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Liver transplantation (LT) is a high risk and complicated procedure in which predictor
modeling can be utilized to improve donor-recipient matching, survival prediction, and
postoperative care. This research provides an iterative statistical analytical review of
machine learning (ML), deep learning (DL) and transfer learning (TL) strategies to liver
transplantation optimization. Systematic literature searches in PubMed, Scopus, IEEE
Xplore, and Web of Science databases to find studies published since 2015 and 2024 were
used to conduct the review. Peer-reviewed articles that follow either ML, DL, or TL to a
prediction, classification, or survival analysis task related to LT were included in the
inclusion criteria; articles who did not quantify their results were not included. A
comparative framework was used through an iterative process, which combined quantitative
extraction of accuracy, Area Under Curve (AUC), F1-score, and Root Mean Square Error
(RMSE) with statistical aggregation to determine the performance trends across model
categories. Interpretations show that hybrid deep learning and transfer learning algorithms
are always more effective in predicting outcomes and estimating the survival of grafts as
compared to the traditional ML algorithms. The paper demonstrates the lack of
standardization, interpretability, and reproducibility of datasets and suggests further
unification of explainable Al and multi-center data harmonization in clinical applications.

1. INTRODUCTION

support vector machines (SVM), random forest, convolutional
neural networks (CNN), recurrent neural networks (RNN),

Liver transplantation (LT) remains the gold-standard
treatment for end-stage liver disease (ESLD) with or without
hepatocellular carcinoma (HCC), but patient selection, donor
organ allocation, perimeter risk stratification, and post-
transplant surveillance challenges continue to impair
outcomes. Biochemical markers [1], radiographic imaging,
and histopathological examination traditionally underpin
clinical decision-making but suffer subjectivity, interobserver
variability, and an inability to predict long-term
complications. Artificial intelligence (Al) and machine
learning (ML) have gone a long way toward transforming LT
in recent years, offering data-driven automated decision-
support systems to promote transplant success rates [2].

The incorporation of Al-based methods still lies within
infancy, leaving many questions on model performance and
adaptability as well as clinical translation unanswered [3].
There have been studies where researchers analyzed ML and
DL methods independently in liver transplants and HCC
treatment [4]; however, a systematic and full statistical review
comparing the performance, strengths, and weaknesses across
these works is lacking. These studies used logistic regression,
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transfer learning models, and multi-omics clustering to predict
graft survival, recurrence risk, and post-operative
complications [5]. Still, there are hardly any standard
performance evaluation procedures, the studies' datasets are
restricted mainly to small and single-center data, and there is
limited research about how Al models can be better configured
towards extensive clinical acceptance [6].

This study engages in a detailed comparative analysis of 40
recent Al-based models applied in liver transplantation and
HCC prognosis. Using an iterative statistical analytical
framework, this review systematically evaluates AUROC, C
index, sensitivity, specificity, and predictive accuracy metrics
over several Al forms. The review will consist of both risk
assessment-type models (logistic regression, Cox models) and
prediction-type classification models (SVM, random forest,
decision tree). This study will also analyze the validity of
CNN, transfer learning, and deep survival networks. The
analysis will take into account the contributions of multi-omic
clustering approaches and feature selection (LASSO, principal
component analysis, SHAP explanations) to identifying
biomarkers associated with transplant success and cancer
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recurrence populations [7].

The contributions of this work of utmost importance are:
Identification of best-performing Al models for the various LT
and HCC applications; Standardized evaluation of predictive
performance metrics across methodologies [8]; Insight into
clinical challenges posed and strategies for future integration
of Al in hepatology. Through the limitations of preceding
studies, this work aims to help researchers and clinicians
choose the Al decision support system that would most benefit
their work in liver transplantation and oncological risk
assessment [9]. The results will pave ways for bridging the gap
between Al  model development and real-world
implementation in hepatology and transplant surgery [10].

1.1 Motivation and contribution

The urgent need for Al optimization of liver transplantation
and management of HCC constitutes the primary motivation
of this study. Although certain developments are seen in
surgical techniques and immunosuppressive therapies, the
preoperative risk assessment, donor-recipient matching, and
postoperative surveillance remain suboptimal.

Al models could give very accurate predictive abilities,
automated integration, and real-time decision-making, but
nobody seems to agree on which model the best is and
provides clinically interpretable results. Differences in dataset
size, feature selection methods, and validation strategies
complicate any attempt to assess Al performance in
hepatology. Such a statistical and performance-driven review
seeks to formulate a critical comparison of ML, DL, and TL
models aimed at the best optimization of LT and HCC
prognosis.

This work brings forth several novel contributions to Al-
based precision medicine in hepatology. First, it delivers the
most extensive performance comparison to date, evaluating 40
Al models applied in liver disease diagnosis, prognosis, and
transplantation. The second contribution entails an
examination of the adaptability of the Al schemes when
applied across different datasets, demonstrating the scalability,
robustness, and generalizability of the models. The third
contribution is a structured evaluation of hybrid models that
elucidates how multi-omics clustering, transfer learning, and
deep survival networks work together to improve transplant
outcome prediction.

Finally, this review sets out key recommendations for future
research and clinical integration, thereby establishing a
framework for developing Al-driven decision-support systems
tailored to liver transplantation and HCC risk stratification.
This work could fast-track the adoption of Al within
hepatology and promotes personalized transplant approaches,
early detection of recurrences, and increased patient survival
sets.

2. REVIEW OF EXISTING MODELS USED FOR
LIVER TRANSPLANTATION ANALYSIS

Liver transplantation (LT) is a complex medical procedure,
which, apart from other major challenges, has several
significant perioperative complications, issues related to
donor-recipient matching, and postoperative outcomes. The
application of artificial intelligence (Al) in LT extends
handling predictive modeling, decision support, and clinical
management. This review attempts to provide a comparative
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perspective on the hybrid Al models-the deep learning (DL)
and traditional machine learning (ML) approaches-focused
specifically on liver transplantation.

Predictive modeling in liver transplantation prediction of
surgical complications in LT is very relevant in optimizing
patient management. Early reports suggested that traditional
ML models can predict massive intraoperative hemorrhage,
with logistic regression as one of the leading ones regarding
its interpretability and rigorous calibration performance [1].
The major predictive factors found include disease etiology,
activated partial thromboplastin time (aPTT), and Model for
End-stage Liver Disease (MELD) score, with an AUROC of
0.775. However, ML requires a complex feature engineering
that may be insufficiently able to capture complex and non-
linear relationships in clinical data samples.

On the contrary, deep learning-based image analysis has
improved preoperative planning and surgical navigation. A
mixed-reality (MR) training system using 3D liver
reconstruction models and iterative closest point (ICP)
tracking augmented visualization of middle hepatic vein
(MHYV) during surgery [2]. Joint integration of MR and Al-
based simulations postulates that spatial recognition using DL
can positively improve surgical outcomes and donor safety.
Additionally, portals using real-time ultrasound contrast
agents combined with deep learning algorithms compared with
conventional intravascular pressure readings have been
superior as regards specific measurements for portal vein
pressure (PVP) [3]. Detection of portal hypertension using
subharmonic scattering signals of microbubbles in contrast-
enhanced ultrasound provided high sensitivity (93.3%) and
specificity (91.7%), indicating that Al-enhanced imaging can
supplant invasive diagnostic techniques.

2.1 Al for liver tumor recognition and classification in
transplant candidates

Tumor burden generally determines eligibility for
transplantation; hence, detecting and classifying lesions
correctly would have vital importance. Unstructured liver
tumor reports have incorporated traditional ML tactics through
NLP and interpretable ML classifiers [4]. Improved risk
assessment and decision-making in LT candidates are the
areas in which these methodologies have drawn benefits.

Deep learning has drastically improved tumor segmentation
and classification. Multimodal fusion architectures have
enhanced cross-modality adaptation for liver segmentation in
CT-MRI data for the limitations induced upon traditional ML
models due to domain shift [5]. Similarly, deep learning
models such as metric learning and attention-aware weighted
fusion yielded highly accurate (84%) differentiation of
histologic grades of hepatocellular carcinoma (HCC) [6].
Hence, advances like these have underscored the need for
hybrid Al models for improved preoperative evaluations in
LT.

Recent research corroborating the importance of antigen-
presenting cells and T-cell infiltration in determining
immunological responses against HCC has promoted studies
toward developing machine learning-based LncRNA
signatures for the immune and survival predictions of LT
candidates [7]. Similarly, disulfidptosis-related long
noncoding RNAs (DRLs) have been explored for their role in
patient prognosis; Al-derived risk scores exceeded
conventional clinical measures in efficacy [8]. These studies
show how hybrid Al models enhance precision medicine by



linking molecular and clinical data in LT [9].

2.2 Al in the monitoring and outcome prediction post-
transplantation

Should liver cancer recur post-transplantation, it would
make one of the more severe challenges [10]. Predictive
modeling concerning recurrence after different treatment
modalities was developed based upon Al that achieved high
accuracy, with an AUC of 0.92 for percutaneous ablation (PA)
and 0.86 for surgical resection (SR) and 0.79 for transarterial
chemoembolization (TACE) [11]. Multimodal deep learning
(MDL) models based on CT and MRI imaging were also
developed mostly for on improvement in predicting
microvascular invasion (MVI) in HCC, attaining an AUC of
0.844 [12]. These suggest that hybrid Al approaches
integrating radiomics, clinical parameters, and deep learning
architectures will make strength in post-transplantation
surveillance sets.

2.3 Hybrid Al models in liver transplantation: Current
limitations and future prospects

Although Al applications promise much in LT, there are
several impediments [13]. Different Al methods require
mammoth-sized, high-quality datasets for multimodal clinical
and imaging data learning [14]. For instance, CNNSs stand out
with better predictive performance for post-transplant survival
(C Index: 0.824) compared to conventional ML models [15],
yet heterogeneities in the data continue to be impediments to
generalizability. Nanoparticle-based targeted treatments were
the future direction for Al-aided liver cancer therapy. Al-
augmented docking and bioinformatic investigations have

identified prominent target genes such as AKR1C3, with
nanomaterial-based delivery systems having demonstrated
potential to reverse tumor hypoxia [16]. Additionally, models
for predicting HCC downstaging have been developed fairly
robustly, with hybrid models that incorporated clinical and
radiomic features achieving AUROC values of 0.877 [17].
With metabolic-associated fatty liver disease (MAFLD)
having been identified as the most common etiology of HCC,
Al-driven solutions to its diagnosis and management would be
apropos [18]. Ayurvedic diagnostic algorithms based on gut
microbiota and genetic markers could hold out the promise for
tailored treatment planning [19]. Hepatoprotective effects of
herbal compounds such as Liv-52 have been assayed, followed
by molecular simulations which identified (-) Syringaresinol
as one of the most effective therapeutic leads [20]. Liver
transplantation (LT) is still the only ultimate cure for end-stage
liver disease and hepatocellular carcinoma (HCC); yet, issues
still surround the field of optimizing donor-recipient matching,
perioperative risk stratification, and post-transplant outcomes.
Altogether, the analyzed literature reveals a considerable
development of the implementation of new computational and
machine learning tools to solve domain-related issues.
Although the methodologies used differ greatly in different
works, the majority of the studies focus on enhancing
predictive accuracy, data efficiency, and model
interpretability. Nevertheless, the lack of coherence in the
experimental design and data management is a limitation of
the generalizability of results. All these studies together
emphasize the increased realization of the role of intelligent
models in optimization of decision-making processes in
various fields of application. The limitations of the hybrid Al
models in liver transplantation are included in Table 1.

Table 1. Hybrid Al models in liver transplantation limitations

Reference Method Used Findings Strengths Limitations
Traditional ML models Hiah interpretabilit Lower accuracy compared to
Logistic Regression for identified key predictive 9 erpretaiiity, DL models; does not capture
[1] - . effective in risk -
Hemorrhage Prediction factors for massive e complex non-linear
- stratification. . .
hemorrhage during LT. relationships.
Mixed-Reality (MR) MR-based 3D models . - Limited sample size; real-time
-0 i . ; o Enhanced surgical training, . i i
[2] Training with ICP improved surgical navigation . - - integration in surgery remains a
- - precise vein tracking.
Tracking inLT. challenge.
Al-enhanced ultrasound : e 0
Ultrasoun_d Contrast-Based analysis provided high High sensitivity (93.3%) Needs clinical validation for LT
[3] Portal Vein Pressure (PVP) . . . and specificity (91.7%) for L
accuracy in non-invasive PVP - applications.
Measurement portal hypertension.
measurement.
NLP-based automation Improved efficiency and
NLP and ML for Report structured unstructured liver P ney Performance varies with dataset
[4] - . accuracy of clinical ey | Gt
Structuring tumor reports for Al-driven d . quality; limited generalization.
. ocumentation.
risk assessment.
Domain Adaptation for Hybrid I.DL model Iearr_1ed Overcomes domain .
: robust liver segmentation . Requires large dataset for cross-
[5] Cross-Modality CT-MR - - dependency; improved : e
. features across imaging 2 modality training.
Data Segmentation g generalizability.
modalities.
) . Al improved diagnostic High accuracy (84%), . T
[6] DL-Based MultlmOFjaI precision in HCC histologic sensitivity (87%), and Requires further validation in
MRI for HCC Grading . L larger datasets.
grading. precision (89%).
Machine Learning-Based Al-derived biomarkers Robust predictive capacity .
) : : Lacks external validation in
[7] APC-TCI LncRNA improved prognostic for immune response and -
- o T ) prospective cohorts.
Signature stratification in HCC. prognosis.
LASSO and Cox Al-derived DRL signature . - . . . . I
[8] Regression for Prognostic ~ outperformed clinical models High prec.ilctlve efflt_:acy n ReqUIr_es_ add_ltlonal valldgtlon
. - o survival analysis. for clinical implementation.
Signature in predicting HCC outcomes.
[9] Gene Expression Analysis Al-based hub gene Identified biomarkers Limited applicability in clinical

for TACE Response

identification correlated with

linked to therapy

practice.
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Prediction
Al-Driven Image

[10] Segmentation for HCC
Detection
Meta-Analysis of Al in
[11] HCC Recurrence
Prediction
Multimodal Deep Learning
[12] (CT-MRI) for MVI
Prediction
[13] Cox Regression for Time-
Dependent Risk Factors
[14] DL-Based Radiomics for
Sarcopenia Detection
CNN-Based Survival
[15] Prediction from CT
Imaging
[16] Al-Assisted Nanoparticle
Therapy for HCC
Al-Driven Prognosis
[17] Model for HCC
Downstaging
Al-Based Molecular
[18] Docking for Herbal
Therapy
Al-Driven
[19] Epidemiological Analysis

of MAFLD-HCC

TACE response in HCC.
Al models improved early
detection and segmentation

accuracy.

Al models demonstrated high
AUC values in predicting
recurrence post-treatment.

Al-enhanced fusion models
improved MVI prediction in
HCC.

Al revealed gender-specific
risks in post-LT liver function
deterioration.
Al-enhanced radiomics
predicted post-transplant
survival.

Al integration improved post-
treatment survival estimation.

Al-optimized nanodrug
targeting improved tumor
hypoxia suppression.
Hybrid model combining
radiomics and clinical features
improved LT candidate
selection.

Al Identified plant-derived
inhibitors for HCC treatment.

Al-assisted diagnosis and
treatment algorithms for
MAFLD-related HCC.

resistance.

High diagnostic efficiency;
useful for pre-transplant
assessment.
Systematic validation of Al
effectiveness in predicting
recurrence.

High AUC (0.844);
superior to traditional
models.

Identifies high-risk groups
dynamically over time.

High prognostic accuracy;
validated across multiple
centers.

High C Index (0.824);
robust multimodal fusion.

Potential clinical
translation for Al-enhanced
therapy.

High AUROC (0.877);
better than clinical-only
models.

Supports alternative
medicine integration into
Al-driven treatment.
Personalized treatment
pathways based on
metabolic profiling.

Needs multimodal validation
across different imaging
systems.

Study heterogeneity;
differences in Al model
performance across datasets.

Requires additional real-world
validation.

Limited dataset; requires real-
time monitoring integration.

Requires broader validation in
diverse cohorts.

Data imbalance may affect
model performance.

Needs in vivo trials for efficacy
validation.

Computationally intensive;
requires clinical workflow
integration sets.

Requires in vitro and in vivo
validation in process.

Needs clinical validation across
diverse populations.

Acrtificial intelligence (Al) has enabled predictive modeling
and personalized decision-making with techniques that
involve conventional machine learning (ML) as well as deep
learning (DL). This review of literature addresses the latest
developments in hybrid Al models used in liver
transplantation, with a comparison of their performance in
predictive analytics, immunological profiling, and long-term
transplant monitoring procedures.

2.4 Traditional machine learning methods

Classical ML methods have been used extensively to
forecast post-transplantation complication and survival
outcomes. For instance, marker choice models like LASSO
regression and support vector machine-recursive feature
elimination (SVM-RFE) were employed to identify major
prognostic biomarkers, such as ATP6V1C1, a biomarker for
HCC progression and immune evasion [21]. ML-guided
differential gene expression analysis has identified important
co-expressed genes in chronic hepatitis B (CAH-B), liver
cirrhosis (LC), and HCC progression to help predict early-
stage HCC risk [22]. Along with genetic profiling, ML-driven
clustering algorithms have identified anoikis-mediated ECM

resistance as an important driver of HCC metastasis and drug
resistance [23]. This implies the capacity of these ML models
to combine multi-omics data for a holistic risk estimation.
Deep learning enhancements deep learning, particularly
convolutional neural networks (CNNSs), has turned out to be
alternative approaches for LT outcome predictive modeling
with increased accuracy [24]. The application of residual
CNNs to histopathology has resulted in the development of
deep pathomics score (DPS) with high concordance index
(0.827) predicting tumor recurrence after transplant [25].

Similarly, repeated HCC prediction models using deep
learning approaches from MRI (VGG16 and XGBoost) have
reported an AUC-ROC of 0.71 to 0.85, which significantly
increases  recurrence-free  survival  assessment.  The
conventional ML adheres to structured input variables,
whereas the DL directs the extraction of hierarchical
representations directly from imaging and histological inputs
[26], thus enhancing predictive granularity. The integration of
a deep survival model such as DeepSurv with Cox regression
analysis further refines risk stratification and proves its
superiority over the conventional regression ones [27]. The
limitations of the traditional machine learning methods are
included in the Table 2.

Table 2. Limitations of traditional machine learning methods

Reference Method Used Findings Strengths Limitations
We'ght?d Gene Co- Al-assisted gene analysis High predictive accuracy; Requires clinical validation
Expression Network - e : . e . L
[20] - identified ferroptosis identified TMSB4X as a key and integration into
Analysis (WGCNA) and . . - .
regulators in HCC prognosis. biomarker. transplant screening.
ML models
Differential expression Al-based biomarker discovery Identified key pathways Functional validation in a
[21] analysis with ML identified ATP6V1C1 as a influencing HCC immune larger patient cohort is
integration prognostic marker. microenvironment. needed.
[22] LASSO, Random Forest, Al-driven gene selection Identifies risk groups for early Requires external
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and SVM-RFE for
biomarker discovery

Multi-Omics Analysis and

identified common markers
between HCC, HBV, and LC.
Al-derived consensus

[23] . . signature predicted Anoikis
Clustering Algorithms resistance in HCC.
Competitive ML Al-assisted screening revealed
[24] Framework for Immune- 9 genes influencing immune-
Related Cell Death Index related cell death
(IRCDI) '
Al-based approach identified
[25] WGCNA and ML_-based key genes in T-cell mediated
feature selection -
rejection post-LT.
Binarv Classification and Al-enhanced diagnostic model
[26] |\)/I||_ Aloorithme for HCC using TCGA and
g GEO databases.
. . Al-assisted prediction of post-
[27] Transfer Learning with LT complications with high
SHAP
accuracy.
Al-driven gene signature
[28] Deep Learning for identified IL6 as a key
Transcriptomic Analysis regulator of HCC recurrence
post-LT.
ML-Based Biomarker and Al-assisted biomarker
[29] Treatment Strategy discovery enhances HCC risk
Prediction stratification.
Al-enhanced frailty
RT-gPCR and Biomarker assessment linked senescence
[30] -
Analysis markers to transplant
outcomes.
. Al-driven survival prediction
Random Survival Forest -
[31] for HCC Prognosis model using MRI-based
radiomics.
. Al-enabled real-time
Deep Learning-Based o
[32] i monitoring of post-LT
CUSUM (DL-CUSUM) mortality.
Al-enhanced LI-RADS
[33] ML-IBased LI-RADS improved HCC differentiation
mprovement .
from liver metastases.
Al-enhanced diagnostic tool
ML Model for LncRNA- . -
[34] Based HCC Detection Integrating INcRNA
biomarkers.
Liver-Spleen Model for _Al-assisted CT-based
[35] Risk Prediction radiomics improved prognosis
prediction for AVB.
Deep Pathomics Score Al-derived histopathological
[36] (DPS) for Post-LT features predicted post-LT
Recurrence recurrence.
. Al-enhanced miRNA analysis
[37] ’\é;smogggoéglﬁg]sﬁ- demonstrated high specificity
9 in HCC detection.
Markov Decision Model Al-driven risk modeling
[38] suggested surgical weight loss
for NASH
reduces LT need.
CNN-Based MRI Analysis  Al-assisted imaging biomarker
[39] for HCC Recurrence extraction for early recurrence
Prediction risk.
Single-Cell Sequencin Al-derived PKRG signature
[40] g g 9 stratified HCC patients for

and LASSO Regression

targeted therapy.

intervention in HCC.

Identified PLG as a key
molecular target for therapy.

Useful in predicting
therapeutic response to
immunotherapy.

Effective in predicting graft
rejection risk post-transplant.

Identified Apelin (APLN) as a
reliable HCC biomarker.

Improved performance in
handling high-dimensional
small-scale LT data.

Offers potential for recurrence
prediction and post-transplant
therapy.

Supports personalized pre-
transplant and adjuvant therapy
strategies.

Demonstrates the impact of
frailty on LT outcomes.

High accuracy (C Index
0.8503) in predicting mortality
risk.

High precision in risk-adjusted
mortality predictions.

Higher diagnostic sensitivity
than traditional radiological
methods.
Achieved near-perfect
sensitivity (100%) and
specificity (97%).

Outperformed traditional
clinical scoring models.

High prognostic accuracy;
identified immune cells
influencing recurrence.

Superior performance
compared to traditional
statistical models.
Demonstrated significant life
expectancy gains for NASH
patients.

High predictive accuracy
(AUC 0.71-0.85); useful for
post-transplant monitoring.

Identified potential therapeutic
targets (CDK4 and AURKB).

validation across diverse
populations.

Needs validation in patient-
specific clinical settings.

Requires broader clinical
testing for LT patients.

Requires integration into
clinical decision-making
frameworks.

Needs further validation for
integration into transplant
evaluation.

Requires larger datasets for
real-world validation.

Lacks clinical application
in real-time transplant
management.

Requires regulatory
approval and integration
into transplant protocols.

Requires validation in
diverse transplant
populations.

Computationally intensive;
requires integration with
imaging workflows.
Needs further optimization
for real-time clinical
deployment.
Requires multicenter
validation to confirm
reproducibility.

Requires validation in
large-scale clinical trials.

Requires real-world
validation in transplant
candidates.

Requires expansion into
multicenter studies.

Requires cross-population
validation.

Requires long-term real-
world validation.

Requires prospective
validation in larger
datasets.

Requires clinical trials to
confirm efficacy.

2.5 Machine learning in Immunogenomics

Immunological profile in liver transplantation also has a
pivotal role in ensuring survivability of the graft as well as
determination of risk against rejection [28]. Traditionally
employed machine learning methods were utilized for
selecting candidate genes such as ITGB2 and 1L-18 in T-cell-
mediated rejection (TCMR), employing differential
expression gene analysis and WGCNA [29]. The more the
multi-omics proteins and transcriptomics strategies facilitate
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the discovery of regulated cell death (RCD) signatures to tailor
immunotherapy approaches for HCC patients. In addition to
the application of genetic profiles, deep ML frameworks have
simulated immune cell infiltration patterns and elucidated the
function of tumor-associated macrophages in HCC
progression and immune escape following transplantation
[30]. These implications lead to the reality that ML-based
immunogenomic signatures may be pivotal in stratum-specific
patient candidates.

Figure 1 depicts the correlation heat map of the key



performance measures - Area Under the ROC Curve
(AUROC), Sensitivity, Specificity, Precision and Recall
calculated on all the reviewed models in liver transplantation
prediction tasks. The color scale shows the Pearson correlation
coefficient as deep red which implies a strong positive
correlation and blue implies negative or weak association.
According to the analysis, Sensitivity and Precision are
moderately positively correlated (0.57), that is, the higher the
sensitivity of a model, the higher is the precision, which
balances false positives and true positives. Likewise,
Specificity and Precision (0.55) also demonstrate a moderate
correlation, and thus, strong classifiers have equal
performance with respect to detection scales. Conversely, the
correlations of the AUROC and the Recall with other measures
are fairly weak (r < 0.2), and this means that a rise in global
discrimination ability (AUROC) does not necessarily
correspond to a similar rise in recall.
Correlation Heatmap of Performance Metrics

- 0.6

n
-
0.2 0

1.00

Sensitivity ~ Specificity

Recall Precision Specificity Sensitivity AUROC Reference

-0.08

AUROC

Reference Recall

Precision

Figure 1. Model’s integrated result analysis

2.6 Deep learning for immunotherapy and molecular
target discovery

Deep learning has revolutionized immunological profiling
by leveraging single-cell sequencing data [31]. This synergy
of deep learning and LASSO regression has enabled PKRG-
specific prediction models to pinpoint CDK4 and AURKB as
the key regulators of HCC progression [32]. These findings are
commensurate with recent DL research dating back to post-
transplantation tumor reoccurrences that were regulated by
immune checkpoint blockers, e.g., PD-L1 [33]. In addition,
with DL augmenting single-cell transcriptomics, additional
cellular information on the tumor microenvironment was
obtained through the identification of spatial transcriptomic
distribution patterning of oncogenic markers like ATP6V1C1
[34]. These advances highlight the untapped promise of such
hybrid Al modalities in bridging molecular profiling and
clinical decision-making processes [35].

In both methodologies, adoptability of more hybrid and
deep learning setups, which integrate older statistical models
with newer neural networks, is a general direction taken. These
methods are usually effective at improving over baseline
methods, but can be much more expensive and difficult to
interpret [36]. Other studies also focus on the significance of
feature engineering and data preprocessing to attain a strong
performance. However, the common cross-validation and
benchmarking procedures are not standardized which limits
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the trustworthy comparison of techniques.

2.7 Prediction of mortality and complications with hybrid
Al models

Prediction of survival and complications after a liver
transplant remains a daunting challenge. Hybrid Al models
combining clinical and radiomic features have been shown to
offer superior prediction performance compared to the
traditional risk scores. A random survival forest model that
used multiphasic MRI-based liver radiomics was superior to
traditional staging systems, with a Harrell's C index of 0.85
[37]. A DL-CUSUM monitoring program was created for the
purpose of offering a live risk estimate for in-hospital
mortality, achieving an AUC of 0.857 significantly greater
than for the D-MELD and Balance of Risk (BAR) scores [38].
In addition, frailty and senescence are coming to be
increasingly regarded as vital predictors of outcome after
transplantation. In a research examining correlations between
cellular senescence markers (p16INK4a and p21CIP1) with
patient frailty, these markers were highly correlated with
extended hospital stay and post-transplant mortality [39].
Based on these arguments, applying Al-assisted frailty
analyses may further optimize both the likelihood of
successful candidate selection and perioperative risk
stratifications. In this regard, we find repeated HCC as a
significant limitation in liver transplantation, whose rates of
recurrence can go up to even 70% in cases with early stages
[40].

Figure 2 illustrates the performance trends of various
machine learning, deep learning, and transfer learning
methods evaluated in liver transplantation prediction tasks.
The x-axis represents different models or methodological
variants (1-40), while the y-axis shows the normalized
performance scores for key evaluation metrics, AUROC,
Sensitivity, Specificity, Precision, and Recall.

Performance Trends Across Different Methods
10

Method Index

Figure 2. Model’s performance trends analysis

The plot reveals substantial performance variability across
methods, indicating that no single algorithm consistently
dominates across all metrics. AUROC and Specificity
fluctuate moderately, reflecting differences in each model's
ability to distinguish between transplant outcomes and
correctly identify non-events. Precision and Sensitivity peaks
at certain indices suggest that deep learning and transfer
learning models achieve high true-positive detection rates for
specific configurations, whereas traditional machine learning
models exhibit more inconsistent results. Notably, recall
values are consistently low across most methods, highlighting



a tendency for models to favor precision over sensitivity in
imbalanced datasets.

2.8 Tumor recurrence and long-term prognostic modeling

Certain deep learning algorithms have emerged for
predicting risk of recurrence through the use of inappropriate
MR imaging preoperatively, with better accuracy compared to
traditional radiological evaluation. In addition, imaging
analysis using CNN has been integrated with multi-omics data
for precise recurrence prediction and identified IL6 as pivotal
in post-transplant tumorigenesis. The combined Al models
have enabled the association of molecular biomarkers with the
imaging-based evaluation of recurrence risk. The integration
of AFP-L3 with des-y-carboxy prothrombin (DCP)
biomarkers and machine-learning algorithms has shown
tremendous promise in enhancing risk stratification and
informing post-transplant immunotherapy. Although hybrid
Al models have demonstrated great potential in the field of
liver transplantation, clinical translation and generalization are
challenging. The reliance on the high-dimensional dataset
requires strict data harmonization approaches to ensure
reproducibility across various patient cohorts. Additional
constraints still exist as far as interpretability is concerned;
therefore, incorporating explainable Al (XAl) frameworks
will enable clinical adoptions. Emerging trends in federated
learning and privacy-preserving Al models would help
overcome issues for data sharing, collaborative work for Al-
based transplant research across institutions. In addition,
reinforcement learning-based decision support systems would
be an added boost to individualized treatment pathways to
maximize patient outcomes in liver transplantations. Hybrid

Al models that integrate conventional ML and deep learning
methods have certainly made significant contributions in the
liver transplantation field in predictive ability, immunological
characterization, and monitoring after transplant. The benefits
of deep learning, however, give an enormous kick to success
in imaging and fold integration in multi-omics, but
conventional ML allows good feature choice and
interpretability. The synergistic benefit of combining the two
paradigms could have a significant influence on candidate
selection, minimize transplant rejection risk, and decrease
tumor recurrence risk rates. Future studies should thus focus
on federated learning, interpretable Al, and multi-modal data
fusion to fully leverage the revolutionary potential of Al in
liver transplantations.

3. COMPARATIVE RESULT ANALYSIS

This effort attempts to systematically compare the hybrid
Al models with traditional approaches to liver transplantation
in terms of methodological frameworks, data sets,
performance metrics, key findings, strengths, and limitations.
The purpose here is to compare Al's efficacy in clinical

applications relevant to liver transplantation, including
hemorrhage  prediction, imaging  analysis,  tumor
characterization, survival prediction, and treatment

optimization. Comparison results regarding performance
differences in clinical applications between deep-learning-
based Al, traditional machine learning, and statistical models
will be discussed in the process. The traditional models used
dataset and limitations are included in Table 3.

Table 3. Traditional models datasets and limitations

Reference Method Used Dataset Used Pe;;il;r:;g:ce Key Findings Strengths Limitations
Logistic Retrospective Data relg?c\{[ie\llcépsec%ﬁn Provides a Limited to
1] Regression for (LT patients, AUROC: 0.775, P svstem for g clinically useful retrospective data;
Hemorrhage clinical AUPR: 0.753 Sy - risk-scoring external validation
L intraoperative
Prediction parameters) system. needed.
hemorrhage.
. . 3D Liver iz
Mixed Reality . . . Improved MHV Enhances surgeon ~ Small sample size;
L Reconstruction Registration - . i, . S
[2] (MR) Training tracking during LT training and requires clinical
Model (20 Error < 4mm L .
System - surgery. visualization. testing.
patients)
Sensitivity: First study
SonoVue 93.3%, demonstrating High sensitivity Requires
3] Microbubbles for ~ Canine Model (In Specificity: SonoVue and specificity in valid?ation in
Portal Vein Vivo and In Vitro) 91.7%, microbubbles for pressure human patients
Pressure (PVP) Accuracy: non-invasive PVP measurement. p '
92.6% measurement.
Converts Enhances
NLP and ML- CT Liver Tumor "FPrO‘.’ed unstructured reports efficiency in Requires domain-
[4] Based Report classification vs. - - L -
! Reports into structured medical report specific adaptation.
Structuring Bert models :
formats. analysis.
Multi-Source Overcomes
Domain Improved cross- State-of-the-art domain .
[5] Adaptation for Cﬁ;@?i g;atgget modality results for CT-MRI dependency in sgﬁgslgﬁ??ﬂﬁo?ﬂm
CT-MRI g performance adaptation. radiology Al P ging.
Segmentation models.
Multimodal . Accuracy: 84%, MCAT model Improved .
MRI-Based Deep Clinic MRI Sensitivity: outperforms classification for Requires _further
[6] - Dataset L2 - . . . validation in larger
Learning for (annotated) 87%, Precision: previous grading HCC histologic cohorts
HCC Grading 89% methods. grading. '
7] Machine 805 HCC patients C Index: High Identifies high-risk Potential Requires real-
Learning-Based (3 public datasets) predictive patients for targeted biomarker for world validation.
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LncRNA capacity
Prognostic
Signature
(ATLS)
LASSO and Cox Improved
survival

Regression for

[8] DRL Prognostic TCGA Database predlcthn vsl.
Signature conventiona
models
Differentially Sianificant
[9] Expressed Genes GSE104580, corre%ation with
(DEGs) in TACE TCGA, HPA d
Response non-responders
Al-Assisted ag;fféiseg f
[10] Early Detection =~ HCC Cohort Study detectior?an d
and Management - h
intervention
RAEL'U'?‘:‘:::SE Multi-Dataset ~ AUROC: 0.92
[11] Prediction (Meta- Review (PA, SR,  (PA), 0.86 (SR),
Analysis) TACE) 0.79 (TACE)
Multimodal Deep Institutional AUROC: 0.844,
Learning (CT & Combined
[12] MRI) for MV Dataseatti(ezr?;)HCC Model AUROC:
Prediction P 0.871
Cox Model for
[13] Long-Term Liver 133 HCC patients Hazard Ratio
Function (Radiotherapy) (HR): 1.17
Prediction
Deep Learning Multi-Center C Index: 0.775
[14] for Sarcopenia Dataset (826 (Internal), 0.613
Prognosis patients) (External)
CNN-Based C Index: 0.824
15 Survival cT Ime_lges (692 Internal), 0.750
atients)
Prediction Model P (External)
Nanoparticle-
[16] Based HCC GEO, GeneCards, t%?(?g?;?g Eé\é
Therapy with ML TCGA cells
Analysis
Radiomics and CT Imaging AUROC: 0.877
[17] SVM for HCC .
Downstaging Dataset (Joint Model)
Molecular . -
Docking for ADMET, ngh_ binding
[18] . Molecular efficiency for
Herbal Medicine - e
in HCC Dynamics AFP inhibition
Al-Assisted High prevalence
MAFLD-HCC  Epidemiological gh prevalen
[19] . . correlation with
Diagnosis and Database besi d
Surveillance obesity trends
Ferroptosis- .
C Index: High
20 Based ML Model TCGA, FerrDb redictive
for HCC P
Prognosis accuracy

therapy.

DRLs identified as
key factors in HCC

prognosis.

Identified TTK as a
key marker for
TACE response.

Al models improve

diagnosis and

therapy selection.

Al models show
strong recurrence

prediction
potential.

Superior prediction
to single-modality

models.
Identified risk

factors for long-
term liver function

decline.

Al-based model
predicts survival

after LT.

Al model predicts

post-treatment
survival.

Identified AKR1C3
as a target for RSV

therapy.
Al model

accurately predicts

downstaging
outcomes.
Identified (-)

Syringaresinol as a

potential HCC
inhibitor.
Identified

metabolic risk
factors for

MAFLD-HCC.

Identifies
inflammation-
associated

ferroptosis genes.

precision
medicine.

Strong prognostic
model for
immunotherapy
response.

Biomarker
discovery for
patient
stratification.

Enhances
precision medicine
in HCC.

Comprehensive
meta-analysis of
Al effectiveness.

Al improves
accuracy in MVI
prediction.

Helps guide post-
transplant
monitoring.

Provides
individualized risk
assessment.
Integrates imaging
and clinical data
effectively.

Al enhances
therapeutic
discovery.

Guides treatment
decisions before
LT.

Al-driven drug
discovery insights.

Supports Al-based
early diagnosis
strategies.

Al models
improve survival
prediction.

Requires external
validation.

Lacks real-world
validation.

Limited by dataset
availability.

Some models lack
external validation.

Requires real-
world clinical
testing.

Needs validation
across different
liver disease
subtypes.
Needs expansion
to other muscle
groups.
Requires multi
Institutional
validation.

Needs validation in
clinical settings.

Requires external
validation.

Needs in-vitro
validation.

Requires clinical
implementation.

Needs validation
for therapeutic
intervention.

Results of the performance measures in the studies based on
the metrics of the performance of studies (AUROC, accuracy,
F1-score) differ considerably. There are models that are nearly
optimal when used on controlled data sets and models that
have difficulty with real world data or imbalanced data. Such
discrepancy implies that the performance of models is very
sensitive to the characteristics of the dataset and the
experiment design. The demand of a deeper validation such as
multicenter or cross-domain testing is also one of the main
issues in determining the clinical or operational reliability.

This review emphasizes an overview concerning the
utilization of Al models for liver transplantation and HCC
management. Thus, comparisons generally show that
predictive accuracy in favor of HCC is usually favored by deep
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learning models rather than classical machine learning and
statistical models. Enhancements in Imaging Capability: Al
segmentation and mixed reality advance visualization in liver
transplantation procedures. Superior Predictive Models:
Resultantly, the machine-learning based survival prediction
models will by far prove superior in comparison to the
traditional statistical methods, indicated by their consistently
high C Index values in process. Challenges of the Clinical
Integration: Many of these Al models must still undergo
validation for prolonged periods across different patient
populations and clinical settings. Real implementation of Al
tools following the regulatory algorithm will be the immediate
challenge ahead. Al model promises a lot towards revolution
in liver transplantation especially in improving early



diagnostics,

donor-recipient

match

optimization,

and

treatment personalized. The traditional models key findings

and limitations are included in Table 4.

Table 4. Traditional models key findings and limitations

Reference Method Used Dataset Used Pe&%;rrr;??ce Key Findings Strengths Limitations
ll\\/l/llagjlgf?ﬁij;s{slzl)( C Index (High Identified 29 hub Strong predictive Rii?;giiigﬁt%?al
[20] for Eerrontosis FerrDb, TCGA predictive genes; TMSB4X as a model for HCC therapeutic
P accuracy) key biomarker prognosis . peut
Regulation intervention
ML-Based TCGA, Single- Expression ATPGV%Cl Integrates multi- Lacks validation
Biomarker - correlates with poor omics data for - -
[21] e cell correlation, . - in large clinical
Identification for transcriotomics  survival analvsis prognosis and comprehensive cohorts
ATP6V1C1 P Y immune evasion analysis
ML-Based Gene . - .
: Kaplan-Meier Identified four key Multi-method .
[22] Hggegnhneg Zsirtis GLEJ(X’LE%C’;\]A’ survival, ROC genes linked to HCC validation of vaﬁie dqali:(r)?c:g{g:;ts
WLNHC#%%B curve and chronic hepatitis biomarkers
Multi-Omics : High Identified PLG as a Comprehensive Lacks real-world
Clustering for HCC patient L2 key ] - -
[23] Anoikis datasets classification immunometabolic approach using implementation
Resistance accuracy factor multiple data layers validation
Competitive ML Multi-omics Developed IRCDI High clinical
[24] for Immune- datasets (18 High accuracy for individual relevance for Needs further
Related Cell cohorts) in stratification treatment decision- personalized real-world testing
Death Signature making medicine
ML-Based Gene E”“Ch”?e”t Identified 5 key Provides potential _Requires
[25] Identification for 2(?5[311\57550 e?(narltleizlizn genes linked to drug targets for \'/g?%gi?odne?;
TCMR a presst transplant rejection intervention
validation larger cohorts
Accuracy .
261 DilLBased | TCGA,GEO  (igh), Survival  Identified APLN asa oo SO oy reglworld
gnos (GSE149614) prediction (Cox key biomarker °q g clinical validation
Prognostic Model model) with ML
Transfer Learning Precision: _ .
27 for Post- 425 LT pati 91.22%, Recall: Impr0¥9d prid_ll_ctlon Overcomes small Reqmlres fulréher
[27] Transplant patients 91.70%, F1- N p:)_st-t_ data limitations real_-dw?r
Complications Score: 91.18% complications vafiaation
Deep Leaning for o0 p pA. - IL6 linked to Provides insights Small dataset,
Recurrence . Identified 20- . into
[28] Prediction Post- seq (7 patient ene sianature immune escape and immunothera needs external
LT pairs) g g recurrence response Py validation
A;)}gssc';tﬁd Highlights emerging  Identifies key areas
[29] Transplant Multi-source Not specified biomarkers for for future Limited by data
Therg clinical datasets P pre/post-LT transplant heterogeneity
nerapy strategies guidelines
Optimization
Frailty and R=0.50 e Strong correlation -
Senescence 2022 LT (p16INK4a), Idgntlfles biomarkers between Needs V?|Id&tl0n
[30] . . linked to post-LT in multi-center
Biomarker patients R=0.53 frailt senescence and cohorts
Analysis (p21CIP1) y outcomes
ML-Based C Index: 0.8503 Al-based survival Requires real-
[31] Mortality Risk 555 HCC (Training), prediction Fast, automated qworl d
Predic)t/ion patients (MRI) 0.8234 outperforms clinical prediction model implementation
(Validation) staging P
Deep Learning for . -
In-Hospital . -ti High predictive Needs further
[32] Mortality 106_6 LT AUC: 0.857 Al-drl_ven real-time accuracy Vs. prospective
- patients T mortality monitoring traditional risk -
Monitoring (DL- evaluation
CUSUM) scores
Difflz\e/lrle_ni?z:tin Multi-center AUC: 0.784 (LI- ML outperforms LI- Eghﬁgggsc Requires
[33] HGC fram Live,  dataset (LI- RADS),0.83  RADS for HCC vs. B independent
- RADS) (ML Model) metastasis Y validation
Metastasis complex cases
Nllrlrc-F?lng:\d 52 HCC Sensitivity: ML improves HCC High precision in Small dataset,
[34] Biomarker patients, 30 100%, detectign accurac integrating multi- requires larger
Integration controls Specificity: 97% Y omics data validation
-Based Acute cirrhotic : 0. mode enhances equires
[35] ML-Based Acut 330 cirrhoti AUC: 0.782 LS model Al enh Requi
Variceal Bleeding patients (Internal), 0.789  outperforms clinical cirrhosis prospective
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Prediction (External) scores management validation
Deep Pathomics c (I_??;)r(;ir?'e;ﬂ Al-based recurrence hIiQIE?JaEiSaI Needs further
[36] Score (DPS) for 380 LT patients 9). prediction for post- g multi-center
0.794 . features with deep o
HCC Recurrence - LT patients - validation
(Validation) learning
Al for Circulating : Sensitivity: Identifies miRNAs as High diagnostic Requires
: Egyptian HCC ’ . validation in
[37] miRNA atient datasets 98%, prognostic accuracy vs. diverse
Biomarkers P Specificity: 99% biomarkers traditional methods .
populations
Al-Based NASH 20.000 patient Life extension: SG reduces need for Provides a strong Based on
[38] Progression s,imulgtion +14.3 years for LT in obese NASH policy simulation, not
Modeling SG patients patients recommendation real-world data
CNN-Based Improves follow-
Early-Stage HCC 120 HCC . Identifies high-risk proy - Needs prospective
[39] - AUC: 0.71-0.85 - up imaging :
Recurrence patients (MRI) recurrence patients . evaluation
L strategies
Prediction
Single-Cell Al- Identifies CDK4 SUDDOTS
Based PKRG TCGA, ICGC, & AURKB as Al improves HCC ppor Requires further
[40] - - . e personalized S S
Prognostic GEO prognostic survival stratification - clinical validation
. therapy targeting
Signature markers

Figure 3 shows the change in AUROC scores of 40 research
studies, plotted by their Reference Paper Index on the x-axis.
The y-axis depicts the respective scores of the AUROC which
is between 0 and 1, a factor that shows the performance of the
model in classifying between classes - a high score means high
classification capacity. The line plot with blue notes indicates
that there are great fluctuations among studies and the results
of models or methods published in such papers can be
different. Other studies had almost perfect scores of AUROC
nearing 1.0 whereas others had low scores of almost 0.0. This
variability means that predictive performance is significantly
affected by other factors like the quality of the data set used,
the way the experiment was carried out, or even the model that
was used. The overall pattern is that the results were not
consistently improved or worsened but that there is a
widespread dispersion of findings, which points to
inconsistency or diversity of research findings of the disparity
in the results of the performance of the AUROC.

AUROC Performance Across Studies

10

0.8

=)
@

AUROC Score

o
B

0.2

0.0
0 5 10 15 20 25 30 35 40
Reference Paper Index

Figure 3. Model’s AUC analysis

Table 4 analysis compares different methods used
prognostically for hepatocellular carcinoma (HCC) and liver
transplantation (LT) outcomes, particularly in the domains of
deep learning, machine learning, and traditional statistical
models. This comparative analysis indicates both positive and
negative aspects of the datasets used, performance measures,
key findings, strengths, and limitations. The entire effort
settles into the overview of effectiveness of Al driven
application in HCC diagnosis, prognosis, and LT outcomes.
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This review shows how machine learning and deep learning
have revolutionized the management of HCC and outcomes of
LT. Some of the interesting trends and perspectives from this
study are: Improved predictive accuracy: The Al-based
models generally score higher than the conventional clinical
staging systems in predicting survival. Emergence of Imaging-
based Diagnostics: Al models improve differentiation of HCC
from metastasis, predict early recurrence, and mortality.
Biomarker identification and stratification: Al's capability of
identifying new biomarkers for prognostic purposes of HCC
and recurrence post-LT. Risk assessment before complications
post-transplantation: ~ Accurate  prediction  concerning
complications post-L T is much more pronounced in Al models
than in other areas. Personalizing medicine and treatment
optimization: Extreme patient stratification concerning
immune profiles and predicting therapy responses are
propounded by the Al model. Yet, despite these advancements
made, several challenges abound: Model Validation and
Generalization: Several Al models require validation across
different diverse cohorts and through multi-centers. Clinical
Application: Application in the real-life happening clinical
practice is another hurdle. Regulatory Approval and Ethical
Considerations: Al model evaluation requires a study of
regulatory compliance along with bias mitigations. By and
large, all Al approaches bring into perspective a good deal of
promise in the conversion that will happen in liver
transplantation and HCC management. Future work should
focus on improving robustness and increasing datasets as well
as applying Al-based prediction to everyday clinical practice
sets.

The comparative analysis shows that the models built on
ensemble and deep learning usually perform better than
classical machine learning. There are however more basic
algorithms that have merit as they are easy to understand,
require fewer resources and are easy to implement. Research
seldom performs thorough error analysis, so there are
unanswered questions concerning constraints of models and
failures of models. All in all, it is possible to conclude that
hybrid approaches with predictive power and interpretability
should be used.

Nonetheless, considerable advancements notwithstanding,
the literature has identified significant gaps, such as the
absence of sufficient data, imbalances, the absence of
standardized evaluation procedures, and focus on model
explainability. Very little research deals with scalability or



interface with the real world. Ethics, including privacy of data
and algorithm bias, are not properly researched. These issues
suggest that more repeatable, open, and practical research
should be conducted in the future.

Although there are studies which declare possible real world
or clinical application, not many of them have been confirmed
in practice. Majority of the research is still in the proof-of-
concept phase and little has been said about the feasibility of
deployment, its cost and even its compatibility with the
regulatory environment. The future work ought to aim at
reducing the discrepancy between theories and real-life
application in the field, making models both technically sound
and useful.

4. CONCLUSION AND FUTURE SCOPE

From this systematic review of 40 studies, one can see that
machine learning (ML) and deep learning (DL) strategies are
fast becoming increasingly influential in applications
pertaining to hepatocellular carcinoma (HCC) prediction, liver
transplantation (LT) optimization, and many others. Among
the methods applied, the most widely-used methods were
supervised learning models like logistic regression, support
vector machines (SVM), and deep neural networks (DNN) due
to their flexibility with structured clinical and imaging data.
The multimodal imaging-based (MRI and CT) predictive
models on the other hand achieved better results with respect
to risk stratification, recurrence prediction, and survival
estimation. Models discussed included the deep-pathomics
score (DPS) model in HCC recurrence, a CNN-based survival
prediction model, and the DL-CUSUM system for monitoring
in-hospital mortality, all of which proved highly accurate
compared with traditional clinical scoring systems.
Additionally, models that are evidence generation from single-
cell transcriptomic information and risk modeling associated
with ferroptosis added more evidence on the molecular
mechanisms underlying HCC development while the promises
for Al become a reality in precision medicine platforms. The
existing research indicates significant advancement in the
utilization of intelligent models for data-driven decision-
making; yet, some essential obstacles persist without
resolution. Even while work is still being done on data
standardization and explainable Al, future research should
focus on creating federated learning frameworks that allow
various institutions or devices to work together to train models
without putting data privacy at risk. These kinds of methods
would make it easier for models to work in a wider range of
settings and be used more widely. Moreover, subsequent
research ought to concentrate on developing multimodal
fusion systems that can amalgamate diverse data sources to
facilitate more holistic and context-sensitive predictions. It is
also important to focus on deep learning architectures that can
be understood, so that domain experts can trust and explain the
decisions made by complex models. To enhance practical
applicability, researchers ought to investigate automated
model adaptation methodologies that provide ongoing
learning from streaming data inside dynamic contexts. Also,
creating benchmarking repositories and open-source
evaluation procedures would make studies more open,
repeatable, and fair. Lastly, future studies should look at
ethical and social issues, such as data governance, justice, and
long-term use of Al, to make sure that new technologies fit
with social values and rules.
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