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The increasing demand for agricultural products requires more efficient and sustainable 

supply chain systems, particularly in regions where logistics and market connectivity 

remain limited. In Banten Province, Indonesia, the government is developing an agro-

hub as a local collection hub to improve agricultural distribution efficiency. However, 

the current system lacks an integrated decision-support model to guide procurement, 

transportation, production, and inventory planning. This study aimed to develop an 

integrated Mixed-Integer Linear Programming (MILP) model to minimize the total 

operational cost within the agro-hub supply chain network. The model simultaneously 

optimizes supplier selection, procurement quantity, and product allocation across 

multiple suppliers, commodities, and distribution channels. A cost-based heuristic 

algorithm was also developed as a comparative benchmark to evaluate the performance 

and robustness of the MILP solution. The results showed that the MILP model achieved 

a minimum total operational cost of IDR 337,808,445, confirming its ability to identify 

optimal sourcing and logistics strategies under capacity and demand constraints. The 

heuristic algorithm produced a comparable total cost of IDR 384,111,503, 

demonstrating its practicality and consistency, though at a slightly higher cost (13.7% 

difference). Three sensitivity scenarios were further conducted, revealing that the model 

remained stable and responsive to changes in demand, transportation cost, and 

commodity price. In conclusion, this study provided a novel optimization framework 

and a complementary heuristic method for planning agro-hub operations. The findings 

offered strategic insights for policymakers in designing cost-efficient and adaptive food 

distribution systems in developing regions. 
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1. INTRODUCTION

Global food demand continues to grow sharply, driven by 

population expansion, urbanization, and rising per capita 

income. Between 2012 and 2050, demand for agricultural 

products is projected to increase by nearly 50% [1], raising 

serious concerns over long-term food availability [2, 3]. This 

condition highlights the urgent need for a more efficient and 

sustainable agro-food management system [4]. The central 

challenge lies not only in increasing production but also in 

ensuring that agricultural products are distributed, processed, 

and delivered efficiently while maintaining their quality, 

affordability, and speed of delivery [5, 6]. A reliable agro-food 

supply chain is therefore essential to achieve sustainability 

across upstream and downstream stages [7, 8]. To address 

these challenges, the global agro-food sector must enhance its 

overall system performance through improved productivity 

and coordinated distribution mechanisms. The increasing 

demand for agro-food products must be met through increased 

production and effective distribution to meet consumption 

needs [9]. 

The Food and Agriculture Organization (FAO) has 

emphasized the importance of strengthening agro-food 

systems to support the Sustainable Development Goals 

(SDGs), particularly through improved logistics, technology 

integration, and policy coherence [9-11]. Effective 

coordination among government, industry, and research 

institutions is necessary to ensure the efficient distribution of 

perishable agricultural products [12-14]. When these enabling 

conditions are met, an agro-hub system, a centralized 

collection and distribution hub linking upstream producers 

with downstream markets, can play a critical role in improving 

supply chain performance [15-17]. In such systems, time-

sensitive goods are consolidated, processed, and redistributed, 

reducing losses and enhancing value-added processes. The 

FAO estimates that nearly 30-40% of fresh produce is lost 

before reaching consumers, mainly due to poor storage and 

transportation [18]. Thus, the implementation of agro-hubs 

can contribute to reducing food loss, improving quality 

control, and supporting sustainable development. 
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From a modeling perspective, supply chain networks 

(SCNs) for perishable goods require analytical approaches that 

integrate economic, logistics, and operational variables. 

Previous studies have explored various methods to address 

supplier selection and flow optimization problems. Under the 

theme of supplier selection models, numerous decision-

making approaches such as neural networks [19], hybrid and 

game-theoretic models [20, 21], and efficiency-based weight 

models [22] have been proposed to evaluate supplier 

performance. Likewise, methods such as Analytical Hierarchy 

Process (AHP), Technique for Order Preference by Similarity 

to the Ideal Solution (TOPSIS), and other Multi-Criteria 

Decision-Making (MCDM) techniques have been widely used 

to rank suppliers according to both qualitative and quantitative 

indicators [23-25]. However, these methods mainly focus on 

prioritization rather than on operational optimization, such as 

determining quantities and timing of procurement. 

Under the theme of agro-food SCNs, simulation and 

mathematical models have been recognized as powerful tools 

for understanding real-world processes and improving system 

efficiency [26-28]. Studies in this area underscore the 

importance of integrating logistics, supplier management, a 

figured inventory control within perishable product networks 

to reduce waste and support circular economy goals [29, 30]. 

Nevertheless, the high complexity of integration requires 

mathematical rigor to ensure tractable solutions that can still 

be applied in practice. 

Mixed-Integer Linear Programming (MILP) is extensively 

used as an optimization framework for supply chains 

involving multiple products, periods, and echelons. Its 

advantage lies in the ability to simultaneously handle discrete 

decisions, constraints, and trade-offs among interdependent 

elements. MILP allows integrated optimization that connects 

supplier selection, demand planning, and procurement 

scheduling, offering a systematic means of minimizing total 

operational cost while maintaining service quality [31-36]. 

This study aims to develop an integrated MILP model 

structured around the configuration of an agro-hub supply 

chain network. The model is designed to support end-to-end 

decision-making across multiple echelons of the supply chain 

from upstream suppliers to downstream distributors, retailers, 

and end customers by simultaneously addressing both 

strategic and operational dimensions. Specifically, the model 

determines the optimal supplier selection and the allocation of 

commodity flows, including the type and quantity of 

commodities to be procured, their conversion into products at 

the agro-hub, and the distribution of these products to various 

market channels over the planning horizon. This integrated 

modeling approach ensures that supplier selection is directly 

aligned with downstream demand requirements, thus 

enhancing supply chain responsiveness and efficiency [37, 

38]. In this study, the model is applied to optimize the agro-

hub supply chain in Banten Province, Indonesia. The agro-hub 

supply chain in Banten plays a crucial role in improving the 

efficiency of agricultural product distribution, shortening the 

supply chain, and increasing value-added through product 

standardization and processing. This model is needed for 

Banten because the province is currently developing a 

government-led agro-hub system aimed at improving the 

efficiency of agricultural distribution. Despite being located 

near Jakarta, the largest consumer market in Indonesia, 

Banten’s agricultural supply chain remains fragmented, 

involving multiple intermediaries that increase logistics costs. 

The absence of an integrated decision-support framework has 

limited the province’s ability to manage procurement, 

transportation, and storage efficiently. Therefore, the proposed 

MILP model provides a strategic planning tool that enables the 

government to allocate resources, select suppliers, and 

coordinate logistics based on cost-minimization principles 

rather than profit maximization. Thus, it supports the 

province’s policy objectives of enhancing food system 

resilience, improving price stability, and ensuring affordable 

food access. To the best of current knowledge, this research is 

original and has not been conducted before. Hence, the novelty 

of this study is the development of a MILP model for a multi-

echelon hub supply chain network that integrates supplier 

selection and flow allocation based on the structure of an agro-

hub supply chain network in Banten Province, Indonesia. In 

addition, a cost-based heuristic algorithm is developed as a 

comparative benchmark to evaluate the efficiency of the MILP 

solution. 

 

 

2. MATERIALS AND METHODS 

 

2.1 General framework 

 

In this research, the agro-hub acts as a mediator between the 

suppliers and customers. Agro-hub collects the commodities 

from the farmers in bulk quantities, and then the commodities 

are packaged at the warehouse site to meet the consumer-

friendly requirements. The packaged commodities are called 

products. Thus, simultaneously, each agro-food commodity 

gets one conversion factor to become a product. The 

packaging process is done by batch production, meaning there 

will be a batch size for each product production. Farmers sell 

their commodities to the agro-hub, then the agro-hub can 

determine the types and quantity of commodities purchased 

from farmers in the most cost-effective manner and distribute 

the packaged products to distributors, retailers, and customers, 

as shown in Figure 1. The decision variables that are 

considered in the model (see Figure 1) consist of (1) what type 

of commodities, (2) how many quantities of commodities are 

bought from farmers, and (3) how many of the products are to 

be sent to distributors, retailers, and customers after being 

packaged in the agro-hub. A mathematical model is developed 

to minimize the total operational cost by considering the 

limitations as constraints. A critical constraint in the model is 

the machine capacity available in the agro-hub, which will 

determine the production capacity. The transportation cost will 

occur when the commodities or products are taken from 

farmers and distributed to the distribution channels 

(distributors, retailers, and customers). The model treats each 

commodity type as a distinct product, using a constant 

conversion factor to represent the transformation from raw 

commodity to finished product. Inventory costs are incurred 

when the production of agro-hub products exceeds actual 

demand. The model can be solved using Lingo software and 

validated with a series of data tests. 

 

2.2 Mathematical model 

 

MILP optimization is developed to determine the types of 

commodities obtained from farmers and their quantity, which 

are considered the most cost-effective for distribution through 

the agro-hub network. The model is addressed as a 

deterministic-dynamic model, meaning the parameter data 

must already be known in each period in the planning horizon. 
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Figure 1. The framework of the agro-hub supply chain 

 

Objective function: 

 

Min 𝑍 = 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 + 𝐹 + 𝐺 (1) 

 

𝐴 = ∑ ∑ ∑ 𝑆𝑘𝑗𝑡𝑃𝑘𝑗𝑡𝑗𝑘   (1a) 

 

𝐵 = ∑ ∑ ∑ 𝑁𝑇𝑘𝑗𝑡  𝑇𝐶𝑘𝑗𝑡𝑗𝑘   (1b) 

 

𝐶 = ∑ ∑
𝑄𝑖𝑡

𝐵𝑖
𝑃𝐶𝑖𝑡𝑖   (1c) 

 

𝐷 = ∑ ∑ ∑ 𝑁𝑇𝑑𝑖𝑡  𝑇𝐶𝑑𝑖𝑡𝑖𝑑   (1d) 

 

𝐸 = ∑ ∑ ∑ 𝑁𝑇𝑟𝑖𝑡  𝑇𝐶𝑟𝑖𝑡𝑖𝑟   (1e) 

 

𝐹 = ∑ ∑ ∑ 𝑁𝑇𝑐𝑖𝑡  𝑇𝐶𝑐𝑖𝑡𝑖𝑐   (1f) 

 

𝐺 = ∑ ∑ 𝐼𝑛𝑣𝑖𝑡  𝐼𝐶𝑖𝑡𝑖   (1g) 

 

s.t: 

 

𝑄𝑖𝑡 ≤ 𝑊𝑖𝑗 ∑ 𝑆𝑘𝑗𝑡𝑘 , ∀𝑖, ∀𝑗, ∀𝑡  (2) 

 

𝑄𝑖𝑡 ≥ ∑ 𝑆𝑐𝑖𝑡𝑐 + ∑ 𝑆𝑟𝑖𝑡𝑟 + ∑ 𝑆𝑑𝑖𝑡𝑑 , ∀𝑖, ∀𝑡  (3) 

 

𝑆𝑑𝑖𝑡 ≥ 𝐷𝑑 , ∀𝑖, ∀𝑡, ∀𝑑 (4) 

 

𝑆𝑟𝑖𝑡 ≥ 𝐷𝑟 , ∀𝑟, ∀𝑖, ∀𝑡 (5) 

 

𝑆𝑐𝑖𝑡 ≥ 𝐷𝑐 , ∀𝑖, ∀𝑡, ∀𝑐 (6) 

 
∑ 𝑄𝑖𝑡𝑖 ≤ 𝐶𝑎𝑝, ∀𝑡  (7) 

 

𝑁𝑇𝑘𝑗𝑡 >=
𝑆𝑘𝑗𝑡

𝐶𝑗
, ∀𝑘 , ∀𝑗 , ∀𝑡  (8) 

 

𝑁𝑇𝑑𝑖𝑡 >=
𝑆𝑑𝑖𝑡

𝐶𝑖
, ∀𝑑 , ∀𝑖 , ∀𝑡  (9) 

 

𝑁𝑇𝑟𝑖𝑡 >=
𝑆𝑟𝑖𝑡

𝐶𝑖
, ∀𝑟 , ∀𝑖 , ∀𝑡  (10) 

 

𝑁𝑇𝑐𝑖𝑡 >=
𝑆𝑐𝑖𝑡

𝐶𝑖

, ∀𝑐, ∀𝑖 , ∀𝑡 (11) 

 

𝐼𝑛𝑣𝑖𝑡 = 𝑄𝑖𝑡 − (∑ 𝑆𝑐𝑖𝑡
𝑐

+ ∑ 𝑆𝑟𝑖𝑡
𝑟

+ ∑ 𝑆𝑑𝑖𝑡
𝑑

) , ∀𝑖, ∀𝑡 (12) 

 

𝑁𝑇𝑘𝑗𝑡 , 𝑁𝑇𝑐𝑖𝑡 , 𝑁𝑇𝑟𝑖𝑡 , 𝑁𝑇𝑑𝑖𝑡 ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (13) 

 

The objective function presented in Eq. (1) aims to 

minimize the total operational cost of the agro-food supply 

chain network. This total cost comprises several components 

that capture all major activities within the system. 

The first component, expressed in Eq. (1a), represents the 

procurement cost of commodities, which includes the 

purchasing expenses incurred when obtaining raw materials 

from suppliers. Eq. (1b) accounts for the upstream 

transportation cost from farmers to the agro-hub. Eq. (1c) 

defines the processing cost, which covers the transformation 

of commodities into final products within the agro-hub 

facility. 

Subsequently, Eqs. (1d)-(1f) capture the downstream 

transportation costs associated with product distribution to 

various market channels, namely distributors (Eq. (1d)), 

retailers (Eq. (1e)), and end customers (Eq. (1f)). Finally, Eq. 

(1g) represents the inventory holding cost at the agro-hub, 

which arises when the volume of produced goods exceeds 

current demand. This cost component discourages 

overproduction and promotes efficient synchronization 

between production and demand levels. 

Eq. (2) defines the conversion relationship between 

commodities and products processed at the agro-hub. This 

constraint ensures that the total quantity of products produced 

at the agro-hub does not exceed the total amount of 

commodities supplied by farmers and suppliers, adjusted by 

the corresponding conversion factor. 

Eq. (3) governs the distribution balance between the 

quantity of products produced at the agro-hub and the volume 

distributed to downstream channels. This constraint ensures 

that the total quantity of products delivered to all market 

nodes, including distributors, retailers, and end customers, 

does not exceed the total amount of products processed and 

available at the agro-hub. 

Eqs. (4)-(6) represent the demand satisfaction constraints at 

different downstream levels of the agro-food supply chain. 

Each constraint ensures that the total quantity of products 

distributed from the agro-hub is sufficient to meet the 

corresponding demand at every market node, namely 
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distributors, retailers, and end customers. 

Eq. (7) establishes the production capacity constraint at the 

agro-hub. This constraint ensures that the total quantity of 

products processed and produced within the agro-hub during 

each period does not exceed the facility’s available production 

capacity. 

Eq. (8) defines the relationship between the number of 

vehicle trips and the volume of commodities transported from 

farmers (suppliers) to the agro-hub. Eqs. (9)-(11) determine 

the number of transportation trips required to deliver products 

from the agro-hub to each downstream channel, including 

distributors, retailers, and end customers. This constraint 

ensures that the total number of trips required in each period is 

consistent with the total shipment volume and the capacity of 

each vehicle. 

Eq. (12) introduces the inventory variable at the agro-hub, 

which represents the quantity of products remaining at the end 

of each period. Inventory occurs whenever the production 

volume at the agro-hub exceeds market demand. 

Eq. (13) imposes the integer condition on all variables 

representing the number of vehicle trips, both in the upstream 

(from farmers to the agro-hub) and downstream (from the 

agro-hub to distributors, retailers, and end customers) 

segments of the supply chain. This constraint ensures that the 

model captures the discrete nature of transportation activities. 

This integer constraint allows the model to accurately 

represent fixed transportation costs per trip, regardless of 

whether a vehicle is fully loaded or not. In practice, every 

vehicle dispatch incurs the same trip cost once it is operated, 

even if its capacity is partially utilized. This formulation 

enhances the model’s operational realism by reflecting actual 

logistics behavior, ensuring that transportation costs are 

computed on a per-trip basis rather than proportionally to 

shipment volume. 

 

2.3 Development of the heuristic algorithm 

 

To complement the optimization model, a heuristic 

algorithm is developed to provide a simplified decision rule 

for allocating supply and demand within the agro-food supply 

chain network. The heuristic serves as a benchmark approach 

for comparison with the MILP model, enabling an evaluation 

of the model’s effectiveness in minimizing total operational 

cost. 

The algorithm is designed based on a cost-priority logic, 

where suppliers are ranked according to their effective unit 

cost, and demand is sequentially fulfilled from the lowest-cost 

sources until all requirements are met. This procedure reflects 

a practical decision-making process that can be easily applied 

in real-world agro-hub operations when computational 

optimization tools are not available. 

The step-by-step procedure of the developed heuristic 

algorithm is presented as follows: 

1. Compute the effective unit cost for each supplier (k) and 

commodity (i): purchase price
𝑗𝑘

+ transport cost
𝑗𝑘

. 

2. Sort all suppliers in ascending order of the effective unit 

cost from lowest to highest cost. 

3. Calculate the required demand for each product (i) and 

period (t), including the conversion factor. 

4. Starting from the lowest-cost supplier, allocate supply 

to meet the required demand from Step 3, subject to 

each supplier’s available capacity. 

5. Stop when the required demand for that period is fully 

satisfied. 

6. Calculate the total operational cost. 

 

2.4 Data collection 

 

The dataset in this study includes information on the 

number of available suppliers and the types of commodities 

they provide, as well as the structure of downstream entities, 

including customers, retailers, and distributors, along with 

their corresponding product demand levels. Additional data 

parameters involve transportation costs between each supply 

chain echelon and conversion factors that reflect the 

transformation of raw commodities into finished products 

within the agro-hub. These input parameters serve as the 

foundation for implementing and testing the proposed MILP 

model. The data for this study are derived from internal 

records from the Banten Provincial Agriculture Office and the 

agro-hub. Given that the agro-hub initiative in Banten is still 

in progress, with the government currently updating and 

refining its operational blueprint, only limited but verified data 

are available for modeling purposes. There are two 

commodities and three suppliers used in this numerical 

example, with the agro-hub operating at an installed 

production capacity of 30,000 kg per period. The selection of 

two commodities and three suppliers reflects the most active 

and data-complete actors within this pilot phase. This 

simplified configuration corresponds to the early operational 

structure of the agro-hub and provides a realistic baseline for 

testing the model’s effectiveness in minimizing operational 

costs and improving logistical efficiency. 

Detailed data for the numerical example are presented in 

Tables 1-5. To facilitate model formulation and numerical 

analysis, certain simplifications are adopted. First, 

commodities are represented using numerical indices (e.g., 

Commodity 1, Commodity 2, etc.) instead of their actual 

product names. Each indexed commodity corresponds to a 

specific agricultural item, such as rice, maize, and other 

staples. Second, the planning horizon is segmented into 

discrete periods denoted by integers (e.g., Period 1, Period 2, 

etc.), rather than explicitly labeling them by weeks or months. 

These abstractions are commonly used in mathematical 

modeling to streamline variable representation and enhance 

scalability, without compromising the model’s applicability to 

real-world supply chain contexts. A fixed number is assigned 

to the farmer as the supplier. In this research, three farmers are 

suppliers of two types of commodities for six weeks (6 

periods) of production. The downstream structure of the agro-

hub network consists of three retailers, two direct customers, 

and two distributors. The conversion factors for transforming 

Commodity 1 and Commodity 2 into Product 1 and Product 2 

are assumed to be 0.80 and 0.85, respectively. These values 

represent the average conversion rates observed at the agro-

hub company in Banten Province and are used as fixed 

parameters in this study. Tables 1-5 show the parameter data 

as input for the model. Table 1 presents the weekly demand 

from each downstream channel for the agro-hub’s products. 

This demand data serves as the basis for determining the 

quantity of raw commodities that must be procured from 

suppliers and subsequently processed or converted into the 

desired products to fulfill downstream requirements. 

Table 2 presents the purchasing prices of Commodity 1 and 

Commodity 2 from individual farmers who serve as upstream 

suppliers within the agro-hub network. 
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Table 1. Product demand in each period for each distribution channel (kg) 

 

Channel No. Product Type 
Period (Week) 

1 2 3 4 5 6 

Direct Customer 

1 
1 299 180 179 195 279 222 

2 170 105 106 193 202 254 

2 
1 189 271 142 114 245 165 

2 271 120 246 299 102 232 

Retailer 

1 
1 1085 1101 1362 1199 1334 1034 

2 1026 1189 1476 1425 1468 1304 

2 
1 1357 1311 1180 1213 1272 1193 

2 1421 1057 1028 1095 1055 1169 

3 
1 1423 1430 1444 1163 1101 1220 

2 1394 1037 1093 1352 1246 1002 

Distributor 

1 
1 3474 3936 4642 4500 4583 4609 

2 4649 3881 3383 4116 3522 3284 

2 
1 3481 3109 4629 4264 3401 4871 

2 4155 3856 4099 3665 4005 4095 

 

Table 2. Commodity prices offered by each supplier (in 

IDR/kg) 

 

Farmer 
Type of Commodity 

1 2 

1 200 1800 

2 250 1400 

3 150 2000 

 

Table 3. Supplier capacity for commodities per period 

(weekly, in kg) 

 

Farmer 
Commodity 

1 2 

1 10000 11000 

2 9000 12000 

3 1000 2000 

 

Table 3 presents the supply capacities of each supplier for 

the respective commodities they provide to the agro-hub. 

These capacity values represent the maximum quantity that 

each supplier can deliver per period (weekly) within the 

defined planning horizon and are applied as upper-bound 

constraints in the optimization model. 

Table 4 summarizes various capacity-related constraints 

used in the model. These include:  

(i) the vehicle capacity for transporting commodities from 

suppliers to the agro-hub (kg); 

(ii) the vehicle capacity for delivering finished products 

from the agro-hub to downstream channels (kg); 

(iii) the production batch size at the agro-hub (kg);  

(iv) the production cost incurred per batch (IDR). These 

parameters are critical for accurately modeling logistical and 

operational limitations within the agro-hub supply chain 

network. 

 

Table 4. Transportation and production capacity (kg) 

 

Commodity or 

Product Type 

Transportation 

Capacity for Each 

Commodity 

Transportation 

Capacity for Each 

Product 

Production Batch 

Size for Each 

Product 

Production Cost 

for Each Product 

Inventory Cost 

for Each 

Product 

1 3000 2000 1000 500 200 

2 2000 3000 800 700 350 

 

Table 5. Transportation cost per trip from agro-hub to each 

distribution channel (IDR) 

 

Channel No. 
Commodity/ Product 

1 2 

Farmer 

1 2500000 2500000 

2 3000000 2000000 

3 4000000 3000000 

Customer 
1 10000 10000 

2 10000 10000 

Retailer 

1 50000 80000 

2 60000 100000 

3 70000 85000 

Distributor 
1 150000 130000 

2 200000 180000 

 

Table 5 displays the transportation cost per trip between the 

agro-hub and each connected channel, both upstream actors 

(farmers as suppliers) and downstream actors (retailers, 

distributors, and direct customers). The variation in 

transportation costs reflects differences in logistical 

complexity, including distance and required service levels. 

2.5 Data processing 
 

All parameter data (Tables 1-5) are inserted into an 

optimization software. Lingo software is used to generate the 

optimal solution. The proposed MILP model is solved using 

LINGO optimization software. The computation is performed 

on a standard personal computer with an Intel® Core™ i7-

8750H CPU @ 2.20GHz and 16GB of RAM. 
 

 

3. RESULTS AND DISCUSSIONS 
 

3.1 The proposed MILP model 
 

The proposed MILP model is solved using LINGO 

optimization software, which successfully obtained the 

optimal solution in less than one second (see Figure 2). The 

objective function is formulated to minimize total operational 

cost, resulting in a total operational cost of IDR 337,808,445. 

The corresponding optimal decision strategy comprising 

supplier selection, product allocation, quantity purchased, and 

delivery timing is detailed in Tables 6 to 9. 
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Figure 2. LINGO output display showing objective value 

and computation time 

 

To achieve this objective value, LINGO provides a set of 

technical strategies involving supplier selection and weekly 

procurement decisions over the six-week planning horizon. 

These detailed decisions, including the type and quantity of 

commodities to be purchased from each supplier in each time 

period, are presented in Table 6. The results indicate that only 

two out of the three available suppliers are selected throughout 

the planning horizon. In Week 1, for example, the agro-hub is 

advised to procure 9,000 kg of Commodity Type 1 and 3,395 

kg of Commodity Type 2 from Supplier 1, and 5,135 kg of 

Commodity Type 1 and 12,000 kg of Commodity Type 2 from 

Supplier 2. These procurement decisions are generated by the 

model based on a simultaneous evaluation of multiple 

constraints, including commodity prices offered by each 

supplier, supplier capacity limits, and transportation costs 

between suppliers and the agro-hub. 

Table 7 presents the delivery strategy from the agro-hub to 

distributors, as generated by the LINGO optimization results. 

Table 7 specifies the type, quantity, and timing of product 

shipments required to meet distributor demand over the six-

week planning horizon. For instance, in Week 1, the agro-hub 

is required to deliver 3,474 kg of Product Type 1 to Distributor 

1. This quantity and product type precisely correspond to the 

distributor’s stated demand in Table 1 for the same period. The 

consistency between planned deliveries and actual demand 

across all downstream entities further confirms the model’s 

ability to effectively and accurately satisfy the requirements of 

each distribution channel. 

Table 8 presents the delivery strategy from the agro-hub to 

retailers, as determined by the LINGO-generated solution. 

Table 8 details the type, quantity, and timing of product 

shipments required to fulfill retailer demands throughout the 

six-week planning horizon. For example, in Week 1, the agro-

hub is scheduled to deliver 1,085 kg of Product Type 1 to 

Retailer 1. This quantity precisely matches the demand 

specified by the retailer in Table 1 for that period. Such 

alignment indicates that the model is capable of accurately 

fulfilling the needs of various downstream channels, ensuring 

timely delivery and product availability as required. 

 

Table 6. The types and quantities of agro-food products bought from farmers as suppliers (kg) 

 

Supplier Commodity 
Week Period 

1 2 3 4 5 6 

1 
1 9000 9000 9000 10000 10000 9000 

2 3395 1229 1448 2288 1647 1341 

2 
1 5135 5173 7973 5810 5269 7643 

2 12000 12000 12000 12000 12000 12000 

3 
1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

Total 29530 27402 30421 30098 28916 29984 

 

Table 7. The types and quantities of agro-food products sold to distributors (kg) 

 

Distributor Product 
Week Period 

1 2 3 4 5 6 

1 
1 3474 3936 4639 4497 4583 4605 

2 4649 3881 3383 4116 3522 3284 

2 
1 3481 3109 4629 4264 3401 4871 

2 4155 3856 4099 3665 4005 4095 

Total 15760 14784 16753 16546 15516 16861 

 

Table 8. The types and quantities of agro-food products sold to retailers (kg) 

 

Retailer Product 
Week Period 

1 2 3 4 5 6 

1 
1 1085 1101 1362 1199 1334 1034 

2 1026 1189 1476 1425 1468 1304 

2 
1 1357 1311 1180 1213 1272 1193 

2 1421 1057 1028 1095 1055 1169 

3 
1 1423 1430 1444 1163 1101 1220 

2 1394 1037 1093 1352 1246 1002 

Total 7706 7125 7583 7447 7476 6922 
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Table 9. The types and quantities of agro-food products sold to customers (kg) 

 

Customer Product 
Week Period 

1 2 3 4 5 6 

1 
1 299 180 179 195 279 222 

2 170 105 106 193 202 254 

2 
1 189 271 142 114 245 165 

2 271 120 246 299 102 232 

Total 930 678 676 805 833 879 

Table 9 presents the delivery strategy from the agro-hub to 

direct customers as determined by the MILP model over the 

six-week planning horizon. The results show that the quantity 

of each product delivered to direct customers in every period 

exactly matches their respective demand levels. For instance, 

in Week 1, the agro-hub is required to deliver 299 kg of 

Product Type 1 to Customer 1, which is identical to the 

demand stated in Table 1 for that period. This alignment 

demonstrates that the model effectively satisfies customer 

requirements with precision, thereby validating its capability 

to ensure timely and accurate fulfillment across the planning 

horizon. 

The results demonstrate the effectiveness of the proposed 

MILP model in generating an integrated and feasible 

procurement and distribution strategy across a multi-echelon 

agro-hub supply chain. Selecting the most cost-efficient 

suppliers and optimizing commodity purchasing decisions 

based on price, capacity, and transportation costs enables the 

model to successfully maximize total profit. Furthermore, it 

ensures full alignment between downstream demand and 

delivery plans across all channels, including direct customers, 

retailers, and distributors, through precise allocation of 

product type, quantity, and timing. The optimization results 

from numerical approximation show promise for application 

in the agro-food supply chain in the real world, specifically in 

Banten Province, Indonesia. 

 

3.2 Sensitivity analysis 

 

To evaluate the robustness and responsiveness of the 

proposed MILP model, a sensitivity analysis is conducted 

under three different scenarios. Each scenario is designed to 

assess how changes in key parameters affect the model’s total 

operational cost and allocation decisions across the agro-food 

supply chain network. Through these scenarios, the model’s 

sensitivity to market demand, transportation efficiency, and 

supplier pricing is analyzed to validate its applicability under 

varying operational conditions. 

Scenario 1: Reduced demand across all channels. In this 

scenario, the demand levels from all downstream channels 

(distributors, retailers, and customers) are decreased by up to 

50%, while all other parameters are kept constant. This 

adjustment examines how lower market demand influences 

procurement quantities, production volumes, and total 

operational cost. 

The model produces a total operational cost of IDR 

168,764,309. This value is significantly lower than the base-

case scenario, indicating that reduced market demand leads to 

a proportional decrease in overall procurement, transportation, 

and processing activities throughout the supply chain network. 

Table 10 presents the procurement quantities of each 

commodity from the respective suppliers over six planning 

periods. 

The results indicate that only Supplier 1 (Commodity 1) and 

Supplier 2 (Commodity 2) remain active under the reduced-

demand condition, while the remaining suppliers are not 

utilized. This reflects the model’s cost-minimizing behavior, 

where procurement is restricted to the most cost-efficient 

suppliers. The overall procurement volume decreases 

consistently across periods, aligning with the halved market 

demand and supporting the model’s capacity to dynamically 

adjust purchasing and production levels in response to demand 

fluctuations. 

Scenario 2: Reduced transportation cost from farmers to the 

agro-hub. The second scenario simulates an improvement in 

upstream logistics efficiency by reducing transportation costs 

from farmers (suppliers) to the agro-hub. This case aims to 

observe how decreased transport costs affect supplier selection 

and cost distribution within the network. The modified 

parameter values used in this scenario are presented in Table 

11. These values represent lower transportation costs per route 

compared to the base case. 

 

Table 10. The types and quantities of agro-food products bought from farmers as suppliers (kg) under Scenario 1 

 

Supplier Commodity 
Week Period 

1 2 3 4 5 6 

1 
1 7068 7086 8486 7905 7634 8321 

2 0 0 0 0 0 0 

2 
1 0 0 0 0 0 0 

2 7698 6615 6724 7144 6824 6671 

3 
1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

Total 14765 13701 15210 15049 14458 14992 

 

Table 11. Transportation cost per trip from farmer to agro-hub channel (in IDR) 

 

Channel No. 
Commodity 

1 2 

Farmer 

1 2500000 2500000 

2 2500000 2500000 

3 500000 500000 
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Table 12. The types and quantities of agro-food products bought from farmers as suppliers (kg) under Scenario 2 

 

Supplier Commodity 
Week Period 

1 2 3 4 5 6 

1 
1 9000 9000 9000 9000 9000 9000 

2 2000 0 0 2000 0 0 

2 
1 5135 5173 7973 5810 5269 7643 

2 12000 12000 12000 12000 12000 12000 

3 
1 0 0 0 1000 1000 0 

2 1395 1229 1448 288 1647 1341 

Total 29530 27402 30421 30098 28916 29984 

Table 13. Commodity prices offered by each supplier (in 

IDR/kg) under Scenario 3 

 

Farmer 
Type of Commodity 

1 2 

1 200 1800 

2 250 1400 

3 50 500 

 

Under Scenario 2, where the transportation cost from 

farmers to the agro-hub is reduced, the model produces a total 

operational cost of IDR 334,178,328. The detailed 

procurement quantities of each commodity from the respective 

suppliers over the six planning periods are summarized in 

Table 12. The results reveal a notable behavioral shift in 

supplier participation. Due to the reduced transportation cost, 

Supplier 3, previously inactive in the base-case scenario, 

becomes active in this configuration. This change indicates 

that lower logistics costs increase the competitiveness of 

suppliers located farther from the agro-hub. 

Scenario 3: Lower commodity prices from Supplier 3. In the 

third scenario, the commodity prices offered by Supplier 3 are 

adjusted to be lower than in the base case. This modification 

evaluates how price competitiveness from a specific supplier 

influences sourcing decisions and overall system cost. The 

adjusted price parameters used in this scenario are presented 

in Table 13, where the price of Commodity 1 supplied by 

Supplier 3 is reduced to IDR 50 per kg, and the price of 

Commodity 2 is reduced to IDR 500 per kg. These adjustments 

represent a condition in which Supplier 3 offers a significant 

price advantage over other suppliers. 

The model produced a total operational cost of IDR 

326,142,092. This indicates a cost reduction compared to the 

base case and Scenario 2, suggesting that lower commodity 

prices substantially improve overall system efficiency. Table 

14 presents the detailed procurement allocation of each 

commodity from the respective suppliers across six planning 

periods. 

 

Table 14. The types and quantities of agro-food products bought from farmers as suppliers (kg) under scenario 3 

 

Supplier Commodity 
Week Period 

1 2 3 4 5 6 

1 
1 9000 9000 9000 10000 10000 9000 

2 1395 0 0 288 0 0 

2 
1 5135 5173 7973 5810 5269 7643 

2 12000 11229 11448 12000 11647 11341 

3 
1 0 0 0 0 0 0 

2 2000 2000 2000 2000 2000 2000 

Total 29530 27402 30421 30098 28916 29984 

The sensitivity analysis is conducted through three 

scenarios to evaluate how variations in key parameters, 

demand, transportation cost, and commodity price affect the 

model’s performance and decision-making structure. The 

findings collectively demonstrate the robustness and 

adaptability of the proposed MILP model in optimizing 

procurement and minimizing total operational cost under 

different operational conditions. Overall, the sensitivity 

analysis reveals that the model responds logically and 

consistently to parameter variations. Reductions in demand or 

input cost parameters (either transport or commodity prices) 

directly lead to lower total operational costs and adaptive 

reallocation of procurement sources. These results confirm 

that the model provides a stable, responsive, and policy-

relevant decision-support tool for managing the agro-hub’s 

supply chain under changing economic and logistical 

conditions. 

 

3.3 The proposed heuristic algorithm 

 

This section presents the application and performance 

results of the proposed heuristic algorithm. The heuristic is 

implemented using the same input parameters and operational 

settings as the MILP model to ensure a consistent basis for 

comparison. 

Applying Steps 1 and 2 of the heuristic algorithm results in 

a ranking of suppliers based on the lowest effective unit cost. 

For Commodity 1, the order of increasing cost is Supplier 1, 

Supplier 2, and Supplier 3. Meanwhile, for Commodity 2, the 

suppliers are ranked as Supplier 2, Supplier 1, and Supplier 3, 

respectively (Table 15). 

 

Table 15. Ranking of suppliers based on effective unit cost 

for each commodity 

 

Supplier 
Commodity 

1 2 

1 2500200 (rank-1) 2501800 (rank-2) 

2 3000250 (rank-2) 2001400 (rank-1) 

3 4000150 (rank-3) 3002000 (rank-3) 

 

Step 3 of the heuristic algorithm involves calculating the 

cumulative demand for each product across all distribution 

channels, namely distributors, retailers, and end customers. 
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The aggregated product demand is then adjusted using the 

corresponding conversion factor to determine the total 

quantity of each commodity that must be procured by the agro-

hub. This step ensures that procurement volumes at the 

upstream level accurately reflect the processed product 

requirements downstream. The detailed computation of the 

cumulative product demand and the corresponding converted 

commodity quantities is presented in Table 16. 

 

Table 16. Cumulative product demand from all channels 

adjusted by the conversion factor for commodity 

procurement 

 

Commodity (j) 
Period (t) 

1 2 3 4 5 6 

1 13570 13606 16294 15178 14658 15977 

2 15049 12932 13146 13967 13340 13041 

 

Steps 4 and 5 of the heuristic algorithms focus on the 

allocation of commodity procurement based on the ranked 

supplier costs obtained in the previous steps. In this stage, the 

agro-hub begins procuring commodities starting from the 

supplier offering the lowest effective unit cost. Procurement 

continues from this supplier until its available capacity is fully 

utilized or the total commodity requirement is met. If 

additional volume is still required, the algorithm proceeds to 

procure from the supplier with the next lowest cost, and the 

process repeats until the full demand for each commodity is 

satisfied. This sequential allocation ensures that procurement 

decisions remain cost-efficient while respecting supplier 

capacity constraints. The resulting distribution of commodity 

purchases from each supplier across all planning periods is 

presented in Table 17. 

 

Table 17. Allocation of commodity procurement from each 

supplier (heuristic steps 4–5) 

 

Supplier Commodity 
Week Period 

1 2 3 4 5 6 

1 
1 10000 10000 10000 10000 10000 10000 

2 3049 932 1146 1967 1340 1041 

2 
1 3570 3606 6294 5178 4658 5977 

2 12000 12000 12000 12000 12000 12000 

3 
1 565 566 678 632 611 666 

2 346 297 302 321 307 300 

Total 29530 27402 30421 30098 28916 29984 

 

Step 6 involves calculating the total operational cost 

resulting from the procurement and distribution strategy 

generated by the heuristic method. All cost components, 

including procurement, transportation, processing, and 

inventory, are aggregated to obtain the overall system 

expenditure associated with the heuristic allocation strategy. 

From this computation, the total operational cost achieved by 

the heuristic approach is IDR 384,111,503. This value reflects 

the total expenditure required to operate the agro-food supply 

chain under the heuristic strategy and serves as a benchmark 

for comparison against the optimal solution obtained from the 

MILP model. 

 

3.4 Comparison between MILP and heuristic results 

 

The performance comparison between the MILP model and 

the proposed heuristic algorithm highlights the superior 

efficiency of the MILP-based optimization framework. The 

MILP model achieves a total operational cost of IDR 

337,808,445, whereas the heuristic approach results in IDR 

384,111,503, which is approximately 13.7% higher than the 

optimal solution. 

This result confirms that the MILP model successfully 

provides the global minimum operational cost through an 

integrated optimization of procurement, transportation, and 

processing decisions. In contrast, the heuristic algorithm, 

while simpler and faster to implement, can only approximate 

the optimal result due to its sequential and cost-priority logic. 

Overall, the findings reinforce that the proposed MILP 

model serves as the primary decision-support framework, 

offering a robust, data-driven basis for strategic planning 

within the agro-hub, while the heuristic provides supportive 

insight for quick operational evaluations. 

 

3.5 Limitations of the study 

 

Although the proposed MILP model provides a robust and 

practical framework for optimizing the agro-food supply chain 

network in Banten province, several limitations should be 

acknowledged to contextualize the findings and guide future 

improvements. 

First, the current model operates under a deterministic 

assumption, where all parameters (such as demand, 

transportation cost, supplier capacity, and product prices) are 

treated as fixed and known in advance. This assumption 

simplifies computation and ensures model tractability. 

However, it does not account for uncertainty and variability 

commonly observed in real-world agro-food systems, such as 

seasonal demand fluctuations, weather-related disruptions, 

and price volatility. 

Second, the model applies a fixed conversion rate between 

commodities and final products at the agro-hub. In practice, 

this conversion efficiency may vary due to raw material 

quality, processing losses, or equipment performance. A 

constant conversion factor can therefore limit the accuracy of 

production-procurement linkage and the estimation of total 

processing cost. 

Third, the model assumes constant commodity prices across 

all planning periods, implying stable market conditions. This 

assumption may overlook temporal price fluctuations that 

typically occur in agricultural markets due to supply-demand 

dynamics or external shocks. 

Finally, production and delivery lead times are not 

incorporated into the model. This exclusion is intentional to 

maintain model simplicity and focus on cost-minimization 

logic. However, it restricts the model’s ability to capture 

scheduling delays and time-based coordination between 

upstream and downstream actors. 

Despite these simplifications, the model successfully 

demonstrates the potential of an integrated optimization 

framework for policy-driven agro-hub management. 

 

 

4. CONCLUSIONS 

 

This study develops an integrated MILP model to optimize 

the agro-food supply chain network in Banten Province, 

Indonesia. The model is designed to minimize the total 

operational cost of the system by integrating procurement, 

transportation, processing, and inventory decisions across 

multiple suppliers, products, and distribution channels. 

The optimization results demonstrate that the proposed 
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MILP model effectively identifies the most cost-efficient 

allocation of commodities from suppliers to the agro-hub and 

from the agro-hub to downstream markets. The model 

achieves a minimum total operational cost of IDR 

337,808,445, representing the optimal balance among 

procurement, logistics, and production costs within the 

defined system constraints. 

To validate the robustness of the proposed framework, 

sensitivity analyses are conducted under three scenarios: 

reduced demand, lower transportation costs, and decreased 

commodity prices. The results show that the model behaves 

logically and remains stable under parameter changes, 

adjusting supplier selection and procurement volumes 

accordingly. Additionally, a heuristic algorithm is developed 

to provide a simplified comparison method. Although the 

heuristic produces a slightly higher total cost (13.7% above the 

MILP optimum), it confirms the consistency and superiority 

of the MILP solution, reinforcing the model’s effectiveness as 

a strategic decision-support tool. 

The model’s deterministic nature, along with assumptions 

of fixed conversion rates, constant commodity prices, and the 

exclusion of production and delivery lead times, is 

acknowledged as a limitation. Nevertheless, these 

simplifications ensure tractability and clarity of results in this 

early-stage modeling effort. 

Overall, the proposed MILP framework contributes a 

practical, data-driven foundation for optimizing agro-hub 

operations and regional food supply chain management. The 

model can assist policymakers and practitioners in designing 

efficient sourcing and distribution strategies that enhance cost 

efficiency, resource utilization, and local food system 

resilience. Future research should extend this framework by 

incorporating stochastic elements, variable conversion 

efficiency, and time-dependent constraints to improve its 

applicability to dynamic real-world supply chain 

environments. 
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NOMENCLATURE 
 

Indices 
 

𝑖 Index of product 

𝑗 Index of commodity 

𝑐 Index of customer 

𝑟 Index of retailer  

𝑑 Index of distributor  

𝑘 Index of farmers 
 

Parameters 
 

𝑷𝒌𝒋 Price of commodity j from farmer k 
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𝑇𝐶𝑘𝑗  Transportation cost to carry commodity j from 

farmer k 

𝐵𝑖  Production batch size of product i 

𝐶𝑖 Transportation capacity for product i 

𝐶𝑗 Transportation capacity for commodity j 
𝑃𝐶𝑖 Production cost of product i 

𝑇𝐶𝑐𝑖  Transportation cost to carry product i to 

customer c 

𝑇𝐶𝑟𝑖 Transportation cost to deliver product i to retailer 

r 

𝑇𝐶𝑑𝑖  Transportation cost to deliver product i to retailer 

d 

𝐷𝑐𝑖𝑡 The demand of customer 𝑐 on product i at period 

t 

𝐷𝑟𝑖𝑡  The demand of retailer 𝑟 on product i at period t 

𝐷𝑑𝑖𝑡 The demand of distributor d on product i at 

period t 

𝑊𝑖𝑗 Conversion rate of product i from commodity j  

𝐶𝑎𝑝 Production capacity 

𝐼𝐶𝑖 Inventory cost of product i 

Variables 

 

𝑆𝑐𝑖𝑡 Quantity of product i to customer c at period t 

𝑆𝑟𝑖𝑡 Quantity of product i to customer r at period t 

𝑆𝑑𝑖𝑡  Quantity of product i to customer d at period t 

𝑆𝑘𝑗𝑡  Quantity of commodity j from supplier k at 

period t 

𝑄𝑖𝑡  Quantity of product i packaged at period t in the 

hub 

𝑁𝑇𝑐𝑖𝑡 Number of trips required to deliver product 𝑖 
from agro-hub to customer c at period t  

𝑁𝑇𝑟𝑖𝑡  Number of trips required to deliver product 𝑖 
from agro-hub to retailer r at period t  

𝑁𝑇𝑑𝑖𝑡 Number of trips required to deliver product 𝑖 
from agro-hub to distributor d at period t 

𝑁𝑇𝑘𝑗𝑡 Number of trips required to deliver commodity j 

from supplier k to agro-hub at period t  

𝐼𝑛𝑣𝑖𝑡 Inventory level of product i at the agro-hub at 

period t 
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