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Speech Emotion Recognition (SER) is essential for enhancing human-computer interaction
by enabling machines to understand user emotional states. However, SER still faces
challenges, such as the complexity of audio signals, individual differences, and limited
focus on female voices, which often exhibit higher pitch and subtler emotional cues. This
study introduces a hybrid model combining Convolutional Neural Network (CNN),
Bidirectional Long Short-Term Memory (BiLSTM), and Transformer to classify emotions
in female speech. The model is trained using the RAVDESS, CREMA-D, and TESS
datasets, with stepwise acoustic features: MFCC, ZCR, LPC, RMSE, and ZCPA. Data
augmentation techniques are applied to address class imbalance and improve generalization,
including the addition of additive noise and pitch shifting to simulate natural variations in
female vocal pitch. Additionally, SMOTE is employed to generate synthetic samples for
minority classes. Performance is evaluated using 5-fold cross-validation. Results show that
the best performance is achieved using the MFCC + ZCR combination, with 88.52%
accuracy, 88.80% precision, 88.52% recall, 88.53% F1-score, and 98.95% AUC-ROC. This
research advances SER by developing a robust, context-aware model tailored to female

vocal traits.

1. INTRODUCTION

Emotions are more than waves of feelings they shape how
we think, make decisions, and interact. In spoken
communication, elements such as tone, intonation, speech rate,
and pauses often convey emotional meaning far beyond the
literal content of the words themselves [1, 2]. For instance, the
word "fine" spoken slowly in a flat tone may reflect sadness or
fatigue, while the same word said with a rising tone and
quicker pace might indicate enthusiasm. Subtle variations in
acoustic features, particularly in pitch and spectral
representations, have been identified as indicators of
emotional or depressive states, even when such changes may
not be perceptible to the human ear [3].

Voice-based intelligent systems, such as voice assistants,
call centers, and voice bots, are widely used today; yet, most
still struggle to accurately detect user emotions, particularly
those from female voices. A study by Lin et al. [4] revealed
that several state-of-the-art Speech Emotion Recognition
models showed higher accuracy for male speakers than female
speakers, highlighting a persistent gender bias in emotion
classification systems. Similarly, Tursunov et al. [5] reported
that speech-based recognition systems often exhibit gender
bias, where male voices tend to achieve higher recognition
accuracy compared to female voices. Their study
demonstrated that even advanced CNN-based models could
reach up to 96% accuracy for gender classification, yet
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performance disparities remain evident indicating that
acoustic features extracted from female speech are more
challenging for models to generalize accurately.

The ability of machines to "sense" these emotional nuances
opens up new possibilities for human-computer interaction
[6]. Imagine a virtual assistant that immediately offers help
upon detecting a frustrated tone, or a mental health application
that monitors signs of anxiety from daily phone calls to
provide earlier support. In education, an online tutor that can
detect student boredom or confusion through vocal cues could
dynamically adjust the learning material in real-time. All of
these applications depend heavily on how quickly and
accurately a model can process highly dynamic audio
signals [7].

Although many approaches have been developed for speech
emotion recognition (SER), most remain focused on general
data without accounting for the differences in vocal
characteristics between male and female speakers.
Physiologically, female speakers typically have shorter and
lighter vocal folds, resulting in a higher average fundamental
frequency (F0) range of around 200-260 Hz compared to 85-
180 Hz in males, along with more closely spaced formants [4,
5]. These differences affect the spectral contour and energy
distribution of speech, often requiring adjustments in
thresholds or feature weighting to accurately capture the subtle
emotional fluctuations in female voices. Without addressing
these distinctions, SER models tend to be biased toward male
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voice patterns. They may fail to recognize the more delicate
and rapidly shifting emotional cues commonly present in
female speech.

In the field of deep learning-based audio signal processing,
three complementary architectures have gained prominence:
the Convolutional Neural Network (CNN) for extracting
spatial patterns from spectral representations, the Bidirectional
Long Short-Term Memory (BiLSTM) for -capturing
bidirectional temporal dynamics, and the Transformer for
modeling global context in sequences through self-attention
mechanisms [7, 8]. While these architectures have
demonstrated effectiveness individually, studies integrating all
three into a unified processing pipeline, especially for female
voice emotion recognition, remain scarce. This is particularly
important given the complex frequency and intonation patterns
of female speech.

This study proposes and evaluates a hybrid CNN-BiLSTM-
Transformer model for female speech emotion recognition.
The architecture integrates the three modules hierarchically:
CNN serves as the initial stage for extracting local spatial
features from acoustic input; its output is then passed to
BiLSTM to capture bidirectional temporal sequences; finally,
a Transformer layer assigns global attention weights to the
most relevant signal segments. This design combines the
strengths of all three models while adapting to the fluctuating
pitch and intonation patterns unique to female voices.

2. RELATED WORKS

The study by Gomathy [9] focuses on enhancing speech
emotion recognition accuracy and efficiency by utilizing an
Enhanced Cat Swarm Optimization (ECSO) algorithm. This
method helps select only the most important speech features,
such as MFCC, LPC, and LPCC, so the system can better
recognize emotions while reducing unnecessary data and
processing time. ECSO enhances the original Cat Swarm
Optimization by incorporating an Opposition-Based Learning
(OBL) strategy, which enables the algorithm to explore more
possibilities and find the optimal solution more efficiently.
The selected features are then analyzed using a Support Vector
Neural Network (SVNN) to classify different emotions in
speech. When tested in MATLAB, the proposed ECSO-
SVNN model achieved impressive results, with 96% accuracy,
0.74 sensitivity, 0.97 specificity, and a 93.4% recognition rate,
outperforming other existing methods. In short, this study
shows that combining ECSO and SVNN can significantly
improve the way machines recognize human emotions through
voice.

Anvarjon et al. [6] introduced an efficient method
combining RBFN for speech segment selection, CNN for
feature extraction, and BiLSTM for temporal modeling.
Accuracy results were 85.57% (EMO-DB), 72.25%
(IEMOCAP), and 77.02% (RAVDESS). Despite promising
results, issues with data imbalance and underrepresentation of
emotions persisted.

Kim and Lee [8] developed a hybrid model combining
BiLSTM, Transformer, and 2D CNN to enhance emotion
recognition using Mel-spectrograms. The model achieved
score of 95.65% (EMO-DB) and 80.19% (RAVDESS).
Although powerful in capturing emotional representations, its
complexity limits real-time application.

The study by Kacur et al. [10] proposes a Convolutional
Neural Network model that recognizes emotions directly from
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log-Mel spectrograms without manual feature extraction.
Using the RAVDESS dataset, the model classifies emotions
like happy, sad, angry, and neutral. The CNN achieved 93.7%
accuracy, outperforming traditional methods such as SVM and
KNN. The results show that CNNs effectively capture
emotional cues from speech and are suitable for real-time
emotion recognition.

Zhao et al. [11] proposed a 1D and 2D CNN-LSTM hybrid
to extract local patterns and temporal dynamics from
spectrograms. The model achieved 95.33% (Emo-DB) and
89.16% (IEMOCAP) accuracy. While effective, the
approach's computational demands make real-time use
difficult.

Finch [12] introduced Dynamic CNN with BiLSTM, using
adaptive convolutional kernels responsive to emotional
changes. It was tested on CISIA, EMO-DB, and IEMOCAP,
achieving accuracy of 59.08%, 89.29%, and 71.25%,
respectively. Despite its flexibility, the model relies heavily on
precise hyperparameter tuning.

Despite notable progress in SER, several key challenges
remain. Many existing models overlook the unique vocal traits
of female speech, such as higher pitch and dynamic spectral
patterns, leading to biased performance due to reliance on
gender-agnostic datasets [4]. Additionally, traditional SER
studies often use arbitrary acoustic feature combinations
without systematically evaluating their impact. Few have
adopted a structured, stepwise feature extraction strategy
tailored for female voices. Moreover, although hybrid models
like CNN BiLSTM and Transformers show strong results [8],
their complexity limits real-time deployment, and they are
rarely evaluated with feature pipelines designed explicitly for
female speech. Common issues such as class imbalance and
noise sensitivity are also frequently under-addressed [9]. Data
augmentation techniques, such as Gaussian noise injection and
pitch shifting, are essential for enhancing model robustness
and adapting to real-world conditions. Specifically, pitch
shifting is applied to simulate natural variations in female
vocal frequency, improving the model's ability to recognize
subtle emotional cues across different voice tones. Therefore,
an SER framework that combines a hybrid architecture with
progressive, female-focused feature extraction and targeted
augmentation is crucial for developing more robust, inclusive,
and real-world-ready systems.

3. MATERIAL AND METHODS

The research workflow is summarized in Figure 1. It
outlines the stages, from data augmentation and progressive
feature extraction to k-fold cross-validation, model training
using a CNN-BiLSTM-Transformer architecture, and final
evaluation using the Confusion Matrix and AUC-ROC.

Figure 1 illustrates the overall workflow and architecture of
the proposed Speech Emotion Recognition (SER) system. The
process begins with the audio dataset, which undergoes data
augmentation techniques such as additive noise and pitch
shifting to enhance data diversity and robustness. The
augmented data is then used for feature extraction, where five
combinations of acoustic features are generated.

Each feature combination is evaluated using a five-fold
cross-validation scheme to ensure generalization and avoid
overfitting. The modeling stage employs a hybrid deep
learning architecture combining CNN, BiLSTM, and
Transformer layers. The performance of each model is
evaluated using the Confusion Matrix and AUC-ROC metrics,



ensuring a comprehensive assessment across all emotional
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Figure 1. Research method

3.1 Dataset

This study utilized a combination of three publicly available
emotional speech datasets: CREMA-D [13], RAVDESS [14],
and TESS [15]. To ensure consistency in vocal characteristics
and focus on the unique features of female speech, only audio
samples spoken by female actors were selected.

The original dataset contained eight emotion categories:
angry, fear, disgust, sad, happy, neutral, surprised, and calm.
However, to maintain class balance and reduce the impact of
underrepresented categories, only six primary emotions were
retained: angry, fear, disgust, sad, happy, and neutral. The
surprised and calm categories were excluded due to
insufficient sample counts. After filtering, the final dataset
consisted of 4,002 audio samples, with the distribution
presented in Table 1.

Table 1. Total data

Dataset Angry Sad Happy Disgust Fear Neutral
CREM
AD 91 91 91 91 91 91
RAVD
ESS 192 192 192 192 192 96
TESS 400 400 400 400 400 400

To address the imbalance in the neutral emotion category,
which initially had fewer samples than the other classes, this
study applied the Synthetic Minority Oversampling Technique
(SMOTE) [16]. SMOTE generates synthetic data points for the
minority class rather than simply duplicating existing samples,
thus introducing more variation and reducing the risk of
overfitting. The technique creates new samples using Eq. (1).

Xnew = Xi + A(xNN - xi)'AA'U(O'l) (1)
where, x; is the original minority sample, xyy is its nearest
neighbor, and A is drawn uniformly between 0 and 1. Thus,
SMOTE generates new points along the line segments
connecting minority samples, balancing the class distribution
without exact duplication.

To improve model robustness and generalization, especially
in real-world scenarios, this study applied two data
augmentation techniques: additive noise and pitch shifting.
Additive noise involves injecting random Gaussian noise into
the original audio signal to simulate environmental
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disturbances such as background conversations, wind, or
electronic hums [17]. This augmentation is mathematically
defined in Eq. (2).

Xnoisy (t) = x(t) + oN(0,1) 2)

To simulate environmental variations, the original signal
x(t) is added with Gaussian noise n(t) where o controls the
noise level, and N (0,1) represents standard normal noise. This
technique enhances the model's robustness against real-world
noise.

In addition, pitch shifting was used to simulate variations in
vocal frequency, which is particularly relevant for modeling
emotional expressions in female voices, which generally have
higher pitch ranges. This technique modifies the pitch of the
audio signal by a certain number of semitones without
affecting its duration, enabling the model to capture pitch-
dependent emotional cues [18]. The transformation can be
expressed as in Eq. (3).

xpitch—shifted (t) = PitChShift(x(t): Ap) (3)
where, Ap is the pitch shift amount in semitones. The
implementation uses the librosa.effects.pitch_shift() function
from the Librosa library. Both techniques enhance the
diversity of training data, helping to reduce overfitting and
improve the model's sensitivity to subtle emotional variations
in female speech. The key parameters used in the data
augmentation process are summarized in Table 2, and the
results of the augmented data are presented in Table 3.

Table 2. Data augmentation parameter

Technique Parameter Symbol Value
Additive Standard deviation of
. . c 0.02

Noise noise

Pitch Pitch shift in A +4
Shifting semitones P semitones
SMOTE Numbejr of nearest K 5

neighbors

As shown in Table 2, the applied data augmentation
techniques, additive noise, pitch shifting, and SMOTE, were
configured to enhance the model's robustness against
variations in acoustic conditions.



Table 3. Data after augmentation

Emotion  Original +50% Augmentation New Total
Angry 683 +342 1,025
Fear 683 +342 1,025
Disgust 683 +342 1,025
Sad 683 +342 1,025
Happy 683 +342 1,025
Neutral 587 +294 881
Total 4,002 +2,004 6,006

Based on the data in Table 3, after applying the 50% data
augmentation, the dataset size increased from 4,002 to
approximately 6,006 audio samples, maintaining proportional
class distributions. However, the neutral emotion category
remained slightly underrepresented, with 881 samples
compared to 1,025 samples in other classes. To address this
imbalance, the SMOTE algorithm was applied exclusively to
the neutral class, generating 144 synthetic samples.
Consequently, the final dataset comprised approximately
6,150 samples across six balanced emotion categories,
providing a more uniform data distribution for training and
evaluation.

3.2 Feature extraction

In this study, feature extraction was performed on
preprocessed and augmented audio data using five acoustic
features: MFCC, ZCR, LPC, RMSE, and ZCPA. These
features were selected for their ability to capture different
aspects of the speech signal relevant to emotion recognition.

3.2.1 Mel-frequency cepstral coefficients (MFCC)

Captures the spectral characteristics of speech and simulates
the human auditory system, making it highly effective for
distinguishing emotional states [19].

K
nk

MFCC(n) = ) log(Ep)cos (—(m—05)),k=1,.....K 4)
2. "

where, E,, is the energy at the m-th Mel filter and M is the
total number of filters. In this study, 13 MFCC coefficients
were extracted per frame using a 40-filter Mel-scale filterbank,
with a frame length of 25 ms and hop length of 10 ms.

3.2.2 Zero crossing rate (ZCR)

Measures how often the signal crosses the zero-amplitude
axis and is helpful in detecting abrupt signal changes, which
are usually present in high-arousal emotions [19].

N-1
1
ZCR = mz |sgn(x,) — sgn(x,_,)| ®)
n=1

where, x,, is the amplitude value at time n, N is the number of
samples in one frame, and sgn(x) is the sign function, which
equals 1 if x is positive and -1 if x is negative. ZCR was
computed on each frame (25 ms, 50% overlap) to capture high-
frequency variations in the signal.

3.2.3 Linear predictive coding (LPC)

Models the resonant frequencies of the vocal tract and helps
to capture phonetic and prosodic patterns tied to emotional
expression [20].
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p

s(n) = Z a;s(n—1) +e(n)

i=1

(6)

where, s(n) is the speech signal at time n p is the order of the
LPC model, a; are the LPC coefficients representing the
characteristics of the speech filter, and e(n) is the residual
error value. An LPC model of order p = 10 was used to
approximate the vocal tract response, with coefficients
estimated on a per-frame basis.

3.2.4 Root mean square energy (RMSE)
Represents the intensity or loudness of the signal, helpful in
identifying emotions with strong or weak energy patterns [21].

RMS = (7

where, x,, is the signal amplitude at time n, and N is the
number of samples at time n. RMSE was calculated per frame
(a 25-ms window) to quantify the signal's energy level.

3.2.5 Zero crossing peak amplitude (ZCPA)

Combines ZCR with peak amplitude, adding information
about the magnitude of signal changes around zero crossings
[19].

ZCPA = ZCR x max(|x,|) (8)
where, ZCR is the zero crossing count within one frame, and
max(|n|) represents the peak amplitude in that frame. ZCPA
was computed using the same frame configuration (25 ms,
50% overlap) to capture both zero-crossing density and
amplitude variations.

Algorithm 1 outlines the detailed steps involved in the
feature extraction process used in this study. Each audio file
undergoes preprocessing, noise augmentation, and the
extraction of five key acoustic features: MFCC, ZCR, LPC,
RMSE, and ZCPA. These features are then incrementally
combined to form five distinct datasets. The specific
configurations of each feature set are summarized in Tables 4,
5, and 6, which serve as a reference for understanding the
composition of the generated datasets used for model training
and evaluation.

Algorithm 1. Feature extraction

Step 1: Initialize

-Five empty datasets for each feature combination
-One empty list to store emotion labels
Step 2: For each audio file in the dataset:
1. Preprocessing:

-Load audio file with sampling rate.

-Apply pitch shifting using Eq. (2).

-Add noise using Eq. (3).

2. Feature extraction:

-Compute MFCC using Eq. (4).

- ZCR using Eq. (5).

-Compute LPC using Eq. (6).

-Compute RMSE using Eq. (7).

-Compute ZCPA using Eq. (8).

3. Feature Combination:

Dataset 1: MFCC only




Dataset 2: MFCC + ZCR

Dataset 3: MFCC + LPC + ZCR

Dataset 4: MFCC + LPC + ZCR + RMSE

Dataset 5: MFCC + LPC + ZCR + RMSE + ZCPA

4. Add corresponding emotion label to each dataset entry
5. Display progress for every multiple of batch_size

Step 3: After all files are processed:

-Save all five datasets to separate CSV files

-Each CSV file includes feature values and the emotion
label column

Theoretically, the MFCC represent the most fundamental
and widely adopted features in speech processing, due to their
ability to capture spectral contours that closely align with
human auditory perception. These features are particularly
effective in distinguishing vocal patterns associated with
different emotions; for example, sadness typically exhibits
flatter, lower-frequency contours [19]. The ZCR contributes
additional information by quantifying the number of times a
signal transitions from positive to negative within a single
frame. This metric is highly sensitive to the signal's texture and
is especially useful for identifying high-intensity emotions
such as anger or surprise [19]. LPC strengthens the feature
representation by modeling the resonant characteristics of the
speaker's vocal tract, making it well-suited for capturing
phonetic attributes that differentiate emotional expressions
[20]. RMSE measures the average energy within a frame,
reflecting the loudness and emotional intensity of the speech
signal. For instance, angry speech tends to exhibit higher
RMSE values, whereas neutral or sad speech typically
demonstrates lower energy [21]. Finally, ZCPA combines the
sensitivity of ZCR to signal transitions with the peak
amplitude values occurring at those transition points [19]. This
integration provides an additional dimension for detecting
subtle, micro-level emotional variations within the speech
signal.

By integrating these features progressively, the model
benefits from a comprehensive set of complementary
information ranging from global spectral patterns and
transition dynamics to vocal resonance, energy intensity, and
micro-amplitude fluctuations. Such a feature fusion strategy
enhances classification accuracy and offers a deeper
understanding of the most salient attributes for recognizing
emotions in female speech [22].

Finally, the dataset, undergoing a series of transformations,
is randomly divided into training and testing sets using the k-
fold cross-validation technique. K-fold cross-validation
partitions the dataset into K equally sized, non-overlapping
subsets. Each subset is used once as the validation set while
the remaining K-1 subsets are used for training. This process
is repeated K times so that each subset serves as the validation
set exactly once. The final performance is computed as the
average of the evaluation metrics across all folds, providing an
almost unbiased and more stable error estimate compared to a
single train-test split [23]. Typically, K = 5 is chosen to
balance bias and variance. In classification tasks, stratified k-
fold is commonly used to ensure that the class proportions in
each fold reflect the original distribution of the data.

3.3 Hybrid model
The architecture proposed in this study is a hybrid deep

learning model that integrates three powerful components:
CNN [24, 25], BiLSTM [26, 27], and the Transformer [8, 28].
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This combination is designed to simultaneously capture
spatial, temporal, and contextual information from female
speech signals, which are known to exhibit high pitch and
subtle emotional variations. The detailed implementation of
this model is outlined in Algorithm 2.

Algorithm 2. Proposed model

Step 1: Build hybrid model architecture

Define the input layer according to the feature shape

Step 2: Add CNN block:

Apply 1D Convolutional layer with ReLU activation
F

Yt k= O'(Z Xesi X Wi + by)
i=1
where, w;;, and b, are the filter weight and bias,
respectively, and ¢ denotes the ReLU activation.
Followed by max pooling to reduce dimensionality and
dropout for regularization.
Step 3: Add BiLSTM block:
Add Bidirectional LSTM captures bidirectional temporal
dependencies, where the state is computed as:
h?i — [h{OTWG-Td; h?ackward]

Enabling the model to retain past and future contextual
information.
Step 4: Add Transformer Block:
Add Positional Encoding further models long-range
relationships using positional encoding and multi-head self-
attention:

T
Attention(Q,K,V) = softmax (%)V

which is followed by a feed-forward network to refine
learned representations.
Step S: Flatten the output
The outputs are flattened and passed through a dense layer,
with final classification obtained using a softmax function:
exp (z)
1C'=1 exp (z;)
where, C is the number of emotion classes.
Step 6: Compile model:
Compile model with configuration in Table 2.
Step 7: Train the model:
Perform 5-fold Cross-Validation.
Record each fold's performance metrics (loss, accuracy,
precision, recall, F1-score).
Step 8: Save the best-performing model

-~

P =

The CNN block extracts local spatial features from the input
feature maps, such as formant structures and spectral energy
distributions. These patterns are essential for capturing the
underlying acoustic structure of emotional speech [24, 25].
Next, the extracted features are passed to a BiLSTM layer,
which processes information in forward and backward
directions. This bidirectional flow allows the model to retain
long-range temporal dependencies, such as speech rhythm and
intonation patterns, that are critical in emotion recognition [26,
27]. Following the BiLSTM, the sequence data is input to a
Transformer encoder, which employs a self-attention
mechanism and positional encoding to model global
dependencies across the entire feature sequence [8, 28]. This
enables the model to focus on the most informative parts of the
speech signal, improving its ability to distinguish subtle
emotional cues. The final output from the Transformer is
flattened and passed through one or more fully connected
(dense) layers, followed by a softmax activation function to



classify the input into one of the six emotion categories: angry,
fear, disgust, sad, happy, and neutral [1, 2]. The configuration
details of each layer in the proposed model are summarized in
Table 4.

Table 4. Model Architecture

Layer Type Parameters / Configuration
Input Layer Input shape

Filters = 64, Kernel size = 3,
ConvlD (1) Activation = ReLU, Padding =

‘same’

Filters = 64, Kernel size = 3,

Batch Normalization (1)

Conv1D (2) Activation = ReLU, Padding =
‘same’
Batch Normalization (2) —
MaxPooling1D (1) Pool size =2
Dropout (1) Dropout rate = 0.3
Filters = 128, Kernel size = 3,
ConvlD (3) Activation = ReLU, Padding =

‘same’
Batch Normalization (3)

MaxPooling1D (2) Pool size =2
Dropout (2) Dropout rate = 0.3
BIiLSTM (1) Units = 128 (bldlrec_tlonal),

return_sequences = True
BIiLSTM (2) Units = 64 (bidirectional),

return_sequences = True
Dense (1, activation = tanh) —
Flatten — Softmax — Reshape —
Multiply

Attention Layer

GlobalAveragePooling1D

Dense (1) Units = 128, Activation = ReLU
Dropout (3) Dropout rate = 0.5
Dense (2) Units = 64, Activation = ReLU
Dropout (4) Dropout rate = 0.5
Units = num_classes, Activation =
Output Layer ~

Softmax

This hybrid architecture leverages the strengths of each
component: local pattern detection (CNN), sequential
modeling (BiLSTM), and contextual attention (Transformer)
to construct a highly expressive and robust model for female
speech emotion recognition. The model is trained using the
model described in algorithm 2, and optimized using
categorical cross-entropy loss [29] and the Adamax optimizer,
as further detailed in Table 5.

Table 5. Hyperparameter configuration

Hyperparameter Value
Loss Categorical Cross-Entropy
Optimizer Adamax
Epoch 100
Batch Size 32
Learning rate 0,01

Table 6. Model feature extraction combination

Name Method Model
Dataset 1 MFCC Model 1
Dataset 2 MFCC+ZCR model 2
Dataset 3 MFCC+ZCR+LPC Model 3
Dataset 4 MFCC+ZCR+LPC+RMSE Model 4
Dataset 5 MFCC+ZCR+LPC+RMSE+ZCPA Model 5

In addition, the combination of feature extraction sets with
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their corresponding model performance is summarized in
Table 6, providing a clear overview of how each feature
configuration influences the training and evaluation outcomes
of the hybrid architecture.

3.4 Validation Strategy and Performance Metrics

To evaluate the performance of the proposed hybrid model,
this study employed a 5-fold cross-validation strategy to
ensure consistency and robustness across different subsets of
data [30]. In this approach, the dataset is divided into five
equal parts, where each part serves as validation data, while
the remaining four are used for training. This rotation is
repeated until every fold has been used once as a validation
set, and the average performance across all folds is computed.
The model's effectiveness was assessed using several
classification metrics, including accuracy, precision, recall,
and Fl-score [31, 32]. Accuracy reflects the overall
correctness of predictions; precision measures the proportion
of relevant positive predictions; recall indicates the model's
ability to identify all actual positive instances; and the F1-
score balances precision and recall, which is especially useful
for handling imbalanced classes.

In addition, the AUC-ROC (Area Under Curve - Receiver
Operating Characteristic) [22, 33, 34] was used to evaluate the
model's discrimination ability across all classes, providing
deeper insights into classification confidence and separability.
Confusion matrices and ROC curves were also generated to
complement the numerical evaluation, enabling a visual
interpretation of the model's classification behavior across
emotional categories. This comprehensive evaluation
framework ensures that the model is both accurate and
reliable, as well as generalizable for female speech emotion
recognition tasks.

4. RESULTS

The proposed hybrid model, comprising a CNN, BiLSTM,
and Transformer, was trained and evaluated using a stratified
S5-fold cross-validation technique to ensure consistent
performance across all emotional classes. Each fold employed
a balanced dataset, which had been previously augmented and
resampled using noise injection, pitch shifting, and SMOTE.
Feature extraction was conducted progressively, as outlined in
Table 3, resulting in five distinct datasets with varying
acoustic feature combinations, ranging from MFCC only to
MFCC + ZCR + LPC + RMSE + ZCPA. Each dataset was
trained independently using the same model architecture and
hyperparameter settings to ensure a fair comparison.

To assess the computational efficiency of each feature
configuration, the training time for every model was recorded
and summarized in Table 7.

Table 7. Training time

Model Method Training Time
Model 1 MFCC 00:03:05
Model 2 MFCC+ZCR 00:02:51
Model 3 MFCC+ZCR+LPC 00:02:55
Model 4 MFCC+ZCR+LPC+RMSE 00:02:57
Model 5 MFCC+ZCR+LPC+RMSE+ZCPA 00:02:55

Table 7 displays the training time required for each model,
which was developed using different combinations of acoustic



features. Model 1, which used only MFCC, recorded the
longest training duration at 3 minutes and 5 seconds.
Interestingly, Model 2, which combined MFCC and ZCR,
achieved the shortest training time at 2 minutes and 51
seconds, despite incorporating an additional feature. The
training durations for Models 3 to 5, which included
progressively more features (LPC, RMSE, and ZCPA),

remained consistent and showed only minor fluctuations,
ranging between 2 minutes and 55 seconds and 2 minutes and
57 seconds. These results suggest that adding acoustic features
has a minimal impact on training efficiency, confirming that
the proposed hybrid architecture remains computationally
stable even as input complexity increases.

Table 8. Training and validation report

Accuracy FL- Precision Recall Val ValFL- g val val
Model Score Loss Accuracy Score Precision Recall
(%) (%) (%) Loss
(%) (%) (%) (%) (%)

Model 1 88.78 87.81 0.73 96.02 80.89 87.67 88.32 0.67 96.12 81.68
Model 2 88.49 88.41 0.72 96.47 81.59 87.91 88.80 0.68 95.76 82.78
Model 3 89.05 88.61 0.72 95.26 82.84 88.03 88.10 0.68 94.80 82.30
Model 4 90.18 89.25 0.70 96.02 83.37 86.69 87.83 0.68 94.01 82.42
Model 5 89.90 87.86 0.72 94.73 81.93 87.91 88.59 0.68 94.47 83.39
The training results in Table 8 consistently demonstrate Precision

high performance across all models, with training accuracy 104 — precision i} —

exceeding 88% and validation accuracy ranging from 86% to I yalpfecsion

88%. Model 4 (MFCC + ZCR + LPC + RMSE) achieved the 087

highest training accuracy of 90.18% and the highest F1-score v

of 89.25%, but it also showed the lowest validation accuracy 5 %7

of 86.69%, indicating possible overfitting. In contrast, Model 3

2 (MFCC + ZCR) exhibited the best balance between training T 041

and validation performance, achieving the highest validation

F1-score of 88.80%, suggesting that this feature combination 2]

is both effective and efficient. Loss values and other metrics ool

remained relatively stable across all models, highlighting the r m p - - =

robustness and consistency of the proposed hybrid Epachs

architecture. The training and validation history of the best- (c)

Recall

performing model, Model 2, is presented in Figure 2,
providing a detailed overview of its learning behavior
throughout the training process.

Losses
1.8
— loss
— val_loss
1.6
1.4 1
2
g 1.2
1.0 4
0.8 ~—
e ~
b 2‘0 4‘0 6‘0 80 160
Epochs
(a)
Accuracy

1 — accuracy
P
val_accuracy """

PUSPOS ot

T
40 100

Epochs

(b)

60 80

2733

— recall

- val_recall v/-/'\f\ﬁ

e

0.8 4

0.6 1

0.2 4

0.0 4

T
40 100

Epochs

(d)

F1 Score

—— f1_score
0.8 — val_f1_score

/

o
o
L

F1 Score

g
=
L

0.2

0.0

T T T T
40 60 80 100

Epochs

(e)

T T
0 20

Figure 2. Model 2 training & validation history: (a) Loss, (b)
Accuracy, (c) Precision, (d) Recall, (¢) F1-score



The training and validation results in Figure 2 demonstrate
that the proposed hybrid model converges stably, decreasing
loss and consistently increasing performance across all
metrics. The model achieves high accuracy, near-perfect
precision, strong recall, and an Fl-score close to 0.9,
indicating robust generalization and reliable performance in
female speech emotion recognition.

To provide a clearer understanding of each model's
classification performance, the evaluation results are
illustrated in Figure 3. Figure 3 presents a bar chart comparing
the accuracy, precision, recall, and F1-score across all five
models, highlighting the relative effectiveness of each feature
combination.
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Figure 3. Model evaluation comparison report

The evaluation results, illustrated in Figure 3, highlight that
Model 2, which utilizes the feature combination of MFCC and
ZCR, consistently outperforms the other models across all key
metrics. It achieves the highest accuracy (88.52%), precision
(88.80%), recall (88.52%), and F1-score (88.53%), indicating
a strong balance between predictive performance and
generalization. Other models yield relatively competitive
results, but none surpass Model 2 in terms of performance and
training efficiency. This confirms that the MFCC + ZCR
feature configuration provides an optimal trade-off between
computational cost and classification accuracy in the proposed
SER system.

In addition to the proposed hybrid CNN-BiLSTM-
Transformer architecture, several baseline models were also
evaluated to provide a fair performance comparison. These
baseline architectures include standalone CNN, BiLSTM, and
a combined CNN-BILSTM model without the Transformer
component. The purpose of this comparative analysis is to
examine the individual contribution of each network type and
to assess whether the integration of convolutional, recurrent,
and attention mechanisms offers a measurable improvement in
emotion recognition accuracy.

To ensure consistency, the comparison was performed using
the best-performing feature combination, namely MFCC and
ZCR, which had previously yielded the highest accuracy in the
hybrid model. Accordingly, all baseline models were trained
and tested using the same MFCC + ZCR feature dataset to
ensure that performance differences reflect architectural
effectiveness rather than variations in features. The overall
comparison framework is illustrated in Figure 4.

As presented in Figure 4, the proposed hybrid CNN-
BiLSTM-Transformer model achieved the highest
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classification accuracy compared to the non-hybrid models.
The inclusion of the Transformer component resulted in a
significant improvement in performance, demonstrating its
effectiveness in capturing long-range temporal dependencies
and contextual relationships within speech signals. In contrast,
the CNN-BILSTM and BiLSTM architectures, which rely
primarily on sequential modeling, yielded moderate accuracy.
The standalone CNN model, however, showed the lowest
performance due to its limited ability to model temporal
dynamics. These findings demonstrate that the hybrid
integration of convolutional, recurrent, and attention-based
mechanisms provides a more comprehensive feature
representation for emotion recognition tasks.

Comparison of Model Accuracies

88.52%

Accuracy (%)

Figure 4. Comparison of baseline model accuracies

The classification effectiveness of the best-performing
model, Model 2 (CNN-BiLSTM-Transformer), is further



analyzed using a confusion matrix, as depicted in Figure 5.
This matrix offers detailed insights into the model's ability to
accurately identify each emotion class.
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Figure 5. Confusion matrix analysis of the proposed MFCC
and ZCR feature combination (Model 2)

As shown in Figure 5, the model demonstrates strong
performance across all six emotion classes, with most
predictions concentrated along the diagonal, indicating high
true positive rates. Minor misclassifications are observed; for
instance, some class 0 and class 5 samples were incorrectly
predicted as other classes. Nevertheless, the confusion matrix
confirms that Model 2 can distinguish between subtle
emotional expressions in female speech with minimal error.

The final evaluation metric used to assess the discriminative
ability of each model is the AUC-ROC (Area Under Curve-
Receiver Operating Characteristic). This metric reflects the
model's ability to distinguish between different emotion
classes, regardless of classification threshold. The AUC-ROC
scores for all five models are summarized in Table 9.

Table 9. AUC-ROC report

Model AUC-ROC Score (%)
Model 1 98.85
Model 2 98.95
Model 3 98.84
Model 4 98.72
Model 5 98.81

As shown in Table 9, Model 2 again achieves the highest
AUC-ROC score of 98.95%, indicating excellent class
separation and confirming its superiority across multiple
evaluation criteria. The consistently high AUC values across
all models suggest that the hybrid architecture is highly
effective in learning emotional patterns from female speech
data.

To provide a more detailed evaluation of the model's
classification performance for each emotion category, the
AUC-ROC curves per class for the best-performing model
(Model 2) are presented in Figure 6. These curves illustrate the
trade-off between the true positive rate (sensitivity) and the
false positive rate for each class.

As shown in Figure 6, the model exhibits consistently high
AUC scores across all six emotion classes. Five classes,
neutral, calm, sad, happy, and fear, achieve an AUC of 0.99,
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while the disgust class attains a slightly lower AUC of 0.98.
These results confirm that the hybrid model can effectively

distinguish between emotion categories, demonstrating
excellent generalization and robustness in emotion
classification tasks.
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Figure 6. AUC-ROC of the proposed MFCC and ZCR
feature combination (Model 2)

5. CONCLUSION

This study successfully developed a hybrid deep learning
model based on a CNN-BiLSTM-Transformer architecture
designed for recognizing female speech emotions. By
implementing a stepwise feature extraction approach that
includes MFCC, ZCR, LPC, RMSE, and ZCPA, the model
effectively captures complex acoustic patterns relevant to
emotional expressions in female voice signals.

The experiments were conducted using an augmented
dataset, which was enhanced through pitch shifting and
additive noise techniques, and then balanced using the
SMOTE algorithm. Training results indicated that Model 2,
which utilized the MFCC and ZCR feature combination,
achieved the best performance with an accuracy of 88.52%
and an AUC-ROC score of 98.95%. Further evaluation using
the confusion matrix and per-class ROC curves demonstrated
the model's capability to accurately and consistently
distinguish between different emotional states.

Additionally, a comparison with baseline architectures
(CNN, BiLSTM, and CNN-BiLSTM) was conducted to assess
the contribution of each component in the hybrid framework.
The results showed that the proposed CNN-BiLSTM-
Transformer model outperformed the baseline models,
confirming that the integration of convolutional, recurrent, and
attention-based mechanisms significantly improves the ability
to model both local spectral patterns and long-range temporal
dependencies in emotional speech.

Overall, the findings suggest that integrating a hybrid
architecture with a stepwise feature extraction and pitch-based
augmentation strategy significantly enhances the performance
of SER systems, particularly for female speech. This work lays
a strong foundation for developing more inclusive and
practical emotion recognition systems for real-world human-
computer interaction.

However, the model still has certain limitations regarding
generalizability and environmental robustness. Since the



evaluation was performed on controlled datasets,

the

performance in real-world conditions, such as those with
background noise, varied accents, or spontaneous speech, may
differ. Additionally, the absence of cross-dataset validation
limits the assessment of the model’s transferability to other
domains. Future work should focus on cross-corpus testing,
noise-robust feature learning, and multi-language adaptation
to further enhance the scalability and general applicability of
the proposed model.
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