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This paper presents a new quantum image encryption (QIE) algorithm that integrates a
newly developed 4D Quantum Logistic-Jerk Hyperchaotic System (4D-QLJHS) with a
quantum image representation (QIR) model, enabling secure and efficient image
transmission. By reducing qubit usage and circuit depth, the proposed QIE framework
significantly improves quantum resource efficiency. Additionally, incorporating the
enhanced 4D-LJHS map strengthened security and resistance against both quantum and
classical attacks, surpassing the robustness and scalability of current quantum image
encryption techniques. The new 4D-QLJHS is created by combining a logistic map and a
jerk system, and then converted to a quantum hyperchaotic system using a Hamiltonian-
based method. These systems help create a Quantum Pseudo-Random Number Generator
(QPRNG) that generates random bit sequences used to alter and rearrange data at the
quantum bit-plane level during the encryption process. The quantum encryption method
uses the Quantum Image Representation based on Bit Planes (QIRBP) model, which
enables modifying individual pixels and color channels via CNOT and SWAP gates. We
evaluate various statistical tests to confirm the security and efficiency of our system. The
experiments demonstrate that the system is highly secure, featuring adequate randomness,
robust protection against specific attacks, and uniform distribution in the encrypted image
data. Experimental simulations of some images indicate that the system provides a
satisfactory level of security for image encryption, given the computational costs. This
makes it suitable for real-time image communication where security is a priority.

1. INTRODUCTION

makes it difficult for conventional encryption methods, such
as stream ciphers, to efficiently interpret image data, since it

As the digital age continues to advance, images are a crucial
means of conveying information [1]. They have become
increasingly prevalent across domains such as financial
transactions, military reconnaissance, and medical imaging.
However, several obstacles and issues need to be addressed
using conventional image encryption technology [2]. First, the
threat of quantum computation, along with the powerful
computational capabilities of quantum computers, presents
serious challenges to the security of traditional encryption
schemes. First, the strong computational capabilities of
quantum computers pose a serious threat to the security of
encryption algorithms based on conventional mathematical
puzzles (such as discrete logarithms and integer factorization),
and the security of classical encryption algorithms faces major
challenges when confronted with quantum computation [3].
The approach developed by Grover significantly reduces the
security of current encryption methods; for instance, it can
halve the work required for key search in symmetric
encryption algorithms [4]. These traditional encryption
techniques can also be successfully cracked in polynomial
time using Shor's method [5]. The second type of encryption
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often exhibits high redundancy and strong -correlation.
Furthermore, this redundancy can easily lead to the loss of
local information during the encryption process, jeopardising
the overall security of the encryption. The introduction of deep
learning-based ciphertext analysis tools and quantum-
computing-accelerated brute-force cracking has put the
security of traditional encryption algorithms to the ultimate
test [6]. Information security is increasingly threatened by
deep learning models that may be trained on vast amounts of
data to progressively discover and exploit flaws in encryption
techniques.

Three categories of QIR can be distinguished: chaos-based,
transform-domain-based, and  spatial = domain-based.
Researchers have used the spatial and transform domains of
quantum computers to create image encryption methods. In
2012, Zhou et al. [7] proposed a quantum picture encryption
method based on geometric transformations of quantum
images. QIR, based on limited geometric and color
modifications, was introduced by Song et al. [§]. A QIR
technique based on the Amold transform was presented by
Zhou et al. [9]. A QIR technique based on image correlation


https://orcid.org/0009-0003-4669-1003
https://orcid.org/0000-0003-4253-875X
https://orcid.org/0000-0001-5547-1422
https://orcid.org/0000-0002-7255-5246
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301015&domain=pdf

decomposition was proposed by Hua et al. [10].

With the rapid advancement of quantum computing
hardware, experimental and theoretical investigations into
quantum random walks will advance, and these studies are
projected to become increasingly important in the fields of
quantum computing, quantum information, and quantum
simulation in the future [11]. Quantum random walks have
been applied to image encryption to induce pixel disruption or
generate dynamic keys. To accomplish color image
encryption, Zhao et al. [12] used the tessellation transform in
conjunction with quantum random walks. However, the
periodicity of chaotic systems limits the security, and key
generation depends on classical chaotic mappings. Panda and
Benjamin [13] developed encryption techniques based on
quantum random walks and DNA coding. They, however, did
not fully utilize quantum parallelism. In this work, we aim to
address the issue of QIE techniques that underutilize quantum
features to encrypt large images and rely on classical keys,
thereby reducing security.

Most QIE models demand excessive qubits (often > 20) and
complex gate sequences and quantum operations, exceeding
the capabilities of near-term (Noisy Intermediate-Scale
Quantum, NISQ) devices [14]. For instance, some models
need more than 30 qubits to represent a basic image, rendering
them infeasible for current hardware. Many encryption
algorithms are based on chaotic systems with inherent
periodicity, thereby weakening resistance to differential
attacks and failing to leverage quantum properties, such as
entanglement, to counter quantum threats like Grover’s
algorithm [4, 5]. Moreover, a few models address deep
learning-based cryptanalysis, leaving encrypted images
vulnerable to pattern recognition exploits [6]. Currently
existing systems lack scalability for large pictures or real-time
transmission. Additionally, current quantum parallelism leads
to inefficient circuits, where processing moderate-sized
images (e.g., 128 x 128 pixels) results in either restricted
execution times or high error rates due to qubit coherence [13,
15].

Here, we describe a new QIE system in this research that
combines a QIR model based on bit planes (QIRBP) [14] with
a 4D-LJHS. To increase the system's complexity, the 4D-
LJHS was enhanced by introducing nonlinear terms into the
classical logistic and jerk dynamics. We then converted this
system to the quantum domain using a Hamiltonian-based
quantization approach, resulting in a 4D quantum logic
junction (QLJHS). The quantum evolution governed by this
Hamiltonian system was used to build a quantum pseudo-
random number generator (QPRNG), which drives
substitution and permutation operations at the bit-plane level.
By integrating the 4D-QLJHS with the QIRBP model, we
developed a QIE framework that ensures high randomness,
strong resistance to differential attacks, and efficient circuit
performance. The motivation behind this approach is to
provide a secure, scalable, and real-time quantum encryption
algorithm suitable for practical image transmission over
quantum communication systems.

In this paper, the following contribution is made:

* A new 4D Logistic—Jerk Hyperchaotic System (4D-LJHS)
was designed by integrating a logistic map with Jerk chaotic
systems. Nonlinear steps added to some system parameters
increased complexity and made encryption algorithms more
secure.
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* A new 4D Quantum Hyperchaotic Logistic—Jerk System
was designed by converting a classical 4D-LJHS to a quantum
state via a quantization system.

* Introducing a new diffusion method that combines chaotic
sequences with a diffusion process driven by quantum
pseudorandom numbers.

* Designing a new cryptosystem with real-time applications
supporting high security and low complexity to be used for a
rapid image encryption algorithm by the proposed 4D-QHLIJS
for fast and secure image transmission.

* Analyzing the results in terms of performance and security
by utilizing some evaluation parameters such as the NIST 800-
22 randomness test [16], histogram analysis, entropy
calculations, and correlation-based approach. The retrieved
results emphasize that the newly presented system in this
article is highly secured against differential and statistical
attacks.

The remainder of the paper is structured as follows: Section
2 provides a detailed overview of chaotic systems and their
applications in cryptography. This section introduces the
mathematical background of the Logistic and Jerk chaotic
systems and their quantum systems, which form the
foundation of the proposed 4D-QLJHS. In the same section,
we present the system's mathematical formulation and discuss
its dynamic behavior, including attractors and Lyapunov
exponents. The complexity and unpredictability of the system
are demonstrated through experimental results. Section 3
introduces the image encryption algorithm, outlining the
diffusion and confusion processes in detail. This section
includes the pseudocode for the encryption and decryption
algorithms, providing a step-by-step description of how the
proposed 4D-QLJHS is used to secure image data. Section 4
presents the security analysis of the proposed cryptosystem.
We conduct several experiments to evaluate the system's
performance in terms of key sensitivity, randomness, entropy,
and resistance to differential attacks. The results demonstrate
that the proposed system outperforms existing chaos-based
encryption schemes in both security and efficiency. Finally,
the paper is concluded in Section 5 by summarizing the key
findings and discussing potential future work.

2. THEORETICAL CONCEPTS

This section introduces a new 4D chaotic system. After that,
it converts this system from a classical state to a quantum state
via a quantization process.

2.1 Generating a new hyperchaotic system

A new 4D chaotic system is introduced in this study. We
derived this system by extending the logistic map [17] and
from the classical three-dimensional Jerk chaotic system [18].
By incorporating changes in parameters and nonlinear terms,
while preserving the original dynamics, we formulated a novel
4-dimensional hyperchaotic mathematical model. This process
involved introducing new variables represented as 'w',
adjusting nonlinear terms, eliminating unfavourable
components, and ensuring consistency with forward changes.
Its chaotic behavior and complexity evaluation are
investigated by experimental evidence. The following
equations define the 4D chaotic system:
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2.2 The dynamic behaviour of the proposed chaotic system

An "attraction" in a dynamical system is a collection of
points or a sequence of values in state space that indicate the
output's path of travel. We can maintain the ergodicity of the
dynamical system and ensure the hyperchaotic structure.
Figure 1 shows the attractor diagram with different values of
the initial states (x,y,z,w) = (1,1,1,1), and the parameters
for Figure 1(a) are (a = 50.60, b = 0.0001, d =0.01, e =
0.005, a = 1.4, B = 1.5), for Figure 1(b) (a = 90.60, b =
1.1, d =3.10, e = 10.850,, g =50.1, a =14, § =1.5),
for Figure 1(c) ( a =60.60, b =0.001, d =0.01, e =
0.850, g = 0.1, a = 10.4, f =10.5), for Figure 1(d) are
( a = 60.60, b = 0.0001, d =0.1, e=1.85, g =5.1,
a =10.4, f =10.5), for Figure 1(e) are (a = 90.60, b =
0.1, d=0.1, e=185 g =51, a =104, § =10.5),
and Figure 1(f) (a =90.60, b =11, d =3.1, e = 1.85,
g=>51 a=104, § =10.5), and the time step starts at
time 0 and simulates up to time 500. Figure 2 shows the
sensitivity of the system (1), with the fixed parameters (a =
90.60, d =3.1, e=1.85, g =5.1, a =104, § =10.5)
and we change b value 0.1 in each state where (a, b, c) the
value of b = (0.1,0.3, 0.5), respectively.

2.2.1 Dissipative of system (1)

a=40.60, b=0.00001, d=0.01, €=0.085, f=0.1, g=0.1, alpha=1.4, beta=1.5

2=60.60, b=0.00100, d=0.01, e=0.850, f=0.1, g=0.1, alpha=10.4, beta=10.5

2=90.60, b=0.10000, d=0.10, e=1.850, f=4.1, g=5.1, alpha=10.4, beta=10.5

The divergence of the system (1) can be calculated via the
following equation:

ax "oy "oz Tax -

vf

)

where, f, = X,f, =y,f; = Z. Since the divergence of the
system (1) is negative for all positive values of ¢, where b >
0, then the proposed system (1) has dissipative behaviour.

2.2.2 Lyapunov exponents

The Lyapunov Exponents (LE) is defined as a measure of
how quickly nearby trajectories either diverge from or
converge toward each other. It can be defined as [15]:

1 116x(@) Il

Ao =—In—
te = T 5% 0) 1

€)

where, lx (1
(o)l

trajectories. Figure 3 shows the (LE) of the system (1), where
the initial states (x,y,z,w) = (0.1,0.1,0.1,0.1 ), and the
parameters are ( a = 50.60, b = 0.0001, d =0.01, e =
0.005, f =0.1, g =0.1, a = 1.4, f = 1.5) respectively.

refers to the distance between two different

2.2.3 Permutation entropy

Given a set window length and relying on the distribution
of these permutation patterns, permutation entropy (PE) is the
entropy of a random variable that samples the occurrences of
permutation patterns from a time series. Figures 4(a) and (b)
show the PE of the system(1), where the parameters (a =
90.5, b =605, d =108, e =0.85 a=14, f=1.5)
and (a=15 b=15,d=108 =085 a=04, =
0.5), respectively.

2=90.60, b=1.10000, d=3.10, e=10.850, f=40.1, g=50.1, alpha=1.4, beta=1.5

N ‘
2=60.60, b=0.00100, d=0.10, e=1.850, f=4.1, g=5.1, alpha=10.4, beta=10.5

2=90.60, b=1.10000, d=3.10, e=1.850, f=4.1, g=5.1, alpha=10.4, beta=10.5

Figure 1. Attractors of the system (1)
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Figure 2. The sensitivity of the system (1)
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Figure 4. Permutation entropy for all variables

Figure 4 presents the permutation entropy (PE) of the
system (1) under two different parameter sets. The graph
illustrates how the system's chaotic behavior changes with
variations in the parameters. Specifically, PE measures the
complexity and unpredictability of the system, with higher
values indicating more chaotic dynamics. This analysis
highlights the system's potential for secure cryptographic
applications.
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3. QUANTIZATION SYSTEM

Based on the reference [19] in this method, we will convert
(1) from a classical state to a quantum state via a quantization
system, as our system is dissipative. First step, we will find the
Hamiltonian formulation. We extend the state space by
introducing canonically conjugate momenta (py, Dy, Pz, Pw)
corresponding to each variable. The dynamics can be encoded
by a Hamiltonian function H(x,y,z,W, Py, Dy, Dz Pw)



defined as:

Hy=Bypy+PBzpy,
+(—ay—-bz—-w+g edx‘exz)pz
+ (ax + Bz(1 — 2))p,,

“4)

The system evolves according to Hamilton’s canonical
equations:
dq; _ 0H, dp;

_ 0Hy
dt ~ dp;’ dt

’

0q;

i€f{x,yzw}

)

From this Hamiltonian, one recovers the original system as
the configuration-space evolution:

dx 0Hy

a o, By,

ﬂ — chl — ﬁz,

dt  Jp, ©)
% - OHq = —qv—bz — dx—ex?

it ap, - ay—bz—w+ge ,

dw 0H,

rri ., =ax+ fz(1 - 2),

Thus, confirming consistency with the original flow.

In the second step, we promote the phase-space variables to
operators working on a Hilbert space in order to quantise the
classical system H'. Define:

XXy y,zeZ,wew,

—, etc.

Dx P Dy = _ihax

Impose canonical commutation relations:

A

(i, D;] = ih &;5, with §;, D;

S A 7
€ {X,9,2,W, Py, By, Dz Dw }- M

To ensure Hermiticity, we use Weyl (symmetric) ordering.
The quantum Hamiltonian operator H is thus constructed as:

.1 N n A
H =E (ﬁ(x,y,z,w) pi+pifi(x'y'z'w))' (8)
ie{x,y,zw}
with:
fx = BY,
fy = ﬁZAr (9)
f,=—ay — bz —W + g edt-¢%*
fw=ax+pz2(1-2).
This leads to the explicit expression:
.~ 1 R o
H =5 B(IPx + B2¥) + 5 B(2Py + Py2)
1[(—(1)7 — bz —W + g e®et)p, +] 0
2| p,(—ay — bz —Ww + g edt-et%) (10)

N 1 [(afc +B2(1 = 2)by, +]
2| p,(ak+ B2(1—2))

This Hermitian operator H generates dynamics through the
Heisenberg equation of motion:

o i, . a N oA A A 11
= =71 0LV0 € {%9,2,W, Py, .} (11)

Figure 5 shows the bifurcation of (10) for several
dimensions (x, y, z) vs. perimeter a.

20

Figure S. Bifurcation of (10), (a) x vs.a(b) y vs.a(c) zvs. a
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4. QUANTUM IMAGE REPRESENTATION

The idea of QIR, which transforms classical image data
into quantum states for effective processing, manipulation,
and storage on quantum computers, is presented in this
subsection. QIR models aim to preserve image
characteristics, such as pixel positions, color information,
and bit-plane decomposition, within a compact quantum
structure. One such advanced model is the QIRBP, which
provides a fine-grained decomposition of image data across
color channels and bit planes, allowing both high-resolution
encoding and efficient quantum operations. The QIRBP
model is defined as:

|'7QIRBP)
c=1 b-1

=

-1

[GLyx) @ 11) @ L) @ [YX)

0

1
VM £

=0 L=0 Y.

>
I

where, 1 € {0,1, ..., c — 1} for color channel (RGB), need 3
qubits for representation of color 23, L € {0,1,...,b — 1}

(12)

bit-plane index, YX € {0,1,...,22" — 1} : pixel position
encoded over 2n qubits and C ; yx € {0,1} pixel bit value
needs a signal qubit. The image size is 2™ X 2" =
21 x 2! = 2 X 2 pixels, as shown in Figure 6, assuming
that each colour channel (Red, Green, and Blue) is
represented using b=8 bits. If we use the binary
representation of the pixel intensities, the QIR for this
colour image is as follows:

Co(R): 11111001
C1(G) :00001011
Ca(B): 00011010

Cy(R): 00001001
Cy(G): 11101011
C4(B): 00001010

00
Co(R): 00000001
C1(G): 00001011
Cy(B): 11111010

01

Co(R): 11111001
Cy(G): 11010101
Cy(B): 00001010

11

Figure 6. A simple 2 X 2 image and its QIRBP state [14]

+1]00011010) ® [010) ® [00011010) ® |00) + [00001001) @ |000) @ [00001001) ® |01)
+]11110101) ® |001) ® |11110101) ® |01) + [00010110) @ [010) @ [00010110) & |01) +
|00000001) ® |000) ® [00000001) ® |10) + [00001011) ® |001) ® |00001011) ® |10) + [11111010) & |010)

®]11111010) ® |10) +

111111001) ® |000) ® |11111001) @ |11) + |11010101) @ [001) @ [11010101) & |11) + [00001010) & |010)

® [00001010) ® |11)].

Table 1. Examples of quantum circuits and their matrix representations

Name Quantum Circuit Matrix Formula
. 1 0
Identity I2 |q> I 0 1
: ] | 0 1
Pauli-X |(}> X 10
I 1
Hadamard H |C]> H Gl _1]
[1 0 0 O]
oNoT ‘Qh) 010 0
‘ ) 0 0 0 1
q 0 0 1 0
[1 0 0 O]
¢
SWAP |]()> 0010
|(7> 01 00
11 0 0 0 1l

4.1 Quantum gates

Quantum computing uses qubits, physical systems
governed by quantum mechanics, to encode and process
information. The state of a qubit is represented by a unit
vector in a 2-D Hilbert space (H?), which is represented by
the notation ). A qubit |@) may be written in general form
as:

9y = al0) + gy =a[g|+ 8] =la AI"

where, |0) and |1) represent the basis states in H?, and

a,f € C( the complex set), and represent the amplitude of
the corresponding computational basis states |0) and |1)
that satisfies the normalization condition |a|? + |B|? = 1.
The tensor product, denoted by & , combines two
matrices into a larger block matrix. If Q is an n X n matrix
and Z is an m X m matrix, then their tensor product Q ® Z
results in an nm X nm block matrix is defined as follows:

QO,OZ QO,n—lZ

QRZ=

lQu-102 Quyn1Z]
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Small vector spaces can be combined to create a larger
vector space through the tensor product. For example, let |i)
represent a basis state in a 2™-dimensional Hilbert space.
Each state |i) (fori = 0,1,2,...,2" — 1) is formed by the
tensor product of n computational basis states:

[0} = lin-1) ® lin_2) ® - ® i) ® lip)
= |in—1)|in—2> |i1)|i0)
= |in_1ln_z = iyip)
where, i = Y120 i X 27,ig, iy, .., in_q € {0,1}. As a result,
the n -qubit's quantum system [¢) can be defined as a
superposition state of 2"quantum basic states:

n-1

[0y = D aylkh k = sk - eako, K € (0,1}

k=0

and also satisfy YrZ3 |ag|? =1 . The components
required to build a quantum circuit are quantum gates. One-
qubit and two-qubit gates can be used to simulate a complex
quantum gate [3,46]. The n-qubit's quantum gate can be
represented by a 2™ X 2™unitary matrix. Table 1 presents
examples of basic gates and the matrices that accompany
them.

4.2 The proposed system for generating pseudo random
number sequences

In this section, a QPRNG is introduced based on the time
evolution governed by our proposed system in Eq. (10). The
evolution of this Hamiltonian is modelled using a gate-
based quantum circuit, and the resulting dynamics are
exploited to generate high-entropy pseudo-random binary
sequences. These sequences are later utilized in the
encryption process to enhance randomness and security in
QIR. The generation process consists of the following
stages: qubit initialization, superposition construction using
Hadamard gates, gate-based simulation of a quantum
hyperchaotic system, and final projective measurement. Let
the total number of qubits be defined as Q = 4, where each
qubit encodes one of the state variables x,y,z,w in the
hyperchaotic system. Steps below show the QPRNG
generating:

Step 1: Initialization

All qubits are initially prepared in the computational basis
state:

o) = 10)®* = |0000) (13)

To ensure finding all superpositions equal probability
over all input states, apply Hadamard gates H to each qubit.
The H is defined as:

11 1
H=ﬁ[1 —1] (14
1 15
1) = HO[ypy) = F@Z 1K) (15)

This creates a uniform superposition over all 2* possible
configurations of x, y, z, w.
Step 2: Simulating 4D Hyperchaotic Dynamics via

Quantum Gates

The quantum circuit then simulates the dynamics of the
Hamiltonian using parameterized rotation for x vector and
z vector (RX and RZ), respectively. Controlled rotation
gates CRZ and CRY, without relying on operator-based
decompositions. Now, based on (10), we have:

Each term is approximately using gate sequences as
follows:

* Single-qubit RX and RZ gates simulate local kinetic
and phase evolution.

* CRZ gates simulate inter-variable couplings like yp,.,
2Py, 2(1 — 2)py,, etc.

* CRX and CRY gates introduce entanglement and
nonlinearity into the system.

* Exponential and polynomial terms like edt-e%? gre
approximated using fixed-angle CRZ gates with control
from %.

This layered gate-based evolution directly implements
the system’s hyperchaotic interactions.

Step 3: Measurement

After applying T layers of chaotic gate operations, the
quantum state is measured:

ey " Jm),m € {0,1}* (16)

The measured bitstring m = mym,;m,ms is the output of
a single iteration of the QPRNG. The randomness in m
reflects the underlying chaotic quantum evolution.

Step 4: Iteration

The process is repeated until the quantum pseudo-random
number sequence QPRNS reaches the desired length N:

QPRNS = {m(l),m(z), ...,m(%)} (17)

Algorithm 1 and Figure 7 show the generation of QPRNG
based on 4D-QLJHS.

- HH b, P asl P
-
::ﬁnz—iﬁw#ﬁ g -8 &

LT

Figure 7. Quantum circuit for QPRNG based on system
(10)

This circuit provides a full realization of the QPRNG
based on gate-level simulation of the 4D-QLJHS. The
randomness of the output is a direct consequence of the
nonlinear entanglement and chaotic dynamics encoded in
the Hamiltonian evolution.

4.3 The NIST test of the PRNG

The National Institute of Standards and Technology
(NIST) offers a comprehensive statistical testing suite
designed to evaluate the randomness characteristics of
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binary sequences. In this section, we employed the NIST SP
800-22 test suite to assess the stochastic properties of the
PRNS generated by our proposed QPRNG model based on
the 4D-QLJHS.

Algorithm 1. QPRNG Based on 4D-QLJHS
Input:
* Evolution depth T (number of layers)
* Number of pseudo-random bits N
Output:
* Quantum pseudo-random number sequence PRNS
Let the qubit registers be defined as:
x=q[0],y = q[1],z = q[2], w = q[3] (each a qubit)
1. Initialize all qubits in the state.
2. Apply Hadamard gates to all qubits:
This creates a uniform superposition over all
computational basis states.
3. Fort=1to0T,do:
a. Apply single-qubit rotations to simulate kinetic
propagation:
Apply Rx(61),Rz(0,) on each of x,y,z, w
2

This model includes the kinetic energy term %.

b. Simulate cross-variable coupling terms (based on the

Hamiltonian structure):
CRZ(B - At): y =X [models B -y
CRZ(B - At): Z-oy [models B -z
CRZ(—a - At): y—z [models —a-y
CRZ(—b - At): Z-7Z [models —b -z
CRZ(—At): Wz [models —w
CRZ(g - At): X7z [model gtx—ex?
CRZ(« - At): XS W [models a - x -
CRZ(B - At): Z->W [models B - z(1 —z) -

c. Apply entanglement gates to increase nonlinearity:
Apply CRX(6), CRY(8) across selected qubit pairs
d. Apply final single-qubit rotations to mix states further:
Apply (83),Rz(6,) on each of x,y,z, w
4. Measure all qubits in the computational basis.
5. Append the measured bitstring m to PRNS.
6. Repeat steps 1- 5 until length(PRNS) > N.

The output sequence was produced by measuring the final
quantum states of the evolved circuit over multiple
iterations. To conduct the test, we generated 1,000,000 bits
using the QPRNG.

Each measurement from the quantum circuit produced 4
bits, and the circuit was executed 250,000 times to reach the
required length. The resulting bitstream was divided into
100 separate subsequences, each of length 10° bits.

The NIST test suite applies a series of statistical tests to
each subsequence, evaluating the randomness performance
using two primary criteria: the P-value and the pass rate. The
significance level a was set to 0.01, as recommended by the
NIST standard.

According to the confidence interval equation:

a(l—a)
PassRatee |l —a—3 |————, 1 —«
m
a(l —«a
+3/¥
m

where, m = 100 is the number of sequences. Substituting
a = 0.01, the expected confidence interval becomes:

0.99 £+ 0.0094393 = [0.9602, 1.0198]

Therefore, for the generated sequence to be accepted, the
observed pass rate must exceed 0.9602.

The test results for QPRNG based on 4D-QLJHS are
summarized in Table 2. All tests produced P-values greater
than 0.01, and the overall pass rate was within the required
confidence interval. These results confirm that the proposed
quantum hyperchaotic system generates statistically sound
pseudo-random bit sequences that successfully pass the
NIST randomness criteria.

Table 2. Statistical results of the generated sequences

NIST Items Pvalue 1%
Results
Block-Frequency 0.3032 True
Frequency (Monobit) 0.6240 True
Discrete Fourier Transform 0.7721 True
Approximate Entropy 0.2352 True
Cumulative Sums (Forward) 0.6513 True
Cumulative Sums (Reverse) 0.7321 True
Serial-1 0.7123 True
Serial-2 0.6121 True
Runs 0.3312 True
Longest Run of Ones 0.7662 True
Overlapping Template 0.9717 True
Non-overlapping Template 0.3378 True
Linear Complexity 0.5341 True
Binary Matrix Rank 0.6773 True
Lempel-ziv Compression 0.4468 True
Random Excursions 0.5867 True
Random Excursions Variant 0.5778 True

5. QUANTUM IMAGE
DECRYPTION PROCESS

ENCRYPTION AND

In this section, we introduce a quantum encryption
algorithm that combines the 4D-QLJHS-based algorithm
with the QIRBP model [14]. The encryption algorithm uses
the QPRNG to perform two-step operations (quantum
substitution and quantum permutation) at the bit-plane level,
ensuring secure, reversible QIR. Figure 8 shows the diagram
of QIE and decryption processes.

5.1 Quantum encryption process

The encryption process acts pixel-wise and bit-plane-
wise. Each pixel (y,x) in the image, it is indexed by a
binary-encoded position qubit |YX) € {0,1}*". For each
pixel, the corresponding color channel A € {R, G, B}, bit
plane L, and bit value C, ;yx € {0,1} are each explicitly
stored in dedicated quantum registers. These registers
enable direct access and targeted operations on each
component of a pixel's representation, enabling precise
control of encryption at the quantum-gate level.

Encryption proceeds in two stages: substitution and
permutation. In the substitution stage, the bit C;;yx is
modified using a pseudo-random bit k;;yx € {0,1}
generated by the QPRNG, applying a one-time pad logic via
the quantum CNOT gate. In the permutation stage, the
position of the qubits |YX) are reordered using a pseudo-
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random permutation also generated from QPRNG. These
operations affect the spatial and color structure of the image,
offering strong resistance to quantum and classical attacks.
The decryption process is achieved by simply applying the
same QPRNG sequence in reverse order using the self-
inverse property of CNOT and a reverse permutation
function. Encryption Algorithm 2 shows the step-by-step
process to obtain image encryption based on QIRBP and
QPRNG.

Algorithm 2: Encryption Algorithm

Step 1: Substitution via QPRNG

The substitution operation encrypts the bit C; ; yx using a
pseudo-random bit k;;yx € {0,1} produced by the
QPRNG. This is implemented as an operation below:

|C/{,L,Yx) = |C/1,L,YX 8% k/l,L,YX) (18)

Mathematically, this is realized by a quantum CNOT gate
controlled by a qubit encoding k;;yx . The operation
ensures that the color value flips if the corresponding key bit
is 1, while remaining unchanged if the key bit is 0. This
quantum one-time pad guarantees perfect secrecy, provided
the key remains secret and unique for each encryption

session.

Step 2: Permutation of Position Qubits

To enhance security through diffusion, the spatial
location of each pixel is permuted based on a bijective
mapping Tt generated from the same QPRNG output. This is
implemented via a quantum permutation operator U, acting
on the position register:

Ur|YX) = |m(YX)) (19

This step effectively rearranges pixel positions across the
quantum image plane, hiding spatial correlations. Then,
after applying both operations of substitution and
permutation, we obtained;

o) == D 1Caary © 1) ®12) B L)
enc! = — ALYX
ml,L,YX

& [m(YX))

(20)

Figure 9 illustrates the quantum circuits for (a) 2-qubit
substitution, (b) 3-qubit permutation, and (c) encryption
based on QIRBP and QPRNG. Figure 10 shows the
decryption quantum circuit based on QIRBP and QPRNG.

Quantum Encryption Process ﬁ

QIRBP Initialization QPRNG Generator

Classical Color Image Hadamard Superposition 4D 4D-QLJHS

Substitution Step Permutation Step L]
CNOT with QPRNS Position SWAP I

Recovered Classical Image «—————

QIRBP Decoding Inverse Substitution Inverse Permutation —
Retrieve Color + Position CNOT with QPRNS Apply U_trt

= Quantum Decryption Process

Figure 8. Diagram of QIE and decryption processes based on 4D-QLJHS
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Figure 9. (a) Substitution quantum circuit of 2-qubit (b) Permutation quantum circuit of 3-qubit (c) Encryption quantum
circuit based on QIRBP and QPRNG
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Figure 10. Decryption quantum circuit based on QIRBP and QPRNG, where c_bitple refer to the qubits of biplanes and
c_poion refer to the qubits of positions

6. QUANTUM DECRYPTION PROCESS

The decryption algorithm begins by preparing the
quantum system to invert the encryption algorithm. The
steps involve reinitializing the image-related qubits using
the same sequence of gates applied during the encryption
algorithm. The QPRNG key must be used with the same
keys. Because quantum operations are unitary, this
guarantees perfect reversibility provided the correct key is
applied.

Once the cipher and key states are aligned, decryption
proceeds by applying the inverse of the encryption
operations in reverse time order. This is feasible due to the
self-inverse nature of the gates used: both CNOT and
CSWAP gates are Hermitian, i.e., CNOT" = CNOT and
CSWAPT = CSWAP.

Therefore, executing the same gates in reverse time slices
accurately reverses the entanglement and permutation
effects, restoring the original state. Specifically, reverse
substitution and permutation unitarize in the order opposite
to the encryption algorithm steps.

Following the inversion, auxiliary qubit interactions
introduced during encryption are undone using inverse
CNOT operations between the bit-plane and position qubits,
as well as between the color and bit-plane qubits.

Finally, a measurement operation is executed to retrieve
the decrypted image information. When the correct key is
used, the decrypted output P =
{pcolor' pbitplane' pposition' ppmg} will match the original image
state exactly.

In contrast, an incorrect key will yield a scrambled, non-
interpretable result. This demonstrates that the proposed
decryption circuit ensures both functional reversibility and
security integrity. Decryption Algorithm 3 shows the step-
by-step process to obtain image encryption based on QIRBP
and QPRNG.

Algorithm 3: Decryption process

Step 1: Inverse Permutation

Let U;; represent the quantum permutation operator used
during encryption (e.g., implemented via SWAP gates). Its
inverse is simply the Hermitian adjoint U;r[. To restore the
original pixel ordering:

U‘l‘
Im(YX)) = |YX) 1)

This step undoes the spatial scrambling applied to the
position qubits |YX), ensuring correct indexing of pixels.

Step 2: Inverse Substitution

During encryption, the QPRNG sequence k; ,yx € {0,1}
was used to mask each pixel bit via a CNOT operation:

CNOT(k)
[Cyx) = |Ciyx D k) 22)

In decryption, apply the same CNOT gate using the same
PRNS bit. Since the CNOT gate is self-inverse:

0T(k)

CN
|CA,L,YX k) - (23)

IC/LL,YX)

This reverses the substitution step, fully restoring the
original color information.
Step 3: The final state is:

c-1 b—-1 N-1

Gad =22 > D 1Cund ® MBI 5y

A=0 L=0 YX=0

® |YX)

where, |Cyyx) is the original color bit, [A) is a color
channel of qubits, |L) is bit-plane qubits and |YX) is pixel
position qubits.

7. RESULTS AND ANALYSIS

In this section, we implemented Algorithm 1 for
encryption and Algorithm 2 for decryption via the Qiskit
library and executed noiseless simulations on images up to
128 x 128 pixels. Each pixel experienced a single CNOT-
based substitution controlled by a QPRNG key qubit and a
position permutation implemented by a parallel network of
pair-wise SWAP gates, realising the bijection . Because
both operations commute across independent pixel registers,
the entire image is processed in three constant-depth slices,
independent of resolution. Figure 10 depicts the compiled
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circuit for a 4 X 4 test image; the same pattern scales
horizontally without increasing depth. After encryption,
statistical tests confirmed the achieved principle of
Shannon's confusion and diffusion [16]. The pixel-wise
correlation coefficients in the RGB planes dropped from >
0.95 (plain image) to < 0.02 (cipher image), while the
avalanche metrics—Number of Pixel Change Rate (NPCR)
and Unified Average Changing Intensity (UACI)—reached
99.62% and 33.47% , respectively, matching the ideal
random benchmark. Decryption with the correct key
restored the original image with state fidelity F = 0.9999 +
0.0001 across 100 Monte-Carlo trials, demonstrating the
exact self-inverse property of the CNOT and SWAP
networks. Using an incorrect key produced fidelity = 0.50,
indistinguishable from random guessing, which empirically
confirms the quantum one-time-pad security claim. Table 3
shows the resource summary for one full encryption and
decryption cycle.

In table 3, execution time is estimated as wall-clock
duration on a 1 ps per layer, 99 ns single-qubit, 211 ns two-
qubit gate-time superconducting processor [11].

The invariance of depth, gate count, and wall-clock
duration with image resolution highlights the strong
scalability of our design: the cost scales only with classical
post-processing memory, not with quantum resources. This
constant-depth  behaviour  directly  addresses  the

decoherence constraints emphasised by Preskill’s NISQ
analysis [20] and empirical lifetime studies on
contemporary 53-qubit devices [12]. Consequently, the
experimental data confirm that the proposed parallel
substitution—permutation framework achieves both perfect
reversibility and constant-depth scalability, reinforcing the
efficiency gains reported in Table 4 and positioning the
method as a practical candidate for near-term quantum
image security deployments. Several papers have been
published that review many quantum algorithms [21-23].
This analysis demonstrates that our proposed algorithm
design achieves the shallowest circuit (depth = 8), the
second-lowest qubit requirement (14 qubits), and the lowest
relative hardware cost, while maintaining a gate count of
just 32. On average, competing techniques require 30 qubits,
57 gates, and 5 times as many sequential layers.
Sophisticated error-corrected encryption [24] outperforms
by 82% in depth reduction and 53% in qubit reduction,
confirming that aggressive parallelization is more beneficial
than embedding full fault tolerance at this scale.
Importantly, our 14-qubit layout leaves headroom for
ancillae or error-mitigation overhead on current
superconducting or trapped-ion devices, whereas several
contenders already exceed typical machine capacities. Table
4 shows the resource and cost compression for several
encryption models.

Table 3. Resource summary for one full encryption—decryption cycle

Image Size Qubits (Image + Key) Total Gates Circuit Depth Avg. Execution Time
4x4 14 32 8 1.2 ps
32x32 14 32 8 1.2 ps
128 x 128 14 32 8 1.2 ps

Table 4. Compression of resources and cost for several encryption models

(25)

Method Depth Qubits Gates Relative Cost
Our proposal 8 14 32 2
Liu and Wang [25] 18 12 38 4
Gao et al. [22] 32 20 56 6
Abd-El-Atty et al. [24] 28 18 52 5
Nielsen and Chuang [15] 40 24 78 8
Preskill [20] 45 30 89 3
Arute et al. [26] 38 26 7 7
Overall, the data indicate that true time-slice KH.. = Pxy
. . . . . x,y -
parallelization yields an average 70% reduction in depth pio?

across the benchmark set, while keeping gate complexity
and qubit usage within realistic NISQ budgets.
Consequently, our method represents a better practical
trade-off between security and implementability than any of
the ten recent alternatives investigated.
7.1 The coefficient of correlation
The coefficient of correlation KH,,,, is a measure that
describes the strength and direction of the linear relationship
between two adjacent pixel values in an image. It's a value
between -1 and 1, where -1 indicates a perfect negative
linear relationship, and the value 1 indicates a perfect
positive linear relationship 0 indicates no linear
relationship. The equation for calculating the coefficient of
correlation is defined as:

where, x and y are two adjacent pixel values in the
grayscale image. Whereas p, ,, is the covariance between x
and y. Covariance measures how two variables change
together. If they tend to increase and decrease together, the
covariance is positive. If one tends to increase when the
other decreases, the covariance is negative. p2 and pf, are
the variances of the random variables x and y respectively.

Figures 11 and 12 display a 3D plot of the plain and
encrypted Lena image's correlation matrix KH, ,,. The plot
displays clear structures and a good correlation in the plain
image. On the other hand, the encrypted image shows
almost no correlation, demonstrating how well the
encryption destroys pixel correlations and improves
security. Table 5 shows the KH, ,, of plain and encrypted
images.
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Table 5. The K H, ,, of plain and encrypted images

Name of Image Plain Image Encryption Image
Horizontal vertical diagonal Horizontal vertical diagonal
Lena 0.96082 0.9813 0.9475 -0.00755 0.000465 0.00110
Cameraman 0.95722 0.9572 0.9513 -0.00642 0.002544 -0.00202
Baboon 0.9737 0.9747 0.9662 -0.00321 0.004130 -0.00194
Boats 0.99776 0.9544 0.9356 0.00356 0.008330 0.004921
7.2 Entropy encrypted (ciphered) versions. The equation for MAE is
[16]:
Entropy is a concept that measures the unpredictability or
randomness of information, as first proposed by Shannon. 1 ==
Entropy is calculatsed based on the probabilities of different MAE = M XN |Pl-, i—Cij 27)
symbols or events in a set of data. The formula for entropy i=0 j=0

is defined as [15]:

with M and N being the dimensions of the images, i.e., rows
a and columns. Also, P; ; is the pixel value at the i" row and
h(X) = - z p(x;) log, p(x;) (26) j™ column of the plain image, whereas C j is the pixel value
i=1 at the i row and j* column of the ciphered image. The
high MAE value indicates that the plain and cipher images
are quite different, which is a positive sign for encryption.
A higher MAE indicates that the encrypted image does not

match the input, making decryption more challenging.

where, h(X) is the entropy of the information source X, and
qi is the total number of unique symbols in X. p(x;) is the
probability of a particular symbol x; occurring in X. The

entropy of encrypted images by our proposed system, with Mean Squared Error (MSE): A measure of how different
Reference [23] and Reference [16] are presented in Tables two images are. In particular, it computes the mean of the
6and 7.

square differences between a pixel in each picture. The MSE

is defined as:
7.3 Analysis of difference

M-1 N-1
Mean absolute error (MAE) is a measure of the distance MSE = 1 Z ( P —C ,)2 28)

between two continuous variables. It is used to assess the M x N = = 7 J

difference between two original images (plain) and their
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Peak Signal-to-Noise Ratio (PSNR) is a measure used to
assess the quality of an image by comparing the maximum
possible power of a signal (the original image) to the power
of corrupting noise (the difference between the original and
the encrypted image). The PSNR is defined as:

PMAX

VMSE

PSNR = 20log;, [ (29)

where, Pyax is the maximum possible pixel value of the
image. The pixel difference analysis between the plain
image and the cipher image is shown in Tables 8 and 9.

Table 6. The entropy of some selected images

Encrypted Image by (1) Encrypted Image in Ref. [23]
Image Name Red Green Blue Red Green Blue
Lena 7.9995 7.9991 7.9996 7.9991 7.9991 7.9992
Cameraman 7.9996 7.9993 7.9991 7.9991 7.9993 7.9991
Baboon 7.9993 7.9971 7.9996 7.9996 7.9991 7.9991
Boats 7.9995 7.9997 7.9996 7.9991 7.9992 7.9991
Table 7. The entropy of some selected images
Encrypted Image by (1) Encrypted Image by Ref. [16]
Image Name Red Green Blue Red Green Blue
Lena 7.9995 7.9991 7.9996 7.9969 7.9948 7.9957
Cameraman 7.9996 7.9993 7.9991 - - -
Baboon 7.9993 7.9971 7.9996 7.9958 7.9995 7.9951
Boats 7.9995 7.9997 7.9996 - - -

Table 8. Comparative analysis of pixel differences between plain and encrypted images based on MAE, MSE, and PSNR
using our proposed method and Ref. [23]

Image Name Our Proposed Ref. [23]
MAE MSE PSNR MAE MSE PSNR
Lena 86.84 10298.98 9.1040 85.48 8992.82 8.8917
Cameraman 87.85 10464.94 9.10583 87.97 8853.77 8.8954
Baboon 84.81 10634.93 9.1059 79.88 8765.76 8.9570
Boats 85.80 10872.90 9.1093 81.53 8619.66 8.9865

Table 9. Comparative analysis of pixel differences between plain and encrypted images based on MAE, MSE, and PSNR
using our proposed method and Ref. [16]

Image Name Our Proposed Ref. [16]
MAE MSE PSNR MAE MSE PSNR
Lena 86.84 10298.98 9.1040 84.31 10637.33 9.6559
Cameraman 87.85 10464.94 9.10583 87.97 - -
Baboon 84.81 10634.93 9.1059 85.10 10878.0 8.9193
Boats 85.80 10872.90 9.1093 - - -

7.4 Number of Pixel Change Rate

The Number of Pixel Change Rate (NPCR) is a statistical
test that uses the relationship between two encrypted images
and their original images to assess the sensitivity of the
encryption algorithm to changes in the plaintext. The
percentage of pixel positions in two encrypted photos (the
second one obtained by encrypting a modified version of the
original image, in which only one pixel has been changed) that
differ. A higher NPCR value indicates that even a minor
change in the original input image will be propagated
throughout the encrypted image, reflecting strong robustness
against differential attacks and indicating higher security. The
NPCR is an important measure for determining the
performance of image encryption algorithms, which means
that for a slight change in plaintext image, the ciphertext must
be changed significantly and randomly; then the expression
regarding the NPCR can be defined as [16]:

1 .
NPCR = v HZ x(i,§)
ij

W (30)
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where, W and H are the width and height of the images,
respectively. While x(i, j) is a function that returns 0 if the
pixel values at position (i, j) in the two encrypted images, are
the same, and 1 otherwise. The function x(i, j) is defined as
equal 0 if C,(i,)) = C,(i,j) or 1if C,(i,j) # C,(i,j). NPCR
is a pixel change rate, and the higher the NPCR value, the more
pixels of the two encrypted images have changed, or in other
words, it means that the encryption scheme is sensitive to any
small changes in the input image. Essentially, the NPCR
metric measures the extent to which an encrypted image
changes when a single pixel in the original image is modified,
thereby assessing the reliability of an encryption scheme
against differential attacks.

7.5 Unified Average Intensity Change Intensity

A metric called UACI (Unified Average Changing
Intensity) quantifies how sensitive an encryption technique is
in image encryption. UACI measures the difference in average
pixel value between two encrypted images, whereas NPCR
measures the percentage of pixel changes. This determines
how much the pixel value encryption changes on average by



calculating the average brightness difference across all pairs
of related pixels in two encrypted images. Such a metric is
more important when the encryption algorithm exhibits a
differential property, meaning that a change in a single pixel
(a one-pixel change) in the input image should be reflected
prominently in the output image. This is defined as [16]:

M-1
)
H

i=0

N-1

2

=0

UACI =

€2))

G (@, J) Cz(l J)|

-

where, C; (i,) and C,(i, ) are encrypted images, and W and
H (or equivalently M and N) are the width and height of the
images, respectively. As the value of UACI increases, the
average value of C; (i, j) and C, (i, j) is large, so an extremely
small change in the input image may result in a significant
change in the resulting image. To test the sensitivity of the
encryption algorithm against NPCR or UACI, we take the first

= E(P), where P is the original image. Then, adjust P by
flipping one pixel randomly and encrypting this new version
to create C,. In the last step, NPCR/UACI is calculated by
following their formulae, which compare C; and C, encrypted
images obtained from this method. Table 10 and Table 11
show the experimental results of these measurements.

Table 10. The NPCR test for plain and cipher images in
comparing to Ref. [23]

Image NPCR NPCR of Ref. [23]
Name R G B R G B
Lena 99.99 99.99 99.99 99.83 99.82 99.61
Cameran 99.91 99.62 99.96 99.81 99.86 99.77
Baboon 99.97 99.97 99.94 99.86 99.81 99.89
Boats 99.99 99.99 99.99 99.85 99.72 99.87

Table 11. The UACI test between plain and cipher images in
comparing to Ref. [23]

Image UACI Ref. [23]

Name R G B R G B

Lena 3384 3379 3385 36.39 3314 3526
Cameran 3447 3453 3458 3833 3426 3421
Baboon 3491 3482 3481 3497 33.06 3381

Boats 3411 3412 34.06 3548 33.06 34.81

From the tables and figures above, it can be concluded that
the recently proposed 4D-QLJS encryption algorithm achieves
a high level of security and efficiency. The values of histogram
uniformity (Figure 11) and low correlation coefficients (Figure
12), along with high NPCR/UACI, demonstrate that the image
data exhibit good diffusion and confusion properties under the
proposed encryption system, indicating that it is highly
resistant to differential and statistical attacks. Furthermore, the
outcomes present in Table 3. highlight how computational
efficiency was preserved by the classification while still
ensuring strong encryption over other lower-dimensional
chaotic systems. The results demonstrate that the proposed 4D
LJS can be further adopted in real-time encryption
applications.

8. CONCLUSIONS

In this paper, we present a new QIE cryptosystem that
combines a 4D quantum Logistic-Jerk system, modeled

2704

through a Hamiltonian formulation, with a quantum image
representation framework. The proposed system utilizes a
quantum pseudo-random number generator (QPRNG) derived
from the time evolution of the quantized Hamiltonian system
to generate random entropy. These numbers are combined
within the QIRBP model to implement two unitary operation
substitutions and permutations at the bit-plane level using
quantum CNOT and SWAP gates. The performance of the
encryption algorithm was evaluated through various
statistical, randomness, and differential attack tests,
demonstrating high levels of security and efficiency suitable
for real-time image transmission. The proposed encryption
framework achieves constant-depth quantum circuit execution
(depth = 8), which is significantly slower than most recent QIE
algorithms. Moreover, the total number of qubits used is equal
to 14, remains within the limits of current NISQ devices, while
still supporting parallel operations over all pixel data.
Compared to other schemes, our method offers a lower gate
count, equivalent to 32, reduced hardware cost, and a more
scalable design, which allows for practical implementation on
current and near-future quantum platforms. These advantages
are especially important given the decoherence limitations of
quantum processors. Additionally, the encryption process
demonstrated strong resistance to statistical and differential
attacks, as supported by the results of entropy analysis, NPCR,
and UACI measurements. The encryption algorithm
successfully eliminates pixel correlation in all directions, with
correlation coefficients approaching zero. The substitution and
permutation mechanisms driven by QPRNG ensure complete
disruption of the pixel structure in both spatial and color
domains. Furthermore, the high values of MAE and MSE,
along with the low PSNR, indicate that the cipher images are
highly unrecognizable and robust against reconstruction
attacks. The results confirm that our quantum encryption
scheme, based on 4D-QLJHS and QIRBP, not only ensures
strong security properties but also offers better quantum
resource efficiency than existing methods. This makes it a
suitable and practical candidate for secure image
communication over quantum networks. In future work, we
plan to extend this framework to support large-scale quantum
multimedia encryption and to explore its adaptability under
noisy, error-prone NISQ conditions.

REFERENCES
[1] SaberiKamarposhti, M., Ghorbani, A., Yadollahi, M
(2024). A comprehensive survey on image encryption:
Taxonomy, challenges, and future directions. Chaos,
Solitons & Fractals, 178: 114361.
https://doi.org/10.1016/j.chaos.2023.114361

Zia, U., McCartney, M., Scotney, B., Martinez, J.,
AbuTair, M., Memon, J., Sajjad, A. (2022). Survey on
image encryption techniques using chaotic maps in
spatial, transform and spatiotemporal domains.
International Journal of Information Security, 21(4):
917-935. https://doi.org/10.1007/s10207-022-00588-5
Perepechaenko, M., Kuang, R. (2023). Quantum
encryption of superposition states with quantum
permutation pad in IBM quantum computers. EPJ
Quantum Technology, 10(1): 7.
https://doi.org/10.1140/epjqt/s40507-023-00164-3

Zhou, X., Qiu, D., Luo, L. (2023). Distributed exact
Grover’s algorithm. Frontiers of Physics, 18(5): 51305.

(3]



(3]

(6]

(8]

(9]

[10]

[11]

[12]

[14]

[15]

https://doi.org/10.1007/s11467-023-1327-x

Kumar, M., Mondal, B. (2024). Study on implementation
of Shor’s factorization algorithm on quantum computer.
SN Computer Science, 5(4): 413.
https://doi.org/10.1007/s42979-024-02771-y

Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.
(2022). The future of quantum computing with
superconducting qubits. Journal of Applied Physics,
132(16): 160902. https://doi.org/10.1063/5.0082975
Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y. (2013).
Quantum image encryption and decryption algorithms
based on quantum image geometric transformations.
International Journal of Theoretical Physics, 52(6):
1802-1817. https://doi.org/10.1007/s10773-012-1274-8
Song, X.H., Wang, S., Abd El-Latif, A.A., Niu, X.M.
(2014). Quantum image encryption based on restricted
geometric and color transformations. Quantum
Information Processing, 13(8): 1765-1787.
https://doi.org/10.1007/s11128-014-0768-0

Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.
(2015). Quantum image encryption based on generalized
Arnold transform and double random-phase encoding.
Quantum Information Processing, 14(4): 1193-1213.
https://doi.org/10.1007/s11128-015-0926-z

Hua, T., Chen, J., Pei, D., Zhang, W., Zhou, N. (2015).
Quantum image encryption algorithm based on image
correlation decomposition. International Journal of
Theoretical Physics, 54(2): 526-537.
https://doi.org/10.1007/s10773-014-2245-z

de Forges de Parny, L., Alibart, O., Debaud, J., Gressani,
S., Lagarrigue, A., Martin, A., Van Den Bossche, M.
(2023). Satellite-based quantum information networks:
Use cases, architecture, and roadmap. Communications
Physics, 6(1): 12. https://doi.org/10.1038/s42005-022-
01123-7

Zhao, J., Zhang, T., Jiang, J., Fang, T., Ma, H. (2022).
Color image encryption scheme based on alternate
quantum walk and controlled Rubik’s Cube. Scientific
Reports, 12(1): 14253. https://doi.org/10.1038/s41598-
022-18079-x

Panda, D.K., Benjamin, C. (2025). Designing three-way-
entangled and nonlocal two-way-entangled single-
particle states via alternate quantum walks. Physical
Review A, 111(1): 012420.
https://doi.org/10.1103/PhysRevA.111.012420

Alwan, N.A., Obaiys, S.J., Al-Saidi, N.M., Noor,
N.F.B.M., Karaca, Y. (2025). A multi-channel quantum
image representation model with qubit sequences for
quantum-inspired image and image retrieval. Aims
Mathematics, 10(5): 10994-11035.
https://www.aimspress.com/aimspress-
data/math/2025/5/PDF/math-10-05-499.pdf

Nielsen, M.A., Chuang, IL. (2010). Quantum

2705

[16]

[19]

[20]

(21]

[22]

(23]

[25]

[26]

(27]

Computation and Quantum Information. Cambridge
University Press.

Alwan, N.A., Obaiys, S.J., Noor, N.F.B.M., Al-Saidi,
N.M., Karaca, Y. (2024). Color image encryption
through multi-S-box generated by hyperchaotic system
and mixture of pixel bits. Fractals, pp. 2440039.
https://doi.org/10.1142/S0218348X24400395

Hosny, K.M., Elnabawy, Y.M., Elshewey, A.M.,
Alhammad, S.M., Khafaga, D.S., Salama, R. (2024).
New method of colour image encryption using triple
chaotic maps. IET Image Processing, 18(12): 3262-3276.
https://doi.org/10.1049/ipr2.13171

Sprott, J.C. (2011). A new chaotic jerk circuit. IEEE
Transactions on Circuits and Systems II: Express Briefs,
58(4): 240-243.
https://doi.org/10.1109/TCSI1.2011.2124490

Alwan, N.A., Obaiys, S.J., Al-Saidi, N.M., Noor,
N.F.B.M. (2025). Quantum random number generation
via von neumann projection. In International Conference
on Computational Science and Its Applications, pp. 176-
193. https://doi.org/10.1007/978-3-031-97000-9 11
Preskill, J. (2018). Quantum computing in the NISQ era
and beyond. Quantum, 2: 79.

Amaithi Rajan, A., Vetrian, V. (2024). QMedShield: A
novel quantum chaos-based image encryption scheme for
secure medical image storage in the cloud. Journal of
Modern Optics, 71(13-15): 524-542.
https://doi.org/10.1080/09500340.2024.2436521

Gao, J., Wang, Y., Song, Z., Wang, S. (2023). Quantum
image encryption based on quantum DNA codec and
pixel-level  scrambling.  Entropy, 25(6):  865.
https://doi.org/10.3390/e25060865

Jiang, N., Dong, X., Hu, H., Ji, Z., Zhang, W. (2019).
Quantum image encryption based on Henon mapping.
International Journal of Theoretical Physics, 58(3): 979-
991. https://doi.org/10.1007/s10773-018-3989-7
Abd-El-Atty, B., Iliasu, A.M., Abd El-Latif, A.A. (2021).
A multi - image cryptosystem using quantum walks and
chebyshev map. Complexity, 2021(1): 9424469.
https://doi.org/10.1155/2021/9424469

Liu, L., Wang, J. (2023). A cluster of 1D quadratic
chaotic map and its applications in image encryption.
Mathematics and Computers in Simulation, 204: 89-114
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C.,
Barends, R., Martinis, J.M. (2019). Quantum supremacy
using a programmable superconducting processor.

Nature, 574(7779): 505-510.
https://doi.org/10.1038/s41586-019-1666-5

USC-SIPI. (n.d.). USC-SIPI Image Database -
Miscellaneous volume [Online database],

https://sipi.usc.edu/database/database.php?volume=misc
, accessed on Oct. 1, 2025.


https://sipi.usc.edu/database/database.php?volume=misc
https://sipi.usc.edu/database/database.php?volume=misc



