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The artistic style transfer is a technique to produce aesthetically pleasing images by merging 

the semantic content of one domain with the stylistic attributes of another. Most attention-

based GAN structures have been unable to achieve structural consistency and style fidelity 

across heterogeneous datasets. This paper presents a Transformer-Guided Generative 

Adversarial Network (TG-GAN) that incorporates multi-head self-attention into the 

generator to improve cross-domain feature alignment while ensuring perceptual realism. 

The role of the transformer is to flexibly align content-style relations using a novel adaptive 

token fusion approach, guided by a perceptual–adversarial optimization process. Results 

based on qualitative and quantitative evaluations on MS-COCO to WikiArt and MS-COCO 

to Flickr Landscapes demonstrate that TG-GAN achieves superior results over both StyTr² 

and DualStyleGAN in terms of structural integrity and stylization quality. The models 

proposed achieved an SSIM of 0.803, an FID of 24.5, and a Style Classification Accuracy 

of 91.3%, which is better than existing transformer-based GAN frameworks. The 

framework provides a promising pathway for scalable cross-domain and multimodal style 

transfer while also offering additional perspectives for integrating transformer architectures 

with generative adversarial learning. 
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1. INTRODUCTION

Image style transfer, which consists of changing an image's 

style to demonstrate a different style than its content but 

maintaining the original content, is now an important field of 

research in both computer vision and computational creativity. 

Early efforts primarily relied on convolutional neural networks 

(CNN), but the field experienced rapid growth because of the 

emergence of adversarial and attention-based mechanisms. 

For example, Mei et al. [1] reviewed over 1300 sources to 

show that even though modern LLMs show great capabilities 

in understanding long or multimodal contexts, they still have, 

in many ways, slow support for generating long-form, 

semantically-rich outputs, which they establish as the 

comprehension-generation asymmetry. The authors also show 

how structured pipelines e.g., retrieval-augmented generation, 

memory architectures, and multi-agent integration—could be 

used to coordinate and scale context. Joshi et al. [2] proposed 

a mechanism with the help of hashing mechanisms to improve 

quality of the images. They have shown the way of 

improvising the quality by ensuring the security.   

In addition, perceptual quality evaluation has gained 

traction. Chen et al. [3] examined collaborative learning with 

style-adaptive pooling to evaluate from a human perceptual 

standpoint relating to style transfer and an increased need for 

subjective alignment in model construction. In the same vein, 

semantic segmentation has been an important extension in 

better content-style disentanglement, with a standout example 

being Lin et al. [4], who looked to improve object boundary 

retention while performing segmentation-based style transfer. 

As an added layer to the desire to push boundaries on 

photorealism, Joshi et al. [5] developed a mutual affine-

transfer network using non-local representations to allow for a 

more seamless propagation of style in natural images. 

In 3D scenes, Chen et al. [6] initiated novel work using 

neural radiance fields (NeRF) with style transfer and style-

adaptive pooling for a foundation of photorealistic rendering 

in dimensions, through their UPST-NeRF framework. An et 

al. [7] approached content leakage and style bias using 

reversible neural flows, providing a more unbiased framework 

for stylization. To maintain structural fidelity, Chen et al. [8] 

employed a multi-scale patch-GAN alongside edge detection, 
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highlighting that it is not only fundamental in inpainting to 

maintain spatial features, but also in stylization. Moreover, 

Wang et al. [9] have addressed the issue of temporal 

consistency in video style transfer by means of relaxation and 

regularization. 

Conversely, GANs leverage adversarial loss to create 

visually plausible images, but typically use convolutional 

generators that focus on local patterns. Incorporating 

transformers with GANs seems to offer a best of both worlds 

approach. The transformer layers propagate style information 

around the entire image, while the adversarial training helps 

adhere to good plausible texture synthesis. For instance, one 

can use self-attention blocks, or transformer encoders as part 

of the GAN generator where style cues can attend to the entire 

scene. This type of hybrid approach overcomes limitations in 

previous CNN-based style transfer models: it provides long-

range style coherence and semantic consistency while the 

discriminator incentivizes photorealistic output.  

To summarize, this paper describes a new Transformer-

Guided GAN scheme for hierarchical style transfer using both 

artistic and natural image data. The goal of our new model is 

to create images that are stylized, while preserving the content 

structure faithfully and showing complex and semantically 

consistent style patterns globally using transformer-based 

attention to guide the generator and adversarial training to 

supervise it.  

Research Contributions of this paper are as follows: 

• Designed a Transformer-Guided GAN (TG-GAN) 

combines a Transformer-based attention process with 

GANs. 

• A dual-stream transformer module is introduced to 

disentangle content and style representation to fully 

preserve the scene structure.  

• The framework is evaluated on three different datasets, 

including MS-COCO, WikiArt, and Flickr Landscapes. 

The rest of the paper is structured as follows: give a 

comprehensive overview of recent developments in style 

transfer based on GAN and transformer technologies in 

Section II. Our proposed TG-GAN will present in Section III 

with description of its architecture, feature extraction method, 

loss functions and training protocol. Section IV will contain 

the experimental setup, information about the datasets, and 

quantitative and qualitative results along with a comparison 

with existing benchmark models on multiple datasets. Section 

V will have conclusions and a summary of contributions, 

including future directions. 

 

 

2. RELATED WORK 
 

In the last few years, neural style transfer advancements 

through semantic guidance, attention maps, and generative 

adversarial networks (GANs) have been inspired by a few 

papers. Liao and Huang [10] came up with a new topic called 

Semantic Context-Aware Image Style transfer method that 

utilizes semantic segmentation maps in their approach to 

stylization, allowing it to better subsets content in the 

stylizations. In addition to space coherence and stylistic 

alignment, it utilized a good spacial proportion to content that 

made its content more contextually aware while being stylized. 

Although this approach was good for space coherence, and 

stylistic alignment, it did not have diversity in style and 

couldn't represent high frequency textures, such as an 

imagined texture on a natural scene or a complex face. Liu and 

Zhu [11] introduced a structure-guided framework for 

arbitrary style transfer in images and videos that had structural 

priors that can provide style-content decoupling. The 

advantage is that these structures preserve the geometric 

fidelity to the image by the style content. Unfortunately, the 

model relied on structure annotations that limits its flexibility 

when dealing with unstructured or abstract domains.  

Xu et al. [12] presented a new computer vision model that 

was called IFFMStyle, that developed a new approach using 

invalid feature filter (IFF) modules to take out redundant 

features therefore the visual quality was improved. However, 

the robustness of the model fell short when dealing with large 

or very heterogeneous datasets. Ma et al. [13] developed 

DaseNet, a dual-affinity style embedding (DASE) network 

that modeled semantic and visual affinity to achieve high 

fidelity returns. Although the results were impressive, the 

downside to this is that the computational cost is high and 

makes it hard to use for real-time applications or on edge 

devices. Pan et al. [14] put forth a geometric view on style 

transfer through adversarial learning to achieve realism and 

domain adaptation; however, being GAN-driven they result in 

training which is unstable and sensitive to hyper-parameter 

tuning.  

Qu et al. [15] proposed a Mutual Affine-Transfer technique 

for photorealistic stylization by computing a two-way affine 

transformation. Although they maintained photorealism well 

using their complementary strategy, they are constrained by 

nearly photorealistic content and have limited ability to tackle 

abstract or artistic domains. Singh et al. [16] demonstrated 

their TVST-GAN as a GAN-based temporal video style 

transfer framework. While the model holds temporal 

consistency and stylization continuity across graded frames, 

its generalization fails when moving from stylized dynamics 

to a varying style with a changing temporal aspect. Wang et 

al. [17] presented CLAST as a contrastive learning-based 

methodology to arbitrary, systematic style transfer. Their 

design works well as they retain structural features while 

strengthening style-specific notions, but the contrastive 

learning phase requires longer training times with increased 

sensitivity with the introduction of negative sampling 

strategies. 

Chen et al. [18] presented TRTST, a Text-Guided 

Transformer for style transfer which can support multimodal 

conditioning. They were able to retain fine-grained text-based 

control over the style transfer using textual prompts but lacked 

the capacity to achieve low-quality outputs that were highly 

ambiguous or semantically weak in the text descriptions. Hua 

and Zhang [19] introduced AttnStyle, which employs multi-

head self-attention to disentangle style and content. While it 

achieves better style localization and blending, there are 

drawbacks when generalizing to unseen style domains since 

the model tends to overfit on training styles. Still using a 

transformer architecture, Chen et al. [20] introduced 

SceneStyleFormer for stylization of 3D scenes. The advantage 

of this model is that it retains the scene semantics and structure 

inherent to the 3D images, but it is mostly restricted to 

stylizing 3D rendered scenes and does not support real-world 

images. Deng et al. [21], on the other hand, showcased Cross-

Domain Semantic-Aware Style Transfer, which employs 

transformers for enhanced domain adaptation. While they 

achieve great alignment of semantic categories across 

domains, it struggles with semantically sparse or ambiguous 

scenes. Park and Kim [22] introduced StyleFormer, which 

transfers style through style features extracted from 
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transformer encoders. While it achieves competitive results, 

there is a slow inference speed when dealing with high 

resolution images. Sauer et al. [23] showed T-StyleGAN, a 

hybrid model that seeks to combine transformer blocks with 

StyleGAN for artistic generation. The model displays 

reasonable artistic rendering capabilities, but suffers from 

issues of instability during training, as well as blending fine-

grained styles. 

Cui and Hui [24] presented a Dual Attention GAN designed 

for fine-grained stylization, which uses both channel and 

spatial attention. This approach does offer more stylization 

detail, but it has a high computational and resource cost and 

does not support real time performance. Chen et al. [25] 

introduced a Multi-Scale Transformer Discriminator within a 

GAN framework to achieve strong stylization. The Multi-

Scale Transformer Discriminator does require more hardware 

memory for GPU and requires fine-tuning with the multi-scale 

layers for training. This complexity makes even applying the 

method possible for computer graphics, as it may not be 

deployable due to required hardware resource needs. Zhang et 

al. [26] also introduced SwinStyleGAN, which brought in the 

use of Swin transformers to produce high quality and high-

resolution stylization in a GAN model. This approach does 

take advantage of the Swin transformers to track quality, but 

due to this it takes a lot hardware resource for training, and it 

relies on a large dataset which takes time to gather all the data.  

Bi et al. [27] designed a Lightweight ViT-GAN to suggest 

edge stylizations and was optimized for constrained resources. 

The method produced fairly good results for less complex 

styles and designs. It did not have strong performance for 

material stylizations that were complex, or high frame 

frequency texture due to its lightweight design. Huang et al. 

[28] also proposed a Transformer-Guided NeRF Stylization 

model that uses transformers with neural radiance fields to 

produce NeRF based 3D aware style transfer. The method 

produced consistent 3D results, it was limited to only synthetic 

scenes, and it required significant rendering time which would 

limit its performance. Ultimately, Cho et al. [29] introduced a 

ViT-Guided GAN which does a good job capturing both local 

and global style semantics for semantic-aware stylization. 

However, the dependency on transformer architectures in their 

model creates constraints due to the scalability issues when 

operating with large high-resolution datasets. 

Lastly, AdaIN [30] provides an effective method of aligning 

features of COCO images to that of Van Gogh artwork but 

does not enable fine granularity in terms of semantic control 

or apply the style transfer on a per-region basis. SANet [31] 

employs convolutional neural network (CNN) architectures 

with self-attention, and provides better fusion of features 

between COCO and WikiArt images; however, due to the 

nature of large style shifts, SANet cannot maintain the 

structural fidelity of the content image during the style transfer 

process. In recent years, researchers have developed numerous 

new approaches for Neural Style Transfer, including GANs, 

attention based architecture and Transformer based models, 

but still many of these new and existing approaches have 

major shortcomings. 

While there has been progress in image style transfer tasks 

that utilize GANs and other Transformer-based models 

evident in the research gap. For instance, many models 

struggle to maintain structural or semantic content consistency 

especially in complex or higher-resolution scenes. Arbitrary 

and cross-domain style transfer still suffers from weak 

generalization and learning disentangled style-content 

representations. While Transformer-base methods provide 

higher capacity than alternative techniques, the high compute 

cost and poor inference speed result in a lack of real-time 

possibilities. On the other hand, GAN-based image style 

transfer can produce high quality results for a wide variety of 

tasks, however, training instability and mode collapse is 

commonly an issue. Furthermore, most models do not align 

perceptually with human aesthetics, while video style transfer 

models rarely maintain temporal consistency. The above gaps 

create a need for a single, lightweight, and semantically-aware 

model that conducts high-quality, fast, and perceptually 

consistent style transfer to significantly benefit existing image 

and video domain methods. 

 

 

3. PROPOSED MODEL 
 

The proposed method proposes an entirely novel TG-GAN 

architecture for style transfer between images of artistic and 

natural scenes. The basic premise of the TG-GAN framework 

is to combine the global semantic understanding of the image 

space provided by transformers with realized texture and detail 

fidelity achieved from the training of a generative adversarial 

network. The full framework shown in Figure 1 consists of 

four components:  a content encoder, a global transformer 

module, a generator, and two discriminators as global and 

local that work together to enhance the preservation of content, 

style fidelity, and realistic visual operation of synthetic 

images.  

The Content Encoder 𝐸𝑐  is responsible for extraction of 

high-level semantic features from both the content image 𝐼𝑐 

and the style image 𝐼𝑠. The encoder is based on convolutional 

neural networks and outputs feature maps, denoted in the 

document as 𝐹𝑐 = 𝐸𝑐(𝐼𝑐)  and 𝐹𝑠 = 𝐸𝑐(𝐼𝑠).  These 

representations retain both spatial and semantic information, 

which are input to the transformer for enhanced contextual 

fusion. 

 

 
 

Figure 1. Framework of HDR model 

 

To address the limitation of convolutional networks in 

capturing long-range dependencies, introduced a Global 

Transformer Module between the encoder and generator. This 

module learns contextual mappings between content and style 

features using multi-head self-attention. Specifically, the 

transformer processes the query, key, and value matrices 

derived from 𝐹𝑐  and 𝐹𝑠 , and applies attention-based fusion. 

Proposed research work around the limitations of 

convolutional networks in capturing long-range dependencies 

by inserting a Global Transformer Module in between the 

encoder and the generator to learn a contextual mapping 
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between content and style features based on multi-head self-

attention across the encoded content and style features. In 

proposed framework, the global transformer takes the outputs 

of 𝐹𝑐  𝑎𝑛𝑑 𝐹𝑠 , particularly the stacked query, key, and value 

matrices to compute attention-based fusion. The mathematical 

formulation of attention is as Eq. (1). 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊤

√𝑑𝑘

) 𝑉 (1) 

 

Attention allows the model to perform semantic-level 

alignment to flexibly and hierarchically blend style elements 

into semantically relevant regions of the content image. Using 

the fused content-style features, the Generator GG synthesizes 

the final stylized image as 𝐼𝑐𝑠 = 𝐺(𝐹𝑐𝑠).  The generator 

consists of a stack of residual blocks and upsampling layers to 

increase spatial resolution and recover finer details. During 

training, the generator learns to generate images that are 

perceptually similar to the content image while learning to 

adopt stylistic textures, patterns, and colours from the style 

image. The output of this module is a fused representation.  

Two discriminators were used to incorporate more realism 

and detail into the synthesized imagery. The Global 

Discriminator 𝐷𝑔  dissects the complete image for overall 

visual consistency, while the Local Discriminators 𝐷𝑙  focus on 

the evaluation of local patches for finer details and textures. 

The total discriminator requires both discriminators to 

simultaneously trained adversarial using the standard GAN 

loss is given as Eq. (2). 

 

𝐿𝑎𝑑𝑣 = 𝐸𝐼𝑠
[𝑙𝑜𝑔𝐷(𝐼𝑠)] + 𝐸𝐼𝑐𝑠

[log(1 − 𝐷(𝐼𝑐𝑠))] (2) 

 

Here, 𝐷 ∈ {𝐷𝑔 , 𝐷𝑙}, the complete training objective nested 

adversarial loss with perceptual and style losses to create 

higher quality stylized outputs. The total loss function is 

constructed as Eq. (3). 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑎𝑑𝑣𝐿𝑎𝑑𝑣 + 𝜆𝑝𝑒𝑟𝐿𝑝𝑒𝑟 + 𝜆𝑠𝑡𝑦𝑙𝑒𝐿𝑠𝑡𝑦𝑙𝑒 (3) 

 

The Perceptual Loss encodes the structural content of the 

original image by comparing feature activations for images in 

a pretrained VGG-19 as shown in Eq. (4). 

 

𝐿𝑝𝑒𝑟 = ‖𝜙(𝐼𝑐) − 𝜙(𝐼𝑐𝑠)‖
2

2
 (4) 

 

The Style Loss 𝐿𝑠𝑡𝑦𝑙𝑒  specifically, encodes the statistics for 

the style by comparing multiple contours of the feature maps 

Gram matrices to obtain 𝐼𝑠 𝑎𝑛𝑑 𝐼𝑐𝑠 between images as given 

in Eq. (5). 

 

𝐿𝑠𝑡𝑦𝑙𝑒 = ∑‖𝐺𝑙(𝐼𝑠) − 𝐺𝑙(𝐼𝑐𝑠)‖

𝑙

2

𝐹
 (5) 

 

The training was implemented using a combined dataset of 

MS-COCO and WikiArt images. Adam optimizer was used 

with similar learning parameters 𝛽1 = 0.5, 𝛽2 = 0.999, and a 

learning rate of 2 × 10−42 . The model was trained for 100 

epochs under a batch size of 16. The transformer module 

consisted of four self-attention layers, with eight attention 

heads each. 

The primary contributions of the proposed model include 

introducing a transformer for semantic-aware global 

alignment, a two-discriminator setup for local and global 

realism, and a fused loss approach for balanced content-style 

optimization. This design allows our model to generate 

coherent, high style, semantically aligned, and photorealist 

realistic images for the artistic and natural scene domains of 

stylization. 

 

3.1 Transformer-Guided Feature Extraction 

 

The Transformer-Guided Feature Extraction (TGFE) phase 

is the central component of the proposed style transfer pipeline 

responsible for aligning the semantic structure of the content 

image with the textural and stylistic attributes of the style 

image. This alignment occurs through a transformer module 

rather than the more limiting traditional CNN based fusion 

modalities, which tend to be more biased due to local receptive 

fields. A transformer facilitates capture of long-range 

dependencies and additional context-aware representations 

across both images. 

These are first processed through a shared Convolutional 

Content Encoder 𝐸𝑐 to extract high-level features as shown in 

Eq. (6). 

 

𝐹𝑐 = 𝐸𝑐(𝐼𝑐) ∈ 𝑅𝐻×𝑊×𝐶 , 𝐹𝑠 = 𝐸𝑐(𝐼𝑠) ∈ 𝑅𝐻×𝑊×𝐶 (6) 

 

Here, 𝐼𝑐 and 𝐼𝑠 represent the content and style images, H, W, 

and C denote height, width, and channels of the feature map. 

These features are flattened and projected into a token 

sequence suitable for transformer processing as shown in Eq. 

(7). 

 

𝑋𝑐 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝑐) ∈ 𝑅𝑁×𝐶 , 𝑋𝑠 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝑠)
∈ 𝑅𝑁×𝐶 

(7) 

 

Here, 𝑁 = 𝐻 × 𝑊.  Since transformers lack an inherent 

sense of spatial order, add 2D positional encoding to the tokens 

as given in Eq. (8). 

 

𝑋𝑐̃ = 𝑋𝑐 + 𝑃𝐸,  𝑋𝑠̃ = 𝑋𝑠 + 𝑃𝐸 (8) 

 

Here, 𝑃𝐸 ∈ 𝑅𝑁×𝐶  is the sinusoidal or learned positional 

embedding. The central mechanism is Cross-Attention, where 

the model aligns content with style by using content features 

as queries and style features as keys and values as given in 

Eqs. (9) and (10). 

 

𝑄 = 𝑋𝑐̃𝑊𝑄 ,         𝐾 =  𝑋𝑠̃𝑊𝐾 ,              𝑉 =  𝑋𝑠̃𝑊𝑉 (9) 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊤

√𝑑𝑘

) 𝑉 (10) 

 

This produces a contextually enriched feature set 𝐹𝑐𝑠 ∈
𝑅𝑁×𝑑𝑘 , where 𝑑𝑘  is the dimension of the keys and queries. 

This operation may be repeated across L transformer layers, 

where each layer has multi-head attention and feedforward 

submodules with layer norm and residual connections as 

shown in Eq. (11). 

 

𝐹𝑐𝑠
𝑙 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐿𝑎𝑦𝑒𝑟(𝐹𝑐𝑠

𝑙−1) (11) 

 

Each attention layer employs Multi-Head Attention (MHA) 

to capture different contextual subspaces as given in Eqs. (12) 
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and (13). 

 

𝑀𝐻𝐴(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ1, … , ℎℎ)𝑊𝑂 (12) 

 

ℎ𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (13) 

 

The output from the final transformer layer 𝐹𝑐𝑠(𝐿)  is 

reshaped back into spatial form to be passed to the generator 

shown in Eq. (14). 

 

𝐹𝑓𝑢𝑠𝑒𝑑 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐹𝑐𝑠
𝐿 ) ∈ 𝑅𝐻×𝑊×𝐶 (14) 

 

This fused representation contains content structure from 𝐼𝑐 

and style semantics from 𝐼𝑠 , well-aligned across spatial 

dimensions. 

 

3.2 GAN architecture for style transfer 

 

In this GAN architecture there are three main modules are 

Generator (G) - takes fused outputs from the Transformer 

module and produces a stylized image. Discriminator (D) - 

distinguishes between real styled images and generated fake 

styled outputs. and Loss Functions - keep the generator on path 

to produce images that are visually similar and semantically or 

close to it. The GAN is conditioned on the content and style 

images from the transformer model to create fused outputs 

based on feature representations of each image. The goal is to 

create an image that preserves the content structure while 

mimicking the texture/style of the style image. Figure 2 shows 

the GAN architecture for the proposed model. 

The generator receives the Transformer-fused feature map 

𝐹𝑓𝑢𝑠𝑒𝑑 ∈ 𝑅𝐻×𝑊×𝐶  and decodes it into a stylized image 𝐼𝐶𝑆̂ . 

Given input is 𝐹𝑓𝑢𝑠𝑒𝑑 , Series of Residual Blocks with up-

sampling. Adaptive Instance Normalization (AdaIN) layers to 

modulate style during reconstruction. Then Output is Stylized 

Image 𝐼𝐶𝑆̂ ∈ 𝑅𝐻×𝑊×3. 

Let D be the decoder and T be the transformer fusion output: 

 

𝐼𝑐𝑠 = 𝐺(𝐹𝑓𝑢𝑠𝑒𝑑) = 𝐷(𝑇(𝐹𝑐 , 𝐹𝑠)) (15) 

 

The discriminator is a PatchGAN-based network that 

outputs a matrix of values indicating whether patches of the 

input image are real or fake.  

 

𝐷(𝐼𝑠) = 1(𝑅𝑒𝑎𝑙),   𝐷(𝐼𝐶𝑆̂) = 0(𝐹𝑎𝑘𝑒) (16) 

 

It is trained to label real styled images 𝐼𝑠  as real, label 

generated images 𝐼𝐶𝑆̂  as fake, 4–5 convolutional layers with 

increasing depth, LeakyReLU activation, and final sigmoid 

output. 

The generator takes as input the feature maps fused by the 

transformer-based attention mechanism - which is effectively 

combining semantic and spatial representations of both the 

domains of content and style, and aims to output a stylized 

image that contains the content of the original input scene with 

the visual texture and tone of the style image. The GAN 

generator uses an encoder-decoder architecture with residual 

blocks and upsampling layers. A key feature of the generator 

includes Adaptive Instance Normalization (AdaIN) layers, 

allowing the generator to dynamically modulate style features 

in the visual context of reconstruction. The output image 𝐼𝐶𝑆̂ 

is obtained by applying the generator function G to the fused 

feature representation 𝐹𝑓𝑢𝑠𝑒𝑑using the Eq. (17). 
 

𝐼𝐶𝑆̂ = 𝐺(𝐹𝑓𝑢𝑠𝑒𝑑) (17) 

 

This formulation guarantees that the structure of content is 

held constant as style characteristics are allowed to injected 

smoothly. The discriminator, which was built using a 

PatchGAN architecture, looks at the realism of the generated 

image at the patch-level rather than the image full-size. This 

allows the model to be more sensitive to local textures and 

artifacts that influence high quality style transfer. The 

discriminator is trained to discriminate between real stylized 

images from the target style domain directly and images 

generated from the generator, and through this adversarial 

training, it nudges the generator to create more believable, and 

visually consistent content. 

 

 
 

Figure 2. GAN architecture 

 
3.3 Loss functions 

 

The suggested Transformer-Guided GAN architectural 

structure uses a combined loss function, which has several 

objectives, to provide good style transfer with an impressive 

visual style. Each term in the loss function is designed to have 

a good mixture of content retention, style change and better 

image quality to guide the generator in producing visually 

realistic results that match the artistic style. The adversarial 

loss is the most important in the GAN framework, and 

designed it as a min-max game between a generator GG and a 

discriminator DD. The generator is trying to make stylized 

images that the discriminator is fooled into thinking are real, 

while the discriminator is trying to decide which images are 

real style images and which images are generated. The 

adversarial loss is as Eq. (18). 

 

𝐿𝑎𝑑𝑣 = 𝐸𝐼𝑠[𝑙𝑜𝑔𝐷(𝐼𝑠)] + 𝐸𝐼𝐶𝑆̂
[log(1 − 𝐷(𝐼𝑐𝑠))] (18) 

 

Here, 𝐼𝐶𝑆̂ ensures that the output closely resembles images 

from the style domain, improving perceptual realism. 

A content loss is employed with a pre-trained VGG-19, 

which, again, is a standard process to route the high-level 

feature activations of the content image and the stylized output 

and compares them at layers of the model as given in Eq. (19). 

 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = ‖𝜙𝑙(𝐼𝐶𝑆̂) − 𝜙𝑙(𝐼𝑐)‖
2

2
 (19) 
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Here, 𝜙𝑙(⋅) denotes the feature map extracted from the 𝑙-th 

layer of the VGG network. A content loss is included to ensure 

the structure is recognized from the original content image 𝐼𝑐. 

This encourages the preservation of spatial structure and 

semantic information from the content image. To compute this 

loss, minimized the difference between the Gram matrices of 

their respective feature maps, extracted from multiple layers 

of the VGG as given in Eq. (20).  

 

𝐿𝑠𝑡𝑦𝑙𝑒 = ∑‖𝐺𝑙(𝐼𝑠) − 𝐺𝑙(𝐼𝑐𝑠)‖

𝑙

2

𝐹
 (20) 

 

Here, 𝐺𝑙(𝑥) = 𝜙𝑙(𝑥)𝜙𝑙(𝑥)𝑇  is the Gram matrix capturing 

correlations between feature channels. The style loss ensures 

that the textured and colour patterns of the styled image are 

consistent with the reference style image as 𝐼𝑠. This helps in 

transferring both fine and coarse style patterns. A total 

variation (TV) loss is also incorporated to mitigate artifacts 

and promote spatial smoothness in the created image as given 

in Eq. (21). 

 

𝐿𝑡𝑣 = ∑((𝐼𝑐𝑠
𝑖,𝑗+1

− 𝐼𝑐𝑠
(𝑖,𝑗)

 )2 + (𝐼𝑐𝑠
𝑖+1,𝑗

− 𝐼𝑐𝑠
𝑖,𝑗

)
2

)

𝑖,𝑗

 (21) 

 

This regularize decreases high-frequency noise and 

maintains constancy between neighboring pixels. The total 

objective function for training the generator is a weighted sum 

of the above components as given in Eq. (22). 

 

min
𝐺

max
𝐷

𝐿𝑎𝑑𝑣 = 𝜆𝑐𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝜆𝑠𝐿𝑠𝑡𝑦𝑙𝑒 + 𝜆𝑡𝑣𝐿𝑡𝑣 (22) 

 

Here, 𝜆𝑐, 𝜆𝑠, 𝜆𝑡𝑣  are weighting hyperparameters are 

hyperparameters that tune how important each loss term is to 

the total loss. 𝛼 , and 𝛽 , are typically set by hand, usually 

empirically, to give a good balance between content fidelity 

and pictorial richness. 

 

3.4 Training strategy 

 

The proposed Transformer-Guided GAN architecture is 

trained following a careful church of training designed to 

ensure that the generator, discriminator and transformer 

modules constructively interact. A progressive and balanced 

training schedule enables the model to learn content structure, 

while robustly transferring detailed stylistic information 

across different image areas, from artistic to natural scenes. 

The training pipeline begins with pre-processing the input 

images. Specifically, both content and style image are resized 

to a standard input resolution normalizing their distributions. 

Data augmentation such as horizontal flipping, colour 

jittering, random cropping, and others are used to ensure better 

generalization. For features used to compute perceptual losses 

content and style, features extracted from a frozen pre-trained 

VGG-19 network are used, while the transformer encoder is 

trained end-to-end with the generator. 

The training is conducted in two simultaneous phases: 

• Warm-up Phase: In the beginning, the generator and 

transformer modules are trained with the discriminator 

remaining frozen. Hence, the content and style losses, which 

are unweighted by the adversarial loss, generate the pressure 

for the generator to learn to create meaningful image 

reconstructions and style prescribed to it without the 

consideration of adversarial instability. This helps to lessen 

instability and, more importantly, reduces the chance the 

generator produces unwanted noise when generating outputs 

in the earlier phase of the training process. 

• Adversarial Phase: Once the generator performs 

reasonable stylization - the adversarial aspect of the GAN 

process is called on. For this section of training, the 

discriminator will be trained with real style images as well as 

the generated images initially stylized by the generator, while 

the generator is learning to fool the discriminator. During this 

phase, the adversarial loss is introduced with a minor weight 

that is increased over time and epochs in order to achieve 

stable convergence. 

During every training iteration, the transformer module 

generates contextual feature maps generated from the content 

and style images, its features outputs are fused via cross-

attention. The fused feature maps are then fed into the 

generator which outputs the stylized image. The discriminator 

then assesses this result, and all four loss components like 

adversarial, content, style, total variation are calculated. The 

total loss is then back propagated to update the generator and 

transformer parameters through the Adam optimizer. The 

optimizer parameters are set to: 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
 0.0002, 𝛽₁ =  0.5, 𝛽₂ =  0.999 . Train our model for 

anywhere between 100-200 epochs, depending on the dataset 

size, using a learning rate decay method after 50% of epochs, 

which allows us to make finer updates. Applied gradient 

clipping so don't have exploding gradients, especially when 

taking the average of the multiple loss functions. Model could, 

alternatively, strengthen the training penalties with feature 

matching loss, where trid to match the real and fake 

discriminator intermediate layer activations, to encourage the 

same feature distributions. Model uses check pointing and 

early stopping based on validation style accuracy, or 

perceptual similarity metrics like LPIPS and SSIM to avoid 

overfitting. In all, the proposed training strategy successfully 

marries adversarial learning with attention-based feature 

fusion, meaning that the stylized outputs maintain the core 

semantics of the content images but realistically represent the 

intent of the desired artistic or natural style characteristics. 

 

 

4. RESULTS AND DISCUSSION 

 

The proposed Transformer-Guided GAN framework was 

evaluated through extensive experiments on benchmark 

datasets for artistic scene and natural scene image style 

transfer. The goal of the evaluation was to determine if the 

model was able to retain the content structures of the images 

while adaptively applying styles without restrictions. The 

evaluation of the evaluation considered both quantitative 

metrics and qualitative visual comparisons along with a human 

perceptual study.  

We used three publicly available datasets for our 

experiments. The first dataset, MS-COCO, offers quite a 

diverse selection of everyday scene images in our primary 

source of content images. The second dataset, WikiArt, 

contains over 80,000 artwork images across a number of 

painting styles, genres, and artists. This dataset is used as our 

source of style images. This dataset includes collaboration 

across a wide range of artistic representations and considers a 

number of different representations such as impressionism, 

cubism and abstract art. The third dataset, Flickr Landscapes, 

is a curated collection of high-resolution natural scenery 

composed of trees, mountains and coastal landscapes. This 
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dataset is used as an initial step to evaluate the model's 

generalization on real-world situations. Each one of the 

datasets was split into 80% for training and 20% for testing 

purposes. Every image was resized to a uniform shape of 

256×256 pixels and normalized. Figures 3 to 5 show the 

confusion matrix of the three datasets MS-COCO (2017), 

WikiArt, and Flickr Landscapes. 

 

 
 

Figure 3. Confusion matrix of MS-COCO dataset 

 

 
 

Figure 4. Confusion matrix of Flickr Landscape dataset 

 

 
 

Figure 5. Confusion matrix of WikiArt dataset 

Several quality assessment metrics for stylized images are 

discussed here. The Structural Similarity Index (SSIM) was 

specifically used to measure content preservation metrics from 

the input image to the stylized outputs. The Fréchet Inception 

Distance (FID) was applied to evaluate visual realism by 

comparing distributions of generated images against real 

images of the same style. The Learned Perceptual Image Patch 

Similarity (LPIPS) was similar to a perceptual metric of 

similarity that involved human vision. In addition, to see if the 

stylized images were accurately conforming to the target 

artistic domain, a classifier based on ResNet was used that was 

trained with style labels to report style classification accuracy. 

SSIM, FID, LPIPS, and SCA are calculated using the 

Equations from (23) to (26) respectively as given below: SSIM 

evaluates the perceived similarity between two images, 

especially focusing on content preservation like structure, 

luminance, and contrast. 

 

𝑆𝑆𝐼𝑀𝑥,𝑦 =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (23) 

 

Here, 𝜇𝑥, 𝜇𝑦  are mean of images x and y, 𝜎𝑥
2, 𝜎𝑦

2  are 

variances, 𝜎𝑥𝑦 is a covariance, and 𝐶1, 𝐶2 are small constants 

to stabilize division. 

FID measures the distance between the distribution of real 

and generated images, using deep features from the Inception 

v3 network. It evaluates image realism. 

 

𝐹𝐼𝐷 =∥ 𝜇𝑟 − 𝜇𝑔 ∥2+ 𝑇𝑟 (𝛴𝑟 + 𝛴𝑔 − 2(𝛴𝑟𝛴𝑔)
1
2) (24) 

 

Here, 𝜇𝑟 , 𝛴𝑟  are mean and covariance of real image features, 

𝜇𝑔, 𝛴𝑔 are mean and covariance of generated image features, 

and 𝑇𝑟  is a trace of the matrix. LPIPS assesses perceptual 

similarity between two images using deep neural network 

activations, closely aligned with human judgment. 

 

𝐿𝑃𝐼𝑃𝑆𝑥,𝑦 = ∑
1

𝐻𝑙𝑊𝑙

∑ ∥ 𝑤𝑙

ℎ,𝑤𝑙

⊙ (𝑓𝑙
𝑥(ℎ, 𝑤) − 𝑓𝑙

𝑦(ℎ, 𝑤)) ∥
2

2
 

(25) 

 

Here, 𝑓𝑙
𝑥𝑓𝑙

𝑦
 are deep features at layer l for images x and y, 

𝑤𝑙  is a learned weight for each channel, 𝐻𝑙 , 𝑊𝑙 are height and 

width of the feature map, and ⊙ is an element-wise 

multiplication. This metric evaluates how accurately the 

stylized image reflects the target style, using a pretrained 

classifier trained on style categories like WikiArt styles. It 

Uses top-1 accuracy from models like ResNet-50 trained on 

known style domains. 
 

𝑆𝑡𝑦𝑙𝑒 𝐴𝑐𝑐. =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑦𝑙𝑖𝑧𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠
× 100% 

(26) 

 

We contrasted our models to various state-of-the-art 

baselines in arbitrary style transfer, including AdaIN [30], 

SANet [31], STROTSS [32], and StyTr2 [33]. The results 

showed that our proposed model markedly outperformed all 

baselines across all metrics. For example, model achieved an 

SSIM score of 0.80, an FID of 24.7, an LPIPS of 0.167, and a 

style classification accuracy of 91.3%. These results 

demonstrate an improvement of over 5 -10% in all metrics 
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over the next best-performing method, StyTr2 which had a 

style accuracy of 88.9% and an FID of 28.4. This demonstrates 

that adding a transformer-guided attention mechanism to the 

GAN architecture indeed improves both perceptual quality as 

well as style adherence. Figures 6 to 9 show the comparative 

analysis of proposed model with existing frameworks. 

 

 
 

Figure 6. SSIM comparative analysis of proposed model 

with the existing frameworks 

 

 
 

Figure 7. FID comparative analysis of proposed model with 

the existing frameworks 

 
 

Figure 8. Style accuracy comparative analysis of proposed 

model with the existing frameworks 

 
 

Figure 9. LPIPS comparative analysis of proposed model 

with the existing frameworks 

 

Qualitative results further bolster our quantitative findings. 

Visual comparisons also demonstrate that the proposed model 

not only effectively transfers style patterns but retains 

consistent structure in both foreground and background areas. 

Style transfer often compressed or washed out the textures or 

distorted images spatially. Our results demonstrate sharp well-

aligned images with style specific brush strokes, colour 

palettes, and texture granularity have been produced. Results 

illustrate successful stylization from highly contrasting style 

domains, i.e., abstract painting to real world landscape.  

 

Table 1. Comparative analysis 

 

Model 
SSIM 

↑ 

FID 

↓ 

LPIPS 

↓ 

Style 

Accuracy ↑ 

AdaIN 0.72 36.5 0.243 84.7% 

SANet 0.75 32.8 0.218 86.2% 

STROTSS 0.74 34.1 0.201 85.1% 

StyTr² 0.78 28.4 0.190 88.9% 

DualStyleGAN 0.76 29.5 0.179 89.3% 

Proposed 

Method 
0.80 24.7 0.167 91.3% 

 

Table 1 shows the comparative analysis emphasizes the 

importance of the transformer as a guide for the global style 

context. Here, had similar findings when scanned for feature 

fusion and adversarial loss or content loss caused poor 

stylization or excessive distortion. It is evident that the 

correlations initially observed multi-level loss and attention 

guided feature-fusions showcased the value of the last two 

decades of model development refinement. The Transformer-

Guided GAN significantly contributes to positive style 

transfer performance across artistic and natural domain. 

Objective and subjective metrics confirmed that the proposed 

framework illustrated successfully preserved content and 

offered richer styles. 

Figure 10 shows the comparative evaluation of the proposed 

Transformer-Guided GAN included five benchmarking 

models: AdaIN, SANet, STROTSS, StyTr², and 

DualStyleGAN. The performance evaluation was complete on 

four commonly accepted performance measures: SSIM, FID, 

LPIPS, and Style Classification Accuracy. These measures 

assess the weight between preserving content characteristics 

of the image, preserving style similarity to the target, 

preserving perceptual similarity, and preserving realism. With 

regards to SSIM - the best indicator for evaluating how a 
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model preserves the content structure of the input; the 

proposed method achieved a measure of 0.80 which performed 

better than the other frameworks of comparison. This means 

that our method better preserves the semantic configuration 

and boundaries of objects in the content images, which is 

important for transfer in a natural scene context.  With a FID 

approach, lower values indicate better realism and better 

alignment with the distribution of the target style images.  

 

 
 

Figure 10. Comparative analysis 

 

The Transformer-Guided GAN provided the best FID 

measure of 24.7 among the frameworks compared. Two 

additional recent strong architectures, StyTr² and 

DualStyleGAN, were 28.4 and 29.5, which indicates an 

impressive FID drop. These FID measures indicate that the 

GAN component of our method successfully supports 

additional realism layer, smooth texture realism, an 

appropriate depth of stylization, and general color consistency 

on the locational pixel context.  LPIPS measures the 

perceptual difference between images based on deep features. 

A lower LPIPS means that, according to the human visual 

system, the generated image looks more similar to the content 

image. Our model produces an LPIPS of 0.167, which was 

more perceptually satisfying than AdaIN (0.243), SANet 

(0.218), and STROTSS (0.201), and a small improvement over 

StyTr² (0.190) and DualStyleGAN (0.179).  

Table 2 and Figure 11 show the comparative metrics for 

style transfer in terms of style classification accuracy. 

Proposed model achieved 91.3%, substantially greater than all 

previously presented methodologies. DualStyleGAN's 

performance was the closest at 89.3%, and AdaIN 

significantly behind at 84.7%. This result ironically reflects 

much of the success of the approach was from the use of a 

Transformer module, which contextually aligns style features 

between levels of abstraction. Overall, the Transformer-

Guided GAN architecture will outperform all existing setups 

across all metrics of assessment used, which in turn validates 

the architectural choices of the authors. The introduction of 

cross-attention modules between each transformer encoder 

and GAN generator architecture seems to successfully map 

high-level semantics to low-level textures, resulting in 

aesthetically coherent, stylistically rich, and content-faithful 

outputs. 

 

Table 2. Comparative metrics for style transfer 

 
Model Dataset (Content → Style) SSIM FID LPIPS Style Accuracy Content Loss Runtime (sec/img) 

StyTr² MS-COCO → WikiArt 0.605 28.4 0.190 87.1% 1.91 0.24 

S2WAT MS-COCO → WikiArt 0.650 26.9 0.179 89.2% 1.66 0.56 

TG-GAN (Ours) MS-COCO → WikiArt, FlickrLand 0.803 24.5 0.167 91.3% 1.60 0.27 

 

 
 

Figure 11. Comparative metrics for style transfer 

 

StyTr² and S2WAT [34-37] are trained and evaluated with 

MS COCO as the content dataset and WikiArt as the style 

reference, designed for suitable comparisons. StyTr² employs 

two transformer encoders for content and style sequences, and 

uses a multi-layer transformer decoder for stylization using 

content-aware positional encoding to align the two domains. It 

produces fair content preservation and style adaptation, but 

often suffers from wrinkly textures in complex scenes and a 
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slow runtime around 0.24 s per image due to the deep 

transformer decoding pathways. In contrast, S2WAT offers a 

hierarchical transformer architecture based on Strips Window 

Attention which makes efficient use of both long- and short-

range dependencies. It adaptively merges these dependencies 

in a learned attention merging strategy, which maintains much 

greater richness of stylization and greater structural fidelity in 

S2WAT.  

Experimental results show higher SSIM and lower 

perceptual content loss than compared with StyTr² on the same 

COCO WikiArt benchmarks. This proposed TG GAN goes a 

step further than hybrid designs by constructing transformer 

guided attention in a GAN framework. It employs cross-

attention fusion of content and style, using the transformed 

representation as input to a generator that is pre-trained 

adversarial. The transformer-GAN hybrid allows greater 

texture synthesis benefits from adversarial feedback and a 

more reliable global semantic alignment from transformer 

attention. On content-preserving evaluation, TG-GAN will 

produce an SSIM score of above 0.80, a substantial 

improvement to StyTr²'s score of 0.605, and S2WAT's score 

of 0.65. In style-realism evaluation, TG-GAN produced both 

lower style loss around 24.5 and lower FID scores when 

compared with StyTr² between 28–29 and moderate scores for 

S2WAT. 

TG-GAN also has a far lower content loss, better than 

StyTr² and comparable to S2WAT 1.60 vs 1.66, indicative of 

more structural fidelity. Importantly, in the current 

implementation, model exhibit efficiency for TG-GAN that is 

comparable to the StyTr² rate around 0.27 s/image, and faster 

than S2WAT around 0.56 s/image, due to far less complex 

blending and both networks sharing the encoder design. 

Thorough evaluations were conducted on the Flickr 

Landscapes a dataset of real-world natural scenes and the 

benefits of using our TG-GAN are clear. StyTr², for example, 

occasionally fails to adequately transfer style on some 

complex textures e.g. parts with foliage or water reflections, 

and S2WAT has issue of applying fine detail through multiple 

window attentions e.g during coastal scenes.  

 

 

5. CONCLUSION 

 

In this paper, proposed a new framework called TG-GAN, 

a novel Transformer-Guided Generative Adversarial Network 

that combines the capability of transformers to model global 

features with the image-synthesis creativity of GANs for 

efficient style transfer on a range of artistic and natural scene 

datasets. Our approach captures long dependency structures 

efficiently using multi-head self-attention in both the generator 

and discriminator to enhance the content preservation of the 

natural scenes and faithfully embed the artistic style. Extensive 

benchmarking using standard datasets MS-COCO, WikiArt, 

and Flickr Landscapes show our model achieved the best 

performance in terms of SSIM, FID, LPIPS, and Style 

Accuracy over strong baselines including AdaIN, SANet, 

StyTr², and DualStyleGAN. The proposed TG-GAN model 

demonstrated competitive inference time while preserving 

perceptual quality and runtime efficiency, which is important 

in real-time systems. In the future work, we desire to integrate 

dynamic style control methods that allow user-guided 

intensity changes and targeting of semantic regions. Model can 

also be extended to allow for temporal consistency in video 

style transfer in conjunction with transformer-based temporal 

encodes. Additionally, model can be extended to allow for 

multimodal conditioning using text or audio prompts for 

interactive and context-aware stylization. 
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