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Speech Emotion Recognition (SER) is essential for enhancing human-computer interaction 

by enabling machines to understand user emotional states. However, SER still faces 

challenges, such as the complexity of audio signals, individual differences, and limited 

focus on female voices, which often exhibit higher pitch and subtler emotional cues. This 

study introduces a hybrid model combining Convolutional Neural Network (CNN), 

Bidirectional Long Short-Term Memory (BiLSTM), and Transformer to classify emotions 

in female speech. The model is trained using the RAVDESS, CREMA-D, and TESS 

datasets, with stepwise acoustic features: MFCC, ZCR, LPC, RMSE, and ZCPA. Data 

augmentation techniques are applied to address class imbalance and improve generalization, 

including the addition of additive noise and pitch shifting to simulate natural variations in 

female vocal pitch. Additionally, SMOTE is employed to generate synthetic samples for 

minority classes. Performance is evaluated using 5-fold cross-validation. Results show that 

the best performance is achieved using the MFCC + ZCR combination, with 88.52% 

accuracy, 88.80% precision, 88.52% recall, 88.53% F1-score, and 98.95% AUC-ROC. This 

research advances SER by developing a robust, context-aware model tailored to female 

vocal traits. 
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1. INTRODUCTION

Emotions are more than waves of feelings they shape how 

we think, make decisions, and interact. In spoken 

communication, elements such as tone, intonation, speech rate, 

and pauses often convey emotional meaning far beyond the 

literal content of the words themselves [1, 2]. For instance, the 

word "fine" spoken slowly in a flat tone may reflect sadness or 

fatigue, while the same word said with a rising tone and 

quicker pace might indicate enthusiasm. Subtle variations in 

acoustic features, particularly in pitch and spectral 

representations, have been identified as indicators of 

emotional or depressive states, even when such changes may 

not be perceptible to the human ear [3]. 

Voice-based intelligent systems, such as voice assistants, 

call centers, and voice bots, are widely used today; yet, most 

still struggle to accurately detect user emotions, particularly 

those from female voices. A study by Lin et al. [4] revealed 

that several state-of-the-art Speech Emotion Recognition 

models showed higher accuracy for male speakers than female 

speakers, highlighting a persistent gender bias in emotion 

classification systems. Similarly, Tursunov et al. [5] reported 

that speech-based recognition systems often exhibit gender 

bias, where male voices tend to achieve higher recognition 

accuracy compared to female voices. Their study 

demonstrated that even advanced CNN-based models could 

reach up to 96% accuracy for gender classification, yet 

performance disparities remain evident indicating that 

acoustic features extracted from female speech are more 

challenging for models to generalize accurately. 

The ability of machines to "sense" these emotional nuances 

opens up new possibilities for human-computer interaction 

[6]. Imagine a virtual assistant that immediately offers help 

upon detecting a frustrated tone, or a mental health application 

that monitors signs of anxiety from daily phone calls to 

provide earlier support. In education, an online tutor that can 

detect student boredom or confusion through vocal cues could 

dynamically adjust the learning material in real-time. All of 

these applications depend heavily on how quickly and 

accurately a model can process highly dynamic audio 

signals [7]. 

Although many approaches have been developed for speech 

emotion recognition (SER), most remain focused on general 

data without accounting for the differences in vocal 

characteristics between male and female speakers. 

Physiologically, female speakers typically have shorter and 

lighter vocal folds, resulting in a higher average fundamental 

frequency (F0) range of around 200-260 Hz compared to 85-

180 Hz in males, along with more closely spaced formants [4, 

5]. These differences affect the spectral contour and energy 

distribution of speech, often requiring adjustments in 

thresholds or feature weighting to accurately capture the subtle 

emotional fluctuations in female voices. Without addressing 

these distinctions, SER models tend to be biased toward male 
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voice patterns. They may fail to recognize the more delicate 

and rapidly shifting emotional cues commonly present in 

female speech. 

In the field of deep learning-based audio signal processing, 

three complementary architectures have gained prominence: 

the Convolutional Neural Network (CNN) for extracting 

spatial patterns from spectral representations, the Bidirectional 

Long Short-Term Memory (BiLSTM) for capturing 

bidirectional temporal dynamics, and the Transformer for 

modeling global context in sequences through self-attention 

mechanisms [7, 8]. While these architectures have 

demonstrated effectiveness individually, studies integrating all 

three into a unified processing pipeline, especially for female 

voice emotion recognition, remain scarce. This is particularly 

important given the complex frequency and intonation patterns 

of female speech. 

This study proposes and evaluates a hybrid CNN-BiLSTM-

Transformer model for female speech emotion recognition. 

The architecture integrates the three modules hierarchically: 

CNN serves as the initial stage for extracting local spatial 

features from acoustic input; its output is then passed to 

BiLSTM to capture bidirectional temporal sequences; finally, 

a Transformer layer assigns global attention weights to the 

most relevant signal segments. This design combines the 

strengths of all three models while adapting to the fluctuating 

pitch and intonation patterns unique to female voices. 

2. RELATED WORKS

The study by Gomathy [9] focuses on enhancing speech 

emotion recognition accuracy and efficiency by utilizing an 

Enhanced Cat Swarm Optimization (ECSO) algorithm. This 

method helps select only the most important speech features, 

such as MFCC, LPC, and LPCC, so the system can better 

recognize emotions while reducing unnecessary data and 

processing time. ECSO enhances the original Cat Swarm 

Optimization by incorporating an Opposition-Based Learning 

(OBL) strategy, which enables the algorithm to explore more 

possibilities and find the optimal solution more efficiently. 

The selected features are then analyzed using a Support Vector 

Neural Network (SVNN) to classify different emotions in 

speech. When tested in MATLAB, the proposed ECSO-

SVNN model achieved impressive results, with 96% accuracy, 

0.74 sensitivity, 0.97 specificity, and a 93.4% recognition rate, 

outperforming other existing methods. In short, this study 

shows that combining ECSO and SVNN can significantly 

improve the way machines recognize human emotions through 

voice. 

Anvarjon et al. [6] introduced an efficient method 

combining RBFN for speech segment selection, CNN for 

feature extraction, and BiLSTM for temporal modeling. 

Accuracy results were 85.57% (EMO-DB), 72.25% 

(IEMOCAP), and 77.02% (RAVDESS). Despite promising 

results, issues with data imbalance and underrepresentation of 

emotions persisted. 

Kim and Lee [8] developed a hybrid model combining 

BiLSTM, Transformer, and 2D CNN to enhance emotion 

recognition using Mel-spectrograms. The model achieved 

score of 95.65% (EMO-DB) and 80.19% (RAVDESS). 

Although powerful in capturing emotional representations, its 

complexity limits real-time application. 

The study by Kacur et al. [10] proposes a Convolutional 

Neural Network model that recognizes emotions directly from 

log-Mel spectrograms without manual feature extraction. 

Using the RAVDESS dataset, the model classifies emotions 

like happy, sad, angry, and neutral. The CNN achieved 93.7% 

accuracy, outperforming traditional methods such as SVM and 

KNN. The results show that CNNs effectively capture 

emotional cues from speech and are suitable for real-time 

emotion recognition. 

Zhao et al. [11] proposed a 1D and 2D CNN-LSTM hybrid 

to extract local patterns and temporal dynamics from 

spectrograms. The model achieved 95.33% (Emo-DB) and 

89.16% (IEMOCAP) accuracy. While effective, the 

approach's computational demands make real-time use 

difficult. 

Finch [12] introduced Dynamic CNN with BiLSTM, using 

adaptive convolutional kernels responsive to emotional 

changes. It was tested on CISIA, EMO-DB, and IEMOCAP, 

achieving accuracy of 59.08%, 89.29%, and 71.25%, 

respectively. Despite its flexibility, the model relies heavily on 

precise hyperparameter tuning. 

Despite notable progress in SER, several key challenges 

remain. Many existing models overlook the unique vocal traits 

of female speech, such as higher pitch and dynamic spectral 

patterns, leading to biased performance due to reliance on 

gender-agnostic datasets [4]. Additionally, traditional SER 

studies often use arbitrary acoustic feature combinations 

without systematically evaluating their impact. Few have 

adopted a structured, stepwise feature extraction strategy 

tailored for female voices. Moreover, although hybrid models 

like CNN BiLSTM and Transformers show strong results [8], 

their complexity limits real-time deployment, and they are 

rarely evaluated with feature pipelines designed explicitly for 

female speech. Common issues such as class imbalance and 

noise sensitivity are also frequently under-addressed [9]. Data 

augmentation techniques, such as Gaussian noise injection and 

pitch shifting, are essential for enhancing model robustness 

and adapting to real-world conditions. Specifically, pitch 

shifting is applied to simulate natural variations in female 

vocal frequency, improving the model's ability to recognize 

subtle emotional cues across different voice tones. Therefore, 

an SER framework that combines a hybrid architecture with 

progressive, female-focused feature extraction and targeted 

augmentation is crucial for developing more robust, inclusive, 

and real-world-ready systems. 

3. MATERIAL AND METHODS

The research workflow is summarized in Figure 1. It 

outlines the stages, from data augmentation and progressive 

feature extraction to k-fold cross-validation, model training 

using a CNN-BiLSTM-Transformer architecture, and final 

evaluation using the Confusion Matrix and AUC-ROC. 

Figure 1 illustrates the overall workflow and architecture of 

the proposed Speech Emotion Recognition (SER) system. The 

process begins with the audio dataset, which undergoes data 

augmentation techniques such as additive noise and pitch 

shifting to enhance data diversity and robustness. The 

augmented data is then used for feature extraction, where five 

combinations of acoustic features are generated. 

Each feature combination is evaluated using a five-fold 

cross-validation scheme to ensure generalization and avoid 

overfitting. The modeling stage employs a hybrid deep 

learning architecture combining CNN, BiLSTM, and 

Transformer layers. The performance of each model is 

evaluated using the Confusion Matrix and AUC-ROC metrics, 
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ensuring a comprehensive assessment across all emotional categories. 

Figure 1. Research method 

3.1 Dataset 

This study utilized a combination of three publicly available 

emotional speech datasets: CREMA-D [13], RAVDESS [14], 

and TESS [15]. To ensure consistency in vocal characteristics 

and focus on the unique features of female speech, only audio 

samples spoken by female actors were selected. 

The original dataset contained eight emotion categories: 

angry, fear, disgust, sad, happy, neutral, surprised, and calm. 

However, to maintain class balance and reduce the impact of 

underrepresented categories, only six primary emotions were 

retained: angry, fear, disgust, sad, happy, and neutral. The 

surprised and calm categories were excluded due to 

insufficient sample counts. After filtering, the final dataset 

consisted of 4,002 audio samples, with the distribution 

presented in Table 1. 

Table 1. Total data 

Dataset Angry Sad Happy Disgust Fear Neutral 

CREM

A-D
91 91 91 91 91 91 

RAVD

ESS 
192 192 192 192 192 96 

TESS 400 400 400 400 400 400 

To address the imbalance in the neutral emotion category, 

which initially had fewer samples than the other classes, this 

study applied the Synthetic Minority Oversampling Technique 

(SMOTE) [16]. SMOTE generates synthetic data points for the 

minority class rather than simply duplicating existing samples, 

thus introducing more variation and reducing the risk of 

overfitting. The technique creates new samples using Eq. (1). 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆(𝑥𝑁𝑁 − 𝑥𝑖), 𝜆~𝑈(0,1) (1) 

where, 𝑥𝑖  is the original minority sample, 𝑥𝑁𝑁  is its nearest

neighbor, and 𝜆 is drawn uniformly between 0 and 1. Thus, 

SMOTE generates new points along the line segments 

connecting minority samples, balancing the class distribution 

without exact duplication. 

To improve model robustness and generalization, especially 

in real-world scenarios, this study applied two data 

augmentation techniques: additive noise and pitch shifting. 

Additive noise involves injecting random Gaussian noise into 

the original audio signal to simulate environmental 

disturbances such as background conversations, wind, or 

electronic hums [17]. This augmentation is mathematically 

defined in Eq. (2). 

𝑥𝑛𝑜𝑖𝑠𝑦(𝑡) = 𝑥(𝑡) + 𝜎𝑁(0,1) (2) 

To simulate environmental variations, the original signal 

𝑥(𝑡) is added with Gaussian noise 𝑛(𝑡) where 𝜎 controls the 

noise level, and 𝑁(0,1) represents standard normal noise. This 

technique enhances the model's robustness against real-world 

noise. 

In addition, pitch shifting was used to simulate variations in 

vocal frequency, which is particularly relevant for modeling 

emotional expressions in female voices, which generally have 

higher pitch ranges. This technique modifies the pitch of the 

audio signal by a certain number of semitones without 

affecting its duration, enabling the model to capture pitch-

dependent emotional cues [18]. The transformation can be 

expressed as in Eq. (3). 

𝑥𝑝𝑖𝑡𝑐ℎ−𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝑡) = 𝑃𝑖𝑡𝑐ℎ𝑆ℎ𝑖𝑓𝑡(𝑥(𝑡), ∆𝑝) (3) 

where, ∆𝑝  is the pitch shift amount in semitones. The 

implementation uses the librosa.effects.pitch_shift() function 

from the Librosa library. Both techniques enhance the 

diversity of training data, helping to reduce overfitting and 

improve the model's sensitivity to subtle emotional variations 

in female speech. The key parameters used in the data 

augmentation process are summarized in Table 2, and the 

results of the augmented data are presented in Table 3. 

Table 2. Data augmentation parameter 

Technique Parameter Symbol Value 

Additive 

Noise 

Standard deviation of 

noise 
σ 0.02 

Pitch 

Shifting 

Pitch shift in 

semitones 
Δp 

±4 

semitones 

SMOTE 
Number of nearest 

neighbors 
k 5 

As shown in Table 2, the applied data augmentation 

techniques, additive noise, pitch shifting, and SMOTE, were 

configured to enhance the model's robustness against 

variations in acoustic conditions. 
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Table 3. Data after augmentation 

Emotion Original +50% Augmentation New Total 

Angry 683 +342 1,025 

Fear 683 +342 1,025 

Disgust 683 +342 1,025 

Sad 683 +342 1,025 

Happy 683 +342 1,025 

Neutral 587 +294 881 

Total 4,002 +2,004 6,006 

Based on the data in Table 3, after applying the 50% data 

augmentation, the dataset size increased from 4,002 to 

approximately 6,006 audio samples, maintaining proportional 

class distributions. However, the neutral emotion category 

remained slightly underrepresented, with 881 samples 

compared to 1,025 samples in other classes. To address this 

imbalance, the SMOTE algorithm was applied exclusively to 

the neutral class, generating 144 synthetic samples. 

Consequently, the final dataset comprised approximately 

6,150 samples across six balanced emotion categories, 

providing a more uniform data distribution for training and 

evaluation. 

3.2 Feature extraction 

In this study, feature extraction was performed on 

preprocessed and augmented audio data using five acoustic 

features: MFCC, ZCR, LPC, RMSE, and ZCPA. These 

features were selected for their ability to capture different 

aspects of the speech signal relevant to emotion recognition. 

3.2.1 Mel-frequency cepstral coefficients (MFCC) 

Captures the spectral characteristics of speech and simulates 

the human auditory system, making it highly effective for 

distinguishing emotional states [19]. 

𝑀𝐹𝐶𝐶(𝑛) = ∑ 𝑙𝑜𝑔(𝐸𝑚)cos⁡(
𝜋𝑘

𝑀
(𝑚 − 0.5)

𝐾

𝑘=1

), 𝑘 = 1,… . . , 𝐾 (4) 

where, 𝑬𝒎 is the energy at the 𝑚-th Mel filter and 𝑀 is the

total number of filters. In this study, 13 MFCC coefficients 

were extracted per frame using a 40-filter Mel-scale filterbank, 

with a frame length of 25 ms and hop length of 10 ms. 

3.2.2 Zero crossing rate (ZCR) 

Measures how often the signal crosses the zero-amplitude 

axis and is helpful in detecting abrupt signal changes, which 

are usually present in high-arousal emotions [19]. 

𝑍𝐶𝑅 =
1

𝑁 − 1
∑ |𝑠𝑔𝑛(𝑥𝑛) − 𝑠𝑔𝑛(𝑥𝑛−1)|

𝑁−1

𝑛=1

(5) 

where, 𝒙𝒏 is the amplitude value at time n,⁡𝑵 is the number of

samples in one frame, and 𝒔𝒈𝒏(𝒙) is the sign function, which 

equals 1 if x is positive and -1 if x is negative. ZCR was 

computed on each frame (25 ms, 50% overlap) to capture high-

frequency variations in the signal. 

3.2.3 Linear predictive coding (LPC) 

Models the resonant frequencies of the vocal tract and helps 

to capture phonetic and prosodic patterns tied to emotional 

expression [20]. 

𝑠(𝑛) =∑𝑎𝑖𝑠(𝑛 − 1) + 𝑒(𝑛)

𝑝

𝑖=1

(6) 

where, 𝑠(𝑛) is the speech signal at time⁡𝑛 𝑝 is the order of the 

LPC model, 𝑎𝑖  are the LPC coefficients representing the

characteristics of the speech filter, and 𝑒(𝑛) is the residual 

error value. An LPC model of order p = 10 was used to 

approximate the vocal tract response, with coefficients 

estimated on a per-frame basis. 

3.2.4 Root mean square energy (RMSE) 

Represents the intensity or loudness of the signal, helpful in 

identifying emotions with strong or weak energy patterns [21]. 

𝑅𝑀𝑆 = √
1

𝑁
∑𝑥𝑛

2

𝑁

𝑛=1

(7) 

where, 𝑥𝑛  is the signal amplitude at time n, and N is the

number of samples at time n. RMSE was calculated per frame 

(a 25-ms window) to quantify the signal's energy level. 

3.2.5 Zero crossing peak amplitude (ZCPA) 

Combines ZCR with peak amplitude, adding information 

about the magnitude of signal changes around zero crossings 

[19]. 

𝑍𝐶𝑃𝐴 = 𝑍𝐶𝑅⁡ × 𝑚𝑎𝑥(|𝑥𝑛|) (8) 

where, ZCR is the zero crossing count within one frame, and 

max(|𝑛|) represents the peak amplitude in that frame. ZCPA 

was computed using the same frame configuration (25 ms, 

50% overlap) to capture both zero-crossing density and 

amplitude variations. 

Algorithm 1 outlines the detailed steps involved in the 

feature extraction process used in this study. Each audio file 

undergoes preprocessing, noise augmentation, and the 

extraction of five key acoustic features: MFCC, ZCR, LPC, 

RMSE, and ZCPA. These features are then incrementally 

combined to form five distinct datasets. The specific 

configurations of each feature set are summarized in Tables 4, 

5, and 6, which serve as a reference for understanding the 

composition of the generated datasets used for model training 

and evaluation. 

Algorithm 1. Feature extraction 

Step 1: Initialize 

-Five empty datasets for each feature combination

-One empty list to store emotion labels

Step 2: For each audio file in the dataset:

1. Preprocessing:

-Load audio file with sampling rate.

-Apply pitch shifting using Eq. (2).

-Add noise using Eq. (3).

2. Feature extraction:

-Compute MFCC using Eq. (4).

- ZCR using Eq. (5).

-Compute LPC using Eq. (6).

-Compute RMSE using Eq. (7).

-Compute ZCPA using Eq. (8).

3. Feature Combination:

Dataset 1: MFCC only
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Dataset 2: MFCC + ZCR 

Dataset 3: MFCC + LPC + ZCR 

Dataset 4: MFCC + LPC + ZCR + RMSE 

Dataset 5: MFCC + LPC + ZCR + RMSE + ZCPA 

4. Add corresponding emotion label to each dataset  entry

5. Display progress for every multiple of batch_size

Step 3: After all files are processed:

-Save all five datasets to separate CSV files

-Each CSV file includes feature values and the emotion

label column

Theoretically, the MFCC represent the most fundamental 

and widely adopted features in speech processing, due to their 

ability to capture spectral contours that closely align with 

human auditory perception. These features are particularly 

effective in distinguishing vocal patterns associated with 

different emotions; for example, sadness typically exhibits 

flatter, lower-frequency contours [19]. The ZCR contributes 

additional information by quantifying the number of times a 

signal transitions from positive to negative within a single 

frame. This metric is highly sensitive to the signal's texture and 

is especially useful for identifying high-intensity emotions 

such as anger or surprise [19]. LPC strengthens the feature 

representation by modeling the resonant characteristics of the 

speaker's vocal tract, making it well-suited for capturing 

phonetic attributes that differentiate emotional expressions 

[20]. RMSE measures the average energy within a frame, 

reflecting the loudness and emotional intensity of the speech 

signal. For instance, angry speech tends to exhibit higher 

RMSE values, whereas neutral or sad speech typically 

demonstrates lower energy [21]. Finally, ZCPA combines the 

sensitivity of ZCR to signal transitions with the peak 

amplitude values occurring at those transition points [19]. This 

integration provides an additional dimension for detecting 

subtle, micro-level emotional variations within the speech 

signal. 

By integrating these features progressively, the model 

benefits from a comprehensive set of complementary 

information ranging from global spectral patterns and 

transition dynamics to vocal resonance, energy intensity, and 

micro-amplitude fluctuations. Such a feature fusion strategy 

enhances classification accuracy and offers a deeper 

understanding of the most salient attributes for recognizing 

emotions in female speech [22]. 

Finally, the dataset, undergoing a series of transformations, 

is randomly divided into training and testing sets using the k-

fold cross-validation technique. K-fold cross-validation 

partitions the dataset into K equally sized, non-overlapping 

subsets. Each subset is used once as the validation set while 

the remaining K-1 subsets are used for training. This process 

is repeated K times so that each subset serves as the validation 

set exactly once. The final performance is computed as the 

average of the evaluation metrics across all folds, providing an 

almost unbiased and more stable error estimate compared to a 

single train-test split [23]. Typically, K = 5 is chosen to 

balance bias and variance. In classification tasks, stratified k-

fold is commonly used to ensure that the class proportions in 

each fold reflect the original distribution of the data. 

3.3 Hybrid model 

The architecture proposed in this study is a hybrid deep 

learning model that integrates three powerful components: 

CNN [24, 25], BiLSTM [26, 27], and the Transformer [8, 28]. 

This combination is designed to simultaneously capture 

spatial, temporal, and contextual information from female 

speech signals, which are known to exhibit high pitch and 

subtle emotional variations. The detailed implementation of 

this model is outlined in Algorithm 2. 

Algorithm 2. Proposed model 

Step 1: Build hybrid model architecture 

Define the input layer according to the feature shape  

Step 2: Add CNN block: 

Apply 1D Convolutional layer with ReLU activation 

𝑌𝑡, 𝑘 = ⁡𝜎(∑𝑥𝑡+𝑖 × 𝑤𝑖,𝑘 + 𝑏𝑘)

𝐹

𝑖=1

where, 𝑤𝑖,𝑘  and 𝑏𝑘  are the filter weight and bias,

respectively, and σ denotes the ReLU activation. 

Followed by max pooling to reduce dimensionality and 

dropout for regularization. 

Step 3: Add BiLSTM block: 

Add Bidirectional LSTM captures bidirectional temporal 

dependencies, where the state is computed as: 

ℎ𝑡
𝑏𝑖 = [ℎ𝑡

𝑓𝑜𝑟𝑤𝑎𝑟𝑑
; ℎ𝑡

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑]
Enabling the model to retain past and future contextual 

information. 

Step 4: Add Transformer Block: 

Add Positional Encoding further models long-range 

relationships using positional encoding and multi-head self-

attention: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥⁡(
𝑄𝐾𝑇

√𝑑𝑘
)V 

which is followed by a feed-forward network to refine 

learned representations. 

Step 5: Flatten the output 

The outputs are flattened and passed through a dense layer, 

with final classification obtained using a softmax function: 

𝑦̂𝑖 =
exp⁡(𝑧𝑖)

∑ exp⁡(𝑧𝑖)
𝐶
𝑗=1

where, 𝐶 is the number of emotion classes. 

Step 6: Compile model: 

Compile model with configuration in Table 2. 

Step 7: Train the model: 

Perform 5-fold Cross-Validation. 

Record each fold's performance metrics (loss, accuracy, 

precision, recall, F1-score). 

Step 8: Save the best-performing model 

The CNN block extracts local spatial features from the input 

feature maps, such as formant structures and spectral energy 

distributions. These patterns are essential for capturing the 

underlying acoustic structure of emotional speech [24, 25]. 

Next, the extracted features are passed to a BiLSTM layer, 

which processes information in forward and backward 

directions. This bidirectional flow allows the model to retain 

long-range temporal dependencies, such as speech rhythm and 

intonation patterns, that are critical in emotion recognition [26, 

27]. Following the BiLSTM, the sequence data is input to a 

Transformer encoder, which employs a self-attention 

mechanism and positional encoding to model global 

dependencies across the entire feature sequence [8, 28]. This 

enables the model to focus on the most informative parts of the 

speech signal, improving its ability to distinguish subtle 

emotional cues. The final output from the Transformer is 

flattened and passed through one or more fully connected 

(dense) layers, followed by a softmax activation function to 
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classify the input into one of the six emotion categories: angry, 

fear, disgust, sad, happy, and neutral [1, 2]. The configuration 

details of each layer in the proposed model are summarized in 

Table 4. 

Table 4. Model Architecture 

Layer Type Parameters / Configuration 

Input Layer Input shape 

Conv1D (1) 

Filters = 64, Kernel size = 3, 

Activation = ReLU, Padding = 

‘same’ 

Batch Normalization (1) — 

Conv1D (2) 

Filters = 64, Kernel size = 3, 

Activation = ReLU, Padding = 

‘same’ 

Batch Normalization (2) — 

MaxPooling1D (1) Pool size = 2 

Dropout (1) Dropout rate = 0.3 

Conv1D (3) 

Filters = 128, Kernel size = 3, 

Activation = ReLU, Padding = 

‘same’ 

Batch Normalization (3) — 

MaxPooling1D (2) Pool size = 2 

Dropout (2) Dropout rate = 0.3 

BiLSTM (1) 
Units = 128 (bidirectional), 

return_sequences = True 

BiLSTM (2) 
Units = 64 (bidirectional), 

return_sequences = True 

Attention Layer 

Dense (1, activation = tanh) → 

Flatten → Softmax → Reshape → 

Multiply 

GlobalAveragePooling1D — 

Dense (1) Units = 128, Activation = ReLU 

Dropout (3) Dropout rate = 0.5 

Dense (2) Units = 64, Activation = ReLU 

Dropout (4) Dropout rate = 0.5 

Output Layer 
Units = num_classes, Activation = 

Softmax 

This hybrid architecture leverages the strengths of each 

component: local pattern detection (CNN), sequential 

modeling (BiLSTM), and contextual attention (Transformer) 

to construct a highly expressive and robust model for female 

speech emotion recognition. The model is trained using the 

model described in algorithm 2, and optimized using 

categorical cross-entropy loss [29] and the Adamax optimizer, 

as further detailed in Table 5. 

Table 5. Hyperparameter configuration 

Hyperparameter Value 

Loss Categorical Cross-Entropy 

Optimizer Adamax 

Epoch 100 

Batch Size 32 

Learning rate 0,01 

Table 6. Model feature extraction combination 

Name Method Model 

Dataset 1 MFCC Model 1 

Dataset 2 MFCC+ZCR model 2 

Dataset 3 MFCC+ZCR+LPC Model 3 

Dataset 4 MFCC+ZCR+LPC+RMSE Model 4 

Dataset 5 MFCC+ZCR+LPC+RMSE+ZCPA Model 5 

In addition, the combination of feature extraction sets with 

their corresponding model performance is summarized in 

Table 6, providing a clear overview of how each feature 

configuration influences the training and evaluation outcomes 

of the hybrid architecture. 

3.4 Validation Strategy and Performance Metrics 

To evaluate the performance of the proposed hybrid model, 

this study employed a 5-fold cross-validation strategy to 

ensure consistency and robustness across different subsets of 

data [30]. In this approach, the dataset is divided into five 

equal parts, where each part serves as validation data, while 

the remaining four are used for training. This rotation is 

repeated until every fold has been used once as a validation 

set, and the average performance across all folds is computed. 

The model's effectiveness was assessed using several 

classification metrics, including accuracy, precision, recall, 

and F1-score [31, 32]. Accuracy reflects the overall 

correctness of predictions; precision measures the proportion 

of relevant positive predictions; recall indicates the model's 

ability to identify all actual positive instances; and the F1-

score balances precision and recall, which is especially useful 

for handling imbalanced classes.  

In addition, the AUC-ROC (Area Under Curve - Receiver 

Operating Characteristic) [22, 33, 34] was used to evaluate the 

model's discrimination ability across all classes, providing 

deeper insights into classification confidence and separability. 

Confusion matrices and ROC curves were also generated to 

complement the numerical evaluation, enabling a visual 

interpretation of the model's classification behavior across 

emotional categories. This comprehensive evaluation 

framework ensures that the model is both accurate and 

reliable, as well as generalizable for female speech emotion 

recognition tasks. 

4. RESULTS

The proposed hybrid model, comprising a CNN, BiLSTM, 

and Transformer, was trained and evaluated using a stratified 

5-fold cross-validation technique to ensure consistent

performance across all emotional classes. Each fold employed

a balanced dataset, which had been previously augmented and

resampled using noise injection, pitch shifting, and SMOTE.

Feature extraction was conducted progressively, as outlined in

Table 3, resulting in five distinct datasets with varying

acoustic feature combinations, ranging from MFCC only to

MFCC + ZCR + LPC + RMSE + ZCPA. Each dataset was

trained independently using the same model architecture and

hyperparameter settings to ensure a fair comparison.

To assess the computational efficiency of each feature 

configuration, the training time for every model was recorded 

and summarized in Table 7. 

Table 7. Training time 

Model Method Training Time 

Model 1 MFCC 00:03:05 

Model 2 MFCC+ZCR 00:02:51 

Model 3 MFCC+ZCR+LPC 00:02:55 

Model 4 MFCC+ZCR+LPC+RMSE 00:02:57 

Model 5 MFCC+ZCR+LPC+RMSE+ZCPA 00:02:55 

Table 7 displays the training time required for each model, 

which was developed using different combinations of acoustic 
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features. Model 1, which used only MFCC, recorded the 

longest training duration at 3 minutes and 5 seconds. 

Interestingly, Model 2, which combined MFCC and ZCR, 

achieved the shortest training time at 2 minutes and 51 

seconds, despite incorporating an additional feature. The 

training durations for Models 3 to 5, which included 

progressively more features (LPC, RMSE, and ZCPA), 

remained consistent and showed only minor fluctuations, 

ranging between 2 minutes and 55 seconds and 2 minutes and 

57 seconds. These results suggest that adding acoustic features 

has a minimal impact on training efficiency, confirming that 

the proposed hybrid architecture remains computationally 

stable even as input complexity increases. 

Table 8. Training and validation report 

Model 
Accuracy 

(%) 

F1-

Score 

(%) 

Loss 
Precision 

(%) 

Recall 

(%) 

Val 

Accuracy 

(%) 

Val F1-

Score 

(%) 

Val 

Loss 

Val 

Precision 

(%) 

Val 

Recall 

(%) 

Model 1 88.78 87.81 0.73 96.02 80.89 87.67 88.32 0.67 96.12 81.68 

Model 2 88.49 88.41 0.72 96.47 81.59 87.91 88.80 0.68 95.76 82.78 

Model 3 89.05 88.61 0.72 95.26 82.84 88.03 88.10 0.68 94.80 82.30 

Model 4 90.18 89.25 0.70 96.02 83.37 86.69 87.83 0.68 94.01 82.42 

Model 5 89.90 87.86 0.72 94.73 81.93 87.91 88.59 0.68 94.47 83.39 

The training results in Table 8 consistently demonstrate 

high performance across all models, with training accuracy 

exceeding 88% and validation accuracy ranging from 86% to 

88%. Model 4 (MFCC + ZCR + LPC + RMSE) achieved the 

highest training accuracy of 90.18% and the highest F1-score 

of 89.25%, but it also showed the lowest validation accuracy 

of 86.69%, indicating possible overfitting. In contrast, Model 

2 (MFCC + ZCR) exhibited the best balance between training 

and validation performance, achieving the highest validation 

F1-score of 88.80%, suggesting that this feature combination 

is both effective and efficient. Loss values and other metrics 

remained relatively stable across all models, highlighting the 

robustness and consistency of the proposed hybrid 

architecture. The training and validation history of the best-

performing model, Model 2, is presented in Figure 2, 

providing a detailed overview of its learning behavior 

throughout the training process. 

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 2. Model 2 training & validation history: (a) Loss, (b) 

Accuracy, (c) Precision, (d) Recall, (e) F1-score 
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The training and validation results in Figure 2 demonstrate 

that the proposed hybrid model converges stably, decreasing 

loss and consistently increasing performance across all 

metrics. The model achieves high accuracy, near-perfect 

precision, strong recall, and an F1-score close to 0.9, 

indicating robust generalization and reliable performance in 

female speech emotion recognition. 

To provide a clearer understanding of each model's 

classification performance, the evaluation results are 

illustrated in Figure 3. Figure 3 presents a bar chart comparing 

the accuracy, precision, recall, and F1-score across all five 

models, highlighting the relative effectiveness of each feature 

combination. 

Figure 3. Model evaluation comparison report 

The evaluation results, illustrated in Figure 3, highlight that 

Model 2, which utilizes the feature combination of MFCC and 

ZCR, consistently outperforms the other models across all key 

metrics. It achieves the highest accuracy (88.52%), precision 

(88.80%), recall (88.52%), and F1-score (88.53%), indicating 

a strong balance between predictive performance and 

generalization. Other models yield relatively competitive 

results, but none surpass Model 2 in terms of performance and 

training efficiency. This confirms that the MFCC + ZCR 

feature configuration provides an optimal trade-off between 

computational cost and classification accuracy in the proposed 

SER system. 

In addition to the proposed hybrid CNN-BiLSTM-

Transformer architecture, several baseline models were also 

evaluated to provide a fair performance comparison. These 

baseline architectures include standalone CNN, BiLSTM, and 

a combined CNN-BiLSTM model without the Transformer 

component. The purpose of this comparative analysis is to 

examine the individual contribution of each network type and 

to assess whether the integration of convolutional, recurrent, 

and attention mechanisms offers a measurable improvement in 

emotion recognition accuracy. 

To ensure consistency, the comparison was performed using 

the best-performing feature combination, namely MFCC and 

ZCR, which had previously yielded the highest accuracy in the 

hybrid model. Accordingly, all baseline models were trained 

and tested using the same MFCC + ZCR feature dataset to 

ensure that performance differences reflect architectural 

effectiveness rather than variations in features. The overall 

comparison framework is illustrated in Figure 4. 

As presented in Figure 4, the proposed hybrid CNN-

BiLSTM-Transformer model achieved the highest 

classification accuracy compared to the non-hybrid models. 

The inclusion of the Transformer component resulted in a 

significant improvement in performance, demonstrating its 

effectiveness in capturing long-range temporal dependencies 

and contextual relationships within speech signals. In contrast, 

the CNN-BiLSTM and BiLSTM architectures, which rely 

primarily on sequential modeling, yielded moderate accuracy. 

The standalone CNN model, however, showed the lowest 

performance due to its limited ability to model temporal 

dynamics. These findings demonstrate that the hybrid 

integration of convolutional, recurrent, and attention-based 

mechanisms provides a more comprehensive feature 

representation for emotion recognition tasks. 

Figure 4. Comparison of baseline model accuracies 

The classification effectiveness of the best-performing 

model, Model 2 (CNN-BiLSTM-Transformer), is further 
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analyzed using a confusion matrix, as depicted in Figure 5. 

This matrix offers detailed insights into the model's ability to 

accurately identify each emotion class. 

Figure 5. Confusion matrix analysis of the proposed MFCC 

and ZCR feature combination (Model 2) 

As shown in Figure 5, the model demonstrates strong 

performance across all six emotion classes, with most 

predictions concentrated along the diagonal, indicating high 

true positive rates. Minor misclassifications are observed; for 

instance, some class 0 and class 5 samples were incorrectly 

predicted as other classes. Nevertheless, the confusion matrix 

confirms that Model 2 can distinguish between subtle 

emotional expressions in female speech with minimal error. 

The final evaluation metric used to assess the discriminative 

ability of each model is the AUC-ROC (Area Under Curve-

Receiver Operating Characteristic). This metric reflects the 

model's ability to distinguish between different emotion 

classes, regardless of classification threshold. The AUC-ROC 

scores for all five models are summarized in Table 9. 

Table 9. AUC-ROC report 

Model AUC-ROC Score (%) 

Model 1 98.85 

Model 2 98.95 

Model 3 98.84 

Model 4 98.72 

Model 5 98.81 

As shown in Table 9, Model 2 again achieves the highest 

AUC-ROC score of 98.95%, indicating excellent class 

separation and confirming its superiority across multiple 

evaluation criteria. The consistently high AUC values across 

all models suggest that the hybrid architecture is highly 

effective in learning emotional patterns from female speech 

data.  

To provide a more detailed evaluation of the model's 

classification performance for each emotion category, the 

AUC-ROC curves per class for the best-performing model 

(Model 2) are presented in Figure 6. These curves illustrate the 

trade-off between the true positive rate (sensitivity) and the 

false positive rate for each class. 

As shown in Figure 6, the model exhibits consistently high 

AUC scores across all six emotion classes. Five classes, 

neutral, calm, sad, happy, and fear, achieve an AUC of 0.99, 

while the disgust class attains a slightly lower AUC of 0.98. 

These results confirm that the hybrid model can effectively 

distinguish between emotion categories, demonstrating 

excellent generalization and robustness in emotion 

classification tasks. 

Figure 6. AUC-ROC of the proposed MFCC and ZCR 

feature combination (Model 2) 

5. CONCLUSION

This study successfully developed a hybrid deep learning 

model based on a CNN-BiLSTM-Transformer architecture 

designed for recognizing female speech emotions. By 

implementing a stepwise feature extraction approach that 

includes MFCC, ZCR, LPC, RMSE, and ZCPA, the model 

effectively captures complex acoustic patterns relevant to 

emotional expressions in female voice signals. 

The experiments were conducted using an augmented 

dataset, which was enhanced through pitch shifting and 

additive noise techniques, and then balanced using the 

SMOTE algorithm. Training results indicated that Model 2, 

which utilized the MFCC and ZCR feature combination, 

achieved the best performance with an accuracy of 88.52% 

and an AUC-ROC score of 98.95%. Further evaluation using 

the confusion matrix and per-class ROC curves demonstrated 

the model's capability to accurately and consistently 

distinguish between different emotional states. 

Additionally, a comparison with baseline architectures 

(CNN, BiLSTM, and CNN-BiLSTM) was conducted to assess 

the contribution of each component in the hybrid framework. 

The results showed that the proposed CNN-BiLSTM-

Transformer model outperformed the baseline models, 

confirming that the integration of convolutional, recurrent, and 

attention-based mechanisms significantly improves the ability 

to model both local spectral patterns and long-range temporal 

dependencies in emotional speech. 

Overall, the findings suggest that integrating a hybrid 

architecture with a stepwise feature extraction and pitch-based 

augmentation strategy significantly enhances the performance 

of SER systems, particularly for female speech. This work lays 

a strong foundation for developing more inclusive and 

practical emotion recognition systems for real-world human-

computer interaction. 

However, the model still has certain limitations regarding 

generalizability and environmental robustness. Since the 
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evaluation was performed on controlled datasets, the 

performance in real-world conditions, such as those with 

background noise, varied accents, or spontaneous speech, may 

differ. Additionally, the absence of cross-dataset validation 

limits the assessment of the model’s transferability to other 

domains. Future work should focus on cross-corpus testing, 

noise-robust feature learning, and multi-language adaptation 

to further enhance the scalability and general applicability of 

the proposed model. 
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