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The rapid advancement of generative models, particularly Generative Adversarial Networks
(GANS), has led to the proliferation of highly realistic Al-generated images that pose serious
challenges to digital content authenticity. This paper presents a dual-branch transformer-
based architecture designed to enhance the detection of such synthetic images by
simultaneously learning spatial and frequency-domain representations. The proposed model
processes RGB inputs and their corresponding Fast Fourier Transform (FFT)-based
spectrograms through two parallel Vision Transformer encoders, enabling the extraction of
complementary features. These features are fused before final classification, allowing the
model to capture both local texture inconsistencies and global signal anomalies that are
characteristic of Al-generated imagery. The system was evaluated on a dataset comprising
real and StyleGAN2-generated facial images, trained on real and StyleGAN2-generated
face images, the model achieved a validation AUC of 0.9807 and generalized effectively to
unseen StyleGAN3 samples. An ablation study confirmed the contribution of the frequency
stream, and additional testing on StyleGAN3-generated images—unseen during training—
demonstrated the model’s strong generalization capability. These findings suggest that
combining spectral and spatial learning within a Transformer framework offers a robust
solution for detecting Al-synthesized images in increasingly complex visual environments.

1. INTRODUCTION

dual-branch Transformer architecture that integrates both
spatial and spectral representations. The proposed system uses

The rapid advancement of generative models, particularly
Generative Adversarial Networks (GANs), has led to the
creation of highly photorealistic images that increasingly
challenge the boundaries between synthetic and authentic
content. These artificially generated visuals pose significant
risks to digital integrity, biometric security, and information
credibility, especially when used maliciously in contexts such
as identity spoofing, misinformation, and digital forgery [1, 2].

While traditional detection systems have relied on
identifying low-level pixel anomalies or forensic signatures
embedded within images [3], they often lack the flexibility to
generalize across different types of generative models. As
GANSs evolve and eliminate common visual defects, purely
spatial-domain detectors have struggled to remain effective.
Recent works have turned to deep learning-based solutions,
particularly Convolutional Neural Networks (CNNs), which
offer superior performance by learning discriminative features
in an end-to-end fashion [4, 5].

More recently, Vision Transformers (ViTs) have emerged
as a compelling alternative to CNNs, owing to their ability to
model long-range dependencies via self-attention mechanisms
[6]. However, most Transformer-based detection frameworks
still focus exclusively on RGB pixel information, neglecting
frequency-domain cues that can expose telltale generative
inconsistencies invisible in the spatial domain [7].

To address these limitations, this paper proposes a novel

two parallel ViT encoders: one processes the original RGB
image, while the other receives a frequency representation
generated via Fast Fourier Transform (FFT). These parallel
streams are fused through a joint feature layer and classified
using a shared linear head. This approach allows the model to
learn complementary information from both modalities,
enhancing robustness to unseen generative techniques.
Experimental results demonstrate that the proposed model not
only outperforms single-branch baselines but also generalizes
effectively to Al-generated images from StyleGAN3—a
model not present during training [8, 9].

2. RELATED WORKS
2.1 GAN-generated and Al-synthesized images

Al-synthesized images are artificially generated visuals
produced by machine learning models trained to learn and
mimic the distribution of real image data. Among the most
influential of these models are Generative Adversarial
Networks (GANSs), which consist of two competing neural
networks: a generator that synthesizes fake samples from
random latent vectors and a discriminator that attempts to
differentiate between real and synthetic inputs [10].

Through adversarial training, the generator progressively
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improves until the discriminator can no longer reliably tell the
two apart. This results in visually compelling synthetic images
that can closely resemble authentic photographs. The quality
of synthesis has significantly advanced through successive
GAN variants such as ProGAN [11] and BigGAN [12], each
introducing architectural improvements like progressive
training, style-based modulation, and alias-free signal
processing. These advancements have expanded the use of
GANs across domains such as facial synthesis, medical
imaging, and visual data augmentation.

The increasing realism of these outputs presents new
challenges for detection systems, particularly as the artifacts
once associated with older generation methods have become
less visible. As a result, recent detection frameworks have
moved beyond visual anomaly detection and now seek to
identify subtle inconsistencies in texture, frequency
composition, and learned feature representations [7, 13, 14].

In addition to GAN-focused detection approaches, prior
research has highlighted the effectiveness of combining
multiple feature representations to enhance visual analysis
performance. For example, studies utilizing multi-view
learning have shown that integrating heterogeneous feature
spaces—such as those extracted from different CNN
architectures—can significantly improve the robustness and
accuracy of image recognition and clustering tasks [8]. These
findings align with the rationale of our dual-branch
architecture, in which spatial features and frequency-domain
cues serve as complementary representations. By fusing these
distinct perspectives, the proposed method effectively
leverages multi-view learning principles to enhance
discrimination between real and Al-synthesized facial images.

2.2 Detection of GAN-generated and manipulated images

Traditional image forgery detection techniques focused on
extracting statistical inconsistencies in image structures, such
as JPEG compression artifacts, CFA patterns, or edge-level
noise variations [13]. While these methods proved effective in
earlier manipulation cases, they struggle with modern GAN-
generated images due to their increasingly sophisticated
synthesis pipelines.

With the rise of deepfakes and high-resolution synthetic
face generation, CNN-based classifiers became the standard in
deepfake detection. Models such as XceptionNet and ResNet
have shown strong performance in learning high-level
semantic cues and local texture anomalies associated with
forgery [9, 15]. These models are often trained on large-scale
datasets like FaceForensics++ 15 and have demonstrated the
ability to detect tampered content under -constrained
conditions.

However, recent findings suggest that GAN-generated
images introduce characteristic patterns in the frequency
domain. Previous studies [3, 16-18] demonstrated that
frequency spectra of synthetic images contain statistical
deviations from real ones—particularly in high-frequency
components. This has led to several hybrid approaches where
images are transformed using FFT or Discrete Cosine
Transform (DCT) prior to classification, allowing models to
learn from both spatial and frequency features.

Dual-stream architectures have been proposed to integrate
heterogeneous information sources. For example, Zhou et al.
[19] designed a two-stream network that fuses spatial and
frequency-aware cues, improving detection reliability across
diverse datasets. Similarly, Dosovitskiy [6] used frequency-
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aware attention modules to enhance forgery detection
sensitivity in shallow representations. Despite these efforts,
most prior work has remained within the CNN paradigm.
ViT-based methods for deepfake detection are still
emerging. While 666 showed that Transformers can model
global attention to subtle image distortions, few studies have
explored how ViTs can be adapted to incorporate frequency-
domain knowledge. Our work builds on these insights by
proposing a ViT-based architecture that processes both RGB
and FFT inputs independently and merges their embeddings
for more robust decision-making. Furthermore, our model is
among the first to show generalization to unseen high-fidelity
generators like StyleGAN3 without additional fine-tuning.

3. PROPOSED METHOD
3.1 Overview

The proposed approach introduces a dual-stream
Transformer-based architecture designed to exploit both
spatial and frequency-domain cues for the binary classification
of real versus Al-generated images. The model consists of two
parallel branches: one processes the raw RGB image, while the
other receives its frequency-transformed representation. These
parallel embeddings are then fused to jointly capture
complementary  features before classification.  This
methodology is driven by the insight that Al-generated
content—particularly GAN-based synthesis—often exhibits
detectable inconsistencies both in texture distribution (spatial
anomalies) and in global signal patterns (frequency artifacts).

3.2 Preprocessing and frequency conversion

All images are first resized to 224 x 224 pixels. For
frequency-domain learning, we apply a two-dimensional Fast
Fourier Transform (FFT) to the grayscale version of each
input. The resulting complex-valued spectrum is shifted and
log-scaled to compress the dynamic range, followed by
normalization into an 8-bit image. This spectrogram is then
expanded into a 3-channel RGB-like format to match the
expected input dimensions of the Vision Transformer.

_
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Figure 1. Flowchart of the preprocessing and frequency
conversion




Formally, given an RGB input image I € R H X W x 3, the
grayscale conversion G is computed and passed through:

F =log (1 + |[FFTShift (FFT2(G))! )
F' = Normalize(F)— Repeat across 3 channels

This procedure retains global signal irregularities that are
often induced by the generative process, particularly in high-
frequency regions.

A detailed representation of the preprocessing and
frequency transformation pipeline is presented in Figure 1.

3.3 Dual-branch transformer architecture

The model incorporates two identical lightweight Vision
Transformer backbones (vit _base patchl6 224), each
pretrained on ImageNet. One processes the RGB image and
the other processes the FFT-transformed version. Both
branches exclude their classification heads and instead output
768-dimensional embeddings.

Let:

e Xrgb=ViTrgb (Irgb) € R768
Xfft = ViTfft (Ifft) € R768

These embeddings are concatenated and passed through a
fusion layer:

xfused = LayerNorm (Linear([xrgb;xfft])) € R768

Finally, a fully connected classification head outputs logits
for the two target classes (real or fake):

¥y = Softmax (Linear(xfused))

The structural layout of the proposed dual-branch
transformer model is depicted in Figure 2.

:[
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Dual-Branch Transformer Architecture

VAT for processing
RGB image

VIT for processing
768-D
Embedding
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i Fake ;

Figure 2. Schematic of the dual-branch vision transformer
architecture

3.4 Training setup

The model is trained using cross-entropy loss and optimized
with AdamW. Input images are augmented with horizontal
flipping and normalized using standard ImageNet statistics. A
batch size of 8 is used due to the dual-branch structure and
GPU memory constraints. Training is conducted for 5 epochs,
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which proved sufficient for convergence, with validation
performance stabilizing beyond the third epoch.
The loss function is defined as:

L==3%i1Yilog ¥

where C = 2 (real, fake), y; is the true label, and y; is the
model’s softmax probability.

3.5 Dataset

The dataset used to train and validate the proposed detection
framework included a combination of real and Al-synthesized
facial images. The real images were obtained from the publicly
available CelebA-HQ dataset [12], a high-resolution version
of the original CelebA dataset. CelebA-HQ consists of 30,000
human face images at 1024x1024 resolution, featuring diverse
facial attributes, age groups, and expressions, captured under
consistent lighting and mostly frontal-facing poses. The
dataset was selected for its high visual quality and widespread
use in generative model research. It is available for download
at: https://github.com/tkarras/progressive _growing of gans.

For our experiments, we randomly selected 15,000 CelebA-
HQ images and resized them to 224x224 pixels to match the
input dimensions required by the Vision Transformer
backbone.

The Al-generated class consisted of 15,000 synthetic
images generated using StyleGAN2 [20], a powerful
generative adversarial network known for its high-fidelity
facial synthesis. Images were produced by sampling from a
latent Gaussian distribution (z ~ N(0, I)) and filtered to
exclude those with severe distortions or inconsistencies.

To evaluate the model’s generalization capability, we used
an additional set of 3,000 unseen images generated by
StyleGAN3 [9], which introduces an alias-free architecture to
improve spatial consistency and eliminate texture shimmering
artifacts often seen in earlier GANs. These StyleGAN3
samples were not used during training or validation and were
reserved exclusively for final evaluation.

The full dataset was balanced across both classes. The
30,000 samples (15,000 real + 15,000 synthetic) were split
using stratified sampling into:

-Training set: 24,000 images (12,000 real + 12,000
synthetic)

-Validation set: 6,000 images (3,000 real + 3,000 synthetic)

All images were resized to 224x224 and normalized using
ImageNet mean and standard deviation. For the frequency
branch, images were converted to grayscale and transformed
using a 2D Fast Fourier Transform (FFT), followed by log-
scaling and normalization to produce a 3-channel spectrogram
format compatible with the Vision Transformer. The
StyleGAN3-based test set was used to assess the model’s zero-
shot generalization ability across unseen generative methods.

3.6 Implementation and deployment

Framework: PyTorch with timm for pretrained ViT models

Environment: Google Colab with T4 GPU support

Input Sources: Real and StyleGAN2 images were used for
training and validation. For testing generalization, StyleGAN3
images were evaluated using single-image inference.

FFT Efficiency: To avoid runtime bottlenecks, frequency
maps were computed on-the-fly but optimized via grayscale
channel-level FFT and 8-bit compression.



4. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the effect of training duration on model
performance, the proposed dual-branch Vision Transformer
was assessed after 3, 5, and 10 epochs of training. At each
milestone, the model’s effectiveness was analyzed using
standard performance metrics—including validation accuracy,
F1-score, and AUC—as well as confusion matrices for both
the validation and test sets.

Confusion Matrix (Validation Set)

Real

True

Predicted

Figure 3. Confusion matrices of the validation set across
three epochs
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Figure 4. Confusion matrices of the test set across three
epochs
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Figure 5. Validation performance metrics (accuracy, F1-
score, and AUC) over three epochs

After three epochs, the model achieved impressive early
results, reaching a validation accuracy of 89.57%, F1-score of
0.9041, and an AUC of 0.9638. The validation confusion
matrix in Figure 3 showed a balanced classification between
real and fake samples, with 1040 true positives and 1264 true
negatives. The model misclassified 138 real images and 136
fake ones—demonstrating strong symmetry in predictions.

On the test set, the model achieved an overall accuracy of
94% and F1-score of 0.94 for both real and fake classes. The
corresponding test confusion matrix, accuracy, and Fl-score
in Figures 4 and 5 confirmed this, with relatively low false
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positives (416) and false negatives (379). These results
indicate that the model generalized well at an early stage and
set a strong baseline for further training.

At epoch five, the model’s validation accuracy decreased
slightly to 87.16%, though the Fl-score remained high at
0.8922, and AUC improved to 0.9699. The validation
confusion matrix, as shown in Figure 6, revealed a shift in
class sensitivity: only 31 fake samples were misclassified, but
the model misclassified 311 real images, indicating a
preference for detecting fakes at the expense of real image
precision. This transient decline in real-class accuracy can be
attributed to temporary over-reliance on frequency-domain
cues, which are highly discriminative for GAN-generated
samples but sometimes misinterpret natural high-frequency
details in authentic images—such as hair strands, strong
lighting, or makeup reflections—as synthetic artifacts. As a
result, the model became overly sensitive to spectral
irregularities and tended to predict a higher proportion of
“fake” labels during this training stage.

Confusion Matrix (Validation Set)
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Figure 6. Confusion matrices of the validation set across five
epochs
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Figure 7. Confusion matrices of the test set across five
epochs
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Figure 8. Validation performance metrics (accuracy, F1-
score, and AUC) over five epochs



As shown in Figure 7, the test confusion matrix revealed a
high number of false positives for real images (962), while
false negatives for fake samples remained low (52). This
indicates a decline in the model's ability to correctly identify
real images. Although the precision for fake images improved,
the significant drop in recall for real images could impact the
model's practical reliability in balanced datasets. This trend is
further reflected in the overall test performance, with test
accuracy dropping to 92%, as illustrated in Figure 8.

By epoch ten, the model achieved its best generalization
performance, with a validation AUC of 0.9807, the model was
increasingly confident and consistent in its predictions across
both classes.
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Figure 9. Confusion matrices of the validation set across ten
epochs
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accurate real image classification (1157 true positives vs. 21
false positives), although 305 fake images were
misclassified—indicating  improved real-image recall.
Importantly, the test set performance was the strongest overall,
achieving a test accuracy of 93%, with only 18 false positives
and 856 false negatives, as shown in Figure 10. The F1-score
for both real and fake classes remained stable at 0.93, and
macro-averaged metrics confirmed that the model maintained
balanced classification capabilities as visualized in Figure 11.

The significantly lower false positive rate for real images
and the highest AUC achieved support the conclusion that
epoch 10 produced the most reliable and generalizable model
checkpoint, especially when applied to unseen data
distributions.

Table 1. Summary of validation accuracy across training

epochs
Epoch Val AUC
3 0.9638
5 0.9699
10 0.9807

Although epoch 3 demonstrated strong early performance
with balanced metrics, and epoch 5 showed high fake-image
sensitivity, epoch 10 offered the most consistent and
generalizable results across validation and test sets, as shown
in Table 1.

The proposed dual-branch transformer-based model
demonstrated highly competitive performance against
established deepfake detection methods. At the optimal point
of generalization (epoch ten), the model achieved a validation
AUC of 0.9807. This performance is supported by the model
exhibiting confident and consistent predictions across both
real and manipulated classes. As demonstrated in Table 2, this
result signifies that our method outperforms the conventional
baselines of ViT, is highly competitive with the XceptionNet
baseline, and achieves performance on par with complex
multi-branch CNN architectures, thereby establishing a new
competitive benchmark.

Table 2. Performance comparison of the proposed method
with deepfake detection methods

Method Metric  Result  Reference
Figure 10. Confusion matrices of the test set across ten Proposed model AUC 0.9807 Ours
epochs XceptionNet AUC 0.970 [4]
Multi-Branch CNN AUC 0.978 [21]
Validation Accuracy Validation F1 Score validatien AUC ViT (ViSiOIl Transformer) AUC 0.9505 [22]

g . S o .
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Figure 11. Validation performance metrics (accuracy, F1-
score, and AUC) over ten epochs

The validation confusion matrix in Figure 9 showed highly

5. CONCLUSION

This paper presented a dual-branch Vision Transformer
architecture for detecting Al-generated images by combining
spatial and frequency-domain representations. The proposed
model leverages two parallel vit_base patch16 224 encoders
to independently process RGB images and their FFT-
transformed counterparts. By fusing embeddings from both
domains, the model captures complementary features that
enhance robustness and generalizability across diverse
generative models.

Experimental evaluations demonstrated that the model
achieves strong performance in detecting synthetic face
images generated by StyleGAN2, with a peak validation



accuracy of 87.32%, an AUC of 0.9807, and a consistent F1-
score across multiple training epochs. A comparative analysis
across training durations revealed that the tenth epoch
produced the most balanced and generalizable model,
achieving the lowest false positive rate on the test set while
maintaining high recall and precision. Furthermore, the model
successfully generalized to unseen StyleGAN3-generated
images, confirming its effectiveness against next-generation
Al synthesis techniques.

The results confirm that integrating frequency-domain
information into a Transformer framework significantly
improves detection accuracy, particularly when distinguishing
photorealistic forgeries that lack visual anomalies in the spatial
domain. This approach offers a promising foundation for
future research in media forensics, where the ability to adapt
to evolving generative architectures is essential for
maintaining digital integrity.
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