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Emotional stress impacts mental health and cognitive function, influencing human 

performance by affecting memory and attention. This study generated its own dataset of 

electroencephalographic (EEG) signals recorded using a Brain-Computer Interface (BCI) 

device. Participants were induced to stress using math tasks with strict time constraints. 

This dataset was used to identify significant features for the detection of emotional stress. 

The EEG signals were labeled according to their respective positions on the valence-arousal 

plane. Significant quadrant-specific thresholds relevant to stress were determined for 

classification and subsequent analysis. The class imbalance was mitigated using resampling 

methods. Feature extraction was performed using techniques in time, frequency, and time-

frequency domains for obtaining a comprehensive signal representation. Principal 

Component Analysis (PCA) was applied to the extracted features to reduce dimensionality 

and improve model generalization. The features served as inputs to various CNN 

architectures to identify the optimum models for recognizing stress. The best recognition 

accuracy of 90.2% was obtained in the recognition of stress-related emotional states. The 

findings demonstrate the effectiveness of the combination of EEG signal processing and 

machine learning algorithms in the detection of stress levels in the valence-arousal 

emotional space. 
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1. INTRODUCTION

Emotional stress significantly influences mental and 

physical health, contributing to conditions like anxiety, 

depression, and other stress-related disorders. In academic 

performance, stress is a key factor that can affect cognitive 

function, memory, and attention [1, 2]. 

Accurate identification of emotional stress is critical in 

clinical and occupational settings, and educators and 

researchers could benefit from gaining real-time insights into 

the emotional state of students to design personalized 

interventions and develop adaptive learning strategies [3]. 

Electroencephalography (EEG) has emerged as an 

effective, non-invasive method to detect emotional states, 

leveraging signals captured by Brain-Computer Interface 

(BCI) devices. EEG signals can be systematically analyzed in 

the valence-arousal emotional plane, a widely accepted model 

in affective computing research [4]. 

The valence-arousal model categorizes emotions based on 

two dimensions: valence (positive or negative emotions) and 

arousal (intensity of emotional response). Identifying stress 

accurately within this space involves defining precise quadrant 

boundaries. Machine learning techniques, particularly 

convolutional neural networks (CNNs), have shown 

effectiveness in analyzing EEG signals, leveraging their 

capability to manage multi-dimensional and complex data. 

This research is an approach to the problem of detecting 

stress as a result of facing math problems, leveraging the use 

of a BCI device to capture EEG signals. The research starts 

generating an original EEG dataset with the participation of a 

heterogeneous population that includes elderly people. The 

dataset goes through preprocessing to balance its classes to 

avoid bias toward the majority class. After that, a feature 

extraction process is defined in different domains, followed by 

a dimension reduction using PCA. The resulting dataset is 

tested with CNN configurations to determine the most 

effective models [5].  

In this paper, Chapter 2 mentions some related work and 

emphasizes the gap that our research aims to fill, which is the 

acquisition of a relevant dataset with balanced classes and the 

identification of the combination of characteristics that works 

best to identify stress in the valence-arousal plane.  

Chapter 3 briefly describes the stress induction protocol 

applied in the experiments, details labeling according to the 

location in the valence-arousal plane, the techniques to balance 

the dataset, the feature extraction algorithms in the different 

domains, the application of PCA to reduce feature 

dimensionality, and the process to get the best-performing 

CNN system.  

Chapter 4 shows the best configuration used for the CNN 

algorithm and accuracy results obtained using features in the 

time, frequency, time-frequency, and a combination of 
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characteristics in all domains.  

Chapter 5 presents conclusions and the direction of possible 

future research. 

 

 

2. RELATED WORK 

 

The convolutional neural networks (CNN) algorithms have 

shown useful results in stress detection using EEG signals as 

inputs. Martínez-Rodrigo et al. [6] used CNN algorithms to 

extract spectral features using an AlexNet architecture, 

obtaining 84% accuracy in differentiating between two 

classes: stress and non-stress conditions. They do not extract 

features before applying the CNN algorithm, but the input is 

raw data, so the processing times, although not given, must be 

longer than if feature data is the input [7-12]. 

Other works [13-15] presented CNN and Deep learning 

applications, achieving a 96% accuracy in the detection of 

stress in a process that, according to the authors, is not suitable 

for real-time use due to the necessity of pre-processing a large 

volume of raw data. 

Jaloli et al. [16] explored stress detection using a CNN 

algorithm in a non-EEG dataset obtained using wearable 

sensors. The accuracy was 99.82%, suggesting better results 

than those achieved using EEG. Yet, this paper also uses raw 

data to process with CNN and extract features automatically, 

which again requires longer processing times and, therefore, 

cannot be used in real-time applications. 

While these studies deliver valuable results, they focus only 

on features extracted via the CNN method using raw data and 

lengthy processing. This gap justifies our work, which aims to 

integrate feature extraction in the time, frequency, and time-

frequency domains with CNN architectures. The use of pre-

obtained features enables faster processing that could facilitate 

real-time applications useful for EEG-based stress recognition 

applied to multiple fields. 

Furthermore, those studies did not consider the valence-

arousal space for labeling emotional states, which limits the 

granularity of the classification. In contrast, our approach uses 

this model to facilitate the individual's self-report of their 

feelings.  

 

 

3. MATERIALS AND METHODS 

 

This work generates a dataset called EEGstress1-epn with 

EEG data collected from 11 participants using a BCI device 

that detects these signals in real-time in different brain areas 

and reports them as CSV files. The device is called Emotiv 

Epoc+, shown in Figure 1, and has 14 electrodes 

corresponding to the channels, according to the 10-20 system 

presented in Figure 2: AF3, F7, F3, FC, T7, P7, O1, O2, P8, 

T8, FC6, F4, F8, AF4, plus two reference signals CMS and 

DRL located in the P3 and P4 channels. 

 

 
 

Figure 1. Brain computer interface emotiv Epoc+ 

 
 

Figure 2. 10-20 system for electrode placement 

 

3.1 Stress induction protocol 

 

The present work obtains its own data set of EEG signals 

using a 14-channel BCI device. The dataset was called 

EEGstress1-epn. The participants were induced to stress by 

being challenged with arithmetic tasks with a strict time limit 

to respond. Immediate visual feedback was provided to 

indicate if the answers were correct or incorrect, aiming to 

increase anxiety and cognitive load.  

The participants were 11, 7 male and 4 female, with ages 

between 26 and 79 years old. They were informed beforehand 

that their performance would be evaluated to increase 

psychological pressure and reinforce stress induction. The 

participants had to qualify their level of stress in the valence-

arousal plane using the Self-Assessment Manikin (SAM) 

presented in Figure 3. Valence evaluated if the feeling was 

positive, neutral, or negative, and arousal estimated the 

intensity of the perceived emotion. 

 

 
 

Figure 3. Self-assessment manikin 

 

Also, a baseline was previously recorded where the 

participants were asked to relax. EEG signals recorded during 

relaxation and the execution of the math tasks generated the 

EEGstress1-epn dataset. 

The classes in the valence-arousal plane were stress, calm, 

and other. The stress state includes high stress with a valence 

lower than three and arousal over 5, mild stress with a valence 

between 3 and 5, and arousal between 4 and 6. These are 

negative emotions with high activation linked to anxiety or 

cognitive overload. Calm is classified when the valence is 

between 4 and 6, and arousal is lower than 4, which is a 

positive feeling with low activation. Other values in the 

valence-arousal plane were considered in the "other" category. 

This classification approach allows for a nuanced 

differentiation of emotional states while preventing 

misclassification of ambiguous conditions. The plane 
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valence–arousal is shown in Figure 4. 

 

 
 

Figure 4. Valence-arousal for stress recognition 

 

3.2 Strategies to overcome class imbalance 

 

It is necessary to generate a balanced dataset with each class 

receiving enough samples to prevent the learning algorithm 

from always predicting the majority label. In applications like 

stress detection, it is crucial to avoid misclassifying, for 

instance, high-stress instances as calm or vice versa. One 

method to ensure a balanced dataset is to use resampling 

techniques to guarantee that every stress category contributes 

equally to the model, alleviating bias, improving recall on 

minority classes, and yielding more reliable performance.  

In this work, three popular resampling techniques were 

used: RandomOverSampler, Borderline-SMOTE, and 

RandomUnderSampler. After applying them, we chose the 

method that gives the best performance in combination with a 

feature selection algorithm.  

 

3.2.1 RandomOverSampler 

This method duplicates randomly selected instances from 

minority classes until all classes have equal representation. By 

oversampling to the number of cases in the majority class, the 

classifier sees each class equally often during training.  

 

3.2.2 Borderline-SMOTE  

This method is an extension of the Synthetic Minority Over-

sampling Technique (SMOTE). Borderline-SMOTE focuses 

synthetic sample generation on minority examples near the 

decision boundary. It identifies minority samples whose 

nearest neighbors include majority instances (“danger” 

samples) and creates new points along the line segments 

joining each “danger” sample to its minority neighbors. This 

targeted oversampling sharpens the classifier’s ability to 

distinguish between classes in the critical boundary region, 

reducing the risk of creating noisy, out-of-distribution 

examples. 

 

3.2.3 RandomUnderSampler  

It is an algorithm that removes samples from the majority 

classes until class counts are balanced. While it avoids 

overfitting by reducing redundant data, it may discard 

potentially informative examples, and is thus more suitable 

when the majority class vastly outnumbers the minority and 

the lost information is unlikely to be critical. 

Table 1 reports the number of EEG epochs of 60 seconds 

each, per class (“Stress”, “Calm”, “Others”). The table 

presents the epochs in the original dataset and after applying 

the three resampling techniques. Notice how oversampling 

methods balance all classes to the size of the majority class 

(1,010 samples), while under-sampling reduces each class to 

the size of the smallest class (129 samples). 

 

Table 1. Class sample counts before and after resampling 

 

Technique Stress Calm Other Total 

Original 129 141 1,010 1,280 

RandomOverSampler 1,010 1,010 1,010 3,030 

Borderline-SMOTE 1,010 1,010 1,010 3,030 

RandomUnderSampler 129 129 129 387 

 

3.3 Feature extraction 

 

Feature extraction was performed for each channel using a 

1x7680 array, where various features in the time, frequency, 

and time-frequency domains were extracted [17-19]. The 

value of 7680 represents the number of data samples recorded 

from each channel during a 60-second interval. With a 

sampling rate of 128 Hz (i.e., 128 samples per second), it was 

obtained 128 × 60 = 7680 samples were obtained. 

Feature extraction leveraged diverse techniques in time, 

frequency, and time-frequency domains. The characteristics 

extracted in the time domain are computed directly from the 

raw EEG signal over time and give its statistical and structural 

behaviour. They were:  

Median: The central value of the signal.  

Mean: The average signal amplitude in a window.  

Variance: Evaluates the spread of the signal values around 

the mean.  

Maximum: The highest amplitude in the window.  

Minimum: The lowest amplitude.  

Root mean square or RMS: Amplitude and duration in one 

measure.  

Peak to peak value: The difference between the maximum 

and minimum values, which reflects the signal range.  

Energy (Eng): For each 60-s window, the EEG signal x(n) 

is measured in microvolts (μV). Eng is computed as the sum 

of squared amplitudes over the N samples of the window, and 

therefore has units of μV². 

Average power (Avg) is obtained by normalizing the energy 

by the number of samples in the window, which yields μV² per 

sample (equivalently proportional to μV²/s given the fixed 

sampling frequency of 128 Hz). 

Line length: The Sum of absolute differences between 

consecutive samples to evaluate signal complexity.  

Nonlinear energy: Evaluates changes in signal structure by 

combining products of successive samples.  

First differences: Computes the average of absolute changes 

between consecutive points to evaluate signal variability.  

Area Under the Curve (AUC): It represents the integral of 

the signal and is useful for comparing overall amplitude or 

energy between segments of the signal.  

Kurtosis: Measures the extremity of values in the signal 

distribution. High kurtosis indicates more outliers.  

Skewness: Evaluates the asymmetry of the amplitude 

distribution.  

Hjorth Parameters: Represents the mean frequency or signal 

smoothness. These parameters include Hjorth complexity, 

which measures the change in frequency. High complexity 

suggests fast-changing patterns.  

Petrosian Fractal dimension (PFD): Estimates the signal 

complexity by analyzing changes in signal direction.  
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Hurst exponent: It is a statistical measure that evaluates how 

the signal changes over time, showing persistence and 

randomness.  

In the frequency domain, the features describe the 

distribution of energy obtained using the Fourier transform. In 

this domain, the characteristics obtained were:  

Five bands: Delta in the 1 to 4 Hz range, Theta in the 4 to 8 

Hz range, Alpha in the 8 to 13 Hz range, Beta in the 13 to 30 

Hz range, and Gamma for frequencies greater than 30 Hz. 

Each band is related to a type of brain activity. Band powers 

are computed from the power spectral density (PSD) of each 

60-s window. For each band B ∈ {delta, theta, alpha, beta, 

gamma}, the band energy is defined as the integral of the PSD 

over the corresponding frequency range, which results in units 

of μV². To reduce inter-subject variability, we use relative 

band-energy ratios: each band feature reported in Table 2 

corresponds to the band energy divided by the total energy in 

the 1–45 Hz range, yielding a dimensionless ratio. 

Spectral Entropy: It computes the irregularity or disorder of 

the power spectral density (PSD) distribution. High entropy 

indicates a flat and noisy spectrum, while low entropy suggests 

a dominant frequency.  

The frequency-time domain is obtained using wavelet 

transforms. Among these methods, we used: 

Wavelet variance: Measures the variability of the wavelet 

coefficients to assess signal fluctuations over time.  

Wavelet STD: The standard deviation of wavelet 

coefficients to evaluate dispersion in time and frequency.  

Wavelet Absolute mean: Computes the average magnitude 

of wavelet coefficients, to indicate the level of signal activity.  

Wavelet energy: Is the sum of the squares of wavelet 

coefficients divided by their length to measure localized 

energy.  

Wavelet entropy: It is the normalized magnitude of the 

wavelet coefficient that interprets a probability distribution. It 

evaluates the unpredictability of the wavelet coefficients since 

higher values mean more disorder [20], providing 

comprehensive coverage of stress-indicative signals. 

A summary of the feature extraction algorithms used in the 

present work is shown in Table 2.  

 

Table 2. Feature extraction algorithms 

 
Feature Equation 

Time Domain Features 

Maximum Max( 𝑋𝑖), (𝑋𝑖є𝐶) 

Minimum Min(𝑋𝑖), (𝑋𝑖є𝐶) 

Median 𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑠𝑜𝑟𝑡(𝑥)𝑁+1
2

 

Mean 𝑀𝑒𝑎𝑛 =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

Variance (Var) 𝑉𝑎𝑟 =
1

𝑁
∑(𝑋𝑖 −𝑚𝑒𝑎𝑛)2
𝑁

𝑖=1

 

Root mean square (RMS) 𝑅𝑀𝑆 = √𝑚𝑒𝑎𝑛(𝑥2) 

No linear energy (Nl) 𝑁𝑙 = ∑ 𝑥𝑖
2 − 𝑥𝑖+1 ∗

𝑁−1

𝑖=1

𝑥𝑖−1 

Peak-to-Peak (p-p) 𝑝 − 𝑝 = |𝑚𝑎𝑥(𝑥) −𝑚𝑖𝑛(𝑥)| 

Energy (Eng) 𝐸𝑛𝑔 = ∑ |𝑋(𝑛)|2
∞

𝑛=−∞

 

Average power (Avg) 𝐴𝑣𝑔 = lim
𝑁→∞

1

2𝑁
∑ |𝑋(𝑛)|2
𝑁

𝑛=−𝑁

 

Line length (Ll) Ll= ∑ |𝑥𝑖 −
𝑁−1
𝑖=1 𝑥𝑖−1| 

No linear energy (Nl) 𝑁𝑙 = ∑ 𝑋𝑖
2 − 𝑋𝑖+1

𝑁−1

i=1

∗ 𝑋𝑖−1 

First differences (d1) 𝑑1 =
1

𝑁 − 1
∑ |𝑥𝑖+1 −

𝑁−1

𝑖=1

𝑥𝑖| 

Second differences (d2) 𝑑2 =
1

𝑁 − 2
∑ |𝑥𝑖+2 −

𝑁−2

𝑖=1

𝑥𝑖 

Area under the curve (AUC) 

∆𝑥 =
𝑏 − 𝑎

𝑛
 

∫ f(x)dx ≈
∆x

2
[𝑓(𝑥0 + 2𝑓(

𝑏

𝑎

𝑥1)…2𝑓(𝑥𝑛−1) + 𝑓(𝑥1) 

Kurtosis (k) 𝑘 =

1
𝑁
∑ (𝑥𝑖 − 𝑥̅)4𝑁
𝑖=1

(
1
𝑁
∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 )

𝟐
 

Skewness (skew) 𝑠𝑘𝑒𝑤 =
∑ (𝑥𝑖 − 𝑥̅)3𝑁
𝑖=1

(𝑁 − 1)𝜎3  

Hjorth activity (σ1) 𝝈𝟏 =
1

𝑁
∑(𝑥𝑖 − 𝑥̅)2
𝑁

𝑖=1
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Hjorth mobility 

σ2 = var(x′) 

Mobility = √
σ1
σ2

 

Hjorth complexity Complexity =
Mobility(x′)

Mobility(x)
 

Petrosian Fractal Dimension (PFD) PFD =
𝑙𝑜𝑔10𝑁

𝑙𝑜𝑔10𝑁 + 𝑙𝑜𝑔10(
𝑁
𝑁
+ 0.4𝑁𝛿)

 

Hurst Exponent 
Hurst =

𝑅(𝑇)

𝑆(𝑇)
(23) =

𝑚𝑎𝑥(𝑋(𝑡, 𝑇)) − min⁡(𝑋(𝑡, 𝑇))

√(
1
𝑡
)∑ [𝑥(𝑡) − 𝑥̅]2𝑇

𝑡=1

 

Frequency Domain Features 

Power Spectral Bands 

𝑇ℎ𝑒𝑡𝑎 = 𝑝𝑜𝑤𝑒𝑟(𝑥, 𝑓𝜖[4ℎ𝑧 − 8ℎ𝑧]) 
Alpha=𝑝𝑜𝑤𝑒𝑟(𝑥, 𝑓𝜖[8ℎ𝑧 − 12ℎ𝑧]) 

𝐿𝑜𝑤𝐵𝑒𝑡𝑎 = 𝑝𝑜𝑤𝑒𝑟(𝑥, 𝑓𝜖{12𝐻𝑧 − 16𝐻𝑧] 
𝐻𝑖𝑔ℎ𝐵𝑒𝑡𝑎 = 𝑝𝑜𝑤𝑒𝑟(𝑥, 𝑓𝜖[12ℎ𝑧 − 25ℎ𝑧]) 
𝐺𝑎𝑚𝑚𝑎 = 𝑝𝑜𝑤𝑒𝑟(𝑥, 𝑓𝜖[25ℎ𝑧 − 45ℎ𝑧]) 

Spectral Entropy (H) 𝐻 = −
1

lo g(𝑘)
∑𝑅𝐼𝑅𝑖𝑙𝑜𝑔𝑅𝐼𝑅𝑖

𝑘

𝑖=1

 

Frequency – Time Domain Features 

Wavelet_energy (w) 𝑤(𝑥𝑗) = √
1

𝑁
∑(𝑥𝑖)

2[𝑖]

𝑁𝑖

𝑖=1

 

Wavelet variance (wvar) 𝑤𝑣𝑎𝑟 = 𝑣𝑎𝑟(𝑤(𝑥𝑗)) 

Wavelet standard deviation (wstd) 𝑊𝑠𝑡𝑑 = std(𝑤(𝑥𝑗)) 

Wavelet absolute mean (wabs_mean) 𝑊𝑎𝑏𝑠_𝑚𝑒𝑎𝑛 = 𝑎𝑏𝑠(𝑚𝑒𝑎𝑛 (𝑤(𝑥𝑗))) 

Wavelet entropy (Went) 

𝑤𝑒𝑛𝑡 = −∑𝑑𝑗𝑙𝑜𝑔(𝑑𝑗)

𝑁

𝑗=1

 

𝑤ℎ𝑒𝑟𝑒𝑑𝑗 =
|𝑤(𝑥𝑗)|

∑ 𝑤(𝑥𝑗)
𝑁
𝑗=1

 

 

3.4 Feature selection with Principal Component Analysis  

 

Principal Component Analysis (PCA) is an unsupervised 

dimensionality-reduction technique that linearly transforms 

the original feature space into a new set of orthogonal axes 

considered as the principal components, ordered by the 

amount of variance they explain. By projecting high-

dimensional data onto the first principal components, PCA 

both reduces computational burden and mitigates overfitting 

by discarding directions in which the data have little variation. 

In the context of EEG feature vectors, where each channel may 

contribute dozens of time-, frequency-, and time-frequency–

domain descriptors, PCA allows us to concentrate on the 

combinations of features that capture the greatest signal 

variability while suppressing noise and redundancy. 

We applied PCA after concatenating all extracted features 

for each 60-second epoch, before feeding the data into our 1D-

CNN. The number of retained components was chosen to 

explain at least 95% of the total variance; this method reduced 

feature dimensionality by more than 70%, greatly accelerating 

network training without sacrificing classification 

performance.  

 

3.5 Classification algorithms 

 

The classification method used was CNN, which was 

chosen due to its suitability for complex, multi-dimensional 

data. Multiple CNN configurations were tested with a 1D 

dimension for several layer compositions. The experiments 

were structured to determine which feature combinations and 

CNN configurations yield optimal accuracy in stress detection. 

 

 

4. RESULTS 

 

The dataset that gave the best results within a 5-fold cross-

validation framework had the combination of PCA for feature 

selection and RandomOverSampler. This PCA + 

RandomOverSampler consistently produced the best overall 

accuracy when used in different CNN configurations.  

Moreover, experimental results demonstrated promising 

performance across different CNN configurations. The best-

performing CNN model configurations achieved an average 

accuracy of 90.2%, indicating significant potential for 

practical applications in real-world stress detection. This 

configuration is presented in Table 3. 

An essential finding demonstrated in Table 4 was the benefit 

of combining features from multiple signal domains (time, 

frequency, and time-frequency), which delivers a more robust 

and discriminative input vector than single-domain features. 

This multi-domain feature integration approach outperformed 

traditional single-domain methods commonly reported in the 

literature. This way, the best results were obtained when 

features of all the domains were combined, producing a 

90.20% accuracy using a 5-fold cross-validation. The 

architecture that yielded the best results is shown in Table 3. 

This Convolutional Neural Network (CNN) architecture 

follows a structured pattern of convolution, batch, 

normalization, pooling, and dense layers to process the input 

vector that includes features extracted in the time, frequency, 
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time-frequency, and combined domains of each labeled set of 

EEG data corresponding to a 60-second interval. The average 

processing time was in the millisecond range. 

The configuration presents three 1D convolutional layers, 

with 32, 64, and 128 filters, respectively. Each convolutional 

layer is followed by batch normalization to stabilize learning 

and enhance convergence. Also, each convolutional block 

includes average pooling with a pool size of 2 to reduce the 

dimensionality while retaining key features. Finally, the 

tensors are flattened to transition into fully connected layers 

with 1024 neurons and rectified linear unit (ReLU) activation, 

512 neurons with hyperbolic tangent (tanh) activation, 256 

neurons with Tanh activation, and 128 neurons with ReLU 

activation. Each dense layer is followed by a dropout with a 

rate of 0.5 to prevent overfitting. The output dense layer has 

three neurons and a softmax activation with a probability 

distribution over three classes for stress, calm, and other. 

PCs (95% var.) indicates the number of principal 

components retained after PCA so that at least 95% of the 

original feature variance is preserved. In Table 4, the Time 

Domain set required 10 components, the Frequency Domain 

12, the Time-Frequency Domain 15, and the full-concatenated 

feature vector 20, to reach a 95% variance threshold. Figure 5 

shows the pipeline for the multi-domain feature extraction and 

classification process.  

 

 

Table 3. CNN classifier 

 
Block Layer (Keras) Activation Notes 

Convolutional 

block 1 

Conv1D(32, kernel_size 

= 2, strides = 1, padding 

= 'same') 

tanh 

Tensor shape (input→output): [batch, 20, 1] → [batch, 20, 32] → [batch, 10, 32]. 

Input: 20-dimensional feature vector from PCA. Followed by Batch Normalization 

(BN) and Average Pooling (AvgPool1D, pool_size=2). 

Convolutional 

block 2 

Conv1D(64, kernel_size 

= 2, strides = 1, padding 

= 'same') 

tanh 
Tensor shape (input→output): [batch, 10, 32] → [batch, 10, 64] → [batch, 5, 64]. 

Followed by BN and AvgPool1D(pool_size=2). 

Convolutional 

block 3 

Conv1D(128, 

kernel_size = 2, strides 

= 1, padding = 'same') 

tanh 
Tensor shape (input→output): [batch, 5, 64] → [batch, 5, 128] → [batch, 2, 128]. 

Followed by BN and AvgPool1D(pool_size=2). 

Flatten Flatten() – 

Tensor shape (input→output): [batch, 2, 128] → [batch, 256]. After the three 

convolution + average pooling blocks, the 1D feature map has a length 2 and 128 

channels, so the Flatten layer produces a 256-dimensional vector that is fed into the 

fully connected block. 

Fully connected 

block 

Dense(1024) + 

Dropout(0.5) 
ReLU Tensor shape (input→output): [batch, 256] → [batch, 1024]. 

 Dense(512) + 

Dropout(0.5) 
tanh Tensor shape (input→output): [batch, 1024] → [batch, 512]. 

 Dense(256) + 

Dropout(0.5) 
tanh Tensor shape (input→output): [batch, 512] → [batch, 256]. 

 Dense(128) + 

Dropout(0.5) 
ReLU Tensor shape (input→output): [batch, 256] → [batch, 128].  

Output layer Dense(3) softmax Tensor shape (input→output): [batch, 128] → [batch, 3]. 3 classes. 

 

 
 

Figure 5. Pipeline for feature extraction and classification 
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Table 4. Number of principal components, feature domains, 

and accuracy 

 
Feature Domain #PCs (95% 

var.) 

Mean 

Acc. 

Std. 

Dev. 

Time only 10 0.835 0.03 

Frequency Only 12 0.864 0.04 

Time-Frequency 15 0.873 0.02 

Combined Domains 20 0.902 0.02 

 

 

5. CONCLUSIONS AND FUTURE WORK 

 

This study demonstrates the feasibility of emotional stress 

recognition using EEG signals analyzed through CNNs within 

the valence-arousal emotional framework. Key contributions 

include defining clear quadrant boundaries for stress 

identification, validating arithmetic problems under time 

pressure as effective stress-inducing stimuli, utilization of 

class balancing via several methods, dimensionality reduction 

of features through PCA, and exploring multi-domain feature 

extraction techniques.  

Unlike previous works that, when using deep networks, rely 

solely on raw EEG data and end-to-end characteristics 

extracted within the CNN algorithm, our approach leverages 

pre-extracted features in different domains: time, frequency, 

time-frequency, and a combination of all features. This 

methodology, compared with an input vector with raw data, 

enables faster training, better interpretability, and the potential 

for real-time implementation due to faster processing. The 

results are compared, and the conclusion is that the best 

accuracy is obtained when features of the three domains are 

combined, outperforming those using single-domain inputs, 

indicating that stress manifests simultaneously across multiple 

EEG signal characteristics.  

CNN architectures effectively handled complex EEG data 

with the optimal configurations.  

The limitation of this work includes the modest sample size 

of 11 participants. However, an important strength is that the 

cohort is heterogeneous with male and female individuals 

from a broad age range, from 26 to 79 years old. This 

demographic enriches the EEGstress1-epn dataset and 

increases applicability in real-world populations, where stress 

may affect people of all ages and backgrounds differently.  

New research directions include exploring advanced deep 

learning techniques, such as transformer-based neural 

networks, to handle EEG temporal dynamics better. Another 

possible expansion is the integration of other physiological 

measures (skin conductance, heart rate variability) to validate 

and improve stress classification accuracy further. 

These findings open avenues for real-time applications in 

mental health monitoring, occupational safety, academic 

performance improvement, and enhancing human-computer 

interaction technologies. 
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