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This study calibrates a finite element (FE) model for reinforced concrete beam-column 

joints (BCJ) under cyclic loading. The objective is to clarify which parameters most 

influence the accuracy of FE simulations. Instead of relying on qualitative or ad hoc 

adjustments, this work introduces a systematic sensitivity ranking tailored to the cyclic 

response of BCJ. The methodology systematically evaluated mesh configuration, 

boundary conditions, and properties of concrete and reinforcement. The analysis 

followed ATENA guidelines, code provisions, and the approach used in previous 

research. The results showed that boundary conditions had a direct impact on the 

distribution of forces, moments, and deformations. The concrete hysteretic parameters 

had the most significant influence on model performance, exceeding the effects of mesh 

density or secondary material assumptions. However, when analyzing crack 

propagation, a finer mesh size provided the most accurate outcome. This study 

concludes that the proposed sensitivity ranking establishes a robust framework for 

model calibration. It enables researchers and engineers to reduce modeling uncertainty 

and improve the predictive accuracy of nonlinear analyses for RC beam-column joints.  
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1. INTRODUCTION

The finite element modeling (FEM) is widely recognized as 

a robust technique for simulating structural behavior in both 

static and dynamic analyses, particularly when experimental 

testing is constrained by the extensive range of parameters and 

high associated costs [1-3]. Numerical modeling enables the 

detailed visualization of composite element behavior, 

including stress-strain distributions, crack initiation and 

propagation, and plasticity indices. Studies utilizing software 

platforms such as ATENA, ABAQUS, ANSYS, DYNA, and 

OpenSees have achieved varying levels of success in 

replicating hysteretic responses; however, discrepancies 

remain due to inconsistent calibration methodologies [1, 4-

10]. Validation against full-scale laboratory specimens under 

controlled and identical conditions is essential for evaluating 

and refining numerical models until the desired accuracy is 

achieved [3]. Key parameters, including mesh density, 

concrete damage plasticity, and bond-slip behavior, 

significantly affect simulation outcomes, yet their relative 

sensitivities are not well quantified [4]. Furthermore, most 

studies examine these parameters individually, overlooking 

potential synergistic effects. 

Guo et al. [11] conducted sensitivity analyses on mesh size 

and orientation by modeling fracture propagation in 

geometrically identical models with varying mesh sizes, 

demonstrating that coarse meshes can estimate peak load with 

an error of less than 8%. Purnomo et al. [12] employed 

ABAQUS to assess the sensitivity of boundary dimensions, 

mesh size, and additional parameters in statically loaded 

beams, though limitations in crack propagation visualization 

arose due to computational instability. Živaljić et al. [13] 

investigated the sensitivity of numerical parameters in the 

analysis of reinforced concrete structures using the FEM/DEM 

approach, emphasizing mesh refinement and penalty 

parameters to reduce numerical errors. Lowes et al. [14] 

emphasized model calibration and validation with ATENA 

software for simulating large reinforced concrete walls under 

flexural loading, employing a sensitivity method that 

minimizes mesh dependency and ensures solution 

convergence with mesh refinement. 

In another study, Naeimi and Moustafa [15] investigated the 

behavior of UHPC bridge columns using FEM with DIANA 

and SAP 2000 software, focusing on the influence of various 

reinforcement and design parameters, although they did not 

explicitly present the sensitivity analysis steps. Setiawan [16] 

investigated efficient strategies for modeling punching failure 

in flat plates with sensitivity analysis on parameters such as 

mesh type and size, crack model, and compressive strength, 

while Indriyantho et al. [3] used a multi-criteria approach in 

the RBSM model to reduce the uncertainty of the main 

variables through load-displacement curve analysis on 

reinforced concrete beams with geopolymer haunches. From a 

methodological perspective, several studies use mesh 

optimization and constitutive model selection, but calibration 

is often unsystematic, partial, and reliant on trial-and-error. 
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Previous research has underscored the impact of mesh 

density, confinement effects, and concrete damage 

parameters. However, few investigations have systematically 

compared the sensitivity of these factors within a structured 

framework for cyclic loading. Moaveni et al. [17] further 

demonstrated, through ANOVA and meta-modeling, that 

simulation results are influenced not only by mesh dimensions 

but also by the uncertainty in identified modal parameters and 

the spatial density of measurement points. 

Current modeling practices often rely on software defaults 

and code-based recommendations; however, variations in 

assumed material properties and simulation parameters can 

significantly impact the accuracy of results. For example, 

spatial variability in Young’s modulus can induce localized 

stress concentrations, with a 20% variation resulting in a 15–

25% earlier onset of plasticity under both tensile and 

compressive loads [18]. Despite this, limited attention has 

been paid to quantifying the influence of individual modeling 

parameters on overall simulation accuracy. Key factors, such 

as mesh type and size [19, 20], boundary conditions [21], 

critical compressive displacement [16], concrete tension 

stiffening [22, 23], and unloading factor [24], have been 

shown to significantly affect the cyclic response of reinforced 

concrete members. However, existing studies have not 

systematically ranked the sensitivities of these parameters, 

creating a gap in guidance for researchers and engineers 

seeking to optimize FEM approaches for reinforced concrete 

structures. Consequently, a unified and systematic sensitivity 

ranking is necessary to identify which model parameters most 

significantly influence the accuracy of FEM for beam-column 

joints subjected to cyclic loading. 

In response, this current study introduces a systematic and 

repeatable framework for calibrating finite element models of 

reinforced concrete beam-column joints, focusing on a 

detailed parametric investigation of modeling assumptions for 

joints subjected to combined axial and cyclic lateral loads, as 

established by the experimental setup of Yang et al. [25]. The 

methodology employs a structured parametric sensitivity 

analysis encompassing mesh configuration, boundary 

conditions, and material properties of both concrete and 

reinforcement. Each parameter set is evaluated in accordance 

with ATENA guidelines, relevant code provisions, and 

established benchmark studies. The analysis produces a 

sensitivity ranking based on the model’s hysteretic response 

and crack propagation patterns, which were generated from the 

accuracy model and the normalized mean square error 

(NMSE). The significance of this study is its focus on input 

parameters in the modeling process that were previously 

ignored, including the behavior of reinforcement under 

compression, concrete unloading factor, tension stiffening in 

concrete, and concrete critical compression displacement.  

This study calibrates a finite element model for reinforced 

concrete beam-column joints under cyclic loading and 

determines the relative influence of key modeling parameters 

on simulation accuracy. By systematically varying key input 

parameters, the study assesses their impact on the accuracy of 

numerical predictions relative to experimental results. This 

approach reduces modeling uncertainty and improves the 

reliability of nonlinear cyclic simulations. The study identifies 

and ranks the sensitivity of simulation parameters, offering 

practical guidelines for prioritizing critical inputs in FEM of 

reinforced concrete structures. Ultimately, these findings aim 

to enhance the robustness and predictive capability of 

numerical tools for earthquake-resistant design and 

assessment of reinforced concrete infrastructure. 

2. METHODS

The schematic of the methodology for each phase is 

illustrated in Figure 1. First, the authors have collected 

experimental data, including the test setup and the response. 

The aim ensured that assumptions regarding actual load 

conditions, specifications, and objectivity could be achieved 

concurrently. The FEM program was used to construct a 

model based on assumptions regarding geometry formation, 

mesh configuration, boundary conditions, load application, 

and material properties. The next stage involved sensitivity 

analysis of each input parameter assumption that affected 

model development and results. Finally, the output data of BCJ 

behavior (hysteresis response and crack patterns) is collected 

and validated against experimental results to obtain modeling 

results with a reasonable error. 

2.1 Numerical model development 

For details of the specimens and test setups in the 

experimental test, readers are referred to the research 

conducted by Yang et al. [25], as detailed in Figure 2. In this 

study, FEM simulations were performed using ATENA 

because it has been widely used for RC structure analysis, 

including joints [26-30]. To enable reliable and simple 

convergence at every load step, the solution parameters used 

the modified Newton-Raphson recurrent solution with the 

elastic predictor, and readers are referred to the ATENA 

theory [31]. 

The fracture-plastic model [32, 33] served as a basis for the 

nonlinear constitutive model of concrete (Cementitious2), 

which was employed in this investigation. The concrete 

behavior in compression under multiaxial stress circumstances 

is represented by the Men’s-William plasticity failure model 

[31, 34]. The location of the surface failure is not fixed; it can 

change depending on the strain parameter [31]. Additionally, 

a nonlinear hardening and softening phase regulates the failure 

surface [27]. The softening phase of the compression model is 

determined by displacement, and the crush band approach is 

used to guarantee mesh objectivity [34, 35]. In contrast, the 

hardening phase is determined by strain in the local coordinate 

system after the crack orientation [31]. The crack band 

technique [36-38] is used to characterize the post-cracking 

response of concrete [34] when crack initiation is defined by 

the Rankine failure criterion in the fracture model. An 

exponential softening function was used to depict the tensile 

stress-strain relationship of concrete upon cracking [35], with 

the Hordijk model [39] relating the tensile stress to the fracture 

energy and crack opening displacement. 

When a crack appears in the concrete, it also causes a crack 

to appear in the concrete’s joint element and causes nonlinear 

deformation in the joint element of a reinforcing bar [40]. The 

reinforcing elements exhibit a multilinear stress-strain 

relationship with hardening in proportion to stress and strain 

[31]. For the reinforcing bars, the Menegotto-Pinto model [41] 

was employed since it takes Bauschinger’s effect into account 

during the unloading and reloading processes. The mechanical 

model for deformed reinforcing bars at the reinforced concrete 

interface serves as the basis for the numerical model of the 

reinforcing bar joint element used after a concrete fracture 

[42]. Following the nonlinear bond-slip formulation in the Fib 
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Model Code 2010 [43], bond-slip formulation with the 

geometry type of bar with memory bond was also taken into 

consideration. This was followed by the creation of geometry 

and mesh, the application of boundary conditions and loads, 

and the integration of concrete and reinforcement material 

properties, including bond relationships.  

Figure 1. Systematic overview of FEM to evaluate beam-column joint behavior through sensitivity studies 

Figure 2. Test specimen details (unit: mm) 

2.2 Quantitative sensitivity assessment 

The sensitivity analysis method was generally divided into 

statistical (probabilistic) and numerical (deterministic) 

approaches. The statistical approach, often used in conjunction 

with Monte Carlo Simulation [44], required that well-defined 

probability distributions be established for the input 

parameters so that uncertainty in the inputs could be 

propagated to the outputs through repeated random sampling, 

with output results being expressed as probability distributions 

as well. However, in this study, such an approach could not be 

taken because the underlying parameter distributions were 

unknown and the available data were insufficient to define 

them accurately. Consequently, a numerical or deterministic 

approach was adopted, entailing an investigation of the 

model’s response by varying input parameters. 

The influence of each parameter on the model’s predictive 

accuracy was assessed by calculating the NMSE [44, 45], 

which facilitated the identification of the most critical factors 

affecting the beam-column joint response. NMSE was used to 

quantitatively evaluate the predictive accuracy of the finite 

element model for each parameter variation. For each 

scenario, experimental results and numerical predictions were 
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obtained at every sampling point and normalized according to 

the following Eqs. (2) and (3). The NMSE was then computed 

using Eq. (1), where lower NMSE values indicate stronger 

agreement between the numerical model and experimental 

data. 

𝑁𝑀𝑆𝐸 =
∑ 𝑠𝑖

2(1 − 𝑘𝑖)
2

𝑖

∑ 𝑠𝑖𝑘𝑖𝑖

(1) 

with 

𝑠𝑖 =
𝐶𝑜𝑖

𝐶𝑜̅

(2) 

𝑘𝑖 =
𝐶𝑝𝑖

𝐶𝑜𝑖

(3) 

where, 𝐶𝑜  and 𝐶𝑝  are respectively observed (experimental)

and predicted (numerical) concentrations, while the overbar 

indicates the mean over the sampling points, and 𝑖 indicates 

the mean 𝑖th sampling point.  

In addition, the accuracy percentage of the numerical output 

relative to the experimental output was calculated. The 

accuracy percentage provided an intuitive perspective on the 

extent to which the numerical results deviated from the 

experimental data. The accuracy percentage was determined 

by subtracting the error value, as shown in Eq. (4), from 100%. 

The error value was computed from the deviation ratio at each 

step (Eq. (5)). The accuracy percentage reflects the potential 

applicability of values for certain parameters. If the value 

obtained is close to 100%, the model is considered reliable in 

representing the experimental output. 

𝐴𝑐𝑐 = 1 − 𝑒 (in %) (4) 

with 

𝑒 =

(∑
𝐶𝑜𝑖 − 𝐶𝑝𝑖

𝐶𝑜𝑖
𝑖

)

𝑛

(5) 

where, 𝐴𝑐𝑐: numerical accuracy percentage, 𝑒: numerical error

percentage, and 𝑛: number of steps. 

NMSE and accuracy percentage were used as 

complementary metrics to evaluate the sensitivity of the 

simulation model parameters. The combination of these two 

metrics enabled the identification of the most critical 

parameters through a ranking approach based on the 

magnitude of influence. In this context, the ranking process 

was initiated by converting the NMSE values into a 0–1 scale 

to facilitate comparison among parameters. Parameters with 

NMSE values lower than 0.1 and accuracy greater than 90% 

were classified as high-confidence and prioritized during 

calibration [46]. Parameters ranked at the top of the sensitivity 

analysis were required to undergo repeated experimental 

validation to minimize overfitting.  

High sensitivity in a model is indicated when significant 

responses are produced due to variations in specific parameter 

values. Consequently, substantial errors can be introduced into 

the final results if these parameters are improperly calibrated. 

Therefore, parameters with the most significant sensitivity 

impact should be validated and tested with priority to ensure 

the accuracy and reliability of the structural analysis model. In 

addition, the study by Yu et al. [47] emphasized that 

calibration errors in high-sensitivity parameters could increase 

predictive deviation by up to 20%. 

3. RESULTS AND DISCUSSIONS

3.1 Mesh type (Shape) 

To evaluate the effect of using different types of solid mesh 

elements, two FE models were created, one with a structured 

mesh and another with an unstructured mesh. For both 

specimens, the mesh dimensions on the joint panel were made 

identical to facilitate observation of cracks in that area. In the 

case of unstructured meshes, the dimensions and shape of the 

elements on the joint panel were not controlled, as 

unstructured meshes are characterized by irregular element 

shapes and sizes, distinct from the consistent pattern of 

structured meshes. Figure 3 shows the surface crack pattern 

outcomes across different mesh types, while Figure 4 

illustrates the envelope curve.  

(a) (b) 

(c) 

Figure 3. Crack patterns based on mesh type (shape) 

Cracks were observed when the lateral force on the beam-

column reached its peak. Visually, models with structured 

mesh tended to have crack patterns similar to those shown in 

the experimental results. In contrast, crack patterns in models 

with unstructured mesh showed cracks that were mostly 

located on the columns. The dominant failure location in 

unstructured mesh models, which shifts toward the column 

rather than the joint region, can be explained by fundamental 

principles: An inadequate mesh distorts the stress path, hinders 

the joint’s ability to form a plastic hinge, and results in 

premature column failure. Tijssens et al. [48] have shown that 

the cohesive zone model exhibits a clear dependence on the 

crack pattern in the structured network, meaning that cracks 

tend to propagate along the dominant orientation of the 

elements. Therefore, in modeling cracks in rigid elements, 

unstructured meshes are recommended to reduce mesh 

dependence on crack patterns on a global scale. It should be 
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noted that, although from a global perspective mesh 

dependency can be reduced by using unstructured meshes, 

crack paths are still dependent on local mesh orientation, and 

it is necessary to prove that global crack patterns and critical 

loads are not affected by local mesh orientation when 

unstructured meshes are used. 

Figure 4. Load-displacement curve based on mesh type 

(shape) 

In comparison to tetrahedral elements, hexahedral elements 

offer greater accuracy as they can better depict complex 

geometries, exhibit increased stability under various loading 

scenarios, and distribute stress more efficiently [49]. 

Tetrahedral elements typically exhibit a stiffer response than 

hexahedral elements at the same size [16], particularly when 

formed using non-uniform elements. The initial stiffness of the 

beam-column joint with an unstructured mesh is 10% greater 

than that of a joint with a structured hexahedral mesh. 

However, despite this increased initial stiffness, the joint with 

an unstructured mesh exhibits a significantly higher post-

ultimate loss of stiffness, nearly 120% compared to its 

structured counterpart. This suggests that joints with an 

unstructured mesh are excessively stiff relative to expected 

conditions. On the other hand, the crack pattern observed in 

specimens with unstructured meshes indicates that failure is 

dominated by column elements. The failure mode suggests 

that the joint is unable to distribute deformation evenly, 

resulting in the column bearing more load than the joint itself. 

Consequently, this leads to flexural hinge failure in the column 

rather than an initial failure of the joint [50, 51]. 

It should be noted that in the numerical discretization of a 

continuous domain, the stress and strain around the fracture tip 

are only approximations. To approximate the stress gradient at 

the fracture tip as accurately as possible, the strategy is to use 

low-order elements for the entire domain and minimize the 

mesh size at the fracture tip. Another alternative is to use high-

order elements. Further development can enrich the element 

library to improve accuracy without overloading the program. 

3.2 Mesh size 

A mesh dependency study was conducted to investigate the 

effect of mesh density on crack propagation. As the density of 

mesh elements increases, the integration points become closer 

to the stress concentration region, and the numerical solution 

converges to the exact solution. The computing resources 

required to run the simulation also increase as the mesh is 

refined. In this study, four mesh sizes of solid elements are 

simulated: 25 × 25 mm, 50 × 50 mm, 100 × 100 mm, and 200 

× 200 mm. Following up further on the mesh shape that 

exhibits stability under various loading scenarios and stress 

distribution [49], the mesh shape used in the analysis is a 4-

node hexahedral mesh. The reinforcement was modeled with 

a 1-D truss element, assuming a perfect bond between the 

elements. Crack propagation in four different finite elements 

and FEM representations in the same particle and matrix are 

shown in Table 1. 

Table 1. Crack patterns based on mesh size 

Mesh Size Crack Patterns 

200 × 200 mm 

(174 elements) 

100 × 100 mm 

(402 elements) 

50 × 50 mm 

(1210 elements) 

25 × 25 mm 

(4474 elements) 

Finer mesh sizes, such as the 25 mm used in this study, are 

more accurate at capturing critical strains and accurately 

determining crack orientations compared to larger mesh sizes. 

This finding aligns with previous research indicating that finer 

meshes are reliable for detecting various types of cracks, 

including stress, diagonal shear, and compression cracks [52]. 

However, the use of finer meshes introduces smaller elements, 

which increases the number of degrees of freedom in the 

model. While this leads to a more detailed representation of 

the structure’s geometry and behavior, it also necessitates 

longer computation times due to the increased number of 

equations that must be solved [53, 54].  

When the element size is comparable to or exceeds the 

theoretical length of the plastic zone, the stress distribution 

surrounding the fracture tip approximates a uniform stress 

field. In this scenario, the overall stress exerts a greater 

influence on fracture propagation than the local stress field. In 

contrast, for fine meshes where the element size constitutes a 

small fraction, such as one-third, of the plastic zone length, the 

gradient of the local stress distribution within the plastic zone 

is accurately represented. Furthermore, if the mesh size is 

sufficiently small to represent the microstructure (e.g., mineral 

grains and grain boundaries) of quasi-brittle materials, the 

surface roughness of fractures observed from the mesh can 

accurately represent the roughness characteristics of the 

fracture material [55]. 

Figure 5 presents the envelope curve of each beam-column 

joint with various mesh sizes. Envelope curves of specimens 
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with mesh sizes exceeding 25 mm exhibit notable deviations 

from the anticipated curve. These specimens exhibit initial 

stiffness that is 5% to 15% slightly higher than those using fine 

meshes. Conversely, while coarser meshes may simplify the 

computational representation of the joint behavior, they can 

lead to less accurate predictions of peak load and stiffness 

degradation [19, 26, 56]. This occurs because the rate of 

energy release governing crack propagation becomes 

independent of the mesh when the mesh captures the essential 

stress concentration field.  

Further development can enrich the elements to improve 

accuracy without burdening the program. Although 

computation time only increases in line with the number of 

elements, large-scale engineering problems may still require 

unrealistic computation time. Therefore, parallelization and 

the use of efficient algorithms for uncracked domains are 

necessary as solutions to computational constraints. 

Figure 5. Load-displacement curve based on mesh size 

3.3 Boundary conditions 

To ensure the accuracy of the results, multiple sets of 

boundary conditions were examined in this study, as 

summarized in Table 2 and Figure 6. 

BC-A is a joint with a constraint for point-pinned support 

(𝑢𝑥 , 𝑢𝑦 = 0) at the bottom of the column, and a constraint for

point-roller support at both ends of the beam (𝑢𝑥 = 0)
(chosen model). BC-B is a joint with a constraint for line-

pinned support at the bottom of the column (𝑢𝑥, 𝑢𝑦 = 0), and

a constraint for point-roller support at both ends of the beam 
(𝑢𝑥 = 0). BC-C is a joint with a constraint for point-pinned

support at the bottom of the column (𝑢𝑥, 𝑢𝑦 = 0)  and

constraint for point-roller support (𝑢𝑥 = 0)  and the spring

constraint at both ends of the beam. BC-D is a joint with a 

constraint for point-pinned support at the bottom of the column 

(𝑢𝑥 , 𝑢𝑦 = 0), constraint for point-roller support at both ends

(𝑢𝑥 = 0) and constraint for line-rotation support at the top end

of the column (𝑟𝑧 = 0).

Providing boundary conditions that presume rotational or 

movement constraints is crucial to accurately depicting how a 

beam-column joint will behave under this kind of pressure. In 

ATENA, various types of boundary conditions can be selected 

and tailored to meet the specific needs of the analysis. These 

boundary conditions significantly influence stress distribution, 

failure modes, and overall structural behavior.  

Table 2. Combination of boundary conditions 

Boundary Conditions Crack Patterns 

Experimental 

BC-A 

BC-B 

BC-C 

BC-D 

Figure 6. Load-displacement curve based on boundary 

condition combination 
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In specimen BC-A, diagonal cracks connect the corner joint, 

with the most substantial cracks appearing in the core joint. 

The diagonal crack connecting the corner joint in specimen 

BC-A is consistent with the shear failure mechanism 

commonly observed in beam-column joints under seismic 

loading [57]. This pattern indicates stress concentration at the 

core of the joint, consistent with the point-pinned support 

conditions that create local moment transfer. Conversely, 

specimens BC-B and BC-C exhibit cracks primarily in the 

column area near the joint, showing a shift in load distribution 

due to modified boundary conditions. Line-bound support at 

BC-B creates a more even stress distribution along the base of 

the column, altering the typical strong-column-weak-beam 

behavior. These line restraints artificially restrict lateral 

movement along the base width of the column, resulting in a 

more rigid response that resembles a pinched condition. This 

constraint increases stiffness beyond what is observed 

experimentally and causes cracks to localize primarily in 

columns adjacent to the joints. Such excessive constraint 

inhibits the expected softening and stiffness degradation that 

occur when steel reaches its yield point.  

Similarly, spring constraints at BC-C introduce additional 

flexibility that redistributes stress away from the joint core 

[58]. These springs add extra stiffness at the beam-column 

interface, particularly noticeable at small drifts where spring 

force contributes to joint stiffness. The model thus 

overestimates initial stiffness by about 13% compared to 

experimental and BC-A data, and the spring forces reduce 

joint load capacity at higher drift levels by amplifying load on 

the column end. This artificial stiffness and resultant load 

redistribution cause discrepancies with expected failure and 

stiffness degradation. The force from displacement at the 

column’s end grows with drift by amplifying spring strain, 

which reduces the joint load capacity [59].  

Specimen BC-D exhibits a crack pattern similar to that of 

BC-A. The presence of additional rotation constraints on BC-

D suggests that the roller support at the beam end primarily 

governs the joint behavior. In contrast, the larger cracks 

observed in the core and corners of BC-D imply that the line 

rotation support at the top of the column introduces secondary 

moment effects. This finding contradicts certain experimental 

results and underscores potential limitations in the current 

modeling of rotation constraints.  

3.4 Performance of reinforcement in compression 

In ATENA, users are given the option to disable 

reinforcement compression response. Not activating this menu 

means that steel bars resist tensile forces but do not contribute 

under compression. This is often used in simplified models or 

when compression yielding is unlikely (e.g., in beams with 

asymmetric reinforcement). Meanwhile, disabling this feature 

allows reinforcement to develop both tensile and compressive 

stresses according to its constitutive law (usually elastic–

plastic with kinematic or isotropic hardening). Figure 7 

illustrates the impact of activating this feature on the response 

of the beam-column joint structure subjected to cyclic loading. 

Models including compression show pronounced pinching 

and reduced loop area for many beam/column configurations 

because crack opening/closing and concrete softening in 

compression reduce restoring forces on reversal [60]. When 

cracks reopen, the recovery of tensile stiffness is limited. In 

contrast, local compression and confinement degradation of 

concrete reduce the effective stiffness and energy absorption 

capacity in compression. As a result, the hysteresis loop 

narrows and bends. This reflects decreased cyclic energy 

dissipation and increased stiffness degradation. Such behavior 

is characteristic of the realistic response of reinforced concrete 

under cyclic loading. Here, tensile cracks and compressive 

damage develop path-dependently, resulting in asymmetric 

and bent hysteresis behavior. 

Figure 8 illustrates that activating the compressive capacity 

of reinforcing steel reduces cracking in the joint cross-section 

compared to scenarios where its compressive contribution is 

not engaged. Considering compression behavior requires 

accounting for bond degradation and slip between concrete 

and reinforcing steel in both loading directions. These 

interactions influence load transfer, crack propagation, and 

stiffness degradation, which are essential factors for accurate 

simulation under cyclic loading. However, ignoring 

compression behavior ignores this instability mode, 

potentially leading to overestimation of load capacity and 

underestimation of damage accumulation. 

Figure 7. Load-displacement curve based on the 

performance of reinforcement in compression 

(a) (b) 

(c) 

Figure 8. Crack patterns based on the performance of 

reinforcement in compression (a) with active in compression; 

(b) without active in compression; and (c) experimental
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3.5 Concrete unloading factor 

A high unloading factor (about 0.9) suggests that the model 

expects concrete to recover nearly all its stiffness upon crack 

closure. This presumes a full return to the original stiffness, 

which is unrealistic, as lasting microscopic damage, such as 

microcracking, aggregate slip, and adhesion loss, usually 

occurs. As a result, concrete does not restore its initial 

stiffness. Essentially, the model behaves more like an 

undamaged elastic material than a partially degraded one. In 

contrast, a low unloading factor (approximately 0.2) implies 

that concrete regains only a small fraction of its stiffness after 

cracks close. This is more accurate for alternating loads, since 

even when cracks close, imperfect contact, surface friction, 

and loss of aggregate interlock remain [32]. This mechanism 

limits stiffness recovery during loading, precisely emulating 

the clamping effect and the distinct reduction in stiffness 

observed in reverse cyclic loading. The resulting hysteresis 

loop is narrower and more asymmetric, reflecting authentic 

degradation in both stiffness and strength, and closely 

matching experimental observations. 

The envelope curve of the concrete loading factor is 

illustrated in Figure 9 and Figure 10. The load-displacement 

curves show that the default model with an unloading 

coefficient of 0.9 substantially deviates from the experimental 

response, particularly in capturing the stiffness degradation 

and peak lateral resistance. A better approximation is achieved 

with an unloading coefficient of 0.5; however, the closest 

agreement with the experimental test is obtained when the 

unloading coefficient is reduced to 0.2, which successfully 

reproduces both the strength capacity and the post-peak 

softening behavior. Similarly, the crack patterns in Figure 10 

further validate this finding. While higher unloading factors 

produce unrealistic crack distributions, the model with an 

unloading coefficient of 0.2 generates crack patterns that more 

closely resemble the experimental observations. These results 

indicate that careful calibration of the unloading factor is 

essential for improving the fidelity of FE models in simulating 

structural behavior under cyclic loading.  

Figure 9. Load-displacement curve based on the concrete 

unloading factor 

(a) Unloading factor 0.9 (b) Unloading factor 0.5

(c) Unloading factor 0.2 (d) Experimental

Figure 10. Crack patterns based on the concrete unloading 

factor 

3.6 Concrete tension stiffening 

Concrete tension stiffening refers to the phenomenon where 

concrete contributes to the overall tensile stiffness of 

reinforced concrete elements, even after cracking [61]. This 

effect arises from the bond between the concrete and the 

reinforcement, allowing some tensile stress to be transferred 

through the concrete between the cracks. Consequently, the 

structural elements increased stiffness due to the internal 

tensile forces absorbed by both the reinforcement and the 

uncracked concrete surrounding the cracks [62]. In ATENA, 

tension stiffening is an important factor in simulating the 

behavior of beam-column joints. This study presents several 

assumed values, illustrated in Figure 11 and Figure 12. 

Figure 11. Load-displacement curve based on concrete 

tension stiffening 
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(a) Tension stiffening 0.4 (b) Tension stiffening 0.2

(c) Tension stiffening 0.05 (d) Experimental

Figure 12. Crack pattern based on concrete tension stiffening 

When the drift ratio approaches 3%, the predicted crack 

pattern diverges from experimental observations. High 

reinforcement stress values, such as 0.4, suggest that the model 

assumes concrete continues to carry most tensile stress after 

cracking. This assumption increases initial stiffness and delays 

crack formation, but also leads to overestimated load capacity 

and unrealistic crack patterns, as illustrated in Figure 12. In 

this scenario, the concrete-steel bond is modeled as 

excessively strong, thereby suppressing crack localization and 

obscuring the degradation effects typically observed in 

experiments. In contrast, lower tensile stiffness values 

decrease the joint’s initial stiffness. A tensile stiffness value of 

0.05 produces joint behavior that closely matches 

experimental results, particularly in terms of crack pattern 

distribution and the load-displacement response. Lower values 

indicate partial bond loss and reduced tensile stress transfer 

between shear cracks and microcracks at the steel-concrete 

interface. This leads to more localized cracking, a softer post-

cracking response, and a hysteresis loop that aligns with 

experimental evidence [63]. 

3.7 Concrete critical compression displacement (𝑾𝒅)

The parameter concrete critical compression displacement 

(𝑊𝑑) , governs the softening branch of the concrete

compressive stress–strain relationship in numerical 

simulations. 𝑊𝑑  defines the displacement at which the

concrete stress in compression reduces to zero, representing 

the material’s ductility in compression and the extent of post-

peak softening. The research conducted by Setiawan [16] 

indicates that a higher value of 𝑊𝑑  correlates with an increased

capacity compared to other values. This correspondence 

produces a load-displacement curve that is similar to the 

experimental results, which is further supported by the 

distribution of crack patterns in the dynamic response (DR), 

which is close to 3%. Conversely, utilizing the default 𝑊𝑑

leads to significant stiffness degradation before the specimen 

reaches its ultimate capacity. 

The concrete softening curve in compression is modeled 

linearly in ATENA, with deformation expressed as 

displacement to ensure mesh objectivity [34, 35]. The standard 

value 𝑊𝑑  was 0.5 mm. This scenario leads to premature

stiffness degradation and underestimation of both ductility and 

energy dissipation. As a result, the numerical model 

demonstrates excessive brittleness and deviates from 

experimental results for load-displacement behavior and crack 

development. In contrast, higher values, such as 2.5 mm or 5 

mm, allow the concrete to undergo greater inelastic 

deformation before complete softening. This modification 

increases the fracture energy absorbed during compression. 

The result is a smoother post-peak response and improved 

agreement with experimental data. Models with higher 𝑊𝑑

more accurately reproduce both the peak load capacity and 

post-peak softening behavior seen in experiments.  

The sensitivity of 𝑊𝑑 was evaluated by simulating several

values, including 2.5 mm and 5 mm. The corresponding results 

are shown in Figure 13 and Figure 14. 

Figure 13. Load-displacement curve based on the concrete 

critical compression displacement 

(a) 𝑊𝑑 0.5 mm (b) 𝑊𝑑 2.5 mm

(c) 𝑊𝑑 5 mm (d) Experimental

Figure 14. Crack patterns based on concrete critical 

compression displacement 
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3.8 Bar with memory bond 

Reinforced concrete structures or elements involve concrete 

and reinforcement materials as their constituents. Therefore, 

the interaction between concrete and reinforcement is essential 

in analyzing the behavior of reinforced concrete structures, in 

this case, beam-column joints. In this study, two models were 

developed based on the involvement of input parameters in 

ATENA, steel-concrete bond slip, as shown in Figure 15 and 

Figure 16. The parameters used to define the bond between 

concrete and reinforcing steel are based on the Fib Model 

Code 2010 [43].  

The application of bar memory bond explicitly accounts for 

shear behavior at the interface between reinforcing steel and 

concrete. This significantly influences the simulated response 

of RC structures under cyclic loading. Bar memory bond 

represents nonlinear interactions at the steel-concrete 

interface. Shear develops once the bond stress surpasses the 

interface's shear capacity. 

Figure 15. Load-displacement curve based on bar memory 

bond 

(a) bar with memory bond (b) bar with bond-slip

(c) Experimental

Figure 16. Crack patterns based on the bar memory bond 

This behavior introduces hysteresis at the material level. It 

reflects the gradual degradation of adhesion and friction 

resulting from repeated load reversals. Models that neglect 

bond friction typically assume perfect bonding. These models 

require the reinforcing steel and concrete to deform 

identically. Such assumptions overestimate stiffness, strength, 

and energy dissipation. It disregards micro-friction, bond 

release, and re-anchorage of steel bars during cyclic loading. 

As a result, simulated load-displacement curves are often 

unrealistically stiff, exhibiting limited compression and 

insufficient degradation in stiffness relative to experimental 

observations. In contrast, models that incorporate bond 

memory behavior capture progressive degradation at the steel-

concrete interface. This produces more realistic compression, 

a reduced loop area, and accurate hysteresis degradation in the 

load-displacement response.  

3.9 Parameter sensitivity ranking based on NMSE 

Table 3 presents the results of accuracy and NMSE 

calculations for each input parameter. The ranking of the input 

parameter assumptions is visually represented in Figure 17. 

Table 3. FE analysis versus experimental results based on the 

bar memory bond 

ID Parameter 
Accuracy 

(%) 
NMSE 

A-1.1 Unstructured mesh 79.7451 0.1412 

A-1.2 Mesh hexahedral 96.8926 0.0022 

A-2.1 Mesh size: 200 × 200 mm 92.1464 0.0075 

A-2.2 Mesh size: 100 × 100 mm 93.9427 0.0049 

A-2.3 Mesh size: 50 × 50 mm 76.5521 0.1912 

A-2.4 Mesh size: 25 × 25 mm 96.8926 0.0022 

A-3.1 BC-A 96.8926 0.0022 

A-3.2 BC-B 92.1464 0.0075 

A-3.3 BC-C 82.8580 0.0330 

A-3.4 BC-D 69.7842 0.3151 

A-4.1
Reinforcement without active 

compression 
96.8926 0.0022 

A-4.2
Reinforcement with active 

compression 
81.3116 0.1116 

A-5.1 Concrete unloading factor: 0.9 49.9087 0.6216 

A-5.2 Concrete unloading factor: 0.5 76.8460 0.1153 

A-5.3 Concrete unloading factor: 0.2 96.8926 0.0022 

A-6.1 Concrete tension stiffening: 0.4 86.3938 0.0479 

A-6.2 Concrete tension stiffening: 0.2 92.2747 0.0099 

A-6.3 Concrete tension stiffening: 0.05 96.8926 0.0022 

A-7.1 Wd ∶ 5 mm 96.8926 0.0022 

A-7.2 Wd ∶ 2.5 mm 75.5153 0.1661 

A-7.3 Wd ∶ 0.5 mm 65.6344 0.4133 

A-8.1 Bar without memory bond 56.0315 0.7735 

A-8.2 Bar with memory bond 96.8926 0.0022 

Figure 17 illustrates the relationship between percentage 

changes in various input assumptions and corresponding 

changes in output accuracy, highlighting that each parameter 

exhibits a distinct level of sensitivity. Parameters such as A-3 

(boundary conditions), A-4 (performance of reinforcement in 

compression), and A-8 (bar with memory bond) demonstrate 

the most significant impact on output, as indicated by their 

relatively large and positive gradients. Consequently, minor 

variations in these parameters can result in substantial 

fluctuations in the analysis or simulation results. Conversely, 

parameter A-2 (mesh size) has a data trend that tends to be flat, 

which indicates that changes in the value of this parameter do 

not affect the load achievement at each step. 
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Figure 17. Parameter sensitivity ranking based on NMSE 

4. CONCLUSIONS

Numerical simulations of beam-column joints in a 2D 

model were conducted to verify the model’s accuracy with the 

expected results based on input parameters available in 

ATENA Science. Particular attention was given to the mesh 

configuration, boundary conditions, and the properties of 

concrete and reinforcement in predicting the response of 

beam-column joints under progressive cyclic loading. An 

analytical method was developed to identify and classify the 

most influential parameters affecting the modeling results, 

which are rarely considered, especially in cyclic behavior 

analysis. Furthermore, a sensitivity analysis was conducted to 

assess the impact of variations in each parameter on the 

structural response of the beam-column joints. Based on the 

presented results, the following conclusions were drawn: 

1. An unstructured mesh is indeed preferred for crack

simulations on quasi-brittle isotropic materials using a

crack model. Before the actual simulation, the length of

the theoretical plastic zone must first be estimated, then

the element size is selected to be at least one-third of

the length of the theoretical plastic zone as a network

parameter or equal to the size of the element constituent

grains.

2. Line support tends to distribute stress more evenly,

preventing the local damage seen in point-supported

specimens.

3. Ignoring the compressive capacity of steel for elements

subjected to lateral loads is acceptable, but it needs to

be evaluated in cases where the lateral load is in the

form of beams, as this is related to pinching and energy

dissipation effects.

4. Lower values of concrete tension stiffening indicate

partial bond loss and reduced tensile stress transfer

between shear cracks and microcracks at the steel-

concrete interface.

5. Bars with memory bonds, reinforcement performance

in compression, and boundary conditions must be given

more attention in modeling than mesh configurations.

This study is limited to 2D numerical structures, which may 

not fully capture out-of-plane effects and complex stress 

interactions present in real 3D structures. The material and 

boundary assumptions used in the models were idealized and 

homogeneous, which may have led to deviations from 

experimental responses. Therefore, future work should 

consider incorporating 3D modeling, refined material 

characterization, and comprehensive experimental validation 

to enhance the reliability and general applicability of the 

numerical findings. 
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