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The increasing demand for agricultural products requires more efficient and sustainable
supply chain systems, particularly in regions where logistics and market connectivity
remain limited. In Banten Province, Indonesia, the government is developing an agro-
hub as a local collection hub to improve agricultural distribution efficiency. However,
the current system lacks an integrated decision-support model to guide procurement,
transportation, production, and inventory planning. This study aimed to develop an
integrated Mixed-Integer Linear Programming (MILP) model to minimize the total
operational cost within the agro-hub supply chain network. The model simultaneously
optimizes supplier selection, procurement quantity, and product allocation across
multiple suppliers, commodities, and distribution channels. A cost-based heuristic
algorithm was also developed as a comparative benchmark to evaluate the performance
and robustness of the MILP solution. The results showed that the MILP model achieved
a minimum total operational cost of IDR 337,808,445, confirming its ability to identify
optimal sourcing and logistics strategies under capacity and demand constraints. The
heuristic algorithm produced a comparable total cost of IDR 384,111,503,
demonstrating its practicality and consistency, though at a slightly higher cost (13.7%
difference). Three sensitivity scenarios were further conducted, revealing that the model
remained stable and responsive to changes in demand, transportation cost, and
commodity price. In conclusion, this study provided a novel optimization framework
and a complementary heuristic method for planning agro-hub operations. The findings
offered strategic insights for policymakers in designing cost-efficient and adaptive food
distribution systems in developing regions.

1. INTRODUCTION

needs [9].
The Food and Agriculture Organization (FAO) has

Global food demand continues to grow sharply, driven by
population expansion, urbanization, and rising per capita
income. Between 2012 and 2050, demand for agricultural
products is projected to increase by nearly 50% [1], raising
serious concerns over long-term food availability [2, 3]. This
condition highlights the urgent need for a more efficient and
sustainable agro-food management system [4]. The central
challenge lies not only in increasing production but also in
ensuring that agricultural products are distributed, processed,
and delivered efficiently while maintaining their quality,
affordability, and speed of delivery [5, 6]. A reliable agro-food
supply chain is therefore essential to achieve sustainability
across upstream and downstream stages [7, 8]. To address
these challenges, the global agro-food sector must enhance its
overall system performance through improved productivity
and coordinated distribution mechanisms. The increasing
demand for agro-food products must be met through increased
production and effective distribution to meet consumption
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emphasized the importance of strengthening agro-food
systems to support the Sustainable Development Goals
(SDGs), particularly through improved logistics, technology
integration, and policy coherence [9-11]. Effective
coordination among government, industry, and research
institutions is necessary to ensure the efficient distribution of
perishable agricultural products [12-14]. When these enabling
conditions are met, an agro-hub system, a centralized
collection and distribution hub linking upstream producers
with downstream markets, can play a critical role in improving
supply chain performance [15-17]. In such systems, time-
sensitive goods are consolidated, processed, and redistributed,
reducing losses and enhancing value-added processes. The
FAO estimates that nearly 30-40% of fresh produce is lost
before reaching consumers, mainly due to poor storage and
transportation [18]. Thus, the implementation of agro-hubs
can contribute to reducing food loss, improving quality
control, and supporting sustainable development.
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From a modeling perspective, supply chain networks
(SCNs) for perishable goods require analytical approaches that
integrate economic, logistics, and operational variables.
Previous studies have explored various methods to address
supplier selection and flow optimization problems. Under the
theme of supplier selection models, numerous decision-
making approaches such as neural networks [19], hybrid and
game-theoretic models [20, 21], and efficiency-based weight
models [22] have been proposed to evaluate supplier
performance. Likewise, methods such as Analytical Hierarchy
Process (AHP), Technique for Order Preference by Similarity
to the Ideal Solution (TOPSIS), and other Multi-Criteria
Decision-Making (MCDM) techniques have been widely used
to rank suppliers according to both qualitative and quantitative
indicators [23-25]. However, these methods mainly focus on
prioritization rather than on operational optimization, such as
determining quantities and timing of procurement.

Under the theme of agro-food SCNs, simulation and
mathematical models have been recognized as powerful tools
for understanding real-world processes and improving system
efficiency [26-28]. Studies in this area underscore the
importance of integrating logistics, supplier management, a
figured inventory control within perishable product networks
to reduce waste and support circular economy goals [29, 30].
Nevertheless, the high complexity of integration requires
mathematical rigor to ensure tractable solutions that can still
be applied in practice.

Mixed-Integer Linear Programming (MILP) is extensively
used as an optimization framework for supply chains
involving multiple products, periods, and echelons. Its
advantage lies in the ability to simultaneously handle discrete
decisions, constraints, and trade-offs among interdependent
elements. MILP allows integrated optimization that connects
supplier selection, demand planning, and procurement
scheduling, offering a systematic means of minimizing total
operational cost while maintaining service quality [31-36].

This study aims to develop an integrated MILP model
structured around the configuration of an agro-hub supply
chain network. The model is designed to support end-to-end
decision-making across multiple echelons of the supply chain
from upstream suppliers to downstream distributors, retailers,
and end customers by simultaneously addressing both
strategic and operational dimensions. Specifically, the model
determines the optimal supplier selection and the allocation of
commodity flows, including the type and quantity of
commodities to be procured, their conversion into products at
the agro-hub, and the distribution of these products to various
market channels over the planning horizon. This integrated
modeling approach ensures that supplier selection is directly
aligned with downstream demand requirements, thus
enhancing supply chain responsiveness and efficiency [37,
38]. In this study, the model is applied to optimize the agro-
hub supply chain in Banten Province, Indonesia. The agro-hub
supply chain in Banten plays a crucial role in improving the
efficiency of agricultural product distribution, shortening the
supply chain, and increasing value-added through product
standardization and processing. This model is needed for
Banten because the province is currently developing a
government-led agro-hub system aimed at improving the
efficiency of agricultural distribution. Despite being located
near Jakarta, the largest consumer market in Indonesia,
Banten’s agricultural supply chain remains fragmented,
involving multiple intermediaries that increase logistics costs.
The absence of an integrated decision-support framework has
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limited the province’s ability to manage procurement,
transportation, and storage efficiently. Therefore, the proposed
MILP model provides a strategic planning tool that enables the
government to allocate resources, select suppliers, and
coordinate logistics based on cost-minimization principles
rather than profit maximization. Thus, it supports the
province’s policy objectives of enhancing food system
resilience, improving price stability, and ensuring affordable
food access. To the best of current knowledge, this research is
original and has not been conducted before. Hence, the novelty
of this study is the development of a MILP model for a multi-
echelon hub supply chain network that integrates supplier
selection and flow allocation based on the structure of an agro-
hub supply chain network in Banten Province, Indonesia. In
addition, a cost-based heuristic algorithm is developed as a
comparative benchmark to evaluate the efficiency of the MILP
solution.

2. MATERIALS AND METHODS
2.1 General framework

In this research, the agro-hub acts as a mediator between the
suppliers and customers. Agro-hub collects the commodities
from the farmers in bulk quantities, and then the commodities
are packaged at the warechouse site to meet the consumer-
friendly requirements. The packaged commodities are called
products. Thus, simultaneously, each agro-food commodity
gets one conversion factor to become a product. The
packaging process is done by batch production, meaning there
will be a batch size for each product production. Farmers sell
their commodities to the agro-hub, then the agro-hub can
determine the types and quantity of commodities purchased
from farmers in the most cost-effective manner and distribute
the packaged products to distributors, retailers, and customers,
as shown in Figure 1. The decision variables that are
considered in the model (see Figure 1) consist of (1) what type
of commodities, (2) how many quantities of commodities are
bought from farmers, and (3) how many of the products are to
be sent to distributors, retailers, and customers after being
packaged in the agro-hub. A mathematical model is developed
to minimize the total operational cost by considering the
limitations as constraints. A critical constraint in the model is
the machine capacity available in the agro-hub, which will
determine the production capacity. The transportation cost will
occur when the commodities or products are taken from
farmers and distributed to the distribution channels
(distributors, retailers, and customers). The model treats each
commodity type as a distinct product, using a constant
conversion factor to represent the transformation from raw
commodity to finished product. Inventory costs are incurred
when the production of agro-hub products exceeds actual
demand. The model can be solved using Lingo software and
validated with a series of data tests.

2.2 Mathematical model

MILP optimization is developed to determine the types of
commodities obtained from farmers and their quantity, which
are considered the most cost-effective for distribution through
the agro-hub network. The model is addressed as a
deterministic-dynamic model, meaning the parameter data
must already be known in each period in the planning horizon.
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Figure 1. The framework of the agro-hub supply chain
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The objective function presented in Eq. (1) aims to
minimize the total operational cost of the agro-food supply
chain network. This total cost comprises several components
that capture all major activities within the system.

The first component, expressed in Eq. (1a), represents the
procurement cost of commodities, which includes the
purchasing expenses incurred when obtaining raw materials
from suppliers. Eq. (1b) accounts for the upstream
transportation cost from farmers to the agro-hub. Eq. (1c)
defines the processing cost, which covers the transformation
of commodities into final products within the agro-hub
facility.

Subsequently, Egs. (1d)-(1f) capture the downstream
transportation costs associated with product distribution to
various market channels, namely distributors (Eq. (1d)),
retailers (Eq. (1e)), and end customers (Eq. (1f)). Finally, Eq.
(1g) represents the inventory holding cost at the agro-hub,
which arises when the volume of produced goods exceeds
current demand. This cost component discourages
overproduction and promotes efficient synchronization
between production and demand levels.

Eq. (2) defines the conversion relationship between
commodities and products processed at the agro-hub. This
constraint ensures that the total quantity of products produced
at the agro-hub does not exceed the total amount of
commodities supplied by farmers and suppliers, adjusted by
the corresponding conversion factor.

Eq. (3) governs the distribution balance between the
quantity of products produced at the agro-hub and the volume
distributed to downstream channels. This constraint ensures
that the total quantity of products delivered to all market
nodes, including distributors, retailers, and end customers,
does not exceed the total amount of products processed and
available at the agro-hub.

Egs. (4)-(6) represent the demand satisfaction constraints at
different downstream levels of the agro-food supply chain.
Each constraint ensures that the total quantity of products
distributed from the agro-hub is sufficient to meet the
corresponding demand at every market node, namely



distributors, retailers, and end customers.

Eq. (7) establishes the production capacity constraint at the
agro-hub. This constraint ensures that the total quantity of
products processed and produced within the agro-hub during
each period does not exceed the facility’s available production
capacity.

Eq. (8) defines the relationship between the number of
vehicle trips and the volume of commodities transported from
farmers (suppliers) to the agro-hub. Eqgs. (9)-(11) determine
the number of transportation trips required to deliver products
from the agro-hub to each downstream channel, including
distributors, retailers, and end customers. This constraint
ensures that the total number of trips required in each period is
consistent with the total shipment volume and the capacity of
each vehicle.

Eq. (12) introduces the inventory variable at the agro-hub,
which represents the quantity of products remaining at the end
of each period. Inventory occurs whenever the production
volume at the agro-hub exceeds market demand.

Eq. (13) imposes the integer condition on all variables
representing the number of vehicle trips, both in the upstream
(from farmers to the agro-hub) and downstream (from the
agro-hub to distributors, retailers, and end customers)
segments of the supply chain. This constraint ensures that the
model captures the discrete nature of transportation activities.
This integer constraint allows the model to accurately
represent fixed transportation costs per trip, regardless of
whether a vehicle is fully loaded or not. In practice, every
vehicle dispatch incurs the same trip cost once it is operated,
even if its capacity is partially utilized. This formulation
enhances the model’s operational realism by reflecting actual
logistics behavior, ensuring that transportation costs are
computed on a per-trip basis rather than proportionally to
shipment volume.

2.3 Development of the heuristic algorithm

To complement the optimization model, a heuristic
algorithm is developed to provide a simplified decision rule
for allocating supply and demand within the agro-food supply
chain network. The heuristic serves as a benchmark approach
for comparison with the MILP model, enabling an evaluation
of the model’s effectiveness in minimizing total operational
cost.

The algorithm is designed based on a cost-priority logic,
where suppliers are ranked according to their effective unit
cost, and demand is sequentially fulfilled from the lowest-cost
sources until all requirements are met. This procedure reflects
a practical decision-making process that can be easily applied
in real-world agro-hub operations when computational
optimization tools are not available.

The step-by-step procedure of the developed heuristic
algorithm is presented as follows:

1. Compute the effective unit cost for each supplier (k) and
commodity (7): purchase pricejk + transport cost ;, .

2. Sort all suppliers in ascending order of the effective unit
cost from lowest to highest cost.

3. Calculate the required demand for each product (i) and
period (?), including the conversion factor.

4. Starting from the lowest-cost supplier, allocate supply
to meet the required demand from Step 3, subject to
each supplier’s available capacity.

5. Stop when the required demand for that period is fully
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satisfied.
6. Calculate the total operational cost.
2.4 Data collection

The dataset in this study includes information on the
number of available suppliers and the types of commodities
they provide, as well as the structure of downstream entities,
including customers, retailers, and distributors, along with
their corresponding product demand levels. Additional data
parameters involve transportation costs between each supply
chain echelon and conversion factors that reflect the
transformation of raw commodities into finished products
within the agro-hub. These input parameters serve as the
foundation for implementing and testing the proposed MILP
model. The data for this study are derived from internal
records from the Banten Provincial Agriculture Office and the
agro-hub. Given that the agro-hub initiative in Banten is still
in progress, with the government currently updating and
refining its operational blueprint, only limited but verified data
are available for modeling purposes. There are two
commodities and three suppliers used in this numerical
example, with the agro-hub operating at an installed
production capacity of 30,000 kg per period. The selection of
two commodities and three suppliers reflects the most active
and data-complete actors within this pilot phase. This
simplified configuration corresponds to the early operational
structure of the agro-hub and provides a realistic baseline for
testing the model’s effectiveness in minimizing operational
costs and improving logistical efficiency.

Detailed data for the numerical example are presented in
Tables 1-5. To facilitate model formulation and numerical
analysis, certain simplifications are adopted. First,
commodities are represented using numerical indices (e.g.,
Commodity 1, Commodity 2, etc.) instead of their actual
product names. Each indexed commodity corresponds to a
specific agricultural item, such as rice, maize, and other
staples. Second, the planning horizon is segmented into
discrete periods denoted by integers (e.g., Period 1, Period 2,
etc.), rather than explicitly labeling them by weeks or months.
These abstractions are commonly used in mathematical
modeling to streamline variable representation and enhance
scalability, without compromising the model’s applicability to
real-world supply chain contexts. A fixed number is assigned
to the farmer as the supplier. In this research, three farmers are
suppliers of two types of commodities for six weeks (6
periods) of production. The downstream structure of the agro-
hub network consists of three retailers, two direct customers,
and two distributors. The conversion factors for transforming
Commodity 1 and Commodity 2 into Product 1 and Product 2
are assumed to be 0.80 and 0.85, respectively. These values
represent the average conversion rates observed at the agro-
hub company in Banten Province and are used as fixed
parameters in this study. Tables 1-5 show the parameter data
as input for the model. Table 1 presents the weekly demand
from each downstream channel for the agro-hub’s products.
This demand data serves as the basis for determining the
quantity of raw commodities that must be procured from
suppliers and subsequently processed or converted into the
desired products to fulfill downstream requirements.

Table 2 presents the purchasing prices of Commodity 1 and
Commodity 2 from individual farmers who serve as upstream
suppliers within the agro-hub network.



Table 1. Product demand in each period for each distribution channel (kg)

Channel No. Product Type 1 2 P3er10d (Weel‘? 5 6
1 1 299 180 179 195 279 222
Direct Customer 2 170 105 106 193 202 254
> 1 189 271 142 114 245 165
2 271 120 246 299 102 232
1 1 1085 1101 1362 1199 1334 1034
2 1026 1189 1476 1425 1468 1304
Retailer 5 1 1357 1311 1180 1213 1272 1193
2 1421 1057 1028 1095 1055 1169
3 1 1423 1430 1444 1163 1101 1220
2 1394 1037 1093 1352 1246 1002
1 1 3474 3936 4642 4500 4583 4609
Distributor 2 4649 3881 3383 4116 3522 3284
2 1 3481 3109 4629 4264 3401 4871
2 4155 3856 4099 3665 4005 4095
Table 2. Commodity prices offered by each supplier (in Table 3 presents the supply capacities of each supplier for
IDR/kg) the respective commodities they provide to the agro-hub.
These capacity values represent the maximum quantity that
¥ Type of Commodity each supplier can deliver per period (weekly) within the
armer . . .
1 2 defined planning horizon and are applied as upper-bound
1 200 1800 constraints in the optimization model.
250 1400 Table 4 summarizes various capacity-related constraints
3 150 2000 used in the model. These include:
. . . . (i) the vehicle capacity for transporting commodities from
Table 3. Supplier capacity fo‘r commodities per period suppliers to the agro-hub (kg);
(weekly, in kg) (i1) the vehicle capacity for delivering finished products
_ from the agro-hub to downstream channels (kg);
Farmer Commodity (iii) the production batch size at the agro-hub (kg);
1 2 (iv) the production cost incurred per batch (IDR). These
1 10000 11000 o . .
) 9000 12000 parameters are critical for accurately modeling logistical and
3 1000 2000 operational limitations within the agro-hub supply chain
network.
Table 4. Transportation and production capacity (kg)
Commodity or Tran.sportation Tran_sportation Prqduction Batch Production Cost Inventory Cost
Product Type Capacity for.Each Capacity for Each Size for Each for Each Product for Each
Commodity Product Product Product
1 3000 2000 1000 500 200
2000 3000 800 700 350
Table 5. Transportation cost per trip from agro-hub to each 2.5 Data processing

distribution channel (IDR)
All parameter data (Tables 1-5) are inserted into an

Channel No. Commodity/ Product opt%mization software. Lingo software is used .to generate j[he
1 2 optimal solution. The proposed MILP model is solved using
1 2500000 2500000 LINGO optimization software. The computation is performed
Farmer 2 3000000 2000000 on a standard personal computer with an Intel® Core™ i7-
3 4000000 3000000 8750H CPU @ 2.20GHz and 16GB of RAM.
Customer 1 10000 10000
2 10000 10000
, ! 50000 80000 3. RESULTS AND DISCUSSIONS
Retailer 2 60000 100000
3 70000 85000
S 1 150000 130000 3.1 The proposed MILP model
2 200000 180000 The proposed MILP model is solved using LINGO
. . ) optimization software, which successfully obtained the
Table 5 displays the transportation cost per trip between the optimal solution in less than one second (see Figure 2). The
agro-hub and each .cormected channel, both upstream actors objective function is formulated to minimize total operational
(farmers as suppller.s) and downstream actors .(re.taﬂer.s, cost, resulting in a total operational cost of IDR 337,808,445.
dlstrlbutors, and direct custom.ers). The variation in The corresponding optimal decision strategy comprising
transportghop co.sts .reﬂects dlfferc?nces n logistical supplier selection, product allocation, quantity purchased, and
complexity, including distance and required service levels. delivery timing is detailed in Tables 6 to 9.
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— Solver Status—— —Variables
| .
Model Class: MILP Total 287
Nonlinear: 0
State: Global Opt Integers: 120
Obiective: 3.37808e+008 S arshiaints
Infeasibiity: ~ 2.84217e-014 Total: 290
Nonlinear: 0
Iterations: 223
-Nonzeros
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Nonli 3
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= 0 Elapsed Runtime (hh:mm:ss)
L Active: 0 | 00:00:00
Update Interval: |2 Interrupt Solver Close |

Figure 2. LINGO output display showing objective value
and computation time

To achieve this objective value, LINGO provides a set of
technical strategies involving supplier selection and weekly
procurement decisions over the six-week planning horizon.
These detailed decisions, including the type and quantity of
commodities to be purchased from each supplier in each time
period, are presented in Table 6. The results indicate that only
two out of the three available suppliers are selected throughout
the planning horizon. In Week 1, for example, the agro-hub is

advised to procure 9,000 kg of Commodity Type 1 and 3,395
kg of Commodity Type 2 from Supplier 1, and 5,135 kg of
Commodity Type 1 and 12,000 kg of Commodity Type 2 from
Supplier 2. These procurement decisions are generated by the
model based on a simultaneous evaluation of multiple
constraints, including commodity prices offered by each
supplier, supplier capacity limits, and transportation costs
between suppliers and the agro-hub.

Table 7 presents the delivery strategy from the agro-hub to
distributors, as generated by the LINGO optimization results.
Table 7 specifies the type, quantity, and timing of product
shipments required to meet distributor demand over the six-
week planning horizon. For instance, in Week 1, the agro-hub
is required to deliver 3,474 kg of Product Type 1 to Distributor
1. This quantity and product type precisely correspond to the
distributor’s stated demand in Table 1 for the same period. The
consistency between planned deliveries and actual demand
across all downstream entities further confirms the model’s
ability to effectively and accurately satisfy the requirements of
each distribution channel.

Table 8 presents the delivery strategy from the agro-hub to
retailers, as determined by the LINGO-generated solution.
Table 8 details the type, quantity, and timing of product
shipments required to fulfill retailer demands throughout the
six-week planning horizon. For example, in Week 1, the agro-
hub is scheduled to deliver 1,085 kg of Product Type 1 to
Retailer 1. This quantity precisely matches the demand
specified by the retailer in Table 1 for that period. Such
alignment indicates that the model is capable of accurately
fulfilling the needs of various downstream channels, ensuring
timely delivery and product availability as required.

Table 6. The types and quantities of agro-food products bought from farmers as suppliers (kg)

. . Week Period
Supplier Commodity 1 2 3 4 5 6
1 1 9000 9000 9000 10000 10000 9000
2 3395 1229 1448 2288 1647 1341
5 1 5135 5173 7973 5810 5269 7643
2 12000 12000 12000 12000 12000 12000
3 1 0 0 0 0 0 0
2 0 0 0 0 0 0
Total 29530 27402 30421 30098 28916 29984
Table 7. The types and quantities of agro-food products sold to distributors (kg)
. Week Period
Distributor Product 1 2 3 4 5 6
| 1 3474 3936 4639 4497 4583 4605
2 4649 3881 3383 4116 3522 3284
2 1 3481 3109 4629 4264 3401 4871
2 4155 3856 4099 3665 4005 4095
Total 15760 14784 16753 16546 15516 16861
Table 8. The types and quantities of agro-food products sold to retailers (kg)
. Week Period
Retailer Product 1 ) 3 4 5 6
1 1 1085 1101 1362 1199 1334 1034
2 1026 1189 1476 1425 1468 1304
2 1 1357 1311 1180 1213 1272 1193
2 1421 1057 1028 1095 1055 1169
3 1 1423 1430 1444 1163 1101 1220
2 1394 1037 1093 1352 1246 1002
Total 7706 7125 7583 7447 7476 6922
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Table 9. The types and quantities of agro-food products sold to customers (kg)

Week Period
Customer Product 1 2 3 4 5 6
| 1 299 180 179 195 279 222
2 170 105 106 193 202 254
’ 1 189 271 142 114 245 165
2 271 120 246 299 102 232
Total 930 678 676 805 833 879

Table 9 presents the delivery strategy from the agro-hub to
direct customers as determined by the MILP model over the
six-week planning horizon. The results show that the quantity
of each product delivered to direct customers in every period
exactly matches their respective demand levels. For instance,
in Week 1, the agro-hub is required to deliver 299 kg of
Product Type 1 to Customer 1, which is identical to the
demand stated in Table 1 for that period. This alignment
demonstrates that the model effectively satisfies customer
requirements with precision, thereby validating its capability
to ensure timely and accurate fulfillment across the planning
horizon.

The results demonstrate the effectiveness of the proposed
MILP model in generating an integrated and feasible
procurement and distribution strategy across a multi-echelon
agro-hub supply chain. Selecting the most cost-efficient
suppliers and optimizing commodity purchasing decisions
based on price, capacity, and transportation costs enables the
model to successfully maximize total profit. Furthermore, it
ensures full alignment between downstream demand and
delivery plans across all channels, including direct customers,
retailers, and distributors, through precise allocation of
product type, quantity, and timing. The optimization results
from numerical approximation show promise for application
in the agro-food supply chain in the real world, specifically in
Banten Province, Indonesia.

3.2 Sensitivity analysis

To evaluate the robustness and responsiveness of the
proposed MILP model, a sensitivity analysis is conducted
under three different scenarios. Each scenario is designed to
assess how changes in key parameters affect the model’s total
operational cost and allocation decisions across the agro-food
supply chain network. Through these scenarios, the model’s
sensitivity to market demand, transportation efficiency, and

supplier pricing is analyzed to validate its applicability under
varying operational conditions.

Scenario 1: Reduced demand across all channels. In this
scenario, the demand levels from all downstream channels
(distributors, retailers, and customers) are decreased by up to
50%, while all other parameters are kept constant. This
adjustment examines how lower market demand influences
procurement quantities, production volumes, and total
operational cost.

The model produces a total operational cost of IDR
168,764,309. This value is significantly lower than the base-
case scenario, indicating that reduced market demand leads to
a proportional decrease in overall procurement, transportation,
and processing activities throughout the supply chain network.
Table 10 presents the procurement quantities of each
commodity from the respective suppliers over six planning
periods.

The results indicate that only Supplier 1 (Commodity 1) and
Supplier 2 (Commodity 2) remain active under the reduced-
demand condition, while the remaining suppliers are not
utilized. This reflects the model’s cost-minimizing behavior,
where procurement is restricted to the most cost-efficient
suppliers. The overall procurement volume decreases
consistently across periods, aligning with the halved market
demand and supporting the model’s capacity to dynamically
adjust purchasing and production levels in response to demand
fluctuations.

Scenario 2: Reduced transportation cost from farmers to the
agro-hub. The second scenario simulates an improvement in
upstream logistics efficiency by reducing transportation costs
from farmers (suppliers) to the agro-hub. This case aims to
observe how decreased transport costs affect supplier selection
and cost distribution within the network. The modified
parameter values used in this scenario are presented in Table
11. These values represent lower transportation costs per route
compared to the base case.

Table 10. The types and quantities of agro-food products bought from farmers as suppliers (kg) under Scenario 1

Week Period

Supplier Commodity 1 3 4 5 6
| 1 7068 7086 8486 7905 7634 8321
2 0 0 0 0 0
) 1 0 0 0 0 0
2 7698 6615 6724 7144 6824 6671
3 1 0 0 0 0 0
2 0 0 0 0 0
Total 14765 13701 15210 15049 14458 14992

Table 11. Transportation cost per trip from farmer to agro-hub channel (in IDR)

Channel No. 1 Commodity 2
1 2500000 2500000
Farmer 2500000 2500000
3 500000 500000
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Table 12. The types and quantities of agro-food products bought from farmers as suppliers (kg) under Scenario 2

. . Week Period
Supplier Commodity 1 2 3 4 5 6
| 1 9000 9000 9000 9000 9000 9000
2 2000 0 0 2000 0 0
’ 1 5135 5173 7973 5810 5269 7643
2 12000 12000 12000 12000 12000 12000
3 1 0 0 0 1000 1000 0
2 1395 1229 1448 288 1647 1341
Total 29530 27402 30421 30098 28916 29984

Table 13. Commodity prices offered by each supplier (in

IDR/kg) under Scenario 3
Farmer ;l“ype of Commodlzty
1 200 1800
2 250 1400
3 50 500

Under Scenario 2, where the transportation cost from
farmers to the agro-hub is reduced, the model produces a total
operational cost of IDR 334,178,328. The detailed
procurement quantities of each commodity from the respective
suppliers over the six planning periods are summarized in
Table 12. The results reveal a notable behavioral shift in
supplier participation. Due to the reduced transportation cost,
Supplier 3, previously inactive in the base-case scenario,
becomes active in this configuration. This change indicates
that lower logistics costs increase the competitiveness of

suppliers located farther from the agro-hub.

Scenario 3: Lower commodity prices from Supplier 3. In the
third scenario, the commodity prices offered by Supplier 3 are
adjusted to be lower than in the base case. This modification
evaluates how price competitiveness from a specific supplier
influences sourcing decisions and overall system cost. The
adjusted price parameters used in this scenario are presented
in Table 13, where the price of Commodity 1 supplied by
Supplier 3 is reduced to IDR 50 per kg, and the price of
Commodity 2 is reduced to IDR 500 per kg. These adjustments
represent a condition in which Supplier 3 offers a significant
price advantage over other suppliers.

The model produced a total operational cost of IDR
326,142,092. This indicates a cost reduction compared to the
base case and Scenario 2, suggesting that lower commodity
prices substantially improve overall system efficiency. Table
14 presents the detailed procurement allocation of each
commodity from the respective suppliers across six planning
periods.

Table 14. The types and quantities of agro-food products bought from farmers as suppliers (kg) under scenario 3

. . Week Period
Supplier Commodity 1 2 3 4 5 6
1 1 9000 9000 9000 10000 10000 9000
2 1395 0 0 288 0 0
) 1 5135 5173 7973 5810 5269 7643
2 12000 11229 11448 12000 11647 11341
3 1 0 0 0 0 0 0
2 2000 2000 2000 2000 2000 2000
Total 29530 27402 30421 30098 28916 29984

The sensitivity analysis is conducted through three
scenarios to evaluate how variations in key parameters,
demand, transportation cost, and commodity price affect the
model’s performance and decision-making structure. The
findings collectively demonstrate the robustness and
adaptability of the proposed MILP model in optimizing
procurement and minimizing total operational cost under
different operational conditions. Overall, the sensitivity
analysis reveals that the model responds logically and
consistently to parameter variations. Reductions in demand or
input cost parameters (either transport or commodity prices)
directly lead to lower total operational costs and adaptive
reallocation of procurement sources. These results confirm
that the model provides a stable, responsive, and policy-
relevant decision-support tool for managing the agro-hub’s
supply chain under changing economic and logistical
conditions.

3.3 The proposed heuristic algorithm

This section presents the application and performance
results of the proposed heuristic algorithm. The heuristic is
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implemented using the same input parameters and operational
settings as the MILP model to ensure a consistent basis for
comparison.

Applying Steps 1 and 2 of the heuristic algorithm results in
a ranking of suppliers based on the lowest effective unit cost.
For Commodity 1, the order of increasing cost is Supplier 1,
Supplier 2, and Supplier 3. Meanwhile, for Commodity 2, the
suppliers are ranked as Supplier 2, Supplier 1, and Supplier 3,
respectively (Table 15).

Table 15. Ranking of suppliers based on effective unit cost
for each commodity

Commodity

Supplier

1
2
3

1
2500200 (rank-1)
3000250 (rank-2)
4000150 (rank-3)

2
2501800 (rank-2)
2001400 (rank-1)
3002000 (rank-3)

Step 3 of the heuristic algorithm involves calculating the
cumulative demand for each product across all distribution
channels, namely distributors, retailers, and end customers.



The aggregated product demand is then adjusted using the
corresponding conversion factor to determine the total
quantity of each commodity that must be procured by the agro-
hub. This step ensures that procurement volumes at the
upstream level accurately reflect the processed product
requirements downstream. The detailed computation of the
cumulative product demand and the corresponding converted
commodity quantities is presented in Table 16.

Table 16. Cumulative product demand from all channels
adjusted by the conversion factor for commodity

procurement
ISP Period (t)
Commodity (j) 1 2 3 4 5 6
1 13570 13606 16294 15178 14658 15977
2 15049 12932 13146 13967 13340 13041

Steps 4 and 5 of the heuristic algorithms focus on the
allocation of commodity procurement based on the ranked
supplier costs obtained in the previous steps. In this stage, the
agro-hub begins procuring commodities starting from the
supplier offering the lowest effective unit cost. Procurement
continues from this supplier until its available capacity is fully
utilized or the total commodity requirement is met. If
additional volume is still required, the algorithm proceeds to
procure from the supplier with the next lowest cost, and the
process repeats until the full demand for each commodity is
satisfied. This sequential allocation ensures that procurement
decisions remain cost-efficient while respecting supplier
capacity constraints. The resulting distribution of commodity
purchases from each supplier across all planning periods is
presented in Table 17.

Table 17. Allocation of commodity procurement from each
supplier (heuristic steps 4-5)

. . Week Period
Supplier Commodity 1 2 3 4 5 6

1 1 10000 10000 10000 10000 10000 10000
2 3049 932 1146 1967 1340 1041

2 1 3570 3606 6294 5178 4658 5977
2 12000 12000 12000 12000 12000 12000

3 1 565 566 678 632 611 666
2 346 297 302 321 307 300

Total 29530 27402 30421 30098 28916 29984

Step 6 involves calculating the total operational cost
resulting from the procurement and distribution strategy
generated by the heuristic method. All cost components,
including procurement, transportation, processing, and
inventory, are aggregated to obtain the overall system
expenditure associated with the heuristic allocation strategy.
From this computation, the total operational cost achieved by
the heuristic approach is IDR 384,111,503. This value reflects
the total expenditure required to operate the agro-food supply
chain under the heuristic strategy and serves as a benchmark
for comparison against the optimal solution obtained from the
MILP model.

3.4 Comparison between MILP and heuristic results
The performance comparison between the MILP model and

the proposed heuristic algorithm highlights the superior
efficiency of the MILP-based optimization framework. The
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MILP model achieves a total operational cost of IDR
337,808,445, whereas the heuristic approach results in IDR
384,111,503, which is approximately 13.7% higher than the
optimal solution.

This result confirms that the MILP model successfully
provides the global minimum operational cost through an
integrated optimization of procurement, transportation, and
processing decisions. In contrast, the heuristic algorithm,
while simpler and faster to implement, can only approximate
the optimal result due to its sequential and cost-priority logic.

Overall, the findings reinforce that the proposed MILP
model serves as the primary decision-support framework,
offering a robust, data-driven basis for strategic planning
within the agro-hub, while the heuristic provides supportive
insight for quick operational evaluations.

3.5 Limitations of the study

Although the proposed MILP model provides a robust and
practical framework for optimizing the agro-food supply chain
network in Banten province, several limitations should be
acknowledged to contextualize the findings and guide future

improvements.
First, the current model operates under a deterministic
assumption, where all parameters (such as demand,

transportation cost, supplier capacity, and product prices) are
treated as fixed and known in advance. This assumption
simplifies computation and ensures model tractability.
However, it does not account for uncertainty and variability
commonly observed in real-world agro-food systems, such as
seasonal demand fluctuations, weather-related disruptions,
and price volatility.

Second, the model applies a fixed conversion rate between
commodities and final products at the agro-hub. In practice,
this conversion efficiency may vary due to raw material
quality, processing losses, or equipment performance. A
constant conversion factor can therefore limit the accuracy of
production-procurement linkage and the estimation of total
processing cost.

Third, the model assumes constant commodity prices across
all planning periods, implying stable market conditions. This
assumption may overlook temporal price fluctuations that
typically occur in agricultural markets due to supply-demand
dynamics or external shocks.

Finally, production and delivery lead times are not
incorporated into the model. This exclusion is intentional to
maintain model simplicity and focus on cost-minimization
logic. However, it restricts the model’s ability to capture
scheduling delays and time-based coordination between
upstream and downstream actors.

Despite these simplifications, the model successfully
demonstrates the potential of an integrated optimization
framework for policy-driven agro-hub management.

4. CONCLUSIONS

This study develops an integrated MILP model to optimize
the agro-food supply chain network in Banten Province,
Indonesia. The model is designed to minimize the total
operational cost of the system by integrating procurement,
transportation, processing, and inventory decisions across
multiple suppliers, products, and distribution channels.

The optimization results demonstrate that the proposed



MILP model effectively identifies the most cost-efficient
allocation of commodities from suppliers to the agro-hub and
from the agro-hub to downstream markets. The model
achieves a minimum total operational cost of IDR
337,808,445, representing the optimal balance among
procurement, logistics, and production costs within the
defined system constraints.

To validate the robustness of the proposed framework,
sensitivity analyses are conducted under three scenarios:
reduced demand, lower transportation costs, and decreased
commodity prices. The results show that the model behaves
logically and remains stable under parameter changes,
adjusting supplier selection and procurement volumes
accordingly. Additionally, a heuristic algorithm is developed
to provide a simplified comparison method. Although the
heuristic produces a slightly higher total cost (13.7% above the
MILP optimum), it confirms the consistency and superiority
of the MILP solution, reinforcing the model’s effectiveness as
a strategic decision-support tool.

The model’s deterministic nature, along with assumptions
of fixed conversion rates, constant commodity prices, and the
exclusion of production and delivery lead times, is
acknowledged as a limitation. Nevertheless, these
simplifications ensure tractability and clarity of results in this
early-stage modeling effort.

Overall, the proposed MILP framework contributes a
practical, data-driven foundation for optimizing agro-hub
operations and regional food supply chain management. The
model can assist policymakers and practitioners in designing
efficient sourcing and distribution strategies that enhance cost
efficiency, resource utilization, and local food system
resilience. Future research should extend this framework by
incorporating stochastic elements, variable conversion
efficiency, and time-dependent constraints to improve its

applicability to dynamic real-world supply chain
environments.
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NOMENCLATURE

Indices

AN O~

Index of product
Index of commodity
Index of customer
Index of retailer
Index of distributor
Index of farmers

Parameters

Pki

Price of commodity j from farmer k&


https://doi.org/10.18280/jesa.570329

Transportation cost to carry commodity j from
farmer k&

Production batch size of product i

Transportation capacity for product i
Transportation capacity for commodity j
Production cost of product i

Transportation cost to carry product 7 to
customer ¢

Transportation cost to deliver product i to retailer
r

Transportation cost to deliver product i to retailer
d

The demand of customer ¢ on product i at period
t

The demand of retailer r on product i at period ¢
The demand of distributor d on product 7 at
period ¢

Conversion rate of product i from commodity j
Production capacity

Inventory cost of product i
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Variables

Seit Quantity of product i to customer c¢ at period ¢

Srit Quantity of product i to customer r at period ¢

Sait Quantity of product i to customer d at period ¢

Skjt Quantity of commodity j from supplier & at
period ¢

Qi: Quantity of product i packaged at period ¢ in the
hub

NT,;  Number of trips required to deliver product i
from agro-hub to customer c at period ¢

NT,;;  Number of trips required to deliver product i
from agro-hub to retailer r at period ¢

NTs:  Number of trips required to deliver product i
from agro-hub to distributor d at period ¢

NTyj:  Number of trips required to deliver commodity j
from supplier & to agro-hub at period ¢

Inv;;  Inventory level of product i at the agro-hub at

period ¢





