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The artistic style transfer is a technique to produce aesthetically pleasing images by merging
the semantic content of one domain with the stylistic attributes of another. Most attention-
based GAN structures have been unable to achieve structural consistency and style fidelity
across heterogeneous datasets. This paper presents a Transformer-Guided Generative
Adversarial Network (TG-GAN) that incorporates multi-head self-attention into the
generator to improve cross-domain feature alignment while ensuring perceptual realism.
The role of the transformer is to flexibly align content-style relations using a novel adaptive
token fusion approach, guided by a perceptual-adversarial optimization process. Results
based on qualitative and quantitative evaluations on MS-COCO to WikiArt and MS-COCO
to Flickr Landscapes demonstrate that TG-GAN achieves superior results over both StyTr=
and DualStyleGAN in terms of structural integrity and stylization quality. The models
proposed achieved an SSIM of 0.803, an FID of 24.5, and a Style Classification Accuracy
of 91.3%, which is better than existing transformer-based GAN frameworks. The
framework provides a promising pathway for scalable cross-domain and multimodal style
transfer while also offering additional perspectives for integrating transformer architectures

with generative adversarial learning.

1. INTRODUCTION

Image style transfer, which consists of changing an image's
style to demonstrate a different style than its content but
maintaining the original content, is now an important field of
research in both computer vision and computational creativity.
Early efforts primarily relied on convolutional neural networks
(CNN), but the field experienced rapid growth because of the
emergence of adversarial and attention-based mechanisms.
For example, Mei et al. [1] reviewed over 1300 sources to
show that even though modern LLMs show great capabilities
in understanding long or multimodal contexts, they still have,
in many ways, slow support for generating long-form,
semantically-rich outputs, which they establish as the
comprehension-generation asymmetry. The authors also show
how structured pipelines e.g., retrieval-augmented generation,
memory architectures, and multi-agent integration—could be
used to coordinate and scale context. Joshi et al. [2] proposed
a mechanism with the help of hashing mechanisms to improve
quality of the images. They have shown the way of
improvising the quality by ensuring the security.
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In addition, perceptual quality evaluation has gained
traction. Chen et al. [3] examined collaborative learning with
style-adaptive pooling to evaluate from a human perceptual
standpoint relating to style transfer and an increased need for
subjective alignment in model construction. In the same vein,
semantic segmentation has been an important extension in
better content-style disentanglement, with a standout example
being Lin et al. [4], who looked to improve object boundary
retention while performing segmentation-based style transfer.
As an added layer to the desire to push boundaries on
photorealism, Joshi et al. [5] developed a mutual affine-
transfer network using non-local representations to allow for a
more seamless propagation of style in natural images.

In 3D scenes, Chen et al. [6] initiated novel work using
neural radiance fields (NeRF) with style transfer and style-
adaptive pooling for a foundation of photorealistic rendering
in dimensions, through their UPST-NeRF framework. An et
al. [7] approached content leakage and style bias using
reversible neural flows, providing a more unbiased framework
for stylization. To maintain structural fidelity, Chen et al. [8]
employed a multi-scale patch-GAN alongside edge detection,
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highlighting that it is not only fundamental in inpainting to
maintain spatial features, but also in stylization. Moreover,
Wang et al. [9] have addressed the issue of temporal
consistency in video style transfer by means of relaxation and
regularization.

Conversely, GANs leverage adversarial loss to create
visually plausible images, but typically use convolutional
generators that focus on local patterns. Incorporating
transformers with GANs seems to offer a best of both worlds
approach. The transformer layers propagate style information
around the entire image, while the adversarial training helps
adhere to good plausible texture synthesis. For instance, one
can use self-attention blocks, or transformer encoders as part
of the GAN generator where style cues can attend to the entire
scene. This type of hybrid approach overcomes limitations in
previous CNN-based style transfer models: it provides long-
range style coherence and semantic consistency while the
discriminator incentivizes photorealistic output.

To summarize, this paper describes a new Transformer-
Guided GAN scheme for hierarchical style transfer using both
artistic and natural image data. The goal of our new model is
to create images that are stylized, while preserving the content
structure faithfully and showing complex and semantically
consistent style patterns globally using transformer-based
attention to guide the generator and adversarial training to
supervise it.

Research Contributions of this paper are as follows:
Designed a Transformer-Guided GAN (TG-GAN)
combines a Transformer-based attention process with
GAN:S.

A dual-stream transformer module is introduced to
disentangle content and style representation to fully
preserve the scene structure.

The framework is evaluated on three different datasets,
including MS-COCO, WikiArt, and Flickr Landscapes.

The rest of the paper is structured as follows: give a
comprehensive overview of recent developments in style
transfer based on GAN and transformer technologies in
Section I1. Our proposed TG-GAN will present in Section 111
with description of its architecture, feature extraction method,
loss functions and training protocol. Section IV will contain
the experimental setup, information about the datasets, and
quantitative and qualitative results along with a comparison
with existing benchmark models on multiple datasets. Section
V will have conclusions and a summary of contributions,
including future directions.

2. RELATED WORK

In the last few years, neural style transfer advancements
through semantic guidance, attention maps, and generative
adversarial networks (GANS) have been inspired by a few
papers. Liao and Huang [10] came up with a new topic called
Semantic Context-Aware Image Style transfer method that
utilizes semantic segmentation maps in their approach to
stylization, allowing it to better subsets content in the
stylizations. In addition to space coherence and stylistic
alignment, it utilized a good spacial proportion to content that
made its content more contextually aware while being stylized.
Although this approach was good for space coherence, and
stylistic alignment, it did not have diversity in style and
couldn't represent high frequency textures, such as an
imagined texture on a natural scene or a complex face. Liu and
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Zhu [11] introduced a structure-guided framework for
arbitrary style transfer in images and videos that had structural
priors that can provide style-content decoupling. The
advantage is that these structures preserve the geometric
fidelity to the image by the style content. Unfortunately, the
model relied on structure annotations that limits its flexibility
when dealing with unstructured or abstract domains.

Xu et al. [12] presented a new computer vision model that
was called IFFMStyle, that developed a new approach using
invalid feature filter (IFF) modules to take out redundant
features therefore the visual quality was improved. However,
the robustness of the model fell short when dealing with large
or very heterogeneous datasets. Ma et al. [13] developed
DaseNet, a dual-affinity style embedding (DASE) network
that modeled semantic and visual affinity to achieve high
fidelity returns. Although the results were impressive, the
downside to this is that the computational cost is high and
makes it hard to use for real-time applications or on edge
devices. Pan et al. [14] put forth a geometric view on style
transfer through adversarial learning to achieve realism and
domain adaptation; however, being GAN-driven they result in
training which is unstable and sensitive to hyper-parameter
tuning.

Qu et al. [15] proposed a Mutual Affine-Transfer technique
for photorealistic stylization by computing a two-way affine
transformation. Although they maintained photorealism well
using their complementary strategy, they are constrained by
nearly photorealistic content and have limited ability to tackle
abstract or artistic domains. Singh et al. [16] demonstrated
their TVST-GAN as a GAN-based temporal video style
transfer framework. While the model holds temporal
consistency and stylization continuity across graded frames,
its generalization fails when moving from stylized dynamics
to a varying style with a changing temporal aspect. Wang et
al. [17] presented CLAST as a contrastive learning-based
methodology to arbitrary, systematic style transfer. Their
design works well as they retain structural features while
strengthening  style-specific notions, but the contrastive
learning phase requires longer training times with increased
sensitivity with the introduction of negative sampling
strategies.

Chen et al. [18] presented TRTST, a Text-Guided
Transformer for style transfer which can support multimodal
conditioning. They were able to retain fine-grained text-based
control over the style transfer using textual prompts but lacked
the capacity to achieve low-quality outputs that were highly
ambiguous or semantically weak in the text descriptions. Hua
and Zhang [19] introduced AttnStyle, which employs multi-
head self-attention to disentangle style and content. While it
achieves better style localization and blending, there are
drawbacks when generalizing to unseen style domains since
the model tends to overfit on training styles. Still using a
transformer architecture, Chen et al. [20] introduced
SceneStyleFormer for stylization of 3D scenes. The advantage
of this model is that it retains the scene semantics and structure
inherent to the 3D images, but it is mostly restricted to
stylizing 3D rendered scenes and does not support real-world
images. Deng et al. [21], on the other hand, showcased Cross-
Domain Semantic-Aware Style Transfer, which employs
transformers for enhanced domain adaptation. While they
achieve great alignment of semantic categories across
domains, it struggles with semantically sparse or ambiguous
scenes. Park and Kim [22] introduced StyleFormer, which
transfers style through style features extracted from



transformer encoders. While it achieves competitive results,
there is a slow inference speed when dealing with high
resolution images. Sauer et al. [23] showed T-StyleGAN, a
hybrid model that seeks to combine transformer blocks with
StyleGAN for artistic generation. The model displays
reasonable artistic rendering capabilities, but suffers from
issues of instability during training, as well as blending fine-
grained styles.

Cui and Hui [24] presented a Dual Attention GAN designed
for fine-grained stylization, which uses both channel and
spatial attention. This approach does offer more stylization
detail, but it has a high computational and resource cost and
does not support real time performance. Chen et al. [25]
introduced a Multi-Scale Transformer Discriminator within a
GAN framework to achieve strong stylization. The Multi-
Scale Transformer Discriminator does require more hardware
memory for GPU and requires fine-tuning with the multi-scale
layers for training. This complexity makes even applying the
method possible for computer graphics, as it may not be
deployable due to required hardware resource needs. Zhang et
al. [26] also introduced SwinStyleGAN, which brought in the
use of Swin transformers to produce high quality and high-
resolution stylization in a GAN model. This approach does
take advantage of the Swin transformers to track quality, but
due to this it takes a lot hardware resource for training, and it
relies on a large dataset which takes time to gather all the data.

Bi et al. [27] designed a Lightweight ViT-GAN to suggest
edge stylizations and was optimized for constrained resources.
The method produced fairly good results for less complex
styles and designs. It did not have strong performance for
material stylizations that were complex, or high frame
frequency texture due to its lightweight design. Huang et al.
[28] also proposed a Transformer-Guided NeRF Stylization
model that uses transformers with neural radiance fields to
produce NeRF based 3D aware style transfer. The method
produced consistent 3D results, it was limited to only synthetic
scenes, and it required significant rendering time which would
limit its performance. Ultimately, Cho et al. [29] introduced a
ViT-Guided GAN which does a good job capturing both local
and global style semantics for semantic-aware stylization.
However, the dependency on transformer architectures in their
model creates constraints due to the scalability issues when
operating with large high-resolution datasets.

Lastly, AdalN [30] provides an effective method of aligning
features of COCO images to that of Van Gogh artwork but
does not enable fine granularity in terms of semantic control
or apply the style transfer on a per-region basis. SANet [31]
employs convolutional neural network (CNN) architectures
with self-attention, and provides better fusion of features
between COCO and WikiArt images; however, due to the
nature of large style shifts, SANet cannot maintain the
structural fidelity of the content image during the style transfer
process. In recent years, researchers have developed numerous
new approaches for Neural Style Transfer, including GANs,
attention based architecture and Transformer based models,
but still many of these new and existing approaches have
major shortcomings.

While there has been progress in image style transfer tasks
that utilize GANs and other Transformer-based models
evident in the research gap. For instance, many models
struggle to maintain structural or semantic content consistency
especially in complex or higher-resolution scenes. Arbitrary
and cross-domain style transfer still suffers from weak
generalization and learning disentangled style-content
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representations. While Transformer-base methods provide
higher capacity than alternative techniques, the high compute
cost and poor inference speed result in a lack of real-time
possibilities. On the other hand, GAN-based image style
transfer can produce high quality results for a wide variety of
tasks, however, training instability and mode collapse is
commonly an issue. Furthermore, most models do not align
perceptually with human aesthetics, while video style transfer
models rarely maintain temporal consistency. The above gaps
create a need for a single, lightweight, and semantically-aware
model that conducts high-quality, fast, and perceptually
consistent style transfer to significantly benefit existing image
and video domain methods.

3. PROPOSED MODEL

The proposed method proposes an entirely novel TG-GAN
architecture for style transfer between images of artistic and
natural scenes. The basic premise of the TG-GAN framework
is to combine the global semantic understanding of the image
space provided by transformers with realized texture and detail
fidelity achieved from the training of a generative adversarial
network. The full framework shown in Figure 1 consists of
four components: a content encoder, a global transformer
module, a generator, and two discriminators as global and
local that work together to enhance the preservation of content,
style fidelity, and realistic visual operation of synthetic
images.

The Content Encoder E, is responsible for extraction of
high-level semantic features from both the content image I,
and the style image I;. The encoder is based on convolutional
neural networks and outputs feature maps, denoted in the
document as F. =E.,, and F =Ey,. These
representations retain both spatial and semantic information,
which are input to the transformer for enhanced contextual
fusion.

Global

Transformer
Module

Content Image Content
Encoder

S \ Global
‘ Transformer DF

—
Duscrennaior

Style Image

Figure 1. Framework of HDR model

To address the limitation of convolutional networks in
capturing long-range dependencies, introduced a Global
Transformer Module between the encoder and generator. This
module learns contextual mappings between content and style
features using multi-head self-attention. Specifically, the
transformer processes the query, key, and value matrices
derived from F, and F;, and applies attention-based fusion.
Proposed research work around the limitations of
convolutional networks in capturing long-range dependencies
by inserting a Global Transformer Module in between the
encoder and the generator to learn a contextual mapping



between content and style features based on multi-head self-
attention across the encoded content and style features. In
proposed framework, the global transformer takes the outputs
of F, and F;, particularly the stacked query, key, and value
matrices to compute attention-based fusion. The mathematical
formulation of attention is as Eq. (1).

. QK
Attention(Q,K,V) = softmax( €))

T
)v
NE
Attention allows the model to perform semantic-level
alignment to flexibly and hierarchically blend style elements
into semantically relevant regions of the content image. Using
the fused content-style features, the Generator GG synthesizes
the final stylized image as I.; = G(F.). The generator
consists of a stack of residual blocks and upsampling layers to
increase spatial resolution and recover finer details. During
training, the generator learns to generate images that are
perceptually similar to the content image while learning to
adopt stylistic textures, patterns, and colours from the style
image. The output of this module is a fused representation.
Two discriminators were used to incorporate more realism
and detail into the synthesized imagery. The Global
Discriminator D, dissects the complete image for overall
visual consistency, while the Local Discriminators D, focus on
the evaluation of local patches for finer details and textures.
The total discriminator requires both discriminators to
simultaneously trained adversarial using the standard GAN
loss is given as Eq. (2).
Ladv = EIS [lOgD (Is)] + EICS [lOg(l - D(Ics))] (2)
Here, D € {D,, D;}, the complete training objective nested
adversarial loss with perceptual and style losses to create
higher quality stylized outputs. The total loss function is
constructed as Eq. (3).
Ltotal = Aadvl‘adv + Apeerer + AstyleLstyle (3)
The Perceptual Loss encodes the structural content of the

original image by comparing feature activations for images in
a pretrained VGG-19 as shown in Eq. (4).

2
Lper = ”¢(Ic) - ¢(Ics)” 2 (4)

The Style Loss Ly, specifically, encodes the statistics for
the style by comparing multiple contours of the feature maps
Gram matrices to obtain I and I.; between images as given
in Eq. (5).

2
Lstyle = Z”Gl(ls) - Gl(lcs)” F Q)
l

The training was implemented using a combined dataset of
MS-COCO and WikiArt images. Adam optimizer was used
with similar learning parameters g; = 0.5, 8, = 0.999, and a
learning rate of 2 x 10~*2. The model was trained for 100
epochs under a batch size of 16. The transformer module
consisted of four self-attention layers, with eight attention
heads each.

The primary contributions of the proposed model include
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introducing a transformer for semantic-aware global
alignment, a two-discriminator setup for local and global
realism, and a fused loss approach for balanced content-style
optimization. This design allows our model to generate
coherent, high style, semantically aligned, and photorealist
realistic images for the artistic and natural scene domains of
stylization.

3.1 Transformer-Guided Feature Extraction

The Transformer-Guided Feature Extraction (TGFE) phase
is the central component of the proposed style transfer pipeline
responsible for aligning the semantic structure of the content
image with the textural and stylistic attributes of the style
image. This alignment occurs through a transformer module
rather than the more limiting traditional CNN based fusion
modalities, which tend to be more biased due to local receptive
fields. A transformer facilitates capture of long-range
dependencies and additional context-aware representations
across both images.

These are first processed through a shared Convolutional
Content Encoder E, to extract high-level features as shown in

Eqg. (6).

FC — EC(IC) € RHXWXC,ES — EC(IS) IS RHXWXC (6)

Here, I, and I, represent the content and style images, H, W,
and C denote height, width, and channels of the feature map.
These features are flattened and projected into a token
sequence suitable for transformer processing as shown in Eq.

().

X, = Flatten(F,) € R¥*¢, X, = Flatten(F,)

€ RNXC (7)

Here, N = H X W. Since transformers lack an inherent

sense of spatial order, add 2D positional encoding to the tokens
as given in Eq. (8).

X.=X.+PE, X, =X, + PE (8)

Here, PE € RV*C is the sinusoidal or learned positional

embedding. The central mechanism is Cross-Attention, where

the model aligns content with style by using content features

as queries and style features as keys and values as given in

Egs. (9) and (10).

Q=XW, K=%W, V=W,  ©
. QKT

Attention(Q,K,V) = softmax \/d_ v (10)
K

This produces a contextually enriched feature set F. €
RN*%k, where d, is the dimension of the keys and queries.
This operation may be repeated across L transformer layers,
where each layer has multi-head attention and feedforward
submodules with layer norm and residual connections as
shown in Eq. (11).

FL. = TransformerLayer(F5? (11)

Each attention layer employs Multi-Head Attention (MHA)
to capture different contextual subspaces as given in Egs. (12)



and (13).

MHA(Q,K,V) = Concat(hy, ..., h, ) W° (12)

h; = Attention(QW,°, KWK, vw}) (13)

The output from the final transformer layer F ) is

reshaped back into spatial form to be passed to the generator
shown in Eq. (14).

Frysea = Reshape(F5%) € R*T*W*C (14)

This fused representation contains content structure from I,

and style semantics from I, well-aligned across spatial
dimensions.

3.2 GAN architecture for style transfer

In this GAN architecture there are three main modules are
Generator (G) - takes fused outputs from the Transformer
module and produces a stylized image. Discriminator (D) -
distinguishes between real styled images and generated fake
styled outputs. and Loss Functions - keep the generator on path
to produce images that are visually similar and semantically or
close to it. The GAN is conditioned on the content and style
images from the transformer model to create fused outputs
based on feature representations of each image. The goal is to
create an image that preserves the content structure while
mimicking the texture/style of the style image. Figure 2 shows
the GAN architecture for the proposed model.

The generator receives the Transformer-fused feature map
Frysea € R™"*C and decodes it into a stylized image I;.
Given input is Fp,g.q, Series of Residual Blocks with up-
sampling. Adaptive Instance Normalization (AdalN) layers to
modulate style during reconstruction. Then Output is Stylized
Image I g € RFXW>3,

Let D be the decoder and T be the transformer fusion output:

1 = G(Frusea) = D(T(F., Fy)) (15)

The discriminator is a PatchGAN-based network that
outputs a matrix of values indicating whether patches of the
input image are real or fake.

D(I) = 1(Real), D(I¢s) = 0(Fake) (16)

It is trained to label real styled images I as real, label
generated images I as fake, 4-5 convolutional layers with
increasing depth, LeakyReL U activation, and final sigmoid
output.

The generator takes as input the feature maps fused by the
transformer-based attention mechanism - which is effectively
combining semantic and spatial representations of both the
domains of content and style, and aims to output a stylized
image that contains the content of the original input scene with
the visual texture and tone of the style image. The GAN
generator uses an encoder-decoder architecture with residual
blocks and upsampling layers. A key feature of the generator
includes Adaptive Instance Normalization (AdalN) layers,
allowing the generator to dynamically modulate style features

in the visual context of reconstruction. The output image I/&
is obtained by applying the generator function G to the fused
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feature representation Fy,s.4using the Eq. (17).

fC\S = G(Ffused) (17)

This formulation guarantees that the structure of content is
held constant as style characteristics are allowed to injected
smoothly. The discriminator, which was built using a
PatchGAN architecture, looks at the realism of the generated
image at the patch-level rather than the image full-size. This
allows the model to be more sensitive to local textures and
artifacts that influence high quality style transfer. The
discriminator is trained to discriminate between real stylized
images from the target style domain directly and images
generated from the generator, and through this adversarial
training, it nudges the generator to create more believable, and
visually consistent content.

Stylized

Content Output Image
Image Ics

CNN Transformer— Gérierator
Feature —> Guided L] @€ (%;’ 0
Encoder Feature Fusion

Style -2
Image Discriminator
I, (D)

Figure 2. GAN architecture

3.3 Loss functions

The suggested Transformer-Guided GAN architectural
structure uses a combined loss function, which has several
objectives, to provide good style transfer with an impressive
visual style. Each term in the loss function is designed to have
a good mixture of content retention, style change and better
image quality to guide the generator in producing visually
realistic results that match the artistic style. The adversarial
loss is the most important in the GAN framework, and
designed it as a min-max game between a generator GG and a
discriminator DD. The generator is trying to make stylized
images that the discriminator is fooled into thinking are real,
while the discriminator is trying to decide which images are
real style images and which images are generated. The
adversarial loss is as Eq. (18).

Loay = EL[logD(I)] + E[log(1 — D)) (18)

Here, I 5 ensures that the output closely resembles images
from the style domain, improving perceptual realism.

A content loss is employed with a pre-trained VGG-19,
which, again, is a standard process to route the high-level
feature activations of the content image and the stylized output
and compares them at layers of the model as given in Eq. (19).

A 2
Leontent = ”‘l’l(lcs) - ¢l(lc)” 2 (19)



Here, ¢,(-) denotes the feature map extracted from the [-th
layer of the VGG network. A content loss is included to ensure
the structure is recognized from the original content image I..
This encourages the preservation of spatial structure and
semantic information from the content image. To compute this
loss, minimized the difference between the Gram matrices of
their respective feature maps, extracted from multiple layers
of the VGG as given in Eq. (20).

2
Loeyie = ) 61y = Guaeo | (20)
l

Here, G;(x) = ¢;(x)¢,(x)T is the Gram matrix capturing
correlations between feature channels. The style loss ensures
that the textured and colour patterns of the styled image are
consistent with the reference style image as I;. This helps in
transferring both fine and coarse style patterns. A total
variation (TV) loss is also incorporated to mitigate artifacts
and promote spatial smoothness in the created image as given

in Eq. (21).
Ly = Z:((Ié'strl 18Py + (15 -1 ) Q1)
ij
This regularize decreases high-frequency noise and

maintains constancy between neighboring pixels. The total
objective function for training the generator is a weighted sum
of the above components as given in Eq. (22).

mGin mgx Ladv = Achontent + AsLstyle + Atvl‘tv (22)

Here, A, A4 are weighting hyperparameters are
hyperparameters that tune how important each loss term is to
the total loss. a, and B, are typically set by hand, usually
empirically, to give a good balance between content fidelity
and pictorial richness.

3.4 Training strategy

The proposed Transformer-Guided GAN architecture is
trained following a careful church of training designed to
ensure that the generator, discriminator and transformer
modules constructively interact. A progressive and balanced
training schedule enables the model to learn content structure,
while robustly transferring detailed stylistic information
across different image areas, from artistic to natural scenes.
The training pipeline begins with pre-processing the input
images. Specifically, both content and style image are resized
to a standard input resolution normalizing their distributions.
Data augmentation such as horizontal flipping, colour
jittering, random cropping, and others are used to ensure better
generalization. For features used to compute perceptual losses
content and style, features extracted from a frozen pre-trained
VGG-19 network are used, while the transformer encoder is
trained end-to-end with the generator.

The training is conducted in two simultaneous phases:
Warm-up Phase: In the beginning, the generator and
transformer modules are trained with the discriminator
remaining frozen. Hence, the content and style losses, which
are unweighted by the adversarial loss, generate the pressure
for the generator to learn to create meaningful image
reconstructions and style prescribed to it without the
consideration of adversarial instability. This helps to lessen
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instability and, more importantly, reduces the chance the
generator produces unwanted noise when generating outputs
in the earlier phase of the training process.

Adversarial Phase: Once the generator performs
reasonable stylization - the adversarial aspect of the GAN
process is called on. For this section of training, the
discriminator will be trained with real style images as well as
the generated images initially stylized by the generator, while
the generator is learning to fool the discriminator. During this
phase, the adversarial loss is introduced with a minor weight
that is increased over time and epochs in order to achieve
stable convergence.

During every training iteration, the transformer module
generates contextual feature maps generated from the content
and style images, its features outputs are fused via cross-
attention. The fused feature maps are then fed into the
generator which outputs the stylized image. The discriminator
then assesses this result, and all four loss components like
adversarial, content, style, total variation are calculated. The
total loss is then back propagated to update the generator and
transformer parameters through the Adam optimizer. The
optimizer parameters are set to: learning rate =
0.0002,8; = 05,8, = 0.999 . Train our model for
anywhere between 100-200 epochs, depending on the dataset
size, using a learning rate decay method after 50% of epochs,
which allows us to make finer updates. Applied gradient
clipping so don't have exploding gradients, especially when
taking the average of the multiple loss functions. Model could,
alternatively, strengthen the training penalties with feature
matching loss, where trid to match the real and fake
discriminator intermediate layer activations, to encourage the
same feature distributions. Model uses check pointing and
early stopping based on validation style accuracy, or
perceptual similarity metrics like LPIPS and SSIM to avoid
overfitting. In all, the proposed training strategy successfully
marries adversarial learning with attention-based feature
fusion, meaning that the stylized outputs maintain the core
semantics of the content images but realistically represent the
intent of the desired artistic or natural style characteristics.

4. RESULTS AND DISCUSSION

The proposed Transformer-Guided GAN framework was
evaluated through extensive experiments on benchmark
datasets for artistic scene and natural scene image style
transfer. The goal of the evaluation was to determine if the
model was able to retain the content structures of the images
while adaptively applying styles without restrictions. The
evaluation of the evaluation considered both quantitative
metrics and qualitative visual comparisons along with a human
perceptual study.

We used three publicly available datasets for our
experiments. The first dataset, MS-COCO, offers quite a
diverse selection of everyday scene images in our primary
source of content images. The second dataset, WikiArt,
contains over 80,000 artwork images across a number of
painting styles, genres, and artists. This dataset is used as our
source of style images. This dataset includes collaboration
across a wide range of artistic representations and considers a
number of different representations such as impressionism,
cubism and abstract art. The third dataset, Flickr Landscapes,
is a curated collection of high-resolution natural scenery
composed of trees, mountains and coastal landscapes. This



dataset is used as an initial step to evaluate the model's
generalization on real-world situations. Each one of the
datasets was split into 80% for training and 20% for testing
purposes. Every image was resized to a uniform shape of
256>256 pixels and normalized. Figures 3 to 5 show the
confusion matrix of the three datasets MS-COCO (2017),
WikiArt, and Flickr Landscapes.

Confusion Matrix for Stylized Outputs (MS-COCO — Style)

Impressionism 1 1

Monet 1

True Class

Realism

vanGogh

Monet Realism
Predicted Class

Impressionism VanGogh

Figure 3. Confusion matrix of MS-COCO dataset

Confusion Matrix - Flickr Landscapes Style Classification

Artistic

Landscape

True Class

33.3% 33.3%

Artistic Landscape

Predicted Class

Figure 4. Confusion matrix of Flickr Landscape dataset
Confusion Matrix: Style Classification on WikiArt

Barogue

Cubism

Impressicnism

True Class

33.3%

33.3%

33.3%

Cubism Impressionism

Predicted Class

Baroque

Figure 5. Confusion matrix of WikiArt dataset
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Several quality assessment metrics for stylized images are
discussed here. The Structural Similarity Index (SSIM) was
specifically used to measure content preservation metrics from
the input image to the stylized outputs. The Fréshet Inception
Distance (FID) was applied to evaluate visual realism by
comparing distributions of generated images against real
images of the same style. The Learned Perceptual Image Patch
Similarity (LPIPS) was similar to a perceptual metric of
similarity that involved human vision. In addition, to see if the
stylized images were accurately conforming to the target
artistic domain, a classifier based on ResNet was used that was
trained with style labels to report style classification accuracy.
SSIM, FID, LPIPS, and SCA are calculated using the
Equations from (23) to (26) respectively as given below: SSIM
evaluates the perceived similarity between two images,
especially focusing on content preservation like structure,
luminance, and contrast.

— (2uepy + 1) (204, + C,)
(242 + ) (o + 02+ Cy)

(23)

Here, u,,u, are mean of images x and vy, o7, 0y are
variances, gy, is a covariance, and Cy, C, are small constants
to stabilize division.

FID measures the distance between the distribution of real
and generated images, using deep features from the Inception
v3 network. It evaluates image realism.

1
FID =l py — pg 1>+ T, <2r +2,— Z(ZTZQ)Z) (24)

Here, u,, 2, are mean and covariance of real image features,
ug, 24 are mean and covariance of generated image features,

and T, is a trace of the matrix. LPIPS assesses perceptual
similarity between two images using deep neural network
activations, closely aligned with human judgment.

LPIPS,, = Z Z Il w,
l h,w

O (fthw) — w1 5

1
H,W;

(25)

Here, fl"fly are deep features at layer | for images x and y,
w; is a learned weight for each channel, H;, W, are height and
width of the feature map, and © is an element-wise
multiplication. This metric evaluates how accurately the
stylized image reflects the target style, using a pretrained
classifier trained on style categories like WikiArt styles. It
Uses top-1 accuracy from models like ResNet-50 trained on
known style domains.

True Positive

Style Acc.=

Total number of stylized images  (26)

X 100%

We contrasted our models to various state-of-the-art
baselines in arbitrary style transfer, including AdalN [30],
SANet [31], STROTSS [32], and StyTr? [33]. The results
showed that our proposed model markedly outperformed all
baselines across all metrics. For example, model achieved an
SSIM score of 0.80, an FID of 24.7, an LPIPS of 0.167, and a
style classification accuracy of 91.3%. These results
demonstrate an improvement of over 5 -10% in all metrics



over the next best-performing method, StyTr? which had a
style accuracy of 88.9% and an FID of 28.4. This demonstrates
that adding a transformer-guided attention mechanism to the
GAN architecture indeed improves both perceptual quality as
well as style adherence. Figures 6 to 9 show the comparative
analysis of proposed model with existing frameworks.

SSIM (1)

0.85

AdalN SANet StyTr2 ours

Figure 6. SSIM comparative analysis of proposed model
with the existing frameworks

FID (4)

AdalN SANet ShTr2 ours

Figure 7. FID comparative analysis of proposed model with

the existing frameworks

Style A T
o y‘e ccuracy‘( )

Accuracy (%)

Adaln

SANet SheTr2 Qurs

Figure 8. Style accuracy comparative analysis of proposed
model with the existing frameworks
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LPIPS (4
0.26 T 2 T

AdalN

SANet Qurs

Figure 9. LPIPS comparative analysis of proposed model
with the existing frameworks

Qualitative results further bolster our quantitative findings.
Visual comparisons also demonstrate that the proposed model
not only effectively transfers style patterns but retains
consistent structure in both foreground and background areas.
Style transfer often compressed or washed out the textures or
distorted images spatially. Our results demonstrate sharp well-
aligned images with style specific brush strokes, colour
palettes, and texture granularity have been produced. Results
illustrate successful stylization from highly contrasting style
domains, i.e., abstract painting to real world landscape.

Table 1. Comparative analysis

SSIM  FID  LPIPS Style

Model 1 l | Accuracy 1
AdalN 0.72 36.5 0.243 84.7%
SANet 0.75 32.8 0.218 86.2%
STROTSS 0.74 341 0.201 85.1%
StyTr=2 0.78 28.4 0.190 88.9%
DualStyleGAN 0.76 295 0.179 89.3%

Proposed

Method 0.80 24.7 0.167 91.3%

Table 1 shows the comparative analysis emphasizes the
importance of the transformer as a guide for the global style
context. Here, had similar findings when scanned for feature
fusion and adversarial loss or content loss caused poor
stylization or excessive distortion. It is evident that the
correlations initially observed multi-level loss and attention
guided feature-fusions showcased the value of the last two
decades of model development refinement. The Transformer-
Guided GAN significantly contributes to positive style
transfer performance across artistic and natural domain.
Objective and subjective metrics confirmed that the proposed
framework illustrated successfully preserved content and
offered richer styles.

Figure 10 shows the comparative evaluation of the proposed
Transformer-Guided GAN included five benchmarking
models:  AdalN, SANet, STROTSS, StyTr2 and
DualStyleGAN. The performance evaluation was complete on
four commonly accepted performance measures: SSIM, FID,
LPIPS, and Style Classification Accuracy. These measures
assess the weight between preserving content characteristics
of the image, preserving style similarity to the target,
preserving perceptual similarity, and preserving realism. With
regards to SSIM - the best indicator for evaluating how a



model preserves the content structure of the input; the
proposed method achieved a measure of 0.80 which performed
better than the other frameworks of comparison. This means
that our method better preserves the semantic configuration
and boundaries of objects in the content images, which is
important for transfer in a natural scene context. With a FID
approach, lower values indicate better realism and better
alignment with the distribution of the target style images.

100 Comparative Style Transfer Metrics
T T

—&—ssIM(T)
g0 |[—=—FD (L)
LPIPS (1)
8- —6— Style Accuracy (1)
80 B

70 a

60 B

50 B

Metric Score

40 4

Figure 10. Comparative analysis

The Transformer-Guided GAN provided the best FID
measure of 24.7 among the frameworks compared. Two

DualStyleGAN, were 28.4 and 29.5, which indicates an
impressive FID drop. These FID measures indicate that the
GAN component of our method successfully supports
additional realism layer, smooth texture realism, an
appropriate depth of stylization, and general color consistency
on the locational pixel context. LPIPS measures the
perceptual difference between images based on deep features.
A lower LPIPS means that, according to the human visual
system, the generated image looks more similar to the content
image. Our model produces an LPIPS of 0.167, which was
more perceptually satisfying than AdalN (0.243), SANet
(0.218), and STROTSS (0.201), and a small improvement over
StyTr=0.190) and DualStyleGAN (0.179).

Table 2 and Figure 11 show the comparative metrics for
style transfer in terms of style classification accuracy.
Proposed model achieved 91.3%, substantially greater than all
previously presented methodologies. DualStyleGAN's
performance was the closest at 89.3%, and AdalN
significantly behind at 84.7%. This result ironically reflects
much of the success of the approach was from the use of a
Transformer module, which contextually aligns style features
between levels of abstraction. Overall, the Transformer-
Guided GAN architecture will outperform all existing setups
across all metrics of assessment used, which in turn validates
the architectural choices of the authors. The introduction of
cross-attention modules between each transformer encoder
and GAN generator architecture seems to successfully map
high-level semantics to low-level textures, resulting in
aesthetically coherent, stylistically rich, and content-faithful

additional recent strong architectures, StyTr=2 and outputs.
Table 2. Comparative metrics for style transfer
Model Dataset (Content — Style) SSIM__FID LPIPS Style Accuracy Content Loss Runtime (sec/img)
StyTr=2 MS-COCO — WikiArt 0.605 284 0.190 87.1% 191 0.24
S2WAT MS-COCO — WikiArt 0.650 269 0.179 89.2% 1.66 0.56
TG-GAN (Ours)  MS-COCO — WikiArt, FlickrLand 0.803 245 0.167 91.3% 1.60 0.27
Comparative Metrics for Style Transfer Models
SSIM (1) FID (4) LPIPS (4)

0.9 35
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Figure 11. Comparative metrics for style transfer

StyTr=2and S2WAT [34-37] are trained and evaluated with
MS COCO as the content dataset and WikiArt as the style
reference, designed for suitable comparisons. StyTrZemploys
two transformer encoders for content and style sequences, and
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uses a multi-layer transformer decoder for stylization using
content-aware positional encoding to align the two domains. It
produces fair content preservation and style adaptation, but
often suffers from wrinkly textures in complex scenes and a



slow runtime around 0.24s per image due to the deep
transformer decoding pathways. In contrast, S2ZWAT offers a
hierarchical transformer architecture based on Strips Window
Attention which makes efficient use of both long- and short-
range dependencies. It adaptively merges these dependencies
in a learned attention merging strategy, which maintains much
greater richness of stylization and greater structural fidelity in
S2WAT.

Experimental results show higher SSIM and lower
perceptual content loss than compared with Sty Tr=bn the same
COCO WikiArt benchmarks. This proposed TG GAN goes a
step further than hybrid designs by constructing transformer
guided attention in a GAN framework. It employs cross-
attention fusion of content and style, using the transformed
representation as input to a generator that is pre-trained
adversarial. The transformer-GAN hybrid allows greater
texture synthesis benefits from adversarial feedback and a
more reliable global semantic alignment from transformer
attention. On content-preserving evaluation, TG-GAN will
produce an SSIM score of above 0.80, a substantial
improvement to StyTr3 score of 0.605, and S2ZWAT's score
of 0.65. In style-realism evaluation, TG-GAN produced both
lower style loss around 24.5 and lower FID scores when
compared with StyTr=between 28-29 and moderate scores for
S2WAT.

TG-GAN also has a far lower content loss, better than
StyTr=and comparable to S2ZWAT 1.60 vs 1.66, indicative of
more structural fidelity. Importantly, in the current
implementation, model exhibit efficiency for TG-GAN that is
comparable to the StyTr=rate around 0.27 s/image, and faster
than S2ZWAT around 0.56 s/image, due to far less complex
blending and both networks sharing the encoder design.
Thorough evaluations were conducted on the Flickr
Landscapes a dataset of real-world natural scenes and the
benefits of using our TG-GAN are clear. StyTr=for example,
occasionally fails to adequately transfer style on some
complex textures e.g. parts with foliage or water reflections,
and S2WAT has issue of applying fine detail through multiple
window attentions e.g during coastal scenes.

5. CONCLUSION

In this paper, proposed a new framework called TG-GAN,
a novel Transformer-Guided Generative Adversarial Network
that combines the capability of transformers to model global
features with the image-synthesis creativity of GANs for
efficient style transfer on a range of artistic and natural scene
datasets. Our approach captures long dependency structures
efficiently using multi-head self-attention in both the generator
and discriminator to enhance the content preservation of the
natural scenes and faithfully embed the artistic style. Extensive
benchmarking using standard datasets MS-COCO, WikiArt,
and Flickr Landscapes show our model achieved the best
performance in terms of SSIM, FID, LPIPS, and Style
Accuracy over strong baselines including AdalN, SANet,
StyTr= and DualStyleGAN. The proposed TG-GAN model
demonstrated competitive inference time while preserving
perceptual quality and runtime efficiency, which is important
in real-time systems. In the future work, we desire to integrate
dynamic style control methods that allow user-guided
intensity changes and targeting of semantic regions. Model can
also be extended to allow for temporal consistency in video
style transfer in conjunction with transformer-based temporal
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encodes. Additionally, model can be extended to allow for
multimodal conditioning using text or audio prompts for
interactive and context-aware stylization.
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