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This paper presents a new quantum image encryption (QIE) algorithm that integrates a 

newly developed 4D Quantum Logistic-Jerk Hyperchaotic System (4D-QLJHS) with a 

quantum image representation (QIR) model, enabling secure and efficient image 

transmission. By reducing qubit usage and circuit depth, the proposed QIE framework 

significantly improves quantum resource efficiency. Additionally, incorporating the 

enhanced 4D-LJHS map strengthened security and resistance against both quantum and 

classical attacks, surpassing the robustness and scalability of current quantum image 

encryption techniques. The new 4D-QLJHS is created by combining a logistic map and a 

jerk system, and then converted to a quantum hyperchaotic system using a Hamiltonian-

based method. These systems help create a Quantum Pseudo-Random Number Generator 

(QPRNG) that generates random bit sequences used to alter and rearrange data at the 

quantum bit-plane level during the encryption process. The quantum encryption method 

uses the Quantum Image Representation based on Bit Planes (QIRBP) model, which 

enables modifying individual pixels and color channels via CNOT and SWAP gates. We 

evaluate various statistical tests to confirm the security and efficiency of our system. The 

experiments demonstrate that the system is highly secure, featuring adequate randomness, 

robust protection against specific attacks, and uniform distribution in the encrypted image 

data. Experimental simulations of some images indicate that the system provides a 

satisfactory level of security for image encryption, given the computational costs. This 

makes it suitable for real-time image communication where security is a priority.  
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1. INTRODUCTION

As the digital age continues to advance, images are a crucial 

means of conveying information [1]. They have become 

increasingly prevalent across domains such as financial 

transactions, military reconnaissance, and medical imaging. 

However, several obstacles and issues need to be addressed 

using conventional image encryption technology [2]. First, the 

threat of quantum computation, along with the powerful 

computational capabilities of quantum computers, presents 

serious challenges to the security of traditional encryption 

schemes. First, the strong computational capabilities of 

quantum computers pose a serious threat to the security of 

encryption algorithms based on conventional mathematical 

puzzles (such as discrete logarithms and integer factorization), 

and the security of classical encryption algorithms faces major 

challenges when confronted with quantum computation [3]. 

The approach developed by Grover significantly reduces the 

security of current encryption methods; for instance, it can 

halve the work required for key search in symmetric 

encryption algorithms [4]. These traditional encryption 

techniques can also be successfully cracked in polynomial 

time using Shor's method [5]. The second type of encryption 

makes it difficult for conventional encryption methods, such 

as stream ciphers, to efficiently interpret image data, since it 

often exhibits high redundancy and strong correlation. 

Furthermore, this redundancy can easily lead to the loss of 

local information during the encryption process, jeopardising 

the overall security of the encryption. The introduction of deep 

learning-based ciphertext analysis tools and quantum-

computing-accelerated brute-force cracking has put the 

security of traditional encryption algorithms to the ultimate 

test [6]. Information security is increasingly threatened by 

deep learning models that may be trained on vast amounts of 

data to progressively discover and exploit flaws in encryption 

techniques. 

Three categories of QIR can be distinguished: chaos-based, 

transform-domain-based, and spatial domain-based. 

Researchers have used the spatial and transform domains of 

quantum computers to create image encryption methods. In 

2012, Zhou et al. [7] proposed a quantum picture encryption 

method based on geometric transformations of quantum 

images. QIR, based on limited geometric and color 

modifications, was introduced by Song et al. [8]. A QIR 

technique based on the Arnold transform was presented by 

Zhou et al. [9]. A QIR technique based on image correlation 
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decomposition was proposed by Hua et al. [10]. 

With the rapid advancement of quantum computing 

hardware, experimental and theoretical investigations into 

quantum random walks will advance, and these studies are 

projected to become increasingly important in the fields of 

quantum computing, quantum information, and quantum 

simulation in the future [11]. Quantum random walks have 

been applied to image encryption to induce pixel disruption or 

generate dynamic keys. To accomplish color image 

encryption, Zhao et al. [12] used the tessellation transform in 

conjunction with quantum random walks. However, the 

periodicity of chaotic systems limits the security, and key 

generation depends on classical chaotic mappings. Panda and 

Benjamin [13] developed encryption techniques based on 

quantum random walks and DNA coding. They, however, did 

not fully utilize quantum parallelism. In this work, we aim to 

address the issue of QIE techniques that underutilize quantum 

features to encrypt large images and rely on classical keys, 

thereby reducing security.  

Most QIE models demand excessive qubits (often > 20) and 

complex gate sequences and quantum operations, exceeding 

the capabilities of near-term (Noisy Intermediate-Scale 

Quantum, NISQ) devices [14]. For instance, some models 

need more than 30 qubits to represent a basic image, rendering 

them infeasible for current hardware. Many encryption 

algorithms are based on chaotic systems with inherent 

periodicity, thereby weakening resistance to differential 

attacks and failing to leverage quantum properties, such as 

entanglement, to counter quantum threats like Grover’s 

algorithm [4, 5]. Moreover, a few models address deep 

learning-based cryptanalysis, leaving encrypted images 

vulnerable to pattern recognition exploits [6]. Currently 

existing systems lack scalability for large pictures or real-time 

transmission. Additionally, current quantum parallelism leads 

to inefficient circuits, where processing moderate-sized 

images (e.g., 128 × 128 pixels) results in either restricted 

execution times or high error rates due to qubit coherence [13, 

15]. 

Here, we describe a new QIE system in this research that 

combines a QIR model based on bit planes (QIRBP) [14] with 

a 4D-LJHS. To increase the system's complexity, the 4D-

LJHS was enhanced by introducing nonlinear terms into the 

classical logistic and jerk dynamics. We then converted this 

system to the quantum domain using a Hamiltonian-based 

quantization approach, resulting in a 4D quantum logic 

junction (QLJHS). The quantum evolution governed by this 

Hamiltonian system was used to build a quantum pseudo-

random number generator (QPRNG), which drives 

substitution and permutation operations at the bit-plane level. 

By integrating the 4D-QLJHS with the QIRBP model, we 

developed a QIE framework that ensures high randomness, 

strong resistance to differential attacks, and efficient circuit 

performance. The motivation behind this approach is to 

provide a secure, scalable, and real-time quantum encryption 

algorithm suitable for practical image transmission over 

quantum communication systems. 

In this paper, the following contribution is made: 

• A new 4D Logistic–Jerk Hyperchaotic System (4D-LJHS)

was designed by integrating a logistic map with Jerk chaotic 

systems. Nonlinear steps added to some system parameters 

increased complexity and made encryption algorithms more 

secure.  

• A new 4D Quantum Hyperchaotic Logistic–Jerk System

was designed by converting a classical 4D-LJHS to a quantum 

state via a quantization system.  

• Introducing a new diffusion method that combines chaotic

sequences with a diffusion process driven by quantum 

pseudorandom numbers.  

• Designing a new cryptosystem with real-time applications

supporting high security and low complexity to be used for a 

rapid image encryption algorithm by the proposed 4D-QHLJS 

for fast and secure image transmission. 

• Analyzing the results in terms of performance and security

by utilizing some evaluation parameters such as the NIST 800-

22 randomness test [16], histogram analysis, entropy 

calculations, and correlation-based approach. The retrieved 

results emphasize that the newly presented system in this 

article is highly secured against differential and statistical 

attacks. 

The remainder of the paper is structured as follows: Section 

2 provides a detailed overview of chaotic systems and their 

applications in cryptography. This section introduces the 

mathematical background of the Logistic and Jerk chaotic 

systems and their quantum systems, which form the 

foundation of the proposed 4D-QLJHS. In the same section, 

we present the system's mathematical formulation and discuss 

its dynamic behavior, including attractors and Lyapunov 

exponents. The complexity and unpredictability of the system 

are demonstrated through experimental results. Section 3 

introduces the image encryption algorithm, outlining the 

diffusion and confusion processes in detail. This section 

includes the pseudocode for the encryption and decryption 

algorithms, providing a step-by-step description of how the 

proposed 4D-QLJHS is used to secure image data. Section 4 

presents the security analysis of the proposed cryptosystem. 

We conduct several experiments to evaluate the system's 

performance in terms of key sensitivity, randomness, entropy, 

and resistance to differential attacks. The results demonstrate 

that the proposed system outperforms existing chaos-based 

encryption schemes in both security and efficiency. Finally, 

the paper is concluded in Section 5 by summarizing the key 

findings and discussing potential future work. 

2. THEORETICAL CONCEPTS

This section introduces a new 4D chaotic system. After that, 

it converts this system from a classical state to a quantum state 

via a quantization process. 

2.1 Generating a new hyperchaotic system 

A new 4D chaotic system is introduced in this study. We 

derived this system by extending the logistic map [17] and 

from the classical three-dimensional Jerk chaotic system [18]. 

By incorporating changes in parameters and nonlinear terms, 

while preserving the original dynamics, we formulated a novel 

4-dimensional hyperchaotic mathematical model. This process

involved introducing new variables represented as 'w',

adjusting nonlinear terms, eliminating unfavourable

components, and ensuring consistency with forward changes.

Its chaotic behavior and complexity evaluation are

investigated by experimental evidence. The following

equations define the 4D chaotic system:
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𝑑𝑥

𝑑𝑡
 = 𝛽𝑦

𝑑𝑦

𝑑𝑡
 = 𝛽𝑧

𝑑𝑧

𝑑𝑡
= −𝑎𝑦 − 𝑏𝑧 − 𝑤 + 𝑔 exp(𝑑𝑥−𝑒𝑥2)

𝑑𝑤

𝑑𝑡
 = 𝛼𝑥 + 𝛽𝑧(1 − 𝑧)

(1) 

2.2 The dynamic behaviour of the proposed chaotic system 

An "attraction" in a dynamical system is a collection of 

points or a sequence of values in state space that indicate the 

output's path of travel. We can maintain the ergodicity of the 

dynamical system and ensure the hyperchaotic structure. 

Figure 1 shows the attractor diagram with different values of 

the initial states (𝑥, 𝑦, 𝑧, 𝑤 ) =  (1,1,1,1), and the parameters 

for Figure 1(a) are (𝑎 = 50.60, 𝑏 = 0.0001, 𝑑 = 0.01, 𝑒 =
0.005, 𝛼 = 1.4, 𝛽 = 1.5), for Figure 1(b) (𝑎 = 90.60, 𝑏 =
1.1, 𝑑 = 3.10, 𝑒 = 10.850,, 𝑔 = 50.1, 𝛼 = 1.4, 𝛽 = 1.5) , 

for Figure 1(c) ( 𝑎 = 60.60, 𝑏 = 0.001, 𝑑 = 0.01, 𝑒 =
0.850, 𝑔 = 0.1, 𝛼 = 10.4, 𝛽 = 10.5) , for Figure 1(d) are 

( 𝑎 = 60.60, 𝑏 = 0.0001, 𝑑 = 0.1, 𝑒 = 1.85, 𝑔 = 5.1,
𝛼 = 10.4, 𝛽 = 10.5),  for Figure 1(e) are (𝑎 = 90.60, 𝑏 =
0.1, 𝑑 = 0.1, 𝑒 = 1.85, 𝑔 = 5.1, 𝛼 = 10.4, 𝛽 = 10.5), 
and Figure 1(f) ( 𝑎 = 90.60, 𝑏 = 1.1, 𝑑 = 3.1, 𝑒 = 1.85,
𝑔 = 5.1, 𝛼 = 10.4, 𝛽 = 10.5) , and the time step starts at 

time 0 and simulates up to time 500. Figure 2 shows the 

sensitivity of the system (1), with the fixed parameters (𝑎 =
90.60, 𝑑 = 3.1, 𝑒 = 1.85, 𝑔 = 5.1, 𝛼 = 10.4, 𝛽 = 10.5) 

and we change 𝑏 value 0.1 in each state where (a, b, c) the 

value of 𝑏 = (0.1,0.3, 0.5), respectively.  

2.2.1 Dissipative of system (1) 

The divergence of the system (1) can be calculated via the 

following equation: 

∇𝑓 =
∂𝑓𝑥1

∂𝑥
+

∂𝑓𝑥2

∂𝑦
+

∂𝑓𝑥3

∂𝑧
+

∂𝑓𝑥4

∂𝑥
= −𝑏 (2) 

where, 𝑓𝑥 = 𝑥̇, 𝑓𝑦 = 𝑦̇, 𝑓𝑧 = 𝑧̇ . Since the divergence of the

system (1) is negative for all positive values of 𝑐, where 𝑏 >
0, then the proposed system (1) has dissipative behaviour.  

2.2.2 Lyapunov exponents 

The Lyapunov Exponents (ℒℰ) is defined as a measure of 

how quickly nearby trajectories either diverge from or 

converge toward each other. It can be defined as [15]:  

𝜆𝐿𝑒 ≅
1

𝑡
ln

∥ 𝛿𝑥(𝑡) ∥

∥ 𝛿𝑥(0) ∥
(3) 

where, 
∥𝑥(𝑡)∥

∥𝑥(0)∥
 refers to the distance between two different 

trajectories. Figure 3 shows the (ℒℰ) of the system (1), where 

the initial states (𝑥, 𝑦, 𝑧, 𝑤 ) =  (0.1,0.1,0.1,0.1 ), and the 

parameters are ( 𝑎 = 50.60, 𝑏 = 0.0001, 𝑑 = 0.01, 𝑒 =
0.005, 𝑓 = 0.1, 𝑔 = 0.1, 𝛼 = 1.4, 𝛽 = 1.5) respectively. 

2.2.3 Permutation entropy 

Given a set window length and relying on the distribution 

of these permutation patterns, permutation entropy (PE) is the 

entropy of a random variable that samples the occurrences of 

permutation patterns from a time series. Figures 4(a) and (b) 

show the PE of the system(1), where the parameters (𝑎 =
90.5, 𝑏 = 60.5, 𝑑 = 10.8, 𝑒 = 0.85, 𝛼 = 1.4, 𝛽 = 1.5) 

and ( 𝑎 = 1.5, 𝑏 = 1.5, 𝑑 = 10.8, 𝑒 = 0.85, 𝛼 = 0.4, 𝛽 =
0.5), respectively. 

Figure 1. Attractors of the system (1) 
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Figure 2. The sensitivity of the system (1) 

Figure 3. Lyapunov Exponents of the system (1) 

Figure 4. Permutation entropy for all variables 

Figure 4 presents the permutation entropy (PE) of the 

system (1) under two different parameter sets. The graph 

illustrates how the system's chaotic behavior changes with 

variations in the parameters. Specifically, PE measures the 

complexity and unpredictability of the system, with higher 

values indicating more chaotic dynamics. This analysis 

highlights the system's potential for secure cryptographic 

applications. 

3. QUANTIZATION SYSTEM

Based on the reference [19] in this method, we will convert 

(1) from a classical state to a quantum state via a quantization

system, as our system is dissipative. First step, we will find the

Hamiltonian formulation. We extend the state space by

introducing canonically conjugate momenta (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 , 𝑝𝑤)

corresponding to each variable. The dynamics can be encoded

by a Hamiltonian function 𝐻cl(𝑥, 𝑦, 𝑧, 𝑤, 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 , 𝑝𝑤)
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defined as: 

𝐻cl = 𝛽𝑦 𝑝𝑥 + 𝛽𝑧 𝑝𝑦

+ (−𝑎𝑦 − 𝑏𝑧 − 𝑤 + 𝑔 𝑒𝑑𝑥−𝑒𝑥2
)𝑝𝑧

+ (𝛼𝑥 + 𝛽𝑧(1 − 𝑧))𝑝𝑤

(4) 

The system evolves according to Hamilton’s canonical 

equations: 

𝑑𝑞𝑖

𝑑𝑡
=

𝜕𝐻cl

𝜕𝑝𝑖

,
𝑑𝑝𝑖

𝑑𝑡
= −

𝜕𝐻cl

𝜕𝑞𝑖

, 𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝑤}. (5) 

From this Hamiltonian, one recovers the original system as 

the configuration-space evolution: 

𝑑𝑥

𝑑𝑡
 =

𝜕𝐻cl

𝜕𝑝𝑥

= 𝛽𝑦,

𝑑𝑦

𝑑𝑡
 =

𝜕𝐻cl

𝜕𝑝𝑦

= 𝛽𝑧,

𝑑𝑧

𝑑𝑡
 =

𝜕𝐻cl

𝜕𝑝𝑧

= −𝑎𝑦 − 𝑏𝑧 − 𝑤 + 𝑔 𝑒𝑑𝑥−𝑒𝑥2
,

𝑑𝑤

𝑑𝑡
 =

𝜕𝐻cl

𝜕𝑝𝑤

= 𝛼𝑥 + 𝛽𝑧(1 − 𝑧),

(6) 

Thus, confirming consistency with the original flow. 

In the second step, we promote the phase-space variables to 

operators working on a Hilbert space in order to quantise the 

classical system ℋ. Define: 

𝑥 ↦ 𝑥̂, 𝑦 ↦ 𝑦̂, 𝑧 ↦ 𝑧̂, 𝑤 ↦ 𝑤̂, 

𝑝𝑥 ↦ 𝑝̂𝑥 = −𝑖ℏ
𝜕

𝜕𝑥
, etc. 

Impose canonical commutation relations: 

[𝑞̂𝑖 , 𝑝̂𝑗] = 𝑖ℏ 𝛿𝑖𝑗 , with 𝑞̂𝑖 , 𝑝̂𝑗

∈ {𝑥̂, 𝑦̂, 𝑧̂, 𝑤̂, 𝑝̂𝑥, 𝑝̂𝑦 , 𝑝̂𝑧 , 𝑝̂𝑤}. 
(7) 

To ensure Hermiticity, we use Weyl (symmetric) ordering. 

The quantum Hamiltonian operator 𝐻̂ is thus constructed as: 

𝐻̂ =
1

2
∑  

𝑖∈{𝑥,𝑦,𝑧,𝑤}

(𝑓𝑖(𝑥̂, 𝑦̂, 𝑧̂, 𝑤̂) 𝑝̂𝑖 + 𝑝̂𝑖  𝑓𝑖(𝑥̂, 𝑦̂, 𝑧̂, 𝑤̂)), (8) 

with: 

𝑓𝑥 = 𝛽𝑦̂,

𝑓𝑦 = 𝛽𝑧̂,

𝑓𝑧 = −𝑎𝑦̂ − 𝑏𝑧̂ − 𝑤̂ + 𝑔 𝑒𝑑𝑥̂−𝑒𝑥̂2
,

𝑓𝑤 = 𝛼𝑥̂ + 𝛽𝑧̂(1 − 𝑧̂).

(9) 

This leads to the explicit expression: 

𝐻̂ = 
1

2
𝛽(𝑦̂𝑝̂𝑥 + 𝑝̂𝑥𝑦̂) +

1

2
𝛽(𝑧̂𝑝̂𝑦 + 𝑝̂𝑦𝑧̂)

 +
1

2
[
(−𝑎𝑦̂ − 𝑏𝑧̂ − 𝑤̂ + 𝑔 𝑒𝑑𝑥̂−𝑒𝑥̂2

)𝑝̂𝑧 +

𝑝̂𝑧(−𝑎𝑦̂ − 𝑏𝑧̂ − 𝑤̂ + 𝑔 𝑒𝑑𝑥̂−𝑒𝑥̂2
)

]

 +
1

2
[
(𝛼𝑥̂ + 𝛽𝑧̂(1 − 𝑧̂))𝑝̂𝑤 +

𝑝̂𝑤(𝛼𝑥̂ + 𝛽𝑧̂(1 − 𝑧̂))
]

 (10) 

This Hermitian operator 𝐻̂ generates dynamics through the 

Heisenberg equation of motion: 

𝑑𝑂̂

𝑑𝑡
=

𝑖

ℏ
[𝐻̂, 𝑂̂], ∀𝑂̂ ∈ {𝑥̂, 𝑦̂, 𝑧̂, 𝑤̂, 𝑝̂𝑥, … } (11) 

Figure 5 shows the bifurcation of (10) for several 

dimensions (𝑥, 𝑦, 𝑧) vs. perimeter 𝑎.

(a) (b) 

(c) 

Figure 5. Bifurcation of (10), (a) x vs. a (b) y vs. a (c) z vs. a
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4. QUANTUM IMAGE REPRESENTATION

The idea of QIR, which transforms classical image data 

into quantum states for effective processing, manipulation, 

and storage on quantum computers, is presented in this 

subsection. QIR models aim to preserve image 

characteristics, such as pixel positions, color information, 

and bit-plane decomposition, within a compact quantum 

structure. One such advanced model is the QIRBP, which 

provides a fine-grained decomposition of image data across 

color channels and bit planes, allowing both high-resolution 

encoding and efficient quantum operations. The QIRBP 

model is defined as: 

|ℐ𝑄𝐼𝑅𝐵𝑃⟩ =

1

√𝑀
∑ 

𝑐−1

𝜆=0

∑ 

𝑏−1

𝐿=0

∑  

𝑁−1

𝑌𝑋=0

|𝐶𝜆,𝐿,𝑌𝑋⟩ ⊗ |𝜆⟩ ⊗ |𝐿⟩ ⊗ |𝑌𝑋⟩ (12) 

where, 𝜆 ∈ {0,1, … , 𝑐 − 1} for color channel (RGB), need 3 

qubits for representation of color 23 , 𝐿 ∈ {0,1, … , 𝑏 − 1}

bit-plane index, 𝑌𝑋 ∈ {0,1, … , 22𝑛 − 1} : pixel position

encoded over 2𝑛 qubits and 𝐶𝜆,𝐿,𝑌𝑋 ∈ {0,1} pixel bit value

needs a signal qubit. The image size is 2𝑛 × 2𝑛  =
 21 × 21  =  2 × 2 pixels, as shown in Figure 6, assuming

that each colour channel (Red, Green, and Blue) is 

represented using b=8 bits. If we use the binary 

representation of the pixel intensities, the QIR for this 

colour image is as follows: 

Figure 6. A simple 2 × 2 image and its QIRBP state [14] 

|𝐼⟩ =
1

256
[⬚|11111001⟩ ⊗ |000⟩ ⊗ |11111001⟩ ⊗ |00⟩ + |00001011⟩ ⊗ |001⟩ ⊗ |00001011⟩ ⊗ |00⟩

+ |00011010⟩ ⊗ |010⟩ ⊗ |00011010⟩ ⊗ |00⟩ + |00001001⟩ ⊗ |000⟩ ⊗ |00001001⟩ ⊗ |01⟩
+ |11110101⟩ ⊗ |001⟩ ⊗ |11110101⟩ ⊗ |01⟩ + |00010110⟩ ⊗ |010⟩ ⊗ |00010110⟩ ⊗ |01⟩ +

|00000001⟩ ⊗ |000⟩ ⊗ |00000001⟩ ⊗ |10⟩ + |00001011⟩ ⊗ |001⟩ ⊗ |00001011⟩ ⊗ |10⟩ + |11111010⟩ ⊗ |010⟩
⊗ |11111010⟩ ⊗ |10⟩ + 

|11111001⟩ ⊗ |000⟩ ⊗ |11111001⟩ ⊗ |11⟩ + |11010101⟩ ⊗ |001⟩ ⊗ |11010101⟩ ⊗ |11⟩ + |00001010⟩ ⊗ |010⟩
⊗ |00001010⟩ ⊗ |11⟩]. 

Table 1. Examples of quantum circuits and their matrix representations 

Name Quantum Circuit Matrix Formula 

Identity I2 [
1 0
0 1

] 

Pauli-X [
0 1
1 0

] 

Hadamard H 
1

√2
[
1 1
1 −1

] 

CNOT [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] 

SWAP [

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

] 

4.1 Quantum gates 

Quantum computing uses qubits, physical systems 

governed by quantum mechanics, to encode and process 

information. The state of a qubit is represented by a unit 

vector in a 2-D Hilbert space (𝐻2), which is represented by

the notation ⟩. A qubit |𝜑⟩ may be written in general form 

as: 

|𝜑⟩ = 𝛼|0⟩ + 𝛽|1⟩ = 𝑎 [
1
0
] + 𝛽 [

0
1
] = [𝑎 𝛽]T

where, |0⟩  and |1⟩  represent the basis states in 𝐻2 , and

𝛼, 𝛽 ∈ 𝐶( the complex set), and represent the amplitude of 

the corresponding computational basis states |0⟩  and |1⟩ 
that satisfies the normalization condition |𝛼|2 + |𝛽|2 = 1.

The tensor product, denoted by ⊗ , combines two 

matrices into a larger block matrix. If 𝑄 is an 𝑛 × 𝑛 matrix 

and 𝑍 is an 𝑚 × 𝑚 matrix, then their tensor product 𝑄 ⊗ 𝑍 

results in an 𝑛𝑚 × 𝑛𝑚 block matrix is defined as follows: 

ℚ ⊗ ℤ =

[

ℚ0,0ℤ ⋯ ℚ0,𝑛−1ℤ
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

ℚ𝑛−1,0ℤ ⋯ ℚ𝑛−1,𝑛−1ℤ]
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Small vector spaces can be combined to create a larger 

vector space through the tensor product. For example, let |𝑖⟩ 
represent a basis state in a 2𝑛-dimensional Hilbert space.

Each state |𝑖⟩ (for 𝑖 = 0,1,2, … , 2𝑛 − 1) is formed by the

tensor product of 𝑛 computational basis states: 

|𝑖⟩ = |𝑖𝑛−1⟩ ⊗ |𝑖𝑛−2⟩ ⊗ ⋯⊗ |𝑖1⟩ ⊗ |𝑖0⟩
= |𝑖𝑛−1⟩|𝑖𝑛−2⟩ … |𝑖1⟩|𝑖0⟩
= |𝑖𝑛−1𝑖𝑛−2 ⋯𝑖1𝑖0⟩

where, 𝑖 = ∑  𝑛−1
𝑗=0 𝑖𝑗 × 2𝑗 , 𝑖0, 𝑖1, … , 𝑖𝑛−1 ∈ {0,1}. As a result,

the 𝑛 -qubit's quantum system |𝜓⟩  can be defined as a 

superposition state of 2𝑛quantum basic states:

|𝜓⟩ = ∑  

𝑛−1

𝑘=0

𝑎𝑘|𝑘⟩, 𝑘 = 𝑘𝑛−1𝑘𝑛−2 …𝑘1𝑘0, 𝑘𝑖 ∈ {0,1}

and also satisfy ∑  𝑛−1
𝑘=0 |𝑎𝑘|

2 = 1 . The components

required to build a quantum circuit are quantum gates. One-

qubit and two-qubit gates can be used to simulate a complex 

quantum gate [3,46]. The 𝑛-qubit's quantum gate can be 

represented by a 2𝑛 × 2𝑛unitary matrix. Table 1 presents

examples of basic gates and the matrices that accompany 

them. 

4.2 The proposed system for generating pseudo random 

number sequences  

In this section, a QPRNG is introduced based on the time 

evolution governed by our proposed system in Eq. (10). The 

evolution of this Hamiltonian is modelled using a gate-

based quantum circuit, and the resulting dynamics are 

exploited to generate high-entropy pseudo-random binary 

sequences. These sequences are later utilized in the 

encryption process to enhance randomness and security in 

QIR. The generation process consists of the following 

stages: qubit initialization, superposition construction using 

Hadamard gates, gate-based simulation of a quantum 

hyperchaotic system, and final projective measurement. Let 

the total number of qubits be defined as 𝑄 = 4, where each 

qubit encodes one of the state variables 𝑥, 𝑦, 𝑧, 𝑤  in the 

hyperchaotic system. Steps below show the QPRNG 

generating: 

Step 1: Initialization 

All qubits are initially prepared in the computational basis 

state: 

|𝜓0⟩ = |0⟩⊗4 = |0000⟩ (13) 

To ensure finding all superpositions equal probability 

over all input states, apply Hadamard gates 𝐻 to each qubit. 

The 𝐻 is defined as: 

𝐻 =
1

√2
[
1 1
1 −1

] (14) 

|𝜓1⟩ = 𝐻⊗4|𝜓0⟩ =
1

√16
∑  

15

𝑘=0

|𝑘⟩ (15) 

This creates a uniform superposition over all 24 possible

configurations of 𝑥, 𝑦, 𝑧, 𝑤. 

Step 2: Simulating 4D Hyperchaotic Dynamics via 

Quantum Gates 

The quantum circuit then simulates the dynamics of the 

Hamiltonian using parameterized rotation for 𝑥 vector and 

𝑧  vector (𝑅𝑋  and 𝑅𝑍 ), respectively. Controlled rotation 

gates CRZ and CRY, without relying on operator-based 

decompositions. Now, based on (10), we have: 

Each term is approximately using gate sequences as 

follows: 

 Single-qubit 𝑅𝑋  and 𝑅𝑍  gates simulate local kinetic

and phase evolution. 

 𝐶𝑅𝑍 gates simulate inter-variable couplings like 𝑦̂𝑝̂𝑥 ,

𝑧̂𝑝̂𝑦, 𝑧̂(1 − 𝑧̂)𝑝̂𝑤, etc.

 𝐶𝑅𝑋  and 𝐶𝑅𝑌  gates introduce entanglement and

nonlinearity into the system. 

 Exponential and polynomial terms like 𝑒𝑑𝑥̂−𝑒𝑥̂2
 are

approximated using fixed-angle 𝐶𝑅𝑍  gates with control 

from 𝑥̂. 

This layered gate-based evolution directly implements 

the system’s hyperchaotic interactions. 

Step 3: Measurement 

After applying 𝑇  layers of chaotic gate operations, the 

quantum state is measured: 

|𝜓𝑇⟩ →
Measure 

|𝑚⟩,𝑚 ∈ {0,1}4 (16) 

The measured bitstring 𝑚 = 𝑚0𝑚1𝑚2𝑚3 is the output of

a single iteration of the QPRNG. The randomness in 𝑚 

reflects the underlying chaotic quantum evolution. 

Step 4: Iteration 

The process is repeated until the quantum pseudo-random 

number sequence QPRNS reaches the desired length 𝑁: 

QPRNS = {𝑚(1), 𝑚(2), … ,𝑚
(
𝑁
4

)
} (17) 

Algorithm 1 and Figure 7 show the generation of QPRNG 

based on 4D-QLJHS. 

Figure 7. Quantum circuit for QPRNG based on system 

(10) 

This circuit provides a full realization of the QPRNG 

based on gate-level simulation of the 4D-QLJHS. The 

randomness of the output is a direct consequence of the 

nonlinear entanglement and chaotic dynamics encoded in 

the Hamiltonian evolution. 

4.3 The NIST test of the PRNG 

The National Institute of Standards and Technology 

(NIST) offers a comprehensive statistical testing suite 

designed to evaluate the randomness characteristics of 
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binary sequences. In this section, we employed the NIST SP 

800-22 test suite to assess the stochastic properties of the

PRNS generated by our proposed QPRNG model based on

the 4D-QLJHS.

Algorithm 1. QPRNG Based on 4D-QLJHS 

Input: 

 Evolution depth T (number of layers)

 Number of pseudo-random bits N
Output:

 Quantum pseudo-random number sequence PRNS

Let the qubit registers be defined as:

x = q[0], y = q[1], z = q[2], w = q[3] (each a qubit) 

1. Initialize all qubits in the state.

2. Apply Hadamard gates to all qubits:

This creates a uniform superposition over all

computational basis states.

3. For t = 1 to T, do:

a. Apply single-qubit rotations to simulate kinetic

propagation:

Apply RX(θ1), RZ(θ2) on each of x, y, z,w 

This model includes the kinetic energy term 
p2

2
. 

b. Simulate cross-variable coupling terms (based on the

Hamiltonian structure): 

CRZ(β ⋅ Δt): y → x  [models β ⋅ y ⋅ p̂x]

CRZ(β ⋅ Δt): z → y  [models β ⋅ z ⋅ p̂y]

CRZ(−a ⋅ Δt): y → z  [models − a ⋅ y ⋅ p̂z]

CRZ(−b ⋅ Δt): z → z  [models − b ⋅ z ⋅ p̂z]

CRZ(−Δt): w → z  [models − w ⋅ p̂z]

CRZ(g ⋅ Δt): x → z [model edx−ex2
⋅ p̂z]

CRZ(α ⋅ Δt): x → w  [models α ⋅ x ⋅ p̂w]

CRZ(β ⋅ Δt): z → w  [models β ⋅ z(1 − z) ⋅ p̂w]
c. Apply entanglement gates to increase nonlinearity:

Apply CRX(θ), CRY(θ) across selected qubit pairs

d. Apply final single-qubit rotations to mix states further:

Apply (θ3), RZ(θ4) on each of x, y, z, w
4. Measure all qubits in the computational basis.

5. Append the measured bitstring m to PRNS.

6. Repeat steps 1- 5 until length(PRNS) ≥ N.

The output sequence was produced by measuring the final 

quantum states of the evolved circuit over multiple 

iterations. To conduct the test, we generated 1,000,000 bits 

using the QPRNG.  

Each measurement from the quantum circuit produced 4 

bits, and the circuit was executed 250,000 times to reach the 

required length. The resulting bitstream was divided into 

100 separate subsequences, each of length 106 bits.

The NIST test suite applies a series of statistical tests to 

each subsequence, evaluating the randomness performance 

using two primary criteria: the P-value and the pass rate. The 

significance level 𝛼 was set to 0.01, as recommended by the 

NIST standard.  

According to the confidence interval equation: 

Pass Rate ∈ [1 − 𝛼 − 3√
𝛼(1 − 𝛼)

𝑚
, 1 − 𝛼

+ 3√
𝛼(1 − 𝛼)

𝑚
] 

where, 𝑚 = 100 is the number of sequences. Substituting 

𝛼 = 0.01, the expected confidence interval becomes: 

0.99 ± 0.0094393 ⇒ [0.9602, 1.0198] 

Therefore, for the generated sequence to be accepted, the 

observed pass rate must exceed 0.9602. 

The test results for QPRNG based on 4D-QLJHS are 

summarized in Table 2. All tests produced P-values greater 

than 0.01, and the overall pass rate was within the required 

confidence interval. These results confirm that the proposed 

quantum hyperchaotic system generates statistically sound 

pseudo-random bit sequences that successfully pass the 

NIST randomness criteria. 

Table 2. Statistical results of the generated sequences 

NIST Items P-Value
Test 

Results 

Block-Frequency 0.3032 True 

Frequency (Monobit) 0.6240 True 

Discrete Fourier Transform 0.7721 True 

Approximate Entropy 0.2352 True 

Cumulative Sums (Forward) 0.6513 True 

Cumulative Sums (Reverse) 0.7321 True 

Serial-1 0.7123 True 

Serial-2 0.6121 True 

Runs 0.3312 True 

Longest Run of Ones 0.7662 True 

Overlapping Template 0.9717 True 

Non-overlapping Template 0.3378 True 

Linear Complexity 0.5341 True 

Binary Matrix Rank 0.6773 True 

Lempel-ziv Compression 0.4468 True 

Random Excursions 0.5867 True 

Random Excursions Variant 0.5778 True 

5. QUANTUM IMAGE ENCRYPTION AND 

DECRYPTION PROCESS 

In this section, we introduce a quantum encryption 

algorithm that combines the 4D-QLJHS-based algorithm 

with the QIRBP model [14]. The encryption algorithm uses 

the QPRNG to perform two-step operations (quantum 

substitution and quantum permutation) at the bit-plane level, 

ensuring secure, reversible QIR. Figure 8 shows the diagram 

of QIE and decryption processes. 

5.1 Quantum encryption process 

The encryption process acts pixel-wise and bit-plane-

wise. Each pixel (𝑦, 𝑥)  in the image, it is indexed by a 

binary-encoded position qubit |𝑌𝑋⟩ ∈ {0,1}2𝑛 . For each

pixel, the corresponding color channel 𝜆 ∈ {𝑅, 𝐺, 𝐵} , bit 

plane 𝐿 , and bit value 𝐶𝜆,𝐿,𝑌𝑋 ∈ {0,1}  are each explicitly

stored in dedicated quantum registers. These registers 

enable direct access and targeted operations on each 

component of a pixel's representation, enabling precise 

control of encryption at the quantum-gate level. 

Encryption proceeds in two stages: substitution and 

permutation. In the substitution stage, the bit 𝐶𝜆,𝐿,𝑌𝑋  is

modified using a pseudo-random bit 𝑘𝜆,𝐿,𝑌𝑋 ∈ {0,1}
generated by the QPRNG, applying a one-time pad logic via 

the quantum CNOT gate. In the permutation stage, the 

position of the qubits |𝑌𝑋⟩ are reordered using a pseudo-
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random permutation also generated from QPRNG. These 

operations affect the spatial and color structure of the image, 

offering strong resistance to quantum and classical attacks. 

The decryption process is achieved by simply applying the 

same QPRNG sequence in reverse order using the self-

inverse property of CNOT and a reverse permutation 

function. Encryption Algorithm 2 shows the step-by-step 

process to obtain image encryption based on QIRBP and 

QPRNG. 

Algorithm 2: Encryption Algorithm 

Step 1: Substitution via QPRNG 

The substitution operation encrypts the bit 𝐶𝜆,𝐿,𝑌𝑋 using a

pseudo-random bit 𝑘𝜆,𝐿,𝑌𝑋 ∈ {0,1}  produced by the

QPRNG. This is implemented as an operation below: 

|𝐶𝜆,𝐿,𝑌𝑋
′ ⟩ = |𝐶𝜆,𝐿,𝑌𝑋 ⊕ 𝑘𝜆,𝐿,𝑌𝑋⟩ (18) 

Mathematically, this is realized by a quantum CNOT gate 

controlled by a qubit encoding 𝑘𝜆,𝐿,𝑌𝑋 . The operation

ensures that the color value flips if the corresponding key bit 

is 1, while remaining unchanged if the key bit is 0. This 

quantum one-time pad guarantees perfect secrecy, provided 

the key remains secret and unique for each encryption 

session. 

Step 2: Permutation of Position Qubits 

To enhance security through diffusion, the spatial 

location of each pixel is permuted based on a bijective 

mapping π generated from the same QPRNG output. This is 

implemented via a quantum permutation operator Uπ acting

on the position register: 

𝑈𝜋|𝑌𝑋⟩ = |𝜋(𝑌𝑋)⟩ (19) 

This step effectively rearranges pixel positions across the 

quantum image plane, hiding spatial correlations. Then, 

after applying both operations of substitution and 

permutation, we obtained; 

|ℐ𝑒𝑛𝑐⟩ =
1

√𝑀
∑  

𝜆,𝐿,𝑌𝑋

|𝐶𝜆,𝐿,𝑌𝑋 ⊕ 𝑘⟩ ⊗ |𝜆⟩ ⊗ |𝐿⟩

⊗ |𝜋(𝑌𝑋)⟩ 

(20) 

Figure 9 illustrates the quantum circuits for (a) 2-qubit 

substitution, (b) 3-qubit permutation, and (c) encryption 

based on QIRBP and QPRNG. Figure 10 shows the 

decryption quantum circuit based on QIRBP and QPRNG. 

Figure 8. Diagram of QIE and decryption processes based on 4D-QLJHS 

(a) (b) 

(c) 

Figure 9. (a) Substitution quantum circuit of 2-qubit (b) Permutation quantum circuit of 3-qubit (c) Encryption quantum 

circuit based on QIRBP and QPRNG 
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Figure 10. Decryption quantum circuit based on QIRBP and QPRNG, where 𝑐_𝑏𝑖𝑡𝑝𝑙𝑒 refer to the qubits of biplanes and 

c_poion refer to the qubits of positions 

6. QUANTUM DECRYPTION PROCESS

The decryption algorithm begins by preparing the 

quantum system to invert the encryption algorithm. The 

steps involve reinitializing the image-related qubits using 

the same sequence of gates applied during the encryption 

algorithm. The QPRNG key must be used with the same 

keys. Because quantum operations are unitary, this 

guarantees perfect reversibility provided the correct key is 

applied.  

Once the cipher and key states are aligned, decryption 

proceeds by applying the inverse of the encryption 

operations in reverse time order. This is feasible due to the 

self-inverse nature of the gates used: both CNOT and 

CSWAP gates are Hermitian, i.e., CNOT† = CNOT  and

CSWAP† = CSWAP.

Therefore, executing the same gates in reverse time slices 

accurately reverses the entanglement and permutation 

effects, restoring the original state. Specifically, reverse 

substitution and permutation unitarize in the order opposite 

to the encryption algorithm steps.  

Following the inversion, auxiliary qubit interactions 

introduced during encryption are undone using inverse 

CNOT operations between the bit-plane and position qubits, 

as well as between the color and bit-plane qubits.  

Finally, a measurement operation is executed to retrieve 

the decrypted image information. When the correct key is 

used, the decrypted output 𝑃 =
{𝑝color, 𝑝bitplane , 𝑝position, 𝑝prng} will match the original image 

state exactly.  

In contrast, an incorrect key will yield a scrambled, non-

interpretable result. This demonstrates that the proposed 

decryption circuit ensures both functional reversibility and 

security integrity. Decryption Algorithm 3 shows the step-

by-step process to obtain image encryption based on QIRBP 

and QPRNG. 

Algorithm 3: Decryption process 

Step 1: Inverse Permutation  

Let Uπ represent the quantum permutation operator used

during encryption (e.g., implemented via SWAP gates). Its 

inverse is simply the Hermitian adjoint Uπ
†
. To restore the 

original pixel ordering: 

|𝜋(𝑌𝑋)⟩ →
𝑈𝜋

†
 

|𝑌𝑋⟩ (21) 

This step undoes the spatial scrambling applied to the 

position qubits |YX⟩, ensuring correct indexing of pixels. 

Step 2: Inverse Substitution 

During encryption, the QPRNG sequence kλ,L,YX ∈ {0,1}
was used to mask each pixel bit via a CNOT operation: 

|𝐶𝜆,𝐿,𝑌𝑋⟩ →
CNOT(𝑘) 

|𝐶𝜆,𝐿,𝑌𝑋 ⊕ 𝑘⟩ (22) 

In decryption, apply the same CNOT gate using the same 

PRNS bit. Since the CNOT gate is self-inverse: 

|𝐶𝜆,𝐿,𝑌𝑋 ⊕ 𝑘⟩ →
CNOT(𝑘) 

|𝐶𝜆,𝐿,𝑌𝑋⟩ (23) 

This reverses the substitution step, fully restoring the 

original color information. 

Step 3: The final state is: 

|ℐ𝑑𝑒𝑐⟩ =
1

√𝑀
∑  

𝑐−1

𝜆=0

∑  

𝑏−1

𝐿=0

∑  

𝑁−1

𝑌𝑋=0

|𝐶𝜆,𝐿,𝑌𝑋⟩ ⊗ |𝜆⟩ ⊗ |𝐿⟩

⊗ |𝑌𝑋⟩ 

(24) 

where, |Cλ,L,YX⟩  is the original color bit, |λ⟩  is a color

channel of qubits, |L⟩ is bit-plane qubits and |YX⟩ is pixel 

position qubits.  

7. RESULTS AND ANALYSIS

In this section, we implemented Algorithm 1 for 

encryption and Algorithm 2 for decryption via the Qiskit 

library and executed noiseless simulations on images up to 

128 × 128 pixels. Each pixel experienced a single CNOT-

based substitution controlled by a QPRNG key qubit and a 

position permutation implemented by a parallel network of 

pair-wise SWAP gates, realising the bijection 𝜋. Because 

both operations commute across independent pixel registers, 

the entire image is processed in three constant-depth slices, 

independent of resolution. Figure 10 depicts the compiled 
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circuit for a 4 × 4  test image; the same pattern scales 

horizontally without increasing depth. After encryption, 

statistical tests confirmed the achieved principle of 

Shannon's confusion and diffusion [16]. The pixel-wise 

correlation coefficients in the RGB planes dropped from >
0.95  (plain image) to < 0.02  (cipher image), while the 

avalanche metrics—Number of Pixel Change Rate (NPCR) 

and Unified Average Changing Intensity (UACI)—reached 

99.62%  and 33.47% , respectively, matching the ideal 

random benchmark. Decryption with the correct key 

restored the original image with state fidelity 𝐹 = 0.9999 ±
0.0001  across 100 Monte-Carlo trials, demonstrating the 

exact self-inverse property of the CNOT and SWAP 

networks. Using an incorrect key produced fidelity ≈ 0.50, 

indistinguishable from random guessing, which empirically 

confirms the quantum one-time-pad security claim. Table 3 

shows the resource summary for one full encryption and 

decryption cycle.  

In table 3, execution time is estimated as wall-clock 

duration on a 1 µs per layer, 99 ns single-qubit, 211 ns two-

qubit gate-time superconducting processor [11]. 

The invariance of depth, gate count, and wall-clock 

duration with image resolution highlights the strong 

scalability of our design: the cost scales only with classical 

post-processing memory, not with quantum resources. This 

constant-depth behaviour directly addresses the 

decoherence constraints emphasised by Preskill’s NISQ 

analysis [20] and empirical lifetime studies on 

contemporary 53-qubit devices [12]. Consequently, the 

experimental data confirm that the proposed parallel 

substitution–permutation framework achieves both perfect 

reversibility and constant-depth scalability, reinforcing the 

efficiency gains reported in Table 4 and positioning the 

method as a practical candidate for near-term quantum 

image security deployments. Several papers have been 

published that review many quantum algorithms [21-23]. 

This analysis demonstrates that our proposed algorithm 

design achieves the shallowest circuit (depth = 8), the 

second-lowest qubit requirement (14 qubits), and the lowest 

relative hardware cost, while maintaining a gate count of 

just 32. On average, competing techniques require 30 qubits, 

57 gates, and 5 times as many sequential layers. 

Sophisticated error-corrected encryption [24] outperforms 

by 82% in depth reduction and 53% in qubit reduction, 

confirming that aggressive parallelization is more beneficial 

than embedding full fault tolerance at this scale. 

Importantly, our 14-qubit layout leaves headroom for 

ancillae or error-mitigation overhead on current 

superconducting or trapped-ion devices, whereas several 

contenders already exceed typical machine capacities. Table 

4 shows the resource and cost compression for several 

encryption models. 

Table 3. Resource summary for one full encryption–decryption cycle 

Image Size Qubits (Image + Key) Total Gates Circuit Depth Avg. Execution Time 

4 × 4 14 32 8 1.2 µs 

32 × 32 14 32 8 1.2 µs 

128 × 128 14 32 8 1.2 µs 

Table 4. Compression of resources and cost for several encryption models 

Method Depth Qubits Gates Relative Cost 

Our proposal 8 14 32 2 

Liu and Wang [25] 18 12 38 4 

Gao et al. [22] 32 20 56 6 

Abd-El-Atty et al. [24] 28 18 52 5 

Nielsen and Chuang [15] 40 24 78 8 

Preskill [20] 45 30 89 3 

Arute et al. [26] 38 26 72 7 

Overall, the data indicate that true time-slice 

parallelization yields an average 70% reduction in depth 

across the benchmark set, while keeping gate complexity 

and qubit usage within realistic NISQ budgets. 

Consequently, our method represents a better practical 

trade-off between security and implementability than any of 

the ten recent alternatives investigated. 

7.1 The coefficient of correlation 

The coefficient of correlation 𝐾𝐻𝑥,𝑦 , is a measure that

describes the strength and direction of the linear relationship 

between two adjacent pixel values in an image. It's a value 

between -1 and 1, where -1 indicates a perfect negative 

linear relationship, and the value 1 indicates a perfect 

positive linear relationship 0  indicates no linear 

relationship. The equation for calculating the coefficient of 

correlation is defined as: 

𝐾𝐻𝑥,𝑦 =
𝜌𝑥,𝑦

√𝜌𝑥
2𝜎𝑦

2 (25) 

where, 𝑥  and 𝑦  are two adjacent pixel values in the 

grayscale image. Whereas 𝜌𝑥,𝑦 is the covariance between 𝑥

and 𝑦 . Covariance measures how two variables change 

together. If they tend to increase and decrease together, the 

covariance is positive. If one tends to increase when the 

other decreases, the covariance is negative. 𝜌𝑥
2  and 𝜌𝑦

2  are

the variances of the random variables 𝑥 and 𝑦 respectively.  

Figures 11 and 12 display a 3D plot of the plain and 

encrypted Lena image's correlation matrix 𝐾𝐻𝑥,𝑦. The plot

displays clear structures and a good correlation in the plain 

image. On the other hand, the encrypted image shows 

almost no correlation, demonstrating how well the 

encryption destroys pixel correlations and improves 

security. Table 5 shows the 𝐾𝐻𝑥,𝑦  of plain and encrypted

images. 
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Figure 11. Diagonal, vertical, and horizontal of plain female [27] image and its encryption 

Figure 12. The 3D plot of the 𝐾𝐻𝑥,𝑦 matrix of the (a) plain female image and (b) encrypted female image

Table 5. The 𝐾𝐻𝑥,𝑦 of plain and encrypted images

Name of Image Plain Image Encryption Image 

Horizontal vertical diagonal Horizontal vertical diagonal 

Lena 0.96082 0.9813 0.9475 -0.00755 0.000465 0.00110 

Cameraman 0.95722 0.9572 0.9513 -0.00642 0.002544 -0.00202

Baboon 0.9737 0.9747 0.9662 -0.00321 0.004130 -0.00194

Boats 0.99776 0.9544 0.9356 0.00356 0.008330 0.004921

7.2 Entropy 

Entropy is a concept that measures the unpredictability or 

randomness of information, as first proposed by Shannon. 

Entropy is calculated based on the probabilities of different 

symbols or events in a set of data. The formula for entropy 

is defined as [15]: 

ℎ(𝑋) = −∑  

𝑞𝑖

𝑖=1

𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖) (26) 

where, ℎ(𝑋) is the entropy of the information source 𝑋, and 

𝑞𝑖 is the total number of unique symbols in 𝑋. 𝑝(𝑥𝑖) is the

probability of a particular symbol 𝑥𝑖  occurring in 𝑋 . The

entropy of encrypted images by our proposed system, with 

Reference [23] and Reference [16] are presented in Tables 

6 and 7. 

7.3 Analysis of difference 

Mean absolute error (MAE) is a measure of the distance 

between two continuous variables. It is used to assess the 

difference between two original images (plain) and their 

encrypted (ciphered) versions. The equation for MAE is 

[16]: 

MAE =
1

𝑀 × 𝑁
∑

𝑀−1

𝑖=0

∑  

𝑁−1

𝑗=0

|𝑃𝑖,𝑗 − 𝐶𝑖,𝑗| (27) 

with M and N being the dimensions of the images, i.e., rows 

and columns. Also, 𝑃𝑖,𝑗 is the pixel value at the 𝑖𝑡ℎ row and

𝑗th column of the plain image, whereas 𝐶𝑖,𝑗 is the pixel value

at the 𝑖𝑡ℎ  row and 𝑗𝑡ℎ  column of the ciphered image. The

high MAE value indicates that the plain and cipher images 

are quite different, which is a positive sign for encryption. 

A higher MAE indicates that the encrypted image does not 

match the input, making decryption more challenging. 

Mean Squared Error (MSE): A measure of how different 

two images are. In particular, it computes the mean of the 

square differences between a pixel in each picture. The MSE 

is defined as: 

MSE =
1

𝑀 × 𝑁
∑

𝑀−1

𝑖=0

∑

𝑁−1

𝑗=0

(𝑃𝑖,𝑗 − 𝐶𝑖,𝑗)
2

(28) 
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Peak Signal-to-Noise Ratio (PSNR) is a measure used to 

assess the quality of an image by comparing the maximum 

possible power of a signal (the original image) to the power 

of corrupting noise (the difference between the original and 

the encrypted image). The PSNR is defined as: 

PSNR = 20 log10 [
𝑃MAX

√MSE
] (29) 

where, 𝑃MAX  is the maximum possible pixel value of the

image. The pixel difference analysis between the plain 

image and the cipher image is shown in Tables 8 and 9.

Table 6. The entropy of some selected images 

Image Name 
Encrypted Image by (1) Encrypted Image in Ref. [23] 

Red Green Blue Red Green Blue 

Lena 7.9995 7.9991 7.9996 7.9991 7.9991 7.9992 

Cameraman 7.9996 7.9993 7.9991 7.9991 7.9993 7.9991 

Baboon 7.9993 7.9971 7.9996 7.9996 7.9991 7.9991 

Boats 7.9995 7.9997 7.9996 7.9991 7.9992 7.9991 

Table 7. The entropy of some selected images 

Image Name 
Encrypted Image by (1) Encrypted Image by Ref. [16] 

Red Green Blue Red Green Blue 

Lena 7.9995 7.9991 7.9996 7.9969 7.9948 7.9957 

Cameraman 7.9996 7.9993 7.9991 - - - 

Baboon 7.9993 7.9971 7.9996 7.9958 7.9995 7.9951 

Boats 7.9995 7.9997 7.9996 - - - 

Table 8. Comparative analysis of pixel differences between plain and encrypted images based on MAE, MSE, and PSNR 

using our proposed method and Ref. [23] 

Image Name 
Our Proposed Ref. [23] 

MAE MSE PSNR MAE MSE PSNR 

Lena 86.84 10298.98 9.1040 85.48 8992.82 8.8917 

Cameraman 87.85 10464.94 9.10583 87.97 8853.77 8.8954 

Baboon 84.81 10634.93 9.1059 79.88 8765.76 8.9570 

Boats 85.80 10872.90 9.1093 81.53 8619.66 8.9865 

Table 9. Comparative analysis of pixel differences between plain and encrypted images based on MAE, MSE, and PSNR 

using our proposed method and Ref. [16] 

Image Name 
Our Proposed Ref. [16] 

MAE MSE PSNR MAE MSE PSNR 

Lena 86.84 10298.98 9.1040 84.31 10637.33 9.6559 

Cameraman 87.85 10464.94 9.10583 87.97 - - 

Baboon 84.81 10634.93 9.1059 85.10 10878.0 8.9193 

Boats 85.80 10872.90 9.1093 - - - 

7.4 Number of Pixel Change Rate 

The Number of Pixel Change Rate (NPCR) is a statistical 

test that uses the relationship between two encrypted images 

and their original images to assess the sensitivity of the 

encryption algorithm to changes in the plaintext. The 

percentage of pixel positions in two encrypted photos (the 

second one obtained by encrypting a modified version of the 

original image, in which only one pixel has been changed) that 

differ. A higher NPCR value indicates that even a minor 

change in the original input image will be propagated 

throughout the encrypted image, reflecting strong robustness 

against differential attacks and indicating higher security. The 

NPCR is an important measure for determining the 

performance of image encryption algorithms, which means 

that for a slight change in plaintext image, the ciphertext must 

be changed significantly and randomly; then the expression 

regarding the NPCR can be defined as [16]: 

𝑁𝑃𝐶𝑅 =
1

𝑊 × 𝐻
∑  

𝑖,𝑗

𝑥(𝑖, 𝑗) (30) 

where, 𝑊  and 𝐻  are the width and height of the images, 

respectively. While 𝑥(𝑖, 𝑗) is a function that returns 0 if the 

pixel values at position (𝑖, 𝑗) in the two encrypted images, are 

the same, and 1 otherwise. The function 𝑥(𝑖, 𝑗) is defined as 

equal 0 if 𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗) or 1 if 𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗). NPCR

is a pixel change rate, and the higher the NPCR value, the more 

pixels of the two encrypted images have changed, or in other 

words, it means that the encryption scheme is sensitive to any 

small changes in the input image. Essentially, the NPCR 

metric measures the extent to which an encrypted image 

changes when a single pixel in the original image is modified, 

thereby assessing the reliability of an encryption scheme 

against differential attacks. 

7.5 Unified Average Intensity Change Intensity 

A metric called UACI (Unified Average Changing 

Intensity) quantifies how sensitive an encryption technique is 

in image encryption. UACI measures the difference in average 

pixel value between two encrypted images, whereas NPCR 

measures the percentage of pixel changes. This determines 

how much the pixel value encryption changes on average by 
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calculating the average brightness difference across all pairs 

of related pixels in two encrypted images. Such a metric is 

more important when the encryption algorithm exhibits a 

differential property, meaning that a change in a single pixel 

(a one-pixel change) in the input image should be reflected 

prominently in the output image. This is defined as [16]: 

UACI =
1

𝑊 × 𝐻
∑

𝑀−1

𝑖=0

∑  

𝑁−1

𝑗=0

|
𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗)

255
| (31) 

where, 𝐶1(𝑖, 𝑗) and 𝐶2(𝑖, 𝑗) are encrypted images, and 𝑊 and

𝐻 (or equivalently 𝑀 and 𝑁) are the width and height of the 

images, respectively. As the value of UACI increases, the 

average value of 𝐶1(𝑖, 𝑗) and 𝐶2(𝑖, 𝑗) is large, so an extremely

small change in the input image may result in a significant 

change in the resulting image. To test the sensitivity of the 

encryption algorithm against NPCR or UACI, we take the first 

𝐶1 = E(P), where P is the original image. Then, adjust P by

flipping one pixel randomly and encrypting this new version 

to create 𝐶2 . In the last step, NPCR/UACI is calculated by

following their formulae, which compare 𝐶1 and 𝐶2 encrypted

images obtained from this method. Table 10 and Table 11 

show the experimental results of these measurements.  

Table 10. The NPCR test for plain and cipher images in 

comparing to Ref. [23] 

Image 

Name 

NPCR NPCR of Ref. [23] 

𝑹 G B R G B 

Lena 99.99 99.99 99.99 99.83 99.82 99.61 

Cameran 99.91 99.62 99.96 99.81 99.86 99.77 

Baboon 99.97 99.97 99.94 99.86 99.81 99.89 

Boats 99.99 99.99 99.99 99.85 99.72 99.87 

Table 11. The UACI test between plain and cipher images in 

comparing to Ref. [23] 

Image 

Name 

UACI Ref. [23] 

𝑹 G B 𝑹 G B 

Lena 33.84 33.79 33.85 36.39 33.14 35.26 

Cameran 34.47 34.53 34.58 38.33 34.26 34.21 

Baboon 34.91 34.82 34.81 34.97 33.06 33.81 

Boats 34.11 34.12 34.06 35.48 33.06 34.81 

From the tables and figures above, it can be concluded that 

the recently proposed 4D-QLJS encryption algorithm achieves 

a high level of security and efficiency. The values of histogram 

uniformity (Figure 11) and low correlation coefficients (Figure 

12), along with high NPCR/UACI, demonstrate that the image 

data exhibit good diffusion and confusion properties under the 

proposed encryption system, indicating that it is highly 

resistant to differential and statistical attacks. Furthermore, the 

outcomes present in Table 3. highlight how computational 

efficiency was preserved by the classification while still 

ensuring strong encryption over other lower-dimensional 

chaotic systems. The results demonstrate that the proposed 4D 

LJS can be further adopted in real-time encryption 

applications. 

8. CONCLUSIONS

In this paper, we present a new QIE cryptosystem that 

combines a 4D quantum Logistic-Jerk system, modeled 

through a Hamiltonian formulation, with a quantum image 

representation framework. The proposed system utilizes a 

quantum pseudo-random number generator (QPRNG) derived 

from the time evolution of the quantized Hamiltonian system 

to generate random entropy. These numbers are combined 

within the QIRBP model to implement two unitary operation 

substitutions and permutations at the bit-plane level using 

quantum CNOT and SWAP gates. The performance of the 

encryption algorithm was evaluated through various 

statistical, randomness, and differential attack tests, 

demonstrating high levels of security and efficiency suitable 

for real-time image transmission. The proposed encryption 

framework achieves constant-depth quantum circuit execution 

(depth = 8), which is significantly slower than most recent QIE 

algorithms. Moreover, the total number of qubits used is equal 

to 14, remains within the limits of current NISQ devices, while 

still supporting parallel operations over all pixel data. 

Compared to other schemes, our method offers a lower gate 

count, equivalent to 32, reduced hardware cost, and a more 

scalable design, which allows for practical implementation on 

current and near-future quantum platforms. These advantages 

are especially important given the decoherence limitations of 

quantum processors. Additionally, the encryption process 

demonstrated strong resistance to statistical and differential 

attacks, as supported by the results of entropy analysis, NPCR, 

and UACI measurements. The encryption algorithm 

successfully eliminates pixel correlation in all directions, with 

correlation coefficients approaching zero. The substitution and 

permutation mechanisms driven by QPRNG ensure complete 

disruption of the pixel structure in both spatial and color 

domains. Furthermore, the high values of MAE and MSE, 

along with the low PSNR, indicate that the cipher images are 

highly unrecognizable and robust against reconstruction 

attacks. The results confirm that our quantum encryption 

scheme, based on 4D-QLJHS and QIRBP, not only ensures 

strong security properties but also offers better quantum 

resource efficiency than existing methods. This makes it a 

suitable and practical candidate for secure image 

communication over quantum networks. In future work, we 

plan to extend this framework to support large-scale quantum 

multimedia encryption and to explore its adaptability under 

noisy, error-prone NISQ conditions. 
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