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The rapid advancement of generative models, particularly Generative Adversarial Networks 

(GANs), has led to the proliferation of highly realistic AI-generated images that pose serious 

challenges to digital content authenticity. This paper presents a dual-branch transformer-

based architecture designed to enhance the detection of such synthetic images by 

simultaneously learning spatial and frequency-domain representations. The proposed model 

processes RGB inputs and their corresponding Fast Fourier Transform (FFT)-based 

spectrograms through two parallel Vision Transformer encoders, enabling the extraction of 

complementary features. These features are fused before final classification, allowing the 

model to capture both local texture inconsistencies and global signal anomalies that are 

characteristic of AI-generated imagery. The system was evaluated on a dataset comprising 

real and StyleGAN2-generated facial images, trained on real and StyleGAN2-generated 

face images, the model achieved a validation AUC of 0.9807 and generalized effectively to 

unseen StyleGAN3 samples. An ablation study confirmed the contribution of the frequency 

stream, and additional testing on StyleGAN3-generated images—unseen during training—

demonstrated the model’s strong generalization capability. These findings suggest that 

combining spectral and spatial learning within a Transformer framework offers a robust 

solution for detecting AI-synthesized images in increasingly complex visual environments. 
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1. INTRODUCTION

The rapid advancement of generative models, particularly 

Generative Adversarial Networks (GANs), has led to the 

creation of highly photorealistic images that increasingly 

challenge the boundaries between synthetic and authentic 

content. These artificially generated visuals pose significant 

risks to digital integrity, biometric security, and information 

credibility, especially when used maliciously in contexts such 

as identity spoofing, misinformation, and digital forgery [1, 2]. 

While traditional detection systems have relied on 

identifying low-level pixel anomalies or forensic signatures 

embedded within images [3], they often lack the flexibility to 

generalize across different types of generative models. As 

GANs evolve and eliminate common visual defects, purely 

spatial-domain detectors have struggled to remain effective. 

Recent works have turned to deep learning-based solutions, 

particularly Convolutional Neural Networks (CNNs), which 

offer superior performance by learning discriminative features 

in an end-to-end fashion [4, 5]. 

More recently, Vision Transformers (ViTs) have emerged 

as a compelling alternative to CNNs, owing to their ability to 

model long-range dependencies via self-attention mechanisms 

[6]. However, most Transformer-based detection frameworks 

still focus exclusively on RGB pixel information, neglecting 

frequency-domain cues that can expose telltale generative 

inconsistencies invisible in the spatial domain [7]. 

To address these limitations, this paper proposes a novel 

dual-branch Transformer architecture that integrates both 

spatial and spectral representations. The proposed system uses 

two parallel ViT encoders: one processes the original RGB 

image, while the other receives a frequency representation 

generated via Fast Fourier Transform (FFT). These parallel 

streams are fused through a joint feature layer and classified 

using a shared linear head. This approach allows the model to 

learn complementary information from both modalities, 

enhancing robustness to unseen generative techniques. 

Experimental results demonstrate that the proposed model not 

only outperforms single-branch baselines but also generalizes 

effectively to AI-generated images from StyleGAN3—a 

model not present during training [8, 9]. 

2. RELATED WORKS

2.1 GAN-generated and AI-synthesized images 

AI-synthesized images are artificially generated visuals 

produced by machine learning models trained to learn and 

mimic the distribution of real image data. Among the most 

influential of these models are Generative Adversarial 

Networks (GANs), which consist of two competing neural 

networks: a generator that synthesizes fake samples from 

random latent vectors and a discriminator that attempts to 

differentiate between real and synthetic inputs [10]. 

Through adversarial training, the generator progressively 
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improves until the discriminator can no longer reliably tell the 

two apart. This results in visually compelling synthetic images 

that can closely resemble authentic photographs. The quality 

of synthesis has significantly advanced through successive 

GAN variants such as ProGAN [11] and BigGAN [12], each 

introducing architectural improvements like progressive 

training, style-based modulation, and alias-free signal 

processing. These advancements have expanded the use of 

GANs across domains such as facial synthesis, medical 

imaging, and visual data augmentation. 

The increasing realism of these outputs presents new 

challenges for detection systems, particularly as the artifacts 

once associated with older generation methods have become 

less visible. As a result, recent detection frameworks have 

moved beyond visual anomaly detection and now seek to 

identify subtle inconsistencies in texture, frequency 

composition, and learned feature representations [7, 13, 14]. 

In addition to GAN-focused detection approaches, prior 

research has highlighted the effectiveness of combining 

multiple feature representations to enhance visual analysis 

performance. For example, studies utilizing multi-view 

learning have shown that integrating heterogeneous feature 

spaces—such as those extracted from different CNN 

architectures—can significantly improve the robustness and 

accuracy of image recognition and clustering tasks [8]. These 

findings align with the rationale of our dual-branch 

architecture, in which spatial features and frequency-domain 

cues serve as complementary representations. By fusing these 

distinct perspectives, the proposed method effectively 

leverages multi-view learning principles to enhance 

discrimination between real and AI-synthesized facial images. 

 

2.2 Detection of GAN-generated and manipulated images 

 

Traditional image forgery detection techniques focused on 

extracting statistical inconsistencies in image structures, such 

as JPEG compression artifacts, CFA patterns, or edge-level 

noise variations [13]. While these methods proved effective in 

earlier manipulation cases, they struggle with modern GAN-

generated images due to their increasingly sophisticated 

synthesis pipelines. 

With the rise of deepfakes and high-resolution synthetic 

face generation, CNN-based classifiers became the standard in 

deepfake detection. Models such as XceptionNet and ResNet 

have shown strong performance in learning high-level 

semantic cues and local texture anomalies associated with 

forgery [9, 15]. These models are often trained on large-scale 

datasets like FaceForensics++ 15 and have demonstrated the 

ability to detect tampered content under constrained 

conditions. 

However, recent findings suggest that GAN-generated 

images introduce characteristic patterns in the frequency 

domain. Previous studies [3, 16-18] demonstrated that 

frequency spectra of synthetic images contain statistical 

deviations from real ones—particularly in high-frequency 

components. This has led to several hybrid approaches where 

images are transformed using FFT or Discrete Cosine 

Transform (DCT) prior to classification, allowing models to 

learn from both spatial and frequency features. 

Dual-stream architectures have been proposed to integrate 

heterogeneous information sources. For example, Zhou et al. 

[19] designed a two-stream network that fuses spatial and 

frequency-aware cues, improving detection reliability across 

diverse datasets. Similarly, Dosovitskiy [6] used frequency-

aware attention modules to enhance forgery detection 

sensitivity in shallow representations. Despite these efforts, 

most prior work has remained within the CNN paradigm. 

ViT-based methods for deepfake detection are still 

emerging. While 666 showed that Transformers can model 

global attention to subtle image distortions, few studies have 

explored how ViTs can be adapted to incorporate frequency-

domain knowledge. Our work builds on these insights by 

proposing a ViT-based architecture that processes both RGB 

and FFT inputs independently and merges their embeddings 

for more robust decision-making. Furthermore, our model is 

among the first to show generalization to unseen high-fidelity 

generators like StyleGAN3 without additional fine-tuning. 

 

 

3. PROPOSED METHOD 

 

3.1 Overview 

 

The proposed approach introduces a dual-stream 

Transformer-based architecture designed to exploit both 

spatial and frequency-domain cues for the binary classification 

of real versus AI-generated images. The model consists of two 

parallel branches: one processes the raw RGB image, while the 

other receives its frequency-transformed representation. These 

parallel embeddings are then fused to jointly capture 

complementary features before classification. This 

methodology is driven by the insight that AI-generated 

content—particularly GAN-based synthesis—often exhibits 

detectable inconsistencies both in texture distribution (spatial 

anomalies) and in global signal patterns (frequency artifacts). 

 

3.2 Preprocessing and frequency conversion 

 

All images are first resized to 224 × 224 pixels. For 

frequency-domain learning, we apply a two-dimensional Fast 

Fourier Transform (FFT) to the grayscale version of each 

input. The resulting complex-valued spectrum is shifted and 

log-scaled to compress the dynamic range, followed by 

normalization into an 8-bit image. This spectrogram is then 

expanded into a 3-channel RGB-like format to match the 

expected input dimensions of the Vision Transformer. 

 

 
 

Figure 1. Flowchart of the preprocessing and frequency 

conversion 
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Formally, given an RGB input image I ∈ R H × W × 3, the 

grayscale conversion G is computed and passed through: 

 

F = log (1 + ∣FFTShift (FFT2(G))∣ ) 
 

F′ = Normalize(F)→ Repeat across 3 channels 

 

This procedure retains global signal irregularities that are 

often induced by the generative process, particularly in high-

frequency regions. 

A detailed representation of the preprocessing and 

frequency transformation pipeline is presented in Figure 1. 

 

3.3 Dual-branch transformer architecture 

 

The model incorporates two identical lightweight Vision 

Transformer backbones (vit_base_patch16_224), each 

pretrained on ImageNet. One processes the RGB image and 

the other processes the FFT-transformed version. Both 

branches exclude their classification heads and instead output 

768-dimensional embeddings. 

Let: 

• Xrgb = ViTrgb (Irgb) ∈ R768 

• Xfft = ViTfft (Ifft) ∈ R768 

These embeddings are concatenated and passed through a 

fusion layer: 

xfused = LayerNorm (Linear([xrgb;xfft])) ∈ R768 

Finally, a fully connected classification head outputs logits 

for the two target classes (real or fake): 

 

𝑦̂ = Softmax (Linear(xfused)) 

 

The structural layout of the proposed dual-branch 

transformer model is depicted in Figure 2. 

 

 
 

Figure 2. Schematic of the dual-branch vision transformer 

architecture 

 

3.4 Training setup 

 

The model is trained using cross-entropy loss and optimized 

with AdamW. Input images are augmented with horizontal 

flipping and normalized using standard ImageNet statistics. A 

batch size of 8 is used due to the dual-branch structure and 

GPU memory constraints. Training is conducted for 5 epochs, 

which proved sufficient for convergence, with validation 

performance stabilizing beyond the third epoch. 

The loss function is defined as: 

 

𝐿 = − ∑ 𝑦𝑖  𝑙𝑜𝑔 𝑦̂𝑖
𝑐
𝑖=1  

 

where C = 2 (real, fake), 𝑦𝑖  is the true label, and 𝑦̂𝑖  is the 

model’s softmax probability. 

 

3.5 Dataset 

 

The dataset used to train and validate the proposed detection 

framework included a combination of real and AI-synthesized 

facial images. The real images were obtained from the publicly 

available CelebA-HQ dataset [12], a high-resolution version 

of the original CelebA dataset. CelebA-HQ consists of 30,000 

human face images at 1024×1024 resolution, featuring diverse 

facial attributes, age groups, and expressions, captured under 

consistent lighting and mostly frontal-facing poses. The 

dataset was selected for its high visual quality and widespread 

use in generative model research. It is available for download 

at: https://github.com/tkarras/progressive_growing_of_gans. 

For our experiments, we randomly selected 15,000 CelebA-

HQ images and resized them to 224×224 pixels to match the 

input dimensions required by the Vision Transformer 

backbone. 

The AI-generated class consisted of 15,000 synthetic 

images generated using StyleGAN2 [20], a powerful 

generative adversarial network known for its high-fidelity 

facial synthesis. Images were produced by sampling from a 

latent Gaussian distribution (𝑧 ∼ 𝒩(0, I)) and filtered to 

exclude those with severe distortions or inconsistencies. 

To evaluate the model’s generalization capability, we used 

an additional set of 3,000 unseen images generated by 

StyleGAN3 [9], which introduces an alias-free architecture to 

improve spatial consistency and eliminate texture shimmering 

artifacts often seen in earlier GANs. These StyleGAN3 

samples were not used during training or validation and were 

reserved exclusively for final evaluation. 

The full dataset was balanced across both classes. The 

30,000 samples (15,000 real + 15,000 synthetic) were split 

using stratified sampling into: 

-Training set: 24,000 images (12,000 real + 12,000 

synthetic) 

-Validation set: 6,000 images (3,000 real + 3,000 synthetic) 

All images were resized to 224×224 and normalized using 

ImageNet mean and standard deviation. For the frequency 

branch, images were converted to grayscale and transformed 

using a 2D Fast Fourier Transform (FFT), followed by log-

scaling and normalization to produce a 3-channel spectrogram 

format compatible with the Vision Transformer. The 

StyleGAN3-based test set was used to assess the model’s zero-

shot generalization ability across unseen generative methods. 

 

3.6 Implementation and deployment 

 

Framework: PyTorch with timm for pretrained ViT models 

Environment: Google Colab with T4 GPU support 

Input Sources: Real and StyleGAN2 images were used for 

training and validation. For testing generalization, StyleGAN3 

images were evaluated using single-image inference. 

FFT Efficiency: To avoid runtime bottlenecks, frequency 

maps were computed on-the-fly but optimized via grayscale 

channel-level FFT and 8-bit compression. 
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

To evaluate the effect of training duration on model 

performance, the proposed dual-branch Vision Transformer 

was assessed after 3, 5, and 10 epochs of training. At each 

milestone, the model’s effectiveness was analyzed using 

standard performance metrics—including validation accuracy, 

F1-score, and AUC—as well as confusion matrices for both 

the validation and test sets. 

 

 
 

Figure 3. Confusion matrices of the validation set across 

three epochs 

 

 
 

Figure 4. Confusion matrices of the test set across three 

epochs 

 

 
 

Figure 5. Validation performance metrics (accuracy, F1-

score, and AUC) over three epochs 

 

After three epochs, the model achieved impressive early 

results, reaching a validation accuracy of 89.57%, F1-score of 

0.9041, and an AUC of 0.9638. The validation confusion 

matrix in Figure 3 showed a balanced classification between 

real and fake samples, with 1040 true positives and 1264 true 

negatives. The model misclassified 138 real images and 136 

fake ones—demonstrating strong symmetry in predictions. 

On the test set, the model achieved an overall accuracy of 

94% and F1-score of 0.94 for both real and fake classes. The 

corresponding test confusion matrix, accuracy, and F1-score 

in Figures 4 and 5 confirmed this, with relatively low false 

positives (416) and false negatives (379). These results 

indicate that the model generalized well at an early stage and 

set a strong baseline for further training. 

At epoch five, the model’s validation accuracy decreased 

slightly to 87.16%, though the F1-score remained high at 

0.8922, and AUC improved to 0.9699. The validation 

confusion matrix, as shown in Figure 6, revealed a shift in 

class sensitivity: only 31 fake samples were misclassified, but 

the model misclassified 311 real images, indicating a 

preference for detecting fakes at the expense of real image 

precision. This transient decline in real-class accuracy can be 

attributed to temporary over-reliance on frequency-domain 

cues, which are highly discriminative for GAN-generated 

samples but sometimes misinterpret natural high-frequency 

details in authentic images—such as hair strands, strong 

lighting, or makeup reflections—as synthetic artifacts. As a 

result, the model became overly sensitive to spectral 

irregularities and tended to predict a higher proportion of 

“fake” labels during this training stage. 

 

 
 

Figure 6. Confusion matrices of the validation set across five 

epochs 

 

 
 

Figure 7. Confusion matrices of the test set across five 

epochs 

 

 
 

Figure 8. Validation performance metrics (accuracy, F1-

score, and AUC) over five epochs 
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As shown in Figure 7, the test confusion matrix revealed a 

high number of false positives for real images (962), while 

false negatives for fake samples remained low (52). This 

indicates a decline in the model's ability to correctly identify 

real images. Although the precision for fake images improved, 

the significant drop in recall for real images could impact the 

model's practical reliability in balanced datasets. This trend is 

further reflected in the overall test performance, with test 

accuracy dropping to 92%, as illustrated in Figure 8. 

By epoch ten, the model achieved its best generalization 

performance, with a validation AUC of 0.9807, the model was 

increasingly confident and consistent in its predictions across 

both classes. 

 

 
 

Figure 9. Confusion matrices of the validation set across ten 

epochs 

 

 
 

Figure 10. Confusion matrices of the test set across ten 

epochs 

 

 
 

Figure 11. Validation performance metrics (accuracy, F1-

score, and AUC) over ten epochs 

 

The validation confusion matrix in Figure 9 showed highly 

accurate real image classification (1157 true positives vs. 21 

false positives), although 305 fake images were 

misclassified—indicating improved real-image recall. 

Importantly, the test set performance was the strongest overall, 

achieving a test accuracy of 93%, with only 18 false positives 

and 856 false negatives, as shown in Figure 10. The F1-score 

for both real and fake classes remained stable at 0.93, and 

macro-averaged metrics confirmed that the model maintained 

balanced classification capabilities as visualized in Figure 11. 

The significantly lower false positive rate for real images 

and the highest AUC achieved support the conclusion that 

epoch 10 produced the most reliable and generalizable model 

checkpoint, especially when applied to unseen data 

distributions. 

 

Table 1. Summary of validation accuracy across training 

epochs 

 
Epoch Val AUC 

3 0.9638 

5 0.9699 

10 0.9807 

 

Although epoch 3 demonstrated strong early performance 

with balanced metrics, and epoch 5 showed high fake-image 

sensitivity, epoch 10 offered the most consistent and 

generalizable results across validation and test sets, as shown 

in Table 1.  

The proposed dual-branch transformer-based model 

demonstrated highly competitive performance against 

established deepfake detection methods. At the optimal point 

of generalization (epoch ten), the model achieved a validation 

AUC of 0.9807. This performance is supported by the model 

exhibiting confident and consistent predictions across both 

real and manipulated classes. As demonstrated in Table 2, this 

result signifies that our method outperforms the conventional 

baselines of ViT, is highly competitive with the XceptionNet 

baseline, and achieves performance on par with complex 

multi-branch CNN architectures, thereby establishing a new 

competitive benchmark. 

 

Table 2. Performance comparison of the proposed method 

with deepfake detection methods 

 
Method Metric Result Reference 

Proposed model AUC 0.9807 Ours 

XceptionNet AUC 0.970 [4] 

Multi-Branch CNN AUC 0.978 [21] 

ViT (Vision Transformer) AUC 0.9505 [22] 

 

 

5. CONCLUSION 

 

This paper presented a dual-branch Vision Transformer 

architecture for detecting AI-generated images by combining 

spatial and frequency-domain representations. The proposed 

model leverages two parallel vit_base_patch16_224 encoders 

to independently process RGB images and their FFT-

transformed counterparts. By fusing embeddings from both 

domains, the model captures complementary features that 

enhance robustness and generalizability across diverse 

generative models. 

Experimental evaluations demonstrated that the model 

achieves strong performance in detecting synthetic face 

images generated by StyleGAN2, with a peak validation 
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accuracy of 87.32%, an AUC of 0.9807, and a consistent F1-

score across multiple training epochs. A comparative analysis 

across training durations revealed that the tenth epoch 

produced the most balanced and generalizable model, 

achieving the lowest false positive rate on the test set while 

maintaining high recall and precision. Furthermore, the model 

successfully generalized to unseen StyleGAN3-generated 

images, confirming its effectiveness against next-generation 

AI synthesis techniques.  

The results confirm that integrating frequency-domain 

information into a Transformer framework significantly 

improves detection accuracy, particularly when distinguishing 

photorealistic forgeries that lack visual anomalies in the spatial 

domain. This approach offers a promising foundation for 

future research in media forensics, where the ability to adapt 

to evolving generative architectures is essential for 

maintaining digital integrity. 
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