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Liver transplantation (LT) is a high risk and complicated procedure in which predictor 

modeling can be utilized to improve donor-recipient matching, survival prediction, and 

postoperative care. This research provides an iterative statistical analytical review of 

machine learning (ML), deep learning (DL) and transfer learning (TL) strategies to liver 

transplantation optimization. Systematic literature searches in PubMed, Scopus, IEEE 

Xplore, and Web of Science databases to find studies published since 2015 and 2024 were 

used to conduct the review. Peer-reviewed articles that follow either ML, DL, or TL to a 

prediction, classification, or survival analysis task related to LT were included in the 

inclusion criteria; articles who did not quantify their results were not included. A 

comparative framework was used through an iterative process, which combined quantitative 

extraction of accuracy, Area Under Curve (AUC), F1-score, and Root Mean Square Error 

(RMSE) with statistical aggregation to determine the performance trends across model 

categories. Interpretations show that hybrid deep learning and transfer learning algorithms 

are always more effective in predicting outcomes and estimating the survival of grafts as 

compared to the traditional ML algorithms. The paper demonstrates the lack of 

standardization, interpretability, and reproducibility of datasets and suggests further 

unification of explainable AI and multi-center data harmonization in clinical applications.  
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1. INTRODUCTION

Liver transplantation (LT) remains the gold-standard 

treatment for end-stage liver disease (ESLD) with or without 

hepatocellular carcinoma (HCC), but patient selection, donor 

organ allocation, perimeter risk stratification, and post-

transplant surveillance challenges continue to impair 

outcomes. Biochemical markers [1], radiographic imaging, 

and histopathological examination traditionally underpin 

clinical decision-making but suffer subjectivity, interobserver 

variability, and an inability to predict long-term 

complications. Artificial intelligence (AI) and machine 

learning (ML) have gone a long way toward transforming LT 

in recent years, offering data-driven automated decision-

support systems to promote transplant success rates [2]. 

The incorporation of AI-based methods still lies within 

infancy, leaving many questions on model performance and 

adaptability as well as clinical translation unanswered [3]. 

There have been studies where researchers analyzed ML and 

DL methods independently in liver transplants and HCC 

treatment [4]; however, a systematic and full statistical review 

comparing the performance, strengths, and weaknesses across 

these works is lacking. These studies used logistic regression, 

support vector machines (SVM), random forest, convolutional 

neural networks (CNN), recurrent neural networks (RNN), 

transfer learning models, and multi-omics clustering to predict 

graft survival, recurrence risk, and post-operative 

complications [5]. Still, there are hardly any standard 

performance evaluation procedures, the studies' datasets are 

restricted mainly to small and single-center data, and there is 

limited research about how AI models can be better configured 

towards extensive clinical acceptance [6].  

This study engages in a detailed comparative analysis of 40 

recent AI-based models applied in liver transplantation and 

HCC prognosis. Using an iterative statistical analytical 

framework, this review systematically evaluates AUROC, C 

index, sensitivity, specificity, and predictive accuracy metrics 

over several AI forms. The review will consist of both risk 

assessment-type models (logistic regression, Cox models) and 

prediction-type classification models (SVM, random forest, 

decision tree). This study will also analyze the validity of 

CNN, transfer learning, and deep survival networks. The 

analysis will take into account the contributions of multi-omic 

clustering approaches and feature selection (LASSO, principal 

component analysis, SHAP explanations) to identifying 

biomarkers associated with transplant success and cancer 
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recurrence populations [7]. 

The contributions of this work of utmost importance are: 

Identification of best-performing AI models for the various LT 

and HCC applications; Standardized evaluation of predictive 

performance metrics across methodologies [8]; Insight into 

clinical challenges posed and strategies for future integration 

of AI in hepatology. Through the limitations of preceding 

studies, this work aims to help researchers and clinicians 

choose the AI decision support system that would most benefit 

their work in liver transplantation and oncological risk 

assessment [9]. The results will pave ways for bridging the gap 

between AI model development and real-world 

implementation in hepatology and transplant surgery [10].  

1.1 Motivation and contribution 

The urgent need for AI optimization of liver transplantation 

and management of HCC constitutes the primary motivation 

of this study. Although certain developments are seen in 

surgical techniques and immunosuppressive therapies, the 

preoperative risk assessment, donor-recipient matching, and 

postoperative surveillance remain suboptimal. 

AI models could give very accurate predictive abilities, 

automated integration, and real-time decision-making, but 

nobody seems to agree on which model the best is and 

provides clinically interpretable results. Differences in dataset 

size, feature selection methods, and validation strategies 

complicate any attempt to assess AI performance in 

hepatology. Such a statistical and performance-driven review 

seeks to formulate a critical comparison of ML, DL, and TL 

models aimed at the best optimization of LT and HCC 

prognosis. 

This work brings forth several novel contributions to AI-

based precision medicine in hepatology. First, it delivers the 

most extensive performance comparison to date, evaluating 40 

AI models applied in liver disease diagnosis, prognosis, and 

transplantation. The second contribution entails an 

examination of the adaptability of the AI schemes when 

applied across different datasets, demonstrating the scalability, 

robustness, and generalizability of the models. The third 

contribution is a structured evaluation of hybrid models that 

elucidates how multi-omics clustering, transfer learning, and 

deep survival networks work together to improve transplant 

outcome prediction. 

Finally, this review sets out key recommendations for future 

research and clinical integration, thereby establishing a 

framework for developing AI-driven decision-support systems 

tailored to liver transplantation and HCC risk stratification. 

This work could fast-track the adoption of AI within 

hepatology and promotes personalized transplant approaches, 

early detection of recurrences, and increased patient survival 

sets. 

2. REVIEW OF EXISTING MODELS USED FOR

LIVER TRANSPLANTATION ANALYSIS

Liver transplantation (LT) is a complex medical procedure, 

which, apart from other major challenges, has several 

significant perioperative complications, issues related to 

donor-recipient matching, and postoperative outcomes. The 

application of artificial intelligence (AI) in LT extends 

handling predictive modeling, decision support, and clinical 

management. This review attempts to provide a comparative 

perspective on the hybrid AI models-the deep learning (DL) 

and traditional machine learning (ML) approaches-focused 

specifically on liver transplantation. 

Predictive modeling in liver transplantation prediction of 

surgical complications in LT is very relevant in optimizing 

patient management. Early reports suggested that traditional 

ML models can predict massive intraoperative hemorrhage, 

with logistic regression as one of the leading ones regarding 

its interpretability and rigorous calibration performance [1]. 

The major predictive factors found include disease etiology, 

activated partial thromboplastin time (aPTT), and Model for 

End-stage Liver Disease (MELD) score, with an AUROC of 

0.775. However, ML requires a complex feature engineering 

that may be insufficiently able to capture complex and non-

linear relationships in clinical data samples. 

On the contrary, deep learning-based image analysis has 

improved preoperative planning and surgical navigation. A 

mixed-reality (MR) training system using 3D liver 

reconstruction models and iterative closest point (ICP) 

tracking augmented visualization of middle hepatic vein 

(MHV) during surgery [2]. Joint integration of MR and AI-

based simulations postulates that spatial recognition using DL 

can positively improve surgical outcomes and donor safety. 

Additionally, portals using real-time ultrasound contrast 

agents combined with deep learning algorithms compared with 

conventional intravascular pressure readings have been 

superior as regards specific measurements for portal vein 

pressure (PVP) [3]. Detection of portal hypertension using 

subharmonic scattering signals of microbubbles in contrast-

enhanced ultrasound provided high sensitivity (93.3%) and 

specificity (91.7%), indicating that AI-enhanced imaging can 

supplant invasive diagnostic techniques. 

2.1 AI for liver tumor recognition and classification in 

transplant candidates 

Tumor burden generally determines eligibility for 

transplantation; hence, detecting and classifying lesions 

correctly would have vital importance. Unstructured liver 

tumor reports have incorporated traditional ML tactics through 

NLP and interpretable ML classifiers [4]. Improved risk 

assessment and decision-making in LT candidates are the 

areas in which these methodologies have drawn benefits.  

Deep learning has drastically improved tumor segmentation 

and classification. Multimodal fusion architectures have 

enhanced cross-modality adaptation for liver segmentation in 

CT-MRI data for the limitations induced upon traditional ML 

models due to domain shift [5]. Similarly, deep learning 

models such as metric learning and attention-aware weighted 

fusion yielded highly accurate (84%) differentiation of 

histologic grades of hepatocellular carcinoma (HCC) [6]. 

Hence, advances like these have underscored the need for 

hybrid AI models for improved preoperative evaluations in 

LT.  

Recent research corroborating the importance of antigen-

presenting cells and T-cell infiltration in determining 

immunological responses against HCC has promoted studies 

toward developing machine learning-based LncRNA 

signatures for the immune and survival predictions of LT 

candidates [7]. Similarly, disulfidptosis-related long 

noncoding RNAs (DRLs) have been explored for their role in 

patient prognosis; AI-derived risk scores exceeded 

conventional clinical measures in efficacy [8]. These studies 

show how hybrid AI models enhance precision medicine by 
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linking molecular and clinical data in LT [9]. 

2.2 AI in the monitoring and outcome prediction post-

transplantation 

Should liver cancer recur post-transplantation, it would 

make one of the more severe challenges [10]. Predictive 

modeling concerning recurrence after different treatment 

modalities was developed based upon AI that achieved high 

accuracy, with an AUC of 0.92 for percutaneous ablation (PA) 

and 0.86 for surgical resection (SR) and 0.79 for transarterial 

chemoembolization (TACE) [11]. Multimodal deep learning 

(MDL) models based on CT and MRI imaging were also

developed mostly for on improvement in predicting

microvascular invasion (MVI) in HCC, attaining an AUC of

0.844 [12]. These suggest that hybrid AI approaches

integrating radiomics, clinical parameters, and deep learning

architectures will make strength in post-transplantation

surveillance sets.

2.3 Hybrid AI models in liver transplantation: Current 

limitations and future prospects 

Although AI applications promise much in LT, there are 

several impediments [13]. Different AI methods require 

mammoth-sized, high-quality datasets for multimodal clinical 

and imaging data learning [14]. For instance, CNNs stand out 

with better predictive performance for post-transplant survival 

(C Index: 0.824) compared to conventional ML models [15], 

yet heterogeneities in the data continue to be impediments to 

generalizability. Nanoparticle-based targeted treatments were 

the future direction for AI-aided liver cancer therapy. AI-

augmented docking and bioinformatic investigations have 

identified prominent target genes such as AKR1C3, with 

nanomaterial-based delivery systems having demonstrated 

potential to reverse tumor hypoxia [16]. Additionally, models 

for predicting HCC downstaging have been developed fairly 

robustly, with hybrid models that incorporated clinical and 

radiomic features achieving AUROC values of 0.877 [17]. 

With metabolic-associated fatty liver disease (MAFLD) 

having been identified as the most common etiology of HCC, 

AI-driven solutions to its diagnosis and management would be 

apropos [18]. Ayurvedic diagnostic algorithms based on gut 

microbiota and genetic markers could hold out the promise for 

tailored treatment planning [19]. Hepatoprotective effects of 

herbal compounds such as Liv-52 have been assayed, followed 

by molecular simulations which identified (-) Syringaresinol 

as one of the most effective therapeutic leads [20]. Liver 

transplantation (LT) is still the only ultimate cure for end-stage 

liver disease and hepatocellular carcinoma (HCC); yet, issues 

still surround the field of optimizing donor-recipient matching, 

perioperative risk stratification, and post-transplant outcomes. 

Altogether, the analyzed literature reveals a considerable 

development of the implementation of new computational and 

machine learning tools to solve domain-related issues. 

Although the methodologies used differ greatly in different 

works, the majority of the studies focus on enhancing 

predictive accuracy, data efficiency, and model 

interpretability. Nevertheless, the lack of coherence in the 

experimental design and data management is a limitation of 

the generalizability of results. All these studies together 

emphasize the increased realization of the role of intelligent 

models in optimization of decision-making processes in 

various fields of application. The limitations of the hybrid AI 

models in liver transplantation are included in Table 1. 

Table 1. Hybrid AI models in liver transplantation limitations 

Reference Method Used Findings Strengths Limitations 

[1] 
Logistic Regression for 

Hemorrhage Prediction 

Traditional ML models 

identified key predictive 

factors for massive 

hemorrhage during LT. 

High interpretability, 

effective in risk 

stratification. 

Lower accuracy compared to 

DL models; does not capture 

complex non-linear 

relationships. 

[2] 

Mixed-Reality (MR) 

Training with ICP 

Tracking 

MR-based 3D models 

improved surgical navigation 

in LT. 

Enhanced surgical training, 

precise vein tracking. 

Limited sample size; real-time 

integration in surgery remains a 

challenge. 

[3] 

Ultrasound Contrast-Based 

Portal Vein Pressure (PVP) 

Measurement 

AI-enhanced ultrasound 

analysis provided high 

accuracy in non-invasive PVP 

measurement. 

High sensitivity (93.3%) 

and specificity (91.7%) for 

portal hypertension. 

Needs clinical validation for LT 

applications. 

[4] 
NLP and ML for Report 

Structuring 

NLP-based automation 

structured unstructured liver 

tumor reports for AI-driven 

risk assessment. 

Improved efficiency and 

accuracy of clinical 

documentation. 

Performance varies with dataset 

quality; limited generalization. 

[5] 

Domain Adaptation for 

Cross-Modality CT-MR 

Data Segmentation 

Hybrid DL model learned 

robust liver segmentation 

features across imaging 

modalities. 

Overcomes domain 

dependency; improved 

generalizability. 

Requires large dataset for cross-

modality training. 

[6] 
DL-Based Multimodal

MRI for HCC Grading

AI improved diagnostic 

precision in HCC histologic 

grading. 

High accuracy (84%), 

sensitivity (87%), and 

precision (89%). 

Requires further validation in 

larger datasets. 

[7] 

Machine Learning-Based 

APC-TCI LncRNA 

Signature 

AI-derived biomarkers 

improved prognostic 

stratification in HCC. 

Robust predictive capacity 

for immune response and 

prognosis. 

Lacks external validation in 

prospective cohorts. 

[8] 

LASSO and Cox 

Regression for Prognostic 

Signature 

AI-derived DRL signature 

outperformed clinical models 

in predicting HCC outcomes. 

High predictive efficacy in 

survival analysis. 

Requires additional validation 

for clinical implementation. 

[9] 
Gene Expression Analysis 

for TACE Response 

AI-based hub gene 

identification correlated with 

Identified biomarkers 

linked to therapy 

Limited applicability in clinical 

practice. 
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Prediction TACE response in HCC. resistance. 

[10] 

AI-Driven Image 

Segmentation for HCC 

Detection 

AI models improved early 

detection and segmentation 

accuracy. 

High diagnostic efficiency; 

useful for pre-transplant 

assessment. 

Needs multimodal validation 

across different imaging 

systems. 

[11] 

Meta-Analysis of AI in 

HCC Recurrence 

Prediction 

AI models demonstrated high 

AUC values in predicting 

recurrence post-treatment. 

Systematic validation of AI 

effectiveness in predicting 

recurrence. 

Study heterogeneity; 

differences in AI model 

performance across datasets. 

[12] 

Multimodal Deep Learning 

(CT-MRI) for MVI 

Prediction 

AI-enhanced fusion models 

improved MVI prediction in 

HCC. 

High AUC (0.844); 

superior to traditional 

models. 

Requires additional real-world 

validation. 

[13] 
Cox Regression for Time-

Dependent Risk Factors 

AI revealed gender-specific 

risks in post-LT liver function 

deterioration. 

Identifies high-risk groups 

dynamically over time. 

Limited dataset; requires real-

time monitoring integration. 

[14] 
DL-Based Radiomics for

Sarcopenia Detection

AI-enhanced radiomics 

predicted post-transplant 

survival. 

High prognostic accuracy; 

validated across multiple 

centers. 

Requires broader validation in 

diverse cohorts. 

[15] 

CNN-Based Survival 

Prediction from CT 

Imaging 

AI integration improved post-

treatment survival estimation. 

High C Index (0.824); 

robust multimodal fusion. 

Data imbalance may affect 

model performance. 

[16] 
AI-Assisted Nanoparticle 

Therapy for HCC 

AI-optimized nanodrug 

targeting improved tumor 

hypoxia suppression. 

Potential clinical 

translation for AI-enhanced 

therapy. 

Needs in vivo trials for efficacy 

validation. 

[17] 

AI-Driven Prognosis 

Model for HCC 

Downstaging 

Hybrid model combining 

radiomics and clinical features 

improved LT candidate 

selection. 

High AUROC (0.877); 

better than clinical-only 

models. 

Computationally intensive; 

requires clinical workflow 

integration sets. 

[18] 

AI-Based Molecular 

Docking for Herbal 

Therapy 

AI Identified plant-derived 

inhibitors for HCC treatment. 

Supports alternative 

medicine integration into 

AI-driven treatment. 

Requires in vitro and in vivo 

validation in process. 

[19] 

AI-Driven 

Epidemiological Analysis 

of MAFLD-HCC 

AI-assisted diagnosis and 

treatment algorithms for 

MAFLD-related HCC. 

Personalized treatment 

pathways based on 

metabolic profiling. 

Needs clinical validation across 

diverse populations. 

Artificial intelligence (AI) has enabled predictive modeling 

and personalized decision-making with techniques that 

involve conventional machine learning (ML) as well as deep 

learning (DL). This review of literature addresses the latest 

developments in hybrid AI models used in liver 

transplantation, with a comparison of their performance in 

predictive analytics, immunological profiling, and long-term 

transplant monitoring procedures.  

2.4 Traditional machine learning methods 

Classical ML methods have been used extensively to 

forecast post-transplantation complication and survival 

outcomes. For instance, marker choice models like LASSO 

regression and support vector machine-recursive feature 

elimination (SVM-RFE) were employed to identify major 

prognostic biomarkers, such as ATP6V1C1, a biomarker for 

HCC progression and immune evasion [21]. ML-guided 

differential gene expression analysis has identified important 

co-expressed genes in chronic hepatitis B (CAH-B), liver 

cirrhosis (LC), and HCC progression to help predict early-

stage HCC risk [22]. Along with genetic profiling, ML-driven 

clustering algorithms have identified anoikis-mediated ECM 

resistance as an important driver of HCC metastasis and drug 

resistance [23]. This implies the capacity of these ML models 

to combine multi-omics data for a holistic risk estimation. 

Deep learning enhancements deep learning, particularly 

convolutional neural networks (CNNs), has turned out to be 

alternative approaches for LT outcome predictive modeling 

with increased accuracy [24]. The application of residual 

CNNs to histopathology has resulted in the development of 

deep pathomics score (DPS) with high concordance index 

(0.827) predicting tumor recurrence after transplant [25]. 

Similarly, repeated HCC prediction models using deep 

learning approaches from MRI (VGG16 and XGBoost) have 

reported an AUC-ROC of 0.71 to 0.85, which significantly 

increases recurrence-free survival assessment. The 

conventional ML adheres to structured input variables, 

whereas the DL directs the extraction of hierarchical 

representations directly from imaging and histological inputs 

[26], thus enhancing predictive granularity. The integration of 

a deep survival model such as DeepSurv with Cox regression 

analysis further refines risk stratification and proves its 

superiority over the conventional regression ones [27]. The 

limitations of the traditional machine learning methods are 

included in the Table 2. 

Table 2. Limitations of traditional machine learning methods 

Reference Method Used Findings Strengths Limitations 

[20] 

Weighted Gene Co-

Expression Network 

Analysis (WGCNA) and 

ML models 

AI-assisted gene analysis 

identified ferroptosis 

regulators in HCC prognosis. 

High predictive accuracy; 

identified TMSB4X as a key 

biomarker. 

Requires clinical validation 

and integration into 

transplant screening. 

[21] 

Differential expression 

analysis with ML 

integration 

AI-based biomarker discovery 

identified ATP6V1C1 as a 

prognostic marker. 

Identified key pathways 

influencing HCC immune 

microenvironment. 

Functional validation in a 

larger patient cohort is 

needed. 

[22] LASSO, Random Forest, AI-driven gene selection Identifies risk groups for early Requires external 
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and SVM-RFE for 

biomarker discovery 

identified common markers 

between HCC, HBV, and LC. 

intervention in HCC. validation across diverse 

populations. 

[23] 
Multi-Omics Analysis and 

Clustering Algorithms 

AI-derived consensus 

signature predicted Anoikis 

resistance in HCC. 

Identified PLG as a key 

molecular target for therapy. 

Needs validation in patient-

specific clinical settings. 

[24] 

Competitive ML 

Framework for Immune-

Related Cell Death Index 

(IRCDI) 

AI-assisted screening revealed 

9 genes influencing immune-

related cell death. 

Useful in predicting 

therapeutic response to 

immunotherapy. 

Requires broader clinical 

testing for LT patients. 

[25] 
WGCNA and ML-based 

feature selection 

AI-based approach identified 

key genes in T-cell mediated 

rejection post-LT. 

Effective in predicting graft 

rejection risk post-transplant. 

Requires integration into 

clinical decision-making 

frameworks. 

[26] 
Binary Classification and 

ML Algorithms 

AI-enhanced diagnostic model 

for HCC using TCGA and 

GEO databases. 

Identified Apelin (APLN) as a 

reliable HCC biomarker. 

Needs further validation for 

integration into transplant 

evaluation. 

[27] 
Transfer Learning with 

SHAP 

AI-assisted prediction of post-

LT complications with high 

accuracy. 

Improved performance in 

handling high-dimensional 

small-scale LT data. 

Requires larger datasets for 

real-world validation. 

[28] 
Deep Learning for 

Transcriptomic Analysis 

AI-driven gene signature 

identified IL6 as a key 

regulator of HCC recurrence 

post-LT. 

Offers potential for recurrence 

prediction and post-transplant 

therapy. 

Lacks clinical application 

in real-time transplant 

management. 

[29] 

ML-Based Biomarker and

Treatment Strategy

Prediction 

AI-assisted biomarker 

discovery enhances HCC risk 

stratification. 

Supports personalized pre-

transplant and adjuvant therapy 

strategies. 

Requires regulatory 

approval and integration 

into transplant protocols. 

[30] 
RT-qPCR and Biomarker 

Analysis 

AI-enhanced frailty 

assessment linked senescence 

markers to transplant 

outcomes. 

Demonstrates the impact of 

frailty on LT outcomes. 

Requires validation in 

diverse transplant 

populations. 

[31] 
Random Survival Forest 

for HCC Prognosis 

AI-driven survival prediction 

model using MRI-based 

radiomics. 

High accuracy (C Index 

0.8503) in predicting mortality 

risk. 

Computationally intensive; 

requires integration with 

imaging workflows. 

[32] 
Deep Learning-Based 

CUSUM (DL-CUSUM) 

AI-enabled real-time 

monitoring of post-LT 

mortality. 

High precision in risk-adjusted 

mortality predictions. 

Needs further optimization 

for real-time clinical 

deployment. 

[33] 
ML-Based LI-RADS

Improvement

AI-enhanced LI-RADS 

improved HCC differentiation 

from liver metastases. 

Higher diagnostic sensitivity 

than traditional radiological 

methods. 

Requires multicenter 

validation to confirm 

reproducibility. 

[34] 
ML Model for LncRNA-

Based HCC Detection 

AI-enhanced diagnostic tool 

integrating lncRNA 

biomarkers. 

Achieved near-perfect 

sensitivity (100%) and 

specificity (97%). 

Requires validation in 

large-scale clinical trials. 

[35] 
Liver-Spleen Model for 

Risk Prediction 

AI-assisted CT-based 

radiomics improved prognosis 

prediction for AVB. 

Outperformed traditional 

clinical scoring models. 

Requires real-world 

validation in transplant 

candidates. 

[36] 

Deep Pathomics Score 

(DPS) for Post-LT 

Recurrence 

AI-derived histopathological 

features predicted post-LT 

recurrence. 

High prognostic accuracy; 

identified immune cells 

influencing recurrence. 

Requires expansion into 

multicenter studies. 

[37] 
ML Model for miRNA-

Based HCC Diagnosis 

AI-enhanced miRNA analysis 

demonstrated high specificity 

in HCC detection. 

Superior performance 

compared to traditional 

statistical models. 

Requires cross-population 

validation. 

[38] 
Markov Decision Model 

for NASH 

AI-driven risk modeling 

suggested surgical weight loss 

reduces LT need. 

Demonstrated significant life 

expectancy gains for NASH 

patients. 

Requires long-term real-

world validation. 

[39] 

CNN-Based MRI Analysis 

for HCC Recurrence 

Prediction 

AI-assisted imaging biomarker 

extraction for early recurrence 

risk. 

High predictive accuracy 

(AUC 0.71-0.85); useful for 

post-transplant monitoring. 

Requires prospective 

validation in larger 

datasets. 

[40] 
Single-Cell Sequencing 

and LASSO Regression 

AI-derived PKRG signature 

stratified HCC patients for 

targeted therapy. 

Identified potential therapeutic 

targets (CDK4 and AURKB). 

Requires clinical trials to 

confirm efficacy. 

2.5 Machine learning in Immunogenomics 

Immunological profile in liver transplantation also has a 

pivotal role in ensuring survivability of the graft as well as 

determination of risk against rejection [28]. Traditionally 

employed machine learning methods were utilized for 

selecting candidate genes such as ITGB2 and IL-18 in T-cell-

mediated rejection (TCMR), employing differential 

expression gene analysis and WGCNA [29]. The more the 

multi-omics proteins and transcriptomics strategies facilitate 

the discovery of regulated cell death (RCD) signatures to tailor 

immunotherapy approaches for HCC patients. In addition to 

the application of genetic profiles, deep ML frameworks have 

simulated immune cell infiltration patterns and elucidated the 

function of tumor-associated macrophages in HCC 

progression and immune escape following transplantation 

[30]. These implications lead to the reality that ML-based 

immunogenomic signatures may be pivotal in stratum-specific 

patient candidates. 

Figure 1 depicts the correlation heat map of the key 
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performance measures - Area Under the ROC Curve 

(AUROC), Sensitivity, Specificity, Precision and Recall 

calculated on all the reviewed models in liver transplantation 

prediction tasks. The color scale shows the Pearson correlation 

coefficient as deep red which implies a strong positive 

correlation and blue implies negative or weak association. 

According to the analysis, Sensitivity and Precision are 

moderately positively correlated (0.57), that is, the higher the 

sensitivity of a model, the higher is the precision, which 

balances false positives and true positives. Likewise, 

Specificity and Precision (0.55) also demonstrate a moderate 

correlation, and thus, strong classifiers have equal 

performance with respect to detection scales. Conversely, the 

correlations of the AUROC and the Recall with other measures 

are fairly weak (r < 0.2), and this means that a rise in global 

discrimination ability (AUROC) does not necessarily 

correspond to a similar rise in recall. 

Figure 1. Model’s integrated result analysis 

2.6 Deep learning for immunotherapy and molecular 

target discovery 

Deep learning has revolutionized immunological profiling 

by leveraging single-cell sequencing data [31]. This synergy 

of deep learning and LASSO regression has enabled PKRG-

specific prediction models to pinpoint CDK4 and AURKB as 

the key regulators of HCC progression [32]. These findings are 

commensurate with recent DL research dating back to post-

transplantation tumor reoccurrences that were regulated by 

immune checkpoint blockers, e.g., PD-L1 [33]. In addition, 

with DL augmenting single-cell transcriptomics, additional 

cellular information on the tumor microenvironment was 

obtained through the identification of spatial transcriptomic 

distribution patterning of oncogenic markers like ATP6V1C1 

[34]. These advances highlight the untapped promise of such 

hybrid AI modalities in bridging molecular profiling and 

clinical decision-making processes [35].  

In both methodologies, adoptability of more hybrid and 

deep learning setups, which integrate older statistical models 

with newer neural networks, is a general direction taken. These 

methods are usually effective at improving over baseline 

methods, but can be much more expensive and difficult to 

interpret [36]. Other studies also focus on the significance of 

feature engineering and data preprocessing to attain a strong 

performance. However, the common cross-validation and 

benchmarking procedures are not standardized which limits 

the trustworthy comparison of techniques. 

2.7 Prediction of mortality and complications with hybrid 

AI models 

Prediction of survival and complications after a liver 

transplant remains a daunting challenge. Hybrid AI models 

combining clinical and radiomic features have been shown to 

offer superior prediction performance compared to the 

traditional risk scores. A random survival forest model that 

used multiphasic MRI-based liver radiomics was superior to 

traditional staging systems, with a Harrell's C index of 0.85 

[37]. A DL-CUSUM monitoring program was created for the 

purpose of offering a live risk estimate for in-hospital 

mortality, achieving an AUC of 0.857 significantly greater 

than for the D-MELD and Balance of Risk (BAR) scores [38]. 

In addition, frailty and senescence are coming to be 

increasingly regarded as vital predictors of outcome after 

transplantation. In a research examining correlations between 

cellular senescence markers (p16INK4a and p21CIP1) with 

patient frailty, these markers were highly correlated with 

extended hospital stay and post-transplant mortality [39]. 

Based on these arguments, applying AI-assisted frailty 

analyses may further optimize both the likelihood of 

successful candidate selection and perioperative risk 

stratifications. In this regard, we find repeated HCC as a 

significant limitation in liver transplantation, whose rates of 

recurrence can go up to even 70% in cases with early stages 

[40]. 

Figure 2 illustrates the performance trends of various 

machine learning, deep learning, and transfer learning 

methods evaluated in liver transplantation prediction tasks. 

The x-axis represents different models or methodological 

variants (1-40), while the y-axis shows the normalized 

performance scores for key evaluation metrics, AUROC, 

Sensitivity, Specificity, Precision, and Recall. 

Figure 2. Model’s performance trends analysis 

The plot reveals substantial performance variability across 

methods, indicating that no single algorithm consistently 

dominates across all metrics. AUROC and Specificity 

fluctuate moderately, reflecting differences in each model's 

ability to distinguish between transplant outcomes and 

correctly identify non-events. Precision and Sensitivity peaks 

at certain indices suggest that deep learning and transfer 

learning models achieve high true-positive detection rates for 

specific configurations, whereas traditional machine learning 

models exhibit more inconsistent results. Notably, recall 

values are consistently low across most methods, highlighting 
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a tendency for models to favor precision over sensitivity in 

imbalanced datasets. 

2.8 Tumor recurrence and long-term prognostic modeling 

Certain deep learning algorithms have emerged for 

predicting risk of recurrence through the use of inappropriate 

MR imaging preoperatively, with better accuracy compared to 

traditional radiological evaluation. In addition, imaging 

analysis using CNN has been integrated with multi-omics data 

for precise recurrence prediction and identified IL6 as pivotal 

in post-transplant tumorigenesis. The combined AI models 

have enabled the association of molecular biomarkers with the 

imaging-based evaluation of recurrence risk. The integration 

of AFP-L3 with des-γ-carboxy prothrombin (DCP) 

biomarkers and machine-learning algorithms has shown 

tremendous promise in enhancing risk stratification and 

informing post-transplant immunotherapy. Although hybrid 

AI models have demonstrated great potential in the field of 

liver transplantation, clinical translation and generalization are 

challenging. The reliance on the high-dimensional dataset 

requires strict data harmonization approaches to ensure 

reproducibility across various patient cohorts. Additional 

constraints still exist as far as interpretability is concerned; 

therefore, incorporating explainable AI (XAI) frameworks 

will enable clinical adoptions. Emerging trends in federated 

learning and privacy-preserving AI models would help 

overcome issues for data sharing, collaborative work for AI-

based transplant research across institutions. In addition, 

reinforcement learning-based decision support systems would 

be an added boost to individualized treatment pathways to 

maximize patient outcomes in liver transplantations. Hybrid 

AI models that integrate conventional ML and deep learning 

methods have certainly made significant contributions in the 

liver transplantation field in predictive ability, immunological 

characterization, and monitoring after transplant. The benefits 

of deep learning, however, give an enormous kick to success 

in imaging and fold integration in multi-omics, but 

conventional ML allows good feature choice and 

interpretability. The synergistic benefit of combining the two 

paradigms could have a significant influence on candidate 

selection, minimize transplant rejection risk, and decrease 

tumor recurrence risk rates. Future studies should thus focus 

on federated learning, interpretable AI, and multi-modal data 

fusion to fully leverage the revolutionary potential of AI in 

liver transplantations. 

3. COMPARATIVE RESULT ANALYSIS

This effort attempts to systematically compare the hybrid 

AI models with traditional approaches to liver transplantation 

in terms of methodological frameworks, data sets, 

performance metrics, key findings, strengths, and limitations. 

The purpose here is to compare AI's efficacy in clinical 

applications relevant to liver transplantation, including 

hemorrhage prediction, imaging analysis, tumor 

characterization, survival prediction, and treatment 

optimization. Comparison results regarding performance 

differences in clinical applications between deep-learning-

based AI, traditional machine learning, and statistical models 

will be discussed in the process. The traditional models used 

dataset and limitations are included in Table 3. 

Table 3. Traditional models datasets and limitations 

Reference Method Used Dataset Used 
Performance 

Metrics 
Key Findings Strengths Limitations 

[1] 

Logistic 

Regression for 

Hemorrhage 

Prediction 

Retrospective Data 

(LT patients, 

clinical 

parameters) 

AUROC: 0.775, 

AUPR: 0.753 

Developed a 

predictive scoring 

system for 

intraoperative 

hemorrhage. 

Provides a 

clinically useful 

risk-scoring 

system. 

Limited to 

retrospective data; 

external validation 

needed. 

[2] 

Mixed Reality 

(MR) Training 

System 

3D Liver 

Reconstruction 

Model (20 

patients) 

Registration 

Error < 4mm 

Improved MHV 

tracking during LT 

surgery. 

Enhances surgeon 

training and 

visualization. 

Small sample size; 

requires clinical 

testing. 

[3] 

SonoVue 

Microbubbles for 

Portal Vein 

Pressure (PVP) 

Canine Model (In 

Vivo and In Vitro) 

Sensitivity: 

93.3%, 

Specificity: 

91.7%, 

Accuracy: 

92.6% 

First study 

demonstrating 

SonoVue 

microbubbles for 

non-invasive PVP 

measurement. 

High sensitivity 

and specificity in 

pressure 

measurement. 

Requires 

validation in 

human patients. 

[4] 

NLP and ML-

Based Report 

Structuring 

CT Liver Tumor 

Reports 

Improved 

classification vs. 

Bert models 

Converts 

unstructured reports 

into structured 

formats. 

Enhances 

efficiency in 

medical report 

analysis. 

Requires domain-

specific adaptation. 

[5] 

Multi-Source 

Domain 

Adaptation for 

CT-MRI 

Segmentation 

CHAOS Grand 

Challenge Dataset 

Improved cross-

modality 

performance 

State-of-the-art 

results for CT-MRI 

adaptation. 

Overcomes 

domain 

dependency in 

radiology AI 

models. 

Needs validation in 

transplant imaging. 

[6] 

Multimodal 

MRI-Based Deep 

Learning for 

HCC Grading 

Clinic MRI 

Dataset 

(annotated) 

Accuracy: 84%, 

Sensitivity: 

87%, Precision: 

89% 

MCAT model 

outperforms 

previous grading 

methods. 

Improved 

classification for 

HCC histologic 

grading. 

Requires further 

validation in larger 

cohorts. 

[7] 
Machine 

Learning-Based 

805 HCC patients 

(3 public datasets) 

C Index: High 

predictive 

Identifies high-risk 

patients for targeted 

Potential 

biomarker for 

Requires real-

world validation. 
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LncRNA 

Prognostic 

Signature 

(ATLS) 

capacity therapy. precision 

medicine. 

[8] 

LASSO and Cox 

Regression for 

DRL Prognostic 

Signature 

TCGA Database 

Improved 

survival 

prediction vs. 

conventional 

models 

DRLs identified as 

key factors in HCC 

prognosis. 

Strong prognostic 

model for 

immunotherapy 

response. 

Requires external 

validation. 

[9] 

Differentially 

Expressed Genes 

(DEGs) in TACE 

Response 

GSE104580, 

TCGA, HPA 

Significant 

correlation with 

non-responders 

Identified TTK as a 

key marker for 

TACE response. 

Biomarker 

discovery for 

patient 

stratification. 

Lacks real-world 

validation. 

[10] 

AI-Assisted 

Early Detection 

and Management 

HCC Cohort Study 

Increased 

accuracy of 

detection and 

intervention 

AI models improve 

diagnosis and 

therapy selection. 

Enhances 

precision medicine 

in HCC. 

Limited by dataset 

availability. 

[11] 

AI-Based 

Recurrence 

Prediction (Meta-

Analysis) 

Multi-Dataset 

Review (PA, SR, 

TACE) 

AUROC: 0.92 

(PA), 0.86 (SR), 

0.79 (TACE) 

AI models show 

strong recurrence 

prediction 

potential. 

Comprehensive 

meta-analysis of 

AI effectiveness. 

Some models lack 

external validation. 

[12] 

Multimodal Deep 

Learning (CT & 

MRI) for MVI 

Prediction 

Institutional 

Dataset (287 HCC 

patients) 

AUROC: 0.844, 

Combined 

Model AUROC: 

0.871 

Superior prediction 

to single-modality 

models. 

AI improves 

accuracy in MVI 

prediction. 

Requires real-

world clinical 

testing. 

[13] 

Cox Model for 

Long-Term Liver 

Function 

Prediction 

133 HCC patients 

(Radiotherapy) 

Hazard Ratio 

(HR): 1.17 

Identified risk 

factors for long-

term liver function 

decline. 

Helps guide post-

transplant 

monitoring. 

Needs validation 

across different 

liver disease 

subtypes. 

[14] 

Deep Learning 

for Sarcopenia 

Prognosis 

Multi-Center 

Dataset (826 

patients) 

C Index: 0.775 

(Internal), 0.613 

(External) 

AI-based model 

predicts survival 

after LT. 

Provides 

individualized risk 

assessment. 

Needs expansion 

to other muscle 

groups. 

[15] 

CNN-Based 

Survival 

Prediction Model 

CT Images (692 

patients) 

C Index: 0.824 

(Internal), 0.750 

(External) 

AI model predicts 

post-treatment 

survival. 

Integrates imaging 

and clinical data 

effectively. 

Requires multi 

Institutional 

validation. 

[16] 

Nanoparticle-

Based HCC 

Therapy with ML 

Analysis 

GEO, GeneCards, 

TCGA 

Enhanced RSV 

toxicity in HCC 

cells 

Identified AKR1C3 

as a target for RSV 

therapy. 

AI enhances 

therapeutic 

discovery. 

Needs validation in 

clinical settings. 

[17] 

Radiomics and 

SVM for HCC 

Downstaging 

CT Imaging 

Dataset 

AUROC: 0.877 

(Joint Model) 

AI model 

accurately predicts 

downstaging 

outcomes. 

Guides treatment 

decisions before 

LT. 

Requires external 

validation. 

[18] 

Molecular 

Docking for 

Herbal Medicine 

in HCC 

ADMET, 

Molecular 

Dynamics 

High binding 

efficiency for 

AFP inhibition 

Identified (-) 

Syringaresinol as a 

potential HCC 

inhibitor. 

AI-driven drug 

discovery insights. 

Needs in-vitro 

validation. 

[19] 

AI-Assisted 

MAFLD-HCC 

Diagnosis and 

Surveillance 

Epidemiological 

Database 

High prevalence 

correlation with 

obesity trends 

Identified 

metabolic risk 

factors for 

MAFLD-HCC. 

Supports AI-based 

early diagnosis 

strategies. 

Requires clinical 

implementation. 

[20] 

Ferroptosis-

Based ML Model 

for HCC 

Prognosis 

TCGA, FerrDb 

C Index: High 

predictive 

accuracy 

Identifies 

inflammation-

associated 

ferroptosis genes. 

AI models 

improve survival 

prediction. 

Needs validation 

for therapeutic 

intervention. 

Results of the performance measures in the studies based on 

the metrics of the performance of studies (AUROC, accuracy, 

F1-score) differ considerably. There are models that are nearly 

optimal when used on controlled data sets and models that 

have difficulty with real world data or imbalanced data. Such 

discrepancy implies that the performance of models is very 

sensitive to the characteristics of the dataset and the 

experiment design. The demand of a deeper validation such as 

multicenter or cross-domain testing is also one of the main 

issues in determining the clinical or operational reliability. 

This review emphasizes an overview concerning the 

utilization of AI models for liver transplantation and HCC 

management. Thus, comparisons generally show that 

predictive accuracy in favor of HCC is usually favored by deep 

learning models rather than classical machine learning and 

statistical models. Enhancements in Imaging Capability: AI 

segmentation and mixed reality advance visualization in liver 

transplantation procedures. Superior Predictive Models: 

Resultantly, the machine-learning based survival prediction 

models will by far prove superior in comparison to the 

traditional statistical methods, indicated by their consistently 

high C Index values in process. Challenges of the Clinical 

Integration: Many of these AI models must still undergo 

validation for prolonged periods across different patient 

populations and clinical settings. Real implementation of AI 

tools following the regulatory algorithm will be the immediate 

challenge ahead. AI model promises a lot towards revolution 

in liver transplantation especially in improving early 
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diagnostics, donor-recipient match optimization, and 

treatment personalized. The traditional models key findings 

and limitations are included in Table 4. 

Table 4. Traditional models key findings and limitations 

Reference Method Used Dataset Used 
Performance 

Metrics 
Key Findings Strengths Limitations 

[20] 

ML-Based Risk

Model (rLasso)

for Ferroptosis

Regulation 

FerrDb, TCGA 

C Index (High 

predictive 

accuracy) 

Identified 29 hub 

genes; TMSB4X as a 

key biomarker 

Strong predictive 

model for HCC 

prognosis 

Requires external 

validation for 

therapeutic 

intervention 

[21] 

ML-Based

Biomarker

Identification for 

ATP6V1C1 

TCGA, Single-

cell 

transcriptomics 

Expression 

correlation, 

survival analysis 

ATP6V1C1 

correlates with poor 

prognosis and 

immune evasion 

Integrates multi-

omics data for 

comprehensive 

analysis 

Lacks validation 

in large clinical 

cohorts 

[22] 

ML-Based Gene

Screening for

HCC & Hepatitis 

B/Liver Cirrhosis 

GEO, TCGA, 

UALCAN 

Kaplan-Meier 

survival, ROC 

curve 

Identified four key 

genes linked to HCC 

and chronic hepatitis 

Multi-method 

validation of 

biomarkers 

Requires larger 

validation datasets 

[23] 

Multi-Omics 

Clustering for 

Anoikis 

Resistance 

HCC patient 

datasets 

High 

classification 

accuracy 

Identified PLG as a 

key 

immunometabolic 

factor 

Comprehensive 

approach using 

multiple data layers 

Lacks real-world 

implementation 

validation 

[24] 

Competitive ML 

for Immune-

Related Cell 

Death Signature 

Multi-omics 

datasets (18 

cohorts) 

High accuracy 

in stratification 

Developed IRCDI 

for individual 

treatment decision-

making 

High clinical 

relevance for 

personalized 

medicine 

Needs further 

real-world testing 

[25] 

ML-Based Gene

Identification for

TCMR 

GSE145780, 

scRNA-seq 

Enrichment 

analysis, 

expression 

validation 

Identified 5 key 

genes linked to 

transplant rejection 

Provides potential 

drug targets for 

intervention 

Requires 

independent 

validation in 

larger cohorts 

[26] 

ML-Based

Diagnostic and 

Prognostic Model 

TCGA, GEO 

(GSE149614) 

Accuracy 

(High), Survival 

prediction (Cox 

model) 

Identified APLN as a 

key biomarker 

Integrates single-

cell sequencing 

with ML 

Lacks real-world 

clinical validation 

[27] 

Transfer Learning 

for Post-

Transplant 

Complications 

425 LT patients 

Precision: 

91.22%, Recall: 

91.70%, F1-

Score: 91.18% 

Improved prediction 

of post-LT 

complications 

Overcomes small 

data limitations 

Requires further 

real-world 

validation 

[28] 

Deep Learning for 

Recurrence 

Prediction Post-

LT 

TCGA, RNA-

seq (7 patient 

pairs) 

Identified 20-

gene signature 

IL6 linked to 

immune escape and 

recurrence 

Provides insights 

into 

immunotherapy 

response 

Small dataset, 

needs external 

validation 

[29] 

AI-Assisted 

Pre/Post-

Transplant 

Therapy 

Optimization 

Multi-source 

clinical datasets 
Not specified 

Highlights emerging 

biomarkers for 

pre/post-LT 

strategies 

Identifies key areas 

for future 

transplant 

guidelines 

Limited by data 

heterogeneity 

[30] 

Frailty and 

Senescence 

Biomarker 

Analysis 

2022 LT 

patients 

R²=0.50 

(p16INK4a), 

R²=0.53 

(p21CIP1) 

Identifies biomarkers 

linked to post-LT 

frailty 

Strong correlation 

between 

senescence and 

outcomes 

Needs validation 

in multi-center 

cohorts 

[31] 

ML-Based

Mortality Risk 

Prediction 

555 HCC 

patients (MRI) 

C Index: 0.8503 

(Training), 

0.8234 

(Validation) 

AI-based survival 

prediction 

outperforms clinical 

staging 

Fast, automated 

prediction model 

Requires real-

world 

implementation 

[32] 

Deep Learning for 

In-Hospital 

Mortality 

Monitoring (DL-

CUSUM) 

1066 LT 

patients 
AUC: 0.857 

AI-driven real-time 

mortality monitoring 

High predictive 

accuracy vs. 

traditional risk 

scores 

Needs further 

prospective 

evaluation 

[33] 

ML for 

Differentiating 

HCC from Liver 

Metastasis 

Multi-center 

dataset (LI-

RADS) 

AUC: 0.784 (LI-

RADS), 0.83 

(ML Model) 

ML outperforms LI-

RADS for HCC vs. 

metastasis 

Enhances 

diagnostic 

accuracy for 

complex cases 

Requires 

independent 

validation 

[34] 

ML-Based

lncRNA

Biomarker

Integration

52 HCC 

patients, 30 

controls 

Sensitivity: 

100%, 

Specificity: 97% 

ML improves HCC 

detection accuracy 

High precision in 

integrating multi-

omics data 

Small dataset, 

requires larger 

validation 

[35] 
ML-Based Acute

Variceal Bleeding

330 cirrhotic 

patients 

AUC: 0.782 

(Internal), 0.789 

LS model 

outperforms clinical 

AI enhances 

cirrhosis 

Requires 

prospective 
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Prediction (External) scores management validation 

[36] 

Deep Pathomics 

Score (DPS) for 

HCC Recurrence 

380 LT patients 

C Index: 0.827 

(Training), 

0.794 

(Validation) 

AI-based recurrence 

prediction for post-

LT patients 

Integrates 

histological 

features with deep 

learning 

Needs further 

multi-center 

validation 

[37] 

AI for Circulating 

miRNA 

Biomarkers 

Egyptian HCC 

patient datasets 

Sensitivity: 

98%, 

Specificity: 99% 

Identifies miRNAs as 

prognostic 

biomarkers 

High diagnostic 

accuracy vs. 

traditional methods 

Requires 

validation in 

diverse 

populations 

[38] 

AI-Based NASH 

Progression 

Modeling 

20,000 patient 

simulation 

Life extension: 

+14.3 years for

SG patients

SG reduces need for 

LT in obese NASH 

patients 

Provides a strong 

policy 

recommendation 

Based on 

simulation, not 

real-world data 

[39] 

CNN-Based 

Early-Stage HCC 

Recurrence 

Prediction 

120 HCC 

patients (MRI) 
AUC: 0.71-0.85 

Identifies high-risk 

recurrence patients 

Improves follow-

up imaging 

strategies 

Needs prospective 

evaluation 

[40] 

Single-Cell AI-

Based PKRG 

Prognostic 

Signature 

TCGA, ICGC, 

GEO 

Identifies CDK4 

& AURKB as 

prognostic 

markers 

AI improves HCC 

survival stratification 

Supports 

personalized 

therapy targeting 

Requires further 

clinical validation 

Figure 3 shows the change in AUROC scores of 40 research 

studies, plotted by their Reference Paper Index on the x-axis. 

The y-axis depicts the respective scores of the AUROC which 

is between 0 and 1, a factor that shows the performance of the 

model in classifying between classes - a high score means high 

classification capacity. The line plot with blue notes indicates 

that there are great fluctuations among studies and the results 

of models or methods published in such papers can be 

different. Other studies had almost perfect scores of AUROC 

nearing 1.0 whereas others had low scores of almost 0.0. This 

variability means that predictive performance is significantly 

affected by other factors like the quality of the data set used, 

the way the experiment was carried out, or even the model that 

was used. The overall pattern is that the results were not 

consistently improved or worsened but that there is a 

widespread dispersion of findings, which points to 

inconsistency or diversity of research findings of the disparity 

in the results of the performance of the AUROC. 

Figure 3. Model’s AUC analysis 

Table 4 analysis compares different methods used 

prognostically for hepatocellular carcinoma (HCC) and liver 

transplantation (LT) outcomes, particularly in the domains of 

deep learning, machine learning, and traditional statistical 

models. This comparative analysis indicates both positive and 

negative aspects of the datasets used, performance measures, 

key findings, strengths, and limitations. The entire effort 

settles into the overview of effectiveness of AI driven 

application in HCC diagnosis, prognosis, and LT outcomes. 

This review shows how machine learning and deep learning 

have revolutionized the management of HCC and outcomes of 

LT. Some of the interesting trends and perspectives from this 

study are: Improved predictive accuracy: The AI-based 

models generally score higher than the conventional clinical 

staging systems in predicting survival. Emergence of Imaging-

based Diagnostics: AI models improve differentiation of HCC 

from metastasis, predict early recurrence, and mortality. 

Biomarker identification and stratification: AI's capability of 

identifying new biomarkers for prognostic purposes of HCC 

and recurrence post-LT. Risk assessment before complications 

post-transplantation: Accurate prediction concerning 

complications post-LT is much more pronounced in AI models 

than in other areas. Personalizing medicine and treatment 

optimization: Extreme patient stratification concerning 

immune profiles and predicting therapy responses are 

propounded by the AI model. Yet, despite these advancements 

made, several challenges abound: Model Validation and 

Generalization: Several AI models require validation across 

different diverse cohorts and through multi-centers. Clinical 

Application: Application in the real-life happening clinical 

practice is another hurdle. Regulatory Approval and Ethical 

Considerations: AI model evaluation requires a study of 

regulatory compliance along with bias mitigations. By and 

large, all AI approaches bring into perspective a good deal of 

promise in the conversion that will happen in liver 

transplantation and HCC management. Future work should 

focus on improving robustness and increasing datasets as well 

as applying AI-based prediction to everyday clinical practice 

sets. 

The comparative analysis shows that the models built on 

ensemble and deep learning usually perform better than 

classical machine learning. There are however more basic 

algorithms that have merit as they are easy to understand, 

require fewer resources and are easy to implement. Research 

seldom performs thorough error analysis, so there are 

unanswered questions concerning constraints of models and 

failures of models. All in all, it is possible to conclude that 

hybrid approaches with predictive power and interpretability 

should be used. 

Nonetheless, considerable advancements notwithstanding, 

the literature has identified significant gaps, such as the 

absence of sufficient data, imbalances, the absence of 

standardized evaluation procedures, and focus on model 

explainability. Very little research deals with scalability or 
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interface with the real world. Ethics, including privacy of data 

and algorithm bias, are not properly researched. These issues 

suggest that more repeatable, open, and practical research 

should be conducted in the future. 

Although there are studies which declare possible real world 

or clinical application, not many of them have been confirmed 

in practice. Majority of the research is still in the proof-of-

concept phase and little has been said about the feasibility of 

deployment, its cost and even its compatibility with the 

regulatory environment. The future work ought to aim at 

reducing the discrepancy between theories and real-life 

application in the field, making models both technically sound 

and useful. 

4. CONCLUSION AND FUTURE SCOPE

From this systematic review of 40 studies, one can see that 

machine learning (ML) and deep learning (DL) strategies are 

fast becoming increasingly influential in applications 

pertaining to hepatocellular carcinoma (HCC) prediction, liver 

transplantation (LT) optimization, and many others. Among 

the methods applied, the most widely-used methods were 

supervised learning models like logistic regression, support 

vector machines (SVM), and deep neural networks (DNN) due 

to their flexibility with structured clinical and imaging data. 

The multimodal imaging-based (MRI and CT) predictive 

models on the other hand achieved better results with respect 

to risk stratification, recurrence prediction, and survival 

estimation. Models discussed included the deep-pathomics 

score (DPS) model in HCC recurrence, a CNN-based survival 

prediction model, and the DL-CUSUM system for monitoring 

in-hospital mortality, all of which proved highly accurate 

compared with traditional clinical scoring systems. 

Additionally, models that are evidence generation from single-

cell transcriptomic information and risk modeling associated 

with ferroptosis added more evidence on the molecular 

mechanisms underlying HCC development while the promises 

for AI become a reality in precision medicine platforms. The 

existing research indicates significant advancement in the 

utilization of intelligent models for data-driven decision-

making; yet, some essential obstacles persist without 

resolution. Even while work is still being done on data 

standardization and explainable AI, future research should 

focus on creating federated learning frameworks that allow 

various institutions or devices to work together to train models 

without putting data privacy at risk. These kinds of methods 

would make it easier for models to work in a wider range of 

settings and be used more widely. Moreover, subsequent 

research ought to concentrate on developing multimodal 

fusion systems that can amalgamate diverse data sources to 

facilitate more holistic and context-sensitive predictions. It is 

also important to focus on deep learning architectures that can 

be understood, so that domain experts can trust and explain the 

decisions made by complex models. To enhance practical 

applicability, researchers ought to investigate automated 

model adaptation methodologies that provide ongoing 

learning from streaming data inside dynamic contexts. Also, 

creating benchmarking repositories and open-source 

evaluation procedures would make studies more open, 

repeatable, and fair. Lastly, future studies should look at 

ethical and social issues, such as data governance, justice, and 

long-term use of AI, to make sure that new technologies fit 

with social values and rules. 
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