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Emotional stress impacts mental health and cognitive function, influencing human
performance by affecting memory and attention. This study generated its own dataset of
electroencephalographic (EEG) signals recorded using a Brain-Computer Interface (BCI)
device. Participants were induced to stress using math tasks with strict time constraints.
This dataset was used to identify significant features for the detection of emotional stress.
The EEG signals were labeled according to their respective positions on the valence-arousal
plane. Significant quadrant-specific thresholds relevant to stress were determined for
classification and subsequent analysis. The class imbalance was mitigated using resampling
methods. Feature extraction was performed using techniques in time, frequency, and time-
frequency domains for obtaining a comprehensive signal representation. Principal
Component Analysis (PCA) was applied to the extracted features to reduce dimensionality
and improve model generalization. The features served as inputs to various CNN
architectures to identify the optimum models for recognizing stress. The best recognition
accuracy of 90.2% was obtained in the recognition of stress-related emotional states. The
findings demonstrate the effectiveness of the combination of EEG signal processing and
machine learning algorithms in the detection of stress levels in the valence-arousal

emotional space.

1. INTRODUCTION

Emotional stress significantly influences mental and
physical health, contributing to conditions like anxiety,
depression, and other stress-related disorders. In academic
performance, stress is a key factor that can affect cognitive
function, memory, and attention [1, 2].

Accurate identification of emotional stress is critical in
clinical and occupational settings, and educators and
researchers could benefit from gaining real-time insights into
the emotional state of students to design personalized
interventions and develop adaptive learning strategies [3].

Electroencephalography (EEG) has emerged as an
effective, non-invasive method to detect emotional states,
leveraging signals captured by Brain-Computer Interface
(BCI) devices. EEG signals can be systematically analyzed in
the valence-arousal emotional plane, a widely accepted model
in affective computing research [4].

The valence-arousal model categorizes emotions based on
two dimensions: valence (positive or negative emotions) and
arousal (intensity of emotional response). Identifying stress
accurately within this space involves defining precise quadrant
boundaries. Machine learning techniques, particularly
convolutional neural networks (CNNs), have shown
effectiveness in analyzing EEG signals, leveraging their
capability to manage multi-dimensional and complex data.

This research is an approach to the problem of detecting
stress as a result of facing math problems, leveraging the use
of a BCI device to capture EEG signals. The research starts
generating an original EEG dataset with the participation of a
heterogeneous population that includes elderly people. The
dataset goes through preprocessing to balance its classes to
avoid bias toward the majority class. After that, a feature
extraction process is defined in different domains, followed by
a dimension reduction using PCA. The resulting dataset is
tested with CNN configurations to determine the most
effective models [5].

In this paper, Chapter 2 mentions some related work and
emphasizes the gap that our research aims to fill, which is the
acquisition of a relevant dataset with balanced classes and the
identification of the combination of characteristics that works
best to identify stress in the valence-arousal plane.

Chapter 3 briefly describes the stress induction protocol
applied in the experiments, details labeling according to the
location in the valence-arousal plane, the techniques to balance
the dataset, the feature extraction algorithms in the different
domains, the application of PCA to reduce feature
dimensionality, and the process to get the best-performing
CNN system.

Chapter 4 shows the best configuration used for the CNN
algorithm and accuracy results obtained using features in the
time, frequency, time-frequency, and a combination of
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characteristics in all domains.
Chapter 5 presents conclusions and the direction of possible
future research.

2. RELATED WORK

The convolutional neural networks (CNN) algorithms have
shown useful results in stress detection using EEG signals as
inputs. Martinez-Rodrigo et al. [6] used CNN algorithms to
extract spectral features using an AlexNet architecture,
obtaining 84% accuracy in differentiating between two
classes: stress and non-stress conditions. They do not extract
features before applying the CNN algorithm, but the input is
raw data, so the processing times, although not given, must be
longer than if feature data is the input [7-12].

Other works [13-15] presented CNN and Deep learning
applications, achieving a 96% accuracy in the detection of
stress in a process that, according to the authors, is not suitable
for real-time use due to the necessity of pre-processing a large
volume of raw data.

Jaloli et al. [16] explored stress detection using a CNN
algorithm in a non-EEG dataset obtained using wearable
sensors. The accuracy was 99.82%, suggesting better results
than those achieved using EEG. Yet, this paper also uses raw
data to process with CNN and extract features automatically,
which again requires longer processing times and, therefore,
cannot be used in real-time applications.

While these studies deliver valuable results, they focus only
on features extracted via the CNN method using raw data and
lengthy processing. This gap justifies our work, which aims to
integrate feature extraction in the time, frequency, and time-
frequency domains with CNN architectures. The use of pre-
obtained features enables faster processing that could facilitate
real-time applications useful for EEG-based stress recognition
applied to multiple fields.

Furthermore, those studies did not consider the valence-
arousal space for labeling emotional states, which limits the
granularity of the classification. In contrast, our approach uses
this model to facilitate the individual's self-report of their
feelings.

3. MATERIALS AND METHODS

This work generates a dataset called EEGstressl-epn with
EEG data collected from 11 participants using a BCI device
that detects these signals in real-time in different brain areas
and reports them as CSV files. The device is called Emotiv
Epoct, shown in Figure 1, and has 14 electrodes
corresponding to the channels, according to the 10-20 system
presented in Figure 2: AF3, F7, F3, FC, T7, P7, Ol, 02, P8,
T8, FC6, F4, F8, AF4, plus two reference signals CMS and
DRL located in the P3 and P4 channels.

Figure 1. Brain computer interface emotiv Epoc+
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Figure 2. 10-20 system for electrode placement
3.1 Stress induction protocol

The present work obtains its own data set of EEG signals
using a l4-channel BCI device. The dataset was called
EEGstressl-epn. The participants were induced to stress by
being challenged with arithmetic tasks with a strict time limit
to respond. Immediate visual feedback was provided to
indicate if the answers were correct or incorrect, aiming to
increase anxiety and cognitive load.

The participants were 11, 7 male and 4 female, with ages
between 26 and 79 years old. They were informed beforehand
that their performance would be evaluated to increase
psychological pressure and reinforce stress induction. The
participants had to qualify their level of stress in the valence-
arousal plane using the Self-Assessment Manikin (SAM)
presented in Figure 3. Valence evaluated if the feeling was
positive, neutral, or negative, and arousal estimated the
intensity of the perceived emotion.
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Figure 3. Self-assessment manikin

Also, a baseline was previously recorded where the
participants were asked to relax. EEG signals recorded during
relaxation and the execution of the math tasks generated the
EEGstress1-epn dataset.

The classes in the valence-arousal plane were stress, calm,
and other. The stress state includes high stress with a valence
lower than three and arousal over 5, mild stress with a valence
between 3 and 5, and arousal between 4 and 6. These are
negative emotions with high activation linked to anxiety or
cognitive overload. Calm is classified when the valence is
between 4 and 6, and arousal is lower than 4, which is a
positive feeling with low activation. Other values in the
valence-arousal plane were considered in the "other" category.

This classification approach allows for a nuanced
differentiation of emotional states while preventing
misclassification of ambiguous conditions. The plane



valence—arousal is shown in Figure 4.
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Figure 4. Valence-arousal for stress recognition
3.2 Strategies to overcome class imbalance

It is necessary to generate a balanced dataset with each class
receiving enough samples to prevent the learning algorithm
from always predicting the majority label. In applications like
stress detection, it is crucial to avoid misclassifying, for
instance, high-stress instances as calm or vice versa. One
method to ensure a balanced dataset is to use resampling
techniques to guarantee that every stress category contributes
equally to the model, alleviating bias, improving recall on
minority classes, and yielding more reliable performance.

In this work, three popular resampling techniques were
used: RandomOverSampler, Borderline-SMOTE, and
RandomUnderSampler. After applying them, we chose the
method that gives the best performance in combination with a
feature selection algorithm.

3.2.1 RandomOverSampler

This method duplicates randomly selected instances from
minority classes until all classes have equal representation. By
oversampling to the number of cases in the majority class, the
classifier sees each class equally often during training.

3.2.2 Borderline-SMOTE

This method is an extension of the Synthetic Minority Over-
sampling Technique (SMOTE). Borderline-SMOTE focuses
synthetic sample generation on minority examples near the
decision boundary. It identifies minority samples whose
nearest neighbors include majority instances (“danger”
samples) and creates new points along the line segments
joining each “danger” sample to its minority neighbors. This
targeted oversampling sharpens the classifier’s ability to
distinguish between classes in the critical boundary region,
reducing the risk of creating noisy, out-of-distribution
examples.

3.2.3 RandomUnderSampler

It is an algorithm that removes samples from the majority
classes until class counts are balanced. While it avoids
overfitting by reducing redundant data, it may discard
potentially informative examples, and is thus more suitable
when the majority class vastly outnumbers the minority and
the lost information is unlikely to be critical.

Table 1 reports the number of EEG epochs of 60 seconds
each, per class (“Stress”, “Calm”, “Others”). The table
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presents the epochs in the original dataset and after applying
the three resampling techniques. Notice how oversampling
methods balance all classes to the size of the majority class
(1,010 samples), while under-sampling reduces each class to
the size of the smallest class (129 samples).

Table 1. Class sample counts before and after resampling

Technique Stress Calm  Other  Total
Original 129 141 1,010 1,280
RandomOverSampler 1,010 1,010 1,010 3,030
Borderline-SMOTE 1,010 1,010 1,010 3,030
RandomUnderSampler 129 129 129 387

3.3 Feature extraction

Feature extraction was performed for each channel using a
1x7680 array, where various features in the time, frequency,
and time-frequency domains were extracted [17-19]. The
value of 7680 represents the number of data samples recorded
from each channel during a 60-second interval. With a
sampling rate of 128 Hz (i.e., 128 samples per second), it was
obtained 128 x 60 = 7680 samples were obtained.

Feature extraction leveraged diverse techniques in time,
frequency, and time-frequency domains. The characteristics
extracted in the time domain are computed directly from the
raw EEG signal over time and give its statistical and structural
behaviour. They were:

Median: The central value of the signal.

Mean: The average signal amplitude in a window.

Variance: Evaluates the spread of the signal values around
the mean.

Maximum: The highest amplitude in the window.

Minimum: The lowest amplitude.

Root mean square or RMS: Amplitude and duration in one
measure.

Peak to peak value: The difference between the maximum
and minimum values, which reflects the signal range.

Energy (Eng): For each 60-s window, the EEG signal x(n)
is measured in microvolts (uV). Eng is computed as the sum
of squared amplitudes over the N samples of the window, and
therefore has units of pV2.

Average power (Avg) is obtained by normalizing the energy
by the number of samples in the window, which yields pV?2 per
sample (equivalently proportional to uV?/s given the fixed
sampling frequency of 128 Hz).

Line length: The Sum of absolute differences between
consecutive samples to evaluate signal complexity.

Nonlinear energy: Evaluates changes in signal structure by
combining products of successive samples.

First differences: Computes the average of absolute changes
between consecutive points to evaluate signal variability.

Area Under the Curve (AUC): It represents the integral of
the signal and is useful for comparing overall amplitude or
energy between segments of the signal.

Kurtosis: Measures the extremity of values in the signal
distribution. High kurtosis indicates more outliers.

Skewness: Evaluates the asymmetry of the amplitude
distribution.

Hjorth Parameters: Represents the mean frequency or signal
smoothness. These parameters include Hjorth complexity,
which measures the change in frequency. High complexity
suggests fast-changing patterns.

Petrosian Fractal dimension (PFD): Estimates the signal
complexity by analyzing changes in signal direction.



Hurst exponent: It is a statistical measure that evaluates how
the signal changes over time, showing persistence and
randomness.

In the frequency domain, the features describe the
distribution of energy obtained using the Fourier transform. In
this domain, the characteristics obtained were:

Five bands: Delta in the 1 to 4 Hz range, Theta in the 4 to 8
Hz range, Alpha in the 8 to 13 Hz range, Beta in the 13 to 30
Hz range, and Gamma for frequencies greater than 30 Hz.
Each band is related to a type of brain activity. Band powers
are computed from the power spectral density (PSD) of each
60-s window. For each band B € {delta, theta, alpha, beta,
gamma}, the band energy is defined as the integral of the PSD
over the corresponding frequency range, which results in units
of uV2. To reduce inter-subject variability, we use relative
band-energy ratios: each band feature reported in Table 2
corresponds to the band energy divided by the total energy in
the 1-45 Hz range, yielding a dimensionless ratio.

Spectral Entropy: It computes the irregularity or disorder of
the power spectral density (PSD) distribution. High entropy

indicates a flat and noisy spectrum, while low entropy suggests
a dominant frequency.

The frequency-time domain is obtained using wavelet
transforms. Among these methods, we used:

Wavelet variance: Measures the variability of the wavelet
coefficients to assess signal fluctuations over time.

Wavelet STD: The standard deviation of wavelet
coefficients to evaluate dispersion in time and frequency.

Wavelet Absolute mean: Computes the average magnitude
of wavelet coefficients, to indicate the level of signal activity.

Wavelet energy: Is the sum of the squares of wavelet
coefficients divided by their length to measure localized
energy.

Wavelet entropy: It is the normalized magnitude of the
wavelet coefficient that interprets a probability distribution. It
evaluates the unpredictability of the wavelet coefficients since
higher values mean more disorder [20], providing
comprehensive coverage of stress-indicative signals.

A summary of the feature extraction algorithms used in the
present work is shown in Table 2.

Table 2. Feature extraction algorithms
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3.4 Feature selection with Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised
dimensionality-reduction technique that linearly transforms
the original feature space into a new set of orthogonal axes
considered as the principal components, ordered by the
amount of variance they explain. By projecting high-
dimensional data onto the first principal components, PCA
both reduces computational burden and mitigates overfitting
by discarding directions in which the data have little variation.
In the context of EEG feature vectors, where each channel may
contribute dozens of time-, frequency-, and time-frequency—
domain descriptors, PCA allows us to concentrate on the
combinations of features that capture the greatest signal
variability while suppressing noise and redundancy.

We applied PCA after concatenating all extracted features
for each 60-second epoch, before feeding the data into our 1D-
CNN. The number of retained components was chosen to
explain at least 95% of the total variance; this method reduced
feature dimensionality by more than 70%, greatly accelerating
network  training  without sacrificing classification
performance.

3.5 Classification algorithms

The classification method used was CNN, which was
chosen due to its suitability for complex, multi-dimensional
data. Multiple CNN configurations were tested with a 1D
dimension for several layer compositions. The experiments
were structured to determine which feature combinations and

CNN configurations yield optimal accuracy in stress detection.

4. RESULTS

The dataset that gave the best results within a 5-fold cross-
validation framework had the combination of PCA for feature
selection and RandomOverSampler. This PCA +
RandomOverSampler consistently produced the best overall
accuracy when used in different CNN configurations.

Moreover, experimental results demonstrated promising
performance across different CNN configurations. The best-
performing CNN model configurations achieved an average
accuracy of 90.2%, indicating significant potential for
practical applications in real-world stress detection. This
configuration is presented in Table 3.

An essential finding demonstrated in Table 4 was the benefit
of combining features from multiple signal domains (time,
frequency, and time-frequency), which delivers a more robust
and discriminative input vector than single-domain features.
This multi-domain feature integration approach outperformed
traditional single-domain methods commonly reported in the
literature. This way, the best results were obtained when
features of all the domains were combined, producing a
90.20% accuracy using a 5-fold cross-validation. The
architecture that yielded the best results is shown in Table 3.
This Convolutional Neural Network (CNN) architecture
follows a structured pattern of convolution, batch,
normalization, pooling, and dense layers to process the input
vector that includes features extracted in the time, frequency,
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time-frequency, and combined domains of each labeled set of
EEG data corresponding to a 60-second interval. The average
processing time was in the millisecond range.

The configuration presents three 1D convolutional layers,
with 32, 64, and 128 filters, respectively. Each convolutional
layer is followed by batch normalization to stabilize learning
and enhance convergence. Also, each convolutional block
includes average pooling with a pool size of 2 to reduce the
dimensionality while retaining key features. Finally, the
tensors are flattened to transition into fully connected layers
with 1024 neurons and rectified linear unit (ReLU) activation,
512 neurons with hyperbolic tangent (tanh) activation, 256
neurons with Tanh activation, and 128 neurons with ReLU

activation. Each dense layer is followed by a dropout with a
rate of 0.5 to prevent overfitting. The output dense layer has
three neurons and a softmax activation with a probability
distribution over three classes for stress, calm, and other.

PCs (95% wvar.) indicates the number of principal
components retained after PCA so that at least 95% of the
original feature variance is preserved. In Table 4, the Time
Domain set required 10 components, the Frequency Domain
12, the Time-Frequency Domain 15, and the full-concatenated
feature vector 20, to reach a 95% variance threshold. Figure 5
shows the pipeline for the multi-domain feature extraction and
classification process.

Table 3. CNN classifier

Block Layer (Keras) Activation Notes
Convolutional Conv1D(32, kernel size Tensor shape (input—output): [batch, 20, 1] — [batch, 20, 32] — [batch, 10, 32].
block 1 =2, strides = 1, padding tanh Input: 20-dimensional feature vector from PCA. Followed by Batch Normalization
= 'same") (BN) and Average Pooling (AvgPool1D, pool size=2).
Convolutional S(;m;:r?d(gj’:kle ngife tanh Tensor shape (input—output): [batch, 10, 32] — [batch, 10, 64] — [batch, 5, 64].
block 2 > Std ,Same’,)p & Followed by BN and AvgPool1D(pool_size=2).
. Conv1D(128, .
Convolutional . . Tensor shape (input—output): [batch, 5, 64] — [batch, 5, 128] — [batch, 2, 128].
kernel size = 2, strides tanh S
block 3 N N , Followed by BN and AvgPool1D(pool_size=2).
=1, padding = 'same")
Tensor shape (input—output): [batch, 2, 128] — [batch, 256]. After the three
Flatten Flatten() B convolution + average pooling blocks, the 1D feature map has a length 2 and 128
channels, so the Flatten layer produces a 256-dimensional vector that is fed into the
fully connected block.
Fully connected Dense(1024) + . )
block Dropout(0.5) ReLU Tensor shape (input—output): [batch, 256] — [batch, 1024].
Dense(512) + . )
Dropout(0.5) tanh Tensor shape (input—output): [batch, 1024] — [batch, 512].
Dense(256) + . .
Dropout(0.5) tanh Tensor shape (input—output): [batch, 512] — [batch, 256].
Dense(128) + . .
Dropout(0.5) ReLU Tensor shape (input—output): [batch, 256] — [batch, 128].
Output layer Dense(3) softmax Tensor shape (input—output): [batch, 128] — [batch, 3]. 3 classes.

Raw EEG
14 channels, 60 s

epochs
(128 Hz)

Preprocessing

Filtering, and

segmentation, delta, theta, alpha, time—frequency

labeling beta, gamma band features
powers, spectral Dimension= N

features
median, mean,
variance,

RMS, peak-to-peak,
energy, LL, NL, AUC,
Hjorth, PFD, Hurst

Concatenated
feature vector
All time, frequency

Frequency-domain
features

entropy features

Time—frequency

features Pq (95%
wavelet variance, variance)
STD, Dimensionality
absolute mean, fEdUCtiDQ )
energy, Output dimension

wavelet entropy =20PCs

1D-CNN classifier
Input: 20-
dimensional
feature vector
QOutput: 3 classes

Figure 5. Pipeline for feature extraction and classification
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Table 4. Number of principal components, feature domains,
and accuracy

Feature Domain #PCs (95% Mean Std.
var.) Acce. Dev.

Time only 10 0.835 0.03
Frequency Only 12 0.864 0.04
Time-Frequency 15 0.873 0.02
Combined Domains 20 0.902 0.02

5. CONCLUSIONS AND FUTURE WORK

This study demonstrates the feasibility of emotional stress
recognition using EEG signals analyzed through CNNs within
the valence-arousal emotional framework. Key contributions
include defining clear quadrant boundaries for stress
identification, validating arithmetic problems under time
pressure as effective stress-inducing stimuli, utilization of
class balancing via several methods, dimensionality reduction
of features through PCA, and exploring multi-domain feature
extraction techniques.

Unlike previous works that, when using deep networks, rely
solely on raw EEG data and end-to-end characteristics
extracted within the CNN algorithm, our approach leverages
pre-extracted features in different domains: time, frequency,
time-frequency, and a combination of all features. This
methodology, compared with an input vector with raw data,
enables faster training, better interpretability, and the potential
for real-time implementation due to faster processing. The
results are compared, and the conclusion is that the best
accuracy is obtained when features of the three domains are
combined, outperforming those using single-domain inputs,
indicating that stress manifests simultaneously across multiple
EEG signal characteristics.

CNN architectures effectively handled complex EEG data
with the optimal configurations.

The limitation of this work includes the modest sample size
of 11 participants. However, an important strength is that the
cohort is heterogeneous with male and female individuals
from a broad age range, from 26 to 79 years old. This
demographic enriches the EEGstressl-epn dataset and
increases applicability in real-world populations, where stress
may affect people of all ages and backgrounds differently.

New research directions include exploring advanced deep
learning techniques, such as transformer-based neural
networks, to handle EEG temporal dynamics better. Another
possible expansion is the integration of other physiological
measures (skin conductance, heart rate variability) to validate
and improve stress classification accuracy further.

These findings open avenues for real-time applications in
mental health monitoring, occupational safety, academic
performance improvement, and enhancing human-computer
interaction technologies.
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