes their outputs makes it particularly useful. Because 

of its high-dimensional data performance, it can be used to 

analyze a variety of app aspects, including permissions, API 

requests, and intents. The modeling procedure is made simpler 

by the RF's natural handling of both binary and categorical 

variables, in contrast to models that necessitate intensive 

preprocessing.  
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Table 4. Model configuration results 

 
Algorithm Accuracy Precision Recall F1-Score RMSE MAE Log Loss AUC Time 

Random Forest 0.8817 0.5753 0.5817 0.5739 0.9815 0.57 1.3021 0.7724 169.301 

Logistic Regression 0.4814 0.5062 0.4814 0.4039 1.1596 0.75 1.1143 0.6201 11.5473 

Decision Tree 0.5595 0.5618 0.5595 0.5605 1.0439 0.63 15.472 0.6771 19.8875 

Random Forest 0.8817 0.5753 0.5817 0.5739 0.9815 0.57 1.3021 0.7724 169.301 

Extra Trees 0.5679 0.5614 0.5679 0.5624 1.0075 0.6 2.8532 0.7543 83.9693 

Gradient Boosting 0.5047 0.5707 0.5047 0.453 1.1081 0.71 1.0639 0.6949 1205.19 

XGBoost (GPU) 0.5561 0.5986 0.5561 0.5295 1.0233 0.62 0.9859 0.7547 5.43423 

LightGBM 0.5466 0.5976 0.5466 0.514 1.0443 0.64 1.0008 0.7472 29.2756 

MLP 0.4951 0.4962 0.4951 0.4487 1.1119 0.71 1.0677 0.6601 347.891 

CNN 0.4967 0.5082 0.4967 0.4297 1.1355 0.73 1.0667 0.6643 318.952 

LSTM 0.4809 0.4929 0.4809 0.3854 1.1764 0.77 1.1028 0.6217 823.831 

Further, to evaluate the robustness of the RF model, an 

uncertainty analysis is conducted by training the model using 

five different random seeds: 21, 42, 77, 100, and 123. The 

accuracy and AUC scores showed minimal variation across 

these runs, indicating stable and consistent model behaviour 

regardless of initial data splits. Table 5 summarizes the results. 

 

Table 5. Model performance with different random seeds 

 
Random Seed Accuracy AUC 

21 88.15% 0.770 
42 88.17% 0.772 
77 88.10% 0.769 

100 88.21% 0.773 
123 88.12% 0.771 

 

The model’s ability to interpret feature importance also aids 

security analysts in understanding key behavioral patterns, 

such as abnormal packet lengths and flow timings, which are 

often indicative of malicious activities. These findings suggest 

that this ensemble method can be both effective and practical 

for deployment in mobile security environments. Looking 

forward, future research can explore online learning 

techniques that enable continuous adaptation to newly 

emerging malware patterns in real-time. Integrating hybrid 

architectures, such as combining RF with DL models, may 

also enhance detection accuracy while addressing evolving 

threats and concept drift in dynamic environments. 

Additionally, incorporating more granular features, such as 

app permissions or API call graphs, may further improve 

model generalization and detection precision. 

 

 

5. CONCLUSION AND FUTURE SCOPE 

 

This study presents a comprehensive framework for 

Android malware detection using a combination of ML and 

DL models. The primary contribution lies in evaluating ten 

different models and with static features like permissions and 

API calls, the RF classifier achieves the best overall 

performance, with an accuracy of 88.17%, precision of 0.575, 

recall of 0.582, F1-score of 0.574, and an AUC of 0.772. These 

results highlight its effectiveness in detecting malicious 

behaviors in Android applications while maintaining 

computational efficiency. Its ensemble nature allowed it to 

handle high-dimensional feature spaces, reduce overfitting, 

and provide interpretable feature importance scores, making it 

one of the suitable approaches for real-world malware 

detection systems. 

But there are still issues like false positives, dataset 

restrictions, and changing virus tactics. To improve detection 

accuracy and flexibility in real-world settings, future research 

will concentrate on incorporating dynamic analysis, increasing 

dataset diversity, and investigating hybrid models. 

Additionally, by creating lightweight variations or employing 

feature selection strategies to lower overhead, future research 

could investigate optimizing RF for on-device detection, 

where computational resources are constrained. 
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