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This study calibrates a finite element (FE) model for reinforced concrete beam-column
joints (BCJ) under cyclic loading. The objective is to clarify which parameters most
influence the accuracy of FE simulations. Instead of relying on qualitative or ad hoc
adjustments, this work introduces a systematic sensitivity ranking tailored to the cyclic
response of BCJ. The methodology systematically evaluated mesh configuration,
boundary conditions, and properties of concrete and reinforcement. The analysis
followed ATENA guidelines, code provisions, and the approach used in previous
research. The results showed that boundary conditions had a direct impact on the
distribution of forces, moments, and deformations. The concrete hysteretic parameters
had the most significant influence on model performance, exceeding the effects of mesh
density or secondary material assumptions. However, when analyzing crack
propagation, a finer mesh size provided the most accurate outcome. This study
concludes that the proposed sensitivity ranking establishes a robust framework for
model calibration. It enables researchers and engineers to reduce modeling uncertainty
and improve the predictive accuracy of nonlinear analyses for RC beam-column joints.

1. INTRODUCTION

The finite element modeling (FEM) is widely recognized as
a robust technique for simulating structural behavior in both
static and dynamic analyses, particularly when experimental
testing is constrained by the extensive range of parameters and
high associated costs [1-3]. Numerical modeling enables the
detailed visualization of composite element behavior,
including stress-strain distributions, crack initiation and
propagation, and plasticity indices. Studies utilizing software
platforms such as ATENA, ABAQUS, ANSYS, DYNA, and
OpenSees have achieved varying levels of success in
replicating hysteretic responses; however, discrepancies
remain due to inconsistent calibration methodologies [1, 4-
10]. Validation against full-scale laboratory specimens under
controlled and identical conditions is essential for evaluating
and refining numerical models until the desired accuracy is
achieved [3]. Key parameters, including mesh density,
concrete damage plasticity, and bond-slip behavior,
significantly affect simulation outcomes, yet their relative
sensitivities are not well quantified [4]. Furthermore, most
studies examine these parameters individually, overlooking
potential synergistic effects.

Guo et al. [11] conducted sensitivity analyses on mesh size
and orientation by modeling fracture propagation in
geometrically identical models with varying mesh sizes,
demonstrating that coarse meshes can estimate peak load with
an error of less than 8%. Purnomo et al. [12] employed
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ABAQUS to assess the sensitivity of boundary dimensions,
mesh size, and additional parameters in statically loaded
beams, though limitations in crack propagation visualization
arose due to computational instability. Zivalji¢ et al. [13]
investigated the sensitivity of numerical parameters in the
analysis of reinforced concrete structures using the FEM/DEM
approach, emphasizing mesh refinement and penalty
parameters to reduce numerical errors. Lowes et al. [14]
emphasized model calibration and validation with ATENA
software for simulating large reinforced concrete walls under
flexural loading, employing a sensitivity method that
minimizes mesh dependency and ensures solution
convergence with mesh refinement.

In another study, Naeimi and Moustafa [ 15] investigated the
behavior of UHPC bridge columns using FEM with DIANA
and SAP 2000 software, focusing on the influence of various
reinforcement and design parameters, although they did not
explicitly present the sensitivity analysis steps. Setiawan [16]
investigated efficient strategies for modeling punching failure
in flat plates with sensitivity analysis on parameters such as
mesh type and size, crack model, and compressive strength,
while Indriyantho et al. [3] used a multi-criteria approach in
the RBSM model to reduce the uncertainty of the main
variables through load-displacement curve analysis on
reinforced concrete beams with geopolymer haunches. From a
methodological perspective, several studies use mesh
optimization and constitutive model selection, but calibration
is often unsystematic, partial, and reliant on trial-and-error.
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Previous research has underscored the impact of mesh
density, confinement effects, and concrete damage
parameters. However, few investigations have systematically
compared the sensitivity of these factors within a structured
framework for cyclic loading. Moaveni et al. [17] further
demonstrated, through ANOVA and meta-modeling, that
simulation results are influenced not only by mesh dimensions
but also by the uncertainty in identified modal parameters and
the spatial density of measurement points.

Current modeling practices often rely on software defaults
and code-based recommendations; however, variations in
assumed material properties and simulation parameters can
significantly impact the accuracy of results. For example,
spatial variability in Young’s modulus can induce localized
stress concentrations, with a 20% variation resulting in a 15—
25% earlier onset of plasticity under both tensile and
compressive loads [18]. Despite this, limited attention has
been paid to quantifying the influence of individual modeling
parameters on overall simulation accuracy. Key factors, such
as mesh type and size [19, 20], boundary conditions [21],
critical compressive displacement [16], concrete tension
stiffening [22, 23], and unloading factor [24], have been
shown to significantly affect the cyclic response of reinforced
concrete members. However, existing studies have not
systematically ranked the sensitivities of these parameters,
creating a gap in guidance for researchers and engineers
seeking to optimize FEM approaches for reinforced concrete
structures. Consequently, a unified and systematic sensitivity
ranking is necessary to identify which model parameters most
significantly influence the accuracy of FEM for beam-column
joints subjected to cyclic loading.

In response, this current study introduces a systematic and
repeatable framework for calibrating finite element models of
reinforced concrete beam-column joints, focusing on a
detailed parametric investigation of modeling assumptions for
joints subjected to combined axial and cyclic lateral loads, as
established by the experimental setup of Yang et al. [25]. The
methodology employs a structured parametric sensitivity
analysis encompassing mesh configuration, boundary
conditions, and material properties of both concrete and
reinforcement. Each parameter set is evaluated in accordance
with ATENA guidelines, relevant code provisions, and
established benchmark studies. The analysis produces a
sensitivity ranking based on the model’s hysteretic response
and crack propagation patterns, which were generated from the
accuracy model and the normalized mean square error
(NMSE). The significance of this study is its focus on input
parameters in the modeling process that were previously
ignored, including the behavior of reinforcement under
compression, concrete unloading factor, tension stiffening in
concrete, and concrete critical compression displacement.

This study calibrates a finite element model for reinforced
concrete beam-column joints under cyclic loading and
determines the relative influence of key modeling parameters
on simulation accuracy. By systematically varying key input
parameters, the study assesses their impact on the accuracy of
numerical predictions relative to experimental results. This
approach reduces modeling uncertainty and improves the
reliability of nonlinear cyclic simulations. The study identifies
and ranks the sensitivity of simulation parameters, offering
practical guidelines for prioritizing critical inputs in FEM of
reinforced concrete structures. Ultimately, these findings aim
to enhance the robustness and predictive capability of
numerical tools for earthquake-resistant design and
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assessment of reinforced concrete infrastructure.

2. METHODS

The schematic of the methodology for each phase is
illustrated in Figure 1. First, the authors have collected
experimental data, including the test setup and the response.
The aim ensured that assumptions regarding actual load
conditions, specifications, and objectivity could be achieved
concurrently. The FEM program was used to construct a
model based on assumptions regarding geometry formation,
mesh configuration, boundary conditions, load application,
and material properties. The next stage involved sensitivity
analysis of each input parameter assumption that affected
model development and results. Finally, the output data of BCJ
behavior (hysteresis response and crack patterns) is collected
and validated against experimental results to obtain modeling
results with a reasonable error.

2.1 Numerical model development

For details of the specimens and test setups in the
experimental test, readers are referred to the research
conducted by Yang et al. [25], as detailed in Figure 2. In this
study, FEM simulations were performed using ATENA
because it has been widely used for RC structure analysis,
including joints [26-30]. To enable reliable and simple
convergence at every load step, the solution parameters used
the modified Newton-Raphson recurrent solution with the
elastic predictor, and readers are referred to the ATENA
theory [31].

The fracture-plastic model [32, 33] served as a basis for the
nonlinear constitutive model of concrete (Cementitious2),
which was employed in this investigation. The concrete
behavior in compression under multiaxial stress circumstances
is represented by the Men’s-William plasticity failure model
[31, 34]. The location of the surface failure is not fixed; it can
change depending on the strain parameter [31]. Additionally,
anonlinear hardening and softening phase regulates the failure
surface [27]. The softening phase of the compression model is
determined by displacement, and the crush band approach is
used to guarantee mesh objectivity [34, 35]. In contrast, the
hardening phase is determined by strain in the local coordinate
system after the crack orientation [31]. The crack band
technique [36-38] is used to characterize the post-cracking
response of concrete [34] when crack initiation is defined by
the Rankine failure criterion in the fracture model. An
exponential softening function was used to depict the tensile
stress-strain relationship of concrete upon cracking [35], with
the Hordijk model [39] relating the tensile stress to the fracture
energy and crack opening displacement.

When a crack appears in the concrete, it also causes a crack
to appear in the concrete’s joint element and causes nonlinear
deformation in the joint element of a reinforcing bar [40]. The
reinforcing elements exhibit a multilinear stress-strain
relationship with hardening in proportion to stress and strain
[31]. For the reinforcing bars, the Menegotto-Pinto model [41]
was employed since it takes Bauschinger’s effect into account
during the unloading and reloading processes. The mechanical
model for deformed reinforcing bars at the reinforced concrete
interface serves as the basis for the numerical model of the
reinforcing bar joint element used after a concrete fracture
[42]. Following the nonlinear bond-slip formulation in the Fib



Model Code 2010 [43], bond-slip formulation with the
geometry type of bar with memory bond was also taken into
consideration. This was followed by the creation of geometry
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2.2 Quantitative sensitivity assessment

The sensitivity analysis method was generally divided into
statistical (probabilistic) and numerical (deterministic)
approaches. The statistical approach, often used in conjunction
with Monte Carlo Simulation [44], required that well-defined
probability distributions be established for the input
parameters so that uncertainty in the inputs could be
propagated to the outputs through repeated random sampling,
with output results being expressed as probability distributions
as well. However, in this study, such an approach could not be
taken because the underlying parameter distributions were
unknown and the available data were insufficient to define
them accurately. Consequently, a numerical or deterministic
approach was adopted, entailing an investigation of the
model’s response by varying input parameters.

The influence of each parameter on the model’s predictive
accuracy was assessed by calculating the NMSE [44, 45],
which facilitated the identification of the most critical factors
affecting the beam-column joint response. NMSE was used to
quantitatively evaluate the predictive accuracy of the finite
element model for each parameter variation. For each
scenario, experimental results and numerical predictions were



obtained at every sampling point and normalized according to
the following Egs. (2) and (3). The NMSE was then computed
using Eq. (1), where lower NMSE values indicate stronger
agreement between the numerical model and experimental
data.

Zisiz(l - ki)2

NMSE = (1
Yisik;
with
Coi
g = — 2
= @
C.
k=2 (3)
' COL

where, C, and C, are respectively observed (experimental)
and predicted (numerical) concentrations, while the overbar
indicates the mean over the sampling points, and i indicates
the mean ith sampling point.

In addition, the accuracy percentage of the numerical output
relative to the experimental output was calculated. The
accuracy percentage provided an intuitive perspective on the
extent to which the numerical results deviated from the
experimental data. The accuracy percentage was determined
by subtracting the error value, as shown in Eq. (4), from 100%.
The error value was computed from the deviation ratio at each
step (Eq. (5)). The accuracy percentage reflects the potential
applicability of values for certain parameters. If the value
obtained is close to 100%, the model is considered reliable in
representing the experimental output.

Acc =1 —e (in %) 4)

with

©)

where, A..: numerical accuracy percentage, e: numerical error
percentage, and n: number of steps.

NMSE and accuracy percentage were used as
complementary metrics to evaluate the sensitivity of the
simulation model parameters. The combination of these two
metrics enabled the identification of the most critical
parameters through a ranking approach based on the
magnitude of influence. In this context, the ranking process
was initiated by converting the NMSE values into a 0—1 scale
to facilitate comparison among parameters. Parameters with
NMSE values lower than 0.1 and accuracy greater than 90%
were classified as high-confidence and prioritized during
calibration [46]. Parameters ranked at the top of the sensitivity
analysis were required to undergo repeated experimental
validation to minimize overfitting.

High sensitivity in a model is indicated when significant
responses are produced due to variations in specific parameter
values. Consequently, substantial errors can be introduced into
the final results if these parameters are improperly calibrated.
Therefore, parameters with the most significant sensitivity
impact should be validated and tested with priority to ensure
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the accuracy and reliability of the structural analysis model. In
addition, the study by Yu et al. [47] emphasized that
calibration errors in high-sensitivity parameters could increase
predictive deviation by up to 20%.

3. RESULTS AND DISCUSSIONS
3.1 Mesh type (Shape)

To evaluate the effect of using different types of solid mesh
elements, two FE models were created, one with a structured
mesh and another with an unstructured mesh. For both
specimens, the mesh dimensions on the joint panel were made
identical to facilitate observation of cracks in that area. In the
case of unstructured meshes, the dimensions and shape of the
elements on the joint panel were not controlled, as
unstructured meshes are characterized by irregular element
shapes and sizes, distinct from the consistent pattern of
structured meshes. Figure 3 shows the surface crack pattern
outcomes across different mesh types, while Figure 4
illustrates the envelope curve.

(b)

Figure 3. Crack patterns based on mesh type (shape)

Cracks were observed when the lateral force on the beam-
column reached its peak. Visually, models with structured
mesh tended to have crack patterns similar to those shown in
the experimental results. In contrast, crack patterns in models
with unstructured mesh showed cracks that were mostly
located on the columns. The dominant failure location in
unstructured mesh models, which shifts toward the column
rather than the joint region, can be explained by fundamental
principles: An inadequate mesh distorts the stress path, hinders
the joint’s ability to form a plastic hinge, and results in
premature column failure. Tijssens et al. [48] have shown that
the cohesive zone model exhibits a clear dependence on the
crack pattern in the structured network, meaning that cracks
tend to propagate along the dominant orientation of the
elements. Therefore, in modeling cracks in rigid elements,
unstructured meshes are recommended to reduce mesh
dependence on crack patterns on a global scale. It should be



noted that, although from a global perspective mesh
dependency can be reduced by using unstructured meshes,
crack paths are still dependent on local mesh orientation, and
it is necessary to prove that global crack patterns and critical
loads are not affected by local mesh orientation when
unstructured meshes are used.
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Figure 4. Load-displacement curve based on mesh type
(shape)

In comparison to tetrahedral elements, hexahedral elements
offer greater accuracy as they can better depict complex
geometries, exhibit increased stability under various loading
scenarios, and distribute stress more efficiently [49].
Tetrahedral elements typically exhibit a stiffer response than
hexahedral elements at the same size [16], particularly when
formed using non-uniform elements. The initial stiffness of the
beam-column joint with an unstructured mesh is 10% greater
than that of a joint with a structured hexahedral mesh.
However, despite this increased initial stiffness, the joint with
an unstructured mesh exhibits a significantly higher post-
ultimate loss of stiffness, nearly 120% compared to its
structured counterpart. This suggests that joints with an
unstructured mesh are excessively stiff relative to expected
conditions. On the other hand, the crack pattern observed in
specimens with unstructured meshes indicates that failure is
dominated by column elements. The failure mode suggests
that the joint is unable to distribute deformation evenly,
resulting in the column bearing more load than the joint itself.
Consequently, this leads to flexural hinge failure in the column
rather than an initial failure of the joint [50, 51].

It should be noted that in the numerical discretization of a
continuous domain, the stress and strain around the fracture tip
are only approximations. To approximate the stress gradient at
the fracture tip as accurately as possible, the strategy is to use
low-order elements for the entire domain and minimize the
mesh size at the fracture tip. Another alternative is to use high-
order elements. Further development can enrich the element
library to improve accuracy without overloading the program.

3.2 Mesh size

A mesh dependency study was conducted to investigate the
effect of mesh density on crack propagation. As the density of
mesh elements increases, the integration points become closer
to the stress concentration region, and the numerical solution
converges to the exact solution. The computing resources
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required to run the simulation also increase as the mesh is
refined. In this study, four mesh sizes of solid elements are
simulated: 25 x 25 mm, 50 x 50 mm, 100 x 100 mm, and 200
x 200 mm. Following up further on the mesh shape that
exhibits stability under various loading scenarios and stress
distribution [49], the mesh shape used in the analysis is a 4-
node hexahedral mesh. The reinforcement was modeled with
a 1-D truss element, assuming a perfect bond between the
elements. Crack propagation in four different finite elements
and FEM representations in the same particle and matrix are
shown in Table 1.

Table 1. Crack patterns based on mesh size

Mesh Size

Crack Patterns

200 x 200 mm
(174 elements)

100 x 100 mm
(402 elements)

50 x 50 mm
(1210 elements)

25 x 25 mm
(4474 elements)

Finer mesh sizes, such as the 25 mm used in this study, are
more accurate at capturing critical strains and accurately
determining crack orientations compared to larger mesh sizes.
This finding aligns with previous research indicating that finer
meshes are reliable for detecting various types of cracks,
including stress, diagonal shear, and compression cracks [52].
However, the use of finer meshes introduces smaller elements,
which increases the number of degrees of freedom in the
model. While this leads to a more detailed representation of
the structure’s geometry and behavior, it also necessitates
longer computation times due to the increased number of
equations that must be solved [53, 54].

When the element size is comparable to or exceeds the
theoretical length of the plastic zone, the stress distribution
surrounding the fracture tip approximates a uniform stress
field. In this scenario, the overall stress exerts a greater
influence on fracture propagation than the local stress field. In
contrast, for fine meshes where the element size constitutes a
small fraction, such as one-third, of the plastic zone length, the
gradient of the local stress distribution within the plastic zone
is accurately represented. Furthermore, if the mesh size is
sufficiently small to represent the microstructure (e.g., mineral
grains and grain boundaries) of quasi-brittle materials, the
surface roughness of fractures observed from the mesh can
accurately represent the roughness characteristics of the
fracture material [55].

Figure 5 presents the envelope curve of each beam-column
joint with various mesh sizes. Envelope curves of specimens



with mesh sizes exceeding 25 mm exhibit notable deviations
from the anticipated curve. These specimens exhibit initial
stiffness that is 5% to 15% slightly higher than those using fine
meshes. Conversely, while coarser meshes may simplify the
computational representation of the joint behavior, they can
lead to less accurate predictions of peak load and stiffness
degradation [19, 26, 56]. This occurs because the rate of
energy release governing crack propagation becomes
independent of the mesh when the mesh captures the essential
stress concentration field.

Further development can enrich the elements to improve
accuracy without burdening the program. Although
computation time only increases in line with the number of
elements, large-scale engineering problems may still require
unrealistic computation time. Therefore, parallelization and
the use of efficient algorithms for uncracked domains are
necessary as solutions to computational constraints.
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Figure 5. Load-displacement curve based on mesh size
3.3 Boundary conditions

To ensure the accuracy of the results, multiple sets of
boundary conditions were examined in this study, as
summarized in Table 2 and Figure 6.

BC-A is a joint with a constraint for point-pinned support
(4, u, = 0) at the bottom of the column, and a constraint for
point-roller support at both ends of the beam (u, = 0)
(chosen model). BC-B is a joint with a constraint for line-
pinned support at the bottom of the column (ux, U, = 0), and
a constraint for point-roller support at both ends of the beam
(u, = 0). BC-C is a joint with a constraint for point-pinned
support at the bottom of the column (ux,uy = O) and
constraint for point-roller support (u, = 0) and the spring
constraint at both ends of the beam. BC-D is a joint with a
constraint for point-pinned support at the bottom of the column
(ux, U, = 0), constraint for point-roller support at both ends
(u, = 0) and constraint for line-rotation support at the top end
of the column (1, = 0).

Providing boundary conditions that presume rotational or
movement constraints is crucial to accurately depicting how a
beam-column joint will behave under this kind of pressure. In
ATENA, various types of boundary conditions can be selected
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and tailored to meet the specific needs of the analysis. These
boundary conditions significantly influence stress distribution,
failure modes, and overall structural behavior.

Table 2. Combination of boundary conditions

Boundary Conditions Crack Patterns
Experimental
'-1—)-
BC-A
r ﬂ
A
>
BC-B
r ﬂ
A
>
BC-C A ———
BC-D
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Figure 6. Load-displacement curve based on boundary
condition combination



In specimen BC-A, diagonal cracks connect the corner joint,
with the most substantial cracks appearing in the core joint.
The diagonal crack connecting the corner joint in specimen
BC-A is consistent with the shear failure mechanism
commonly observed in beam-column joints under seismic
loading [57]. This pattern indicates stress concentration at the
core of the joint, consistent with the point-pinned support
conditions that create local moment transfer. Conversely,
specimens BC-B and BC-C exhibit cracks primarily in the
column area near the joint, showing a shift in load distribution
due to modified boundary conditions. Line-bound support at
BC-B creates a more even stress distribution along the base of
the column, altering the typical strong-column-weak-beam
behavior. These line restraints artificially restrict lateral
movement along the base width of the column, resulting in a
more rigid response that resembles a pinched condition. This
constraint increases stiffness beyond what is observed
experimentally and causes cracks to localize primarily in
columns adjacent to the joints. Such excessive constraint
inhibits the expected softening and stiffness degradation that
occur when steel reaches its yield point.

Similarly, spring constraints at BC-C introduce additional
flexibility that redistributes stress away from the joint core
[58]. These springs add extra stiffness at the beam-column
interface, particularly noticeable at small drifts where spring
force contributes to joint stiffness. The model thus
overestimates initial stiffness by about 13% compared to
experimental and BC-A data, and the spring forces reduce
joint load capacity at higher drift levels by amplifying load on
the column end. This artificial stiffness and resultant load
redistribution cause discrepancies with expected failure and
stiffness degradation. The force from displacement at the
column’s end grows with drift by amplifying spring strain,
which reduces the joint load capacity [59].

Specimen BC-D exhibits a crack pattern similar to that of
BC-A. The presence of additional rotation constraints on BC-
D suggests that the roller support at the beam end primarily
governs the joint behavior. In contrast, the larger cracks
observed in the core and corners of BC-D imply that the line
rotation support at the top of the column introduces secondary
moment effects. This finding contradicts certain experimental
results and underscores potential limitations in the current
modeling of rotation constraints.

3.4 Performance of reinforcement in compression

In ATENA, users are given the option to disable
reinforcement compression response. Not activating this menu
means that steel bars resist tensile forces but do not contribute
under compression. This is often used in simplified models or
when compression yielding is unlikely (e.g., in beams with
asymmetric reinforcement). Meanwhile, disabling this feature
allows reinforcement to develop both tensile and compressive
stresses according to its constitutive law (usually elastic—
plastic with kinematic or isotropic hardening). Figure 7
illustrates the impact of activating this feature on the response
of the beam-column joint structure subjected to cyclic loading.

Models including compression show pronounced pinching
and reduced loop area for many beam/column configurations
because crack opening/closing and concrete softening in
compression reduce restoring forces on reversal [60]. When
cracks reopen, the recovery of tensile stiffness is limited. In
contrast, local compression and confinement degradation of
concrete reduce the effective stiffness and energy absorption

capacity in compression. As a result, the hysteresis loop
narrows and bends. This reflects decreased cyclic energy
dissipation and increased stiffness degradation. Such behavior
is characteristic of the realistic response of reinforced concrete
under cyclic loading. Here, tensile cracks and compressive
damage develop path-dependently, resulting in asymmetric
and bent hysteresis behavior.

Figure 8 illustrates that activating the compressive capacity
of reinforcing steel reduces cracking in the joint cross-section
compared to scenarios where its compressive contribution is
not engaged. Considering compression behavior requires
accounting for bond degradation and slip between concrete
and reinforcing steel in both loading directions. These
interactions influence load transfer, crack propagation, and
stiffness degradation, which are essential factors for accurate
simulation under cyclic loading. However, ignoring
compression behavior ignores this instability mode,
potentially leading to overestimation of load capacity and
underestimation of damage accumulation.
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3.5 Concrete unloading factor

A high unloading factor (about 0.9) suggests that the model
expects concrete to recover nearly all its stiffness upon crack
closure. This presumes a full return to the original stiffness,
which is unrealistic, as lasting microscopic damage, such as
microcracking, aggregate slip, and adhesion loss, usually
occurs. As a result, concrete does not restore its initial
stiffness. Essentially, the model behaves more like an
undamaged elastic material than a partially degraded one. In
contrast, a low unloading factor (approximately 0.2) implies
that concrete regains only a small fraction of its stiffness after
cracks close. This is more accurate for alternating loads, since
even when cracks close, imperfect contact, surface friction,
and loss of aggregate interlock remain [32]. This mechanism
limits stiffness recovery during loading, precisely emulating
the clamping effect and the distinct reduction in stiffness
observed in reverse cyclic loading. The resulting hysteresis
loop is narrower and more asymmetric, reflecting authentic
degradation in both stiffness and strength, and closely
matching experimental observations.

The envelope curve of the concrete loading factor is
illustrated in Figure 9 and Figure 10. The load-displacement
curves show that the default model with an unloading
coefficient of 0.9 substantially deviates from the experimental
response, particularly in capturing the stiffness degradation
and peak lateral resistance. A better approximation is achieved
with an unloading coefficient of 0.5; however, the closest
agreement with the experimental test is obtained when the
unloading coefficient is reduced to 0.2, which successfully
reproduces both the strength capacity and the post-peak
softening behavior. Similarly, the crack patterns in Figure 10
further validate this finding. While higher unloading factors
produce unrealistic crack distributions, the model with an
unloading coefficient of 0.2 generates crack patterns that more
closely resemble the experimental observations. These results
indicate that careful calibration of the unloading factor is
essential for improving the fidelity of FE models in simulating
structural behavior under cyclic loading.
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Figure 9. Load-displacement curve based on the concrete
unloading factor
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(¢) Unloading factor 0.2

(d) Experimental

Figure 10. Crack patterns based on the concrete unloading
factor

3.6 Concrete tension stiffening

Concrete tension stiffening refers to the phenomenon where
concrete contributes to the overall tensile stiffness of
reinforced concrete elements, even after cracking [61]. This
effect arises from the bond between the concrete and the
reinforcement, allowing some tensile stress to be transferred
through the concrete between the cracks. Consequently, the
structural elements increased stiffness due to the internal
tensile forces absorbed by both the reinforcement and the
uncracked concrete surrounding the cracks [62]. In ATENA,
tension stiffening is an important factor in simulating the
behavior of beam-column joints. This study presents several
assumed values, illustrated in Figure 11 and Figure 12.
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Default model (tension stift: 0.4)
Additional model (tension stiff: 0.2)
Chosen model (tension stiff: 0.05)
------ Experimental test

Figure 11. Load-displacement curve based on concrete
tension stiffening



(a) Tension stiffening 0.4  (b) Tension stlffemng 0.2

(¢) Tension stiffening 0.05

(d) Experimental

Figure 12. Crack pattern based on concrete tension stiffening

When the drift ratio approaches 3%, the predicted crack
pattern diverges from experimental observations. High
reinforcement stress values, such as 0.4, suggest that the model
assumes concrete continues to carry most tensile stress after
cracking. This assumption increases initial stiffness and delays
crack formation, but also leads to overestimated load capacity
and unrealistic crack patterns, as illustrated in Figure 12. In
this scenario, the concrete-steel bond is modeled as
excessively strong, thereby suppressing crack localization and
obscuring the degradation effects typically observed in
experiments. In contrast, lower tensile stiffness values
decrease the joint’s initial stiffness. A tensile stiffness value of
0.05 produces joint behavior that closely matches
experimental results, particularly in terms of crack pattern
distribution and the load-displacement response. Lower values
indicate partial bond loss and reduced tensile stress transfer
between shear cracks and microcracks at the steel-concrete
interface. This leads to more localized cracking, a softer post-
cracking response, and a hysteresis loop that aligns with
experimental evidence [63].

3.7 Concrete critical compression displacement (W ;)

The parameter concrete critical compression displacement
(Wz) , governs the softening branch of the concrete
compressive  stress—strain  relationship in  numerical
simulations. W; defines the displacement at which the
concrete stress in compression reduces to zero, representing
the material’s ductility in compression and the extent of post-
peak softening. The research conducted by Setiawan [16]
indicates that a higher value of W, correlates with an increased
capacity compared to other values. This correspondence
produces a load-displacement curve that is similar to the
experimental results, which is further supported by the
distribution of crack patterns in the dynamic response (DR),
which is close to 3%. Conversely, utilizing the default W,
leads to significant stiffness degradation before the specimen
reaches its ultimate capacity.

The concrete softening curve in compression is modeled
linearly in ATENA, with deformation expressed as
displacement to ensure mesh objectivity [34, 35]. The standard

4035

value W; was 0.5 mm. This scenario leads to premature
stiffness degradation and underestimation of both ductility and
energy dissipation. As a result, the numerical model
demonstrates excessive brittleness and deviates from
experimental results for load-displacement behavior and crack
development. In contrast, higher values, such as 2.5 mm or 5
mm, allow the concrete to undergo greater inelastic
deformation before complete softening. This modification
increases the fracture energy absorbed during compression.
The result is a smoother post-peak response and improved
agreement with experimental data. Models with higher W,
more accurately reproduce both the peak load capacity and
post-peak softening behavior seen in experiments.

The sensitivity of W, was evaluated by simulating several
values, including 2.5 mm and 5 mm. The corresponding results
are shown in Figure 13 and Figure 14.
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Figure 13. Load-displacement curve based on the concrete
critical compression displacement
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Figure 14. Crack patterns based on concrete critical
compression displacement



3.8 Bar with memory bond

Reinforced concrete structures or elements involve concrete
and reinforcement materials as their constituents. Therefore,
the interaction between concrete and reinforcement is essential
in analyzing the behavior of reinforced concrete structures, in
this case, beam-column joints. In this study, two models were
developed based on the involvement of input parameters in
ATENA, steel-concrete bond slip, as shown in Figure 15 and
Figure 16. The parameters used to define the bond between
concrete and reinforcing steel are based on the Fib Model
Code 2010 [43].

The application of bar memory bond explicitly accounts for
shear behavior at the interface between reinforcing steel and
concrete. This significantly influences the simulated response
of RC structures under cyclic loading. Bar memory bond
represents nonlinear interactions at the steel-concrete
interface. Shear develops once the bond stress surpasses the
interface's shear capacity.
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Figure 15. Load-displacement curve based on bar memory
bond
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Figure 16. Crack patterns based on the bar memory bond
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This behavior introduces hysteresis at the material level. It
reflects the gradual degradation of adhesion and friction
resulting from repeated load reversals. Models that neglect
bond friction typically assume perfect bonding. These models
require the reinforcing steel and concrete to deform
identically. Such assumptions overestimate stiffness, strength,
and energy dissipation. It disregards micro-friction, bond
release, and re-anchorage of steel bars during cyclic loading.

As a result, simulated load-displacement curves are often
unrealistically stiff, exhibiting limited compression and
insufficient degradation in stiffness relative to experimental
observations. In contrast, models that incorporate bond
memory behavior capture progressive degradation at the steel-
concrete interface. This produces more realistic compression,
areduced loop area, and accurate hysteresis degradation in the
load-displacement response.

3.9 Parameter sensitivity ranking based on NMSE
Table 3 presents the results of accuracy and NMSE
calculations for each input parameter. The ranking of the input

parameter assumptions is visually represented in Figure 17.

Table 3. FE analysis versus experimental results based on the
bar memory bond

Accuracy

1D Parameter (%) NMSE
A-1.1 Unstructured mesh 79.7451  0.1412
A-1.2 Mesh hexahedral 96.8926  0.0022
A-2.1 Mesh size: 200 x 200 mm 92.1464  0.0075
A-2.2 Mesh size: 100 X 100 mm 93.9427  0.0049
A-2.3 Mesh size: 50 x 50 mm 76.5521 0.1912
A-2.4 Mesh size: 25 x 25 mm 96.8926  0.0022
A-3.1 BC-A 96.8926  0.0022
A-3.2 BC-B 92.1464  0.0075
A-33 BC-C 82.8580  0.0330
A-34 BC-D 69.7842  0.3151
Al Reinforcement wiyhout active 968926  0.0022

compression
A4 Reinforcement \yith active 813116 01116
compression

A-5.1 Concrete unloading factor: 0.9 499087  0.6216
A-5.2 Concrete unloading factor: 0.5 76.8460  0.1153
A-5.3 Concrete unloading factor: 0.2 96.8926  0.0022
A-6.1 Concrete tension stiffening: 0.4 86.3938  0.0479
A-6.2  Concrete tension stiffening: 0.2 92.2747  0.0099
A-6.3  Concrete tension stiffening: 0.05  96.8926  0.0022
A-7.1 Wy : 5 mm 96.8926  0.0022
A-7.2 Wy 2.5 mm 75.5153  0.1661
A-7.3 Wy : 0.5 mm 65.6344  0.4133
A-8.1 Bar without memory bond 56.0315  0.7735
A-8.2 Bar with memory bond 96.8926  0.0022

Figure 17 illustrates the relationship between percentage
changes in various input assumptions and corresponding
changes in output accuracy, highlighting that each parameter
exhibits a distinct level of sensitivity. Parameters such as A-3
(boundary conditions), A-4 (performance of reinforcement in
compression), and A-8 (bar with memory bond) demonstrate
the most significant impact on output, as indicated by their
relatively large and positive gradients. Consequently, minor
variations in these parameters can result in substantial
fluctuations in the analysis or simulation results. Conversely,
parameter A-2 (mesh size) has a data trend that tends to be flat,
which indicates that changes in the value of this parameter do
not affect the load achievement at each step.
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Figure 17. Parameter sensitivity ranking based on NMSE

4. CONCLUSIONS

Numerical simulations of beam-column joints in a 2D
model were conducted to verify the model’s accuracy with the
expected results based on input parameters available in
ATENA Science. Particular attention was given to the mesh
configuration, boundary conditions, and the properties of
concrete and reinforcement in predicting the response of
beam-column joints under progressive cyclic loading. An
analytical method was developed to identify and classify the
most influential parameters affecting the modeling results,
which are rarely considered, especially in cyclic behavior
analysis. Furthermore, a sensitivity analysis was conducted to
assess the impact of variations in each parameter on the
structural response of the beam-column joints. Based on the
presented results, the following conclusions were drawn:

1. An unstructured mesh is indeed preferred for crack
simulations on quasi-brittle isotropic materials using a
crack model. Before the actual simulation, the length of
the theoretical plastic zone must first be estimated, then
the element size is selected to be at least one-third of
the length of the theoretical plastic zone as a network
parameter or equal to the size of the element constituent
grains.

2. Line support tends to distribute stress more evenly,
preventing the local damage seen in point-supported
specimens.

3. Ignoring the compressive capacity of steel for elements
subjected to lateral loads is acceptable, but it needs to
be evaluated in cases where the lateral load is in the
form of beams, as this is related to pinching and energy
dissipation effects.

4. Lower values of concrete tension stiffening indicate
partial bond loss and reduced tensile stress transfer
between shear cracks and microcracks at the steel-
concrete interface.

5. Bars with memory bonds, reinforcement performance
in compression, and boundary conditions must be given
more attention in modeling than mesh configurations.

This study is limited to 2D numerical structures, which may

not fully capture out-of-plane effects and complex stress
interactions present in real 3D structures. The material and
boundary assumptions used in the models were idealized and
homogeneous, which may have led to deviations from
experimental responses. Therefore, future work should
consider incorporating 3D modeling, refined material
characterization, and comprehensive experimental validation
to enhance the reliability and general applicability of the
numerical findings.
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