Z I El' A International Information and

Engineering Technology Association

Ingénierie des Systémes d’Information
Vol. 30, No. 10, October, 2025, pp. 2635-2642

Journal homepage: http://iieta.org/journals/isi

A Dual-Layer, Content-Aware Framework to Validate Online Student Engagement via ML- ]

Based Comprehension Assessment

Parinita Chate!*’, Vishal A. Meshram?

Check for
updates

, Kailas Patil"™

! Department of Computer Engineering, Vishwakarma University, Pune 411048, India
2 Department of Computer Engineering, Bharati Vidyapeeth's College of Engineering Lavale, Pune 412115, India
3 Department of Computer Engineering, Vishwakarma Institute of Technology, Pune 411037, India

Corresponding Author Email: kailas.patil@vupune.ac.in

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301010

ABSTRACT

Received: 19 August 2025
Revised: 11 October 2025
Accepted: 18 October 2025
Available online: 31 October 2025

Keywords:

online learning, cognitive engagement,
validation framework, dual-layer
assessment,  content-aware  analytics,
comprehension assessment, MCQ
generation, machine learning

Online student engagement monitoring tools based on computer vision and artificial
intelligence are increasingly used in virtual classrooms to assess attentiveness through facial
orientation, gaze, and posture. However, these systems largely capture superficial visual
cues and fail to validate actual cognitive engagement or learning comprehension. This paper
proposes a dual-layer, content-aware framework that verifies behavioural engagement
scores (E-scores) using comprehension-based validation through lecture-specific quizzes.
The framework integrates Whisper for real-time transcription and T5 for automatic
generation of concise, content-aligned multiple-choice questions. Experiments were
conducted across ten live lectures involving one hundred undergraduate students.
Continuous engagement scores (0-100) received through a commercial system of
engagement monitoring were in comparison with comprehension scores (C-scores) based
on post-lecture quizzes using categorical thresholds: Low (0-49), Moderate (50-74), and
High (75-100). The analysis discloses a low correlation between both E-, C-scores, and the
prevalence of cases of mismatch (e.g., High-E/Low-C), where the visual attention was
dissenting with the real. Some of the factors include cognitive overload, off-camera
activities and partial occlusion. The modular pipeline runs more efficiently on a GPU-
enabled workstation with CPU fallback support. Combining the understanding-based
evaluation with the behavioural analytics, the proposed system enhances the validity of
engagement measurement and enables the adaptive pedagogical practices in the online

learning setting.

1. INTRODUCTION

The shift to online and hybrid education models has
significantly increased reliance on Al-based engagement
monitoring tools in virtual classrooms. During live sessions,
most engagement tools infer attentiveness from webcam-
based signals—face recognition, gaze trajectories, and coarse
posture cues [1-3]. Commercial platforms such as GoGuardian
convert these streams into live dashboards by analyzing
camera feeds alongside interaction activity [2, 3]. Yet prior
work shows that such indicators describe what is visible rather
than what is understood [4, 5]. Learners can look focused and
still miss core ideas [6, 7], whereas others may grasp the
material without displaying the expected on-screen cues (e.g.,
sustained screen-directed gaze) [5, 8]. Routine conditions such
as uneven lighting, camera angle, and network latency also
decrease measurement and may confuse both algorithms and
observers [9, 10]. Collectively, these problems reduce the
validity and instructional worth of scores calculated based on
vision alone, which explains why multimodal research has
become popular in recent times that combines audio, linguistic
content, and behavioral traces to enhance reliability [11, 12].
However, the majority of the existing solutions do not provide
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a formalized system of checking the translation of engagement
to comprehension, which is an essential educational result.
Although webcams record the behavioral cues, including gaze,
head position, and posture, they cannot be used to predict
cognitive engagement, the mental effort to interpret and
combine new information. A learner may seem to be listening,
but not to be processing the information or may seem to be
minimally expressive on camera, but be busy taking notes.
This disparity drives a validation layer that connects visible
behavior with content comprehension estimated as an
immediate result of instruction.

A new dual-layer validation model is suggested in the given
context that would complement the traditional engagement
monitoring scheme with the machine-learning-based
evaluation of lecture understanding. It uses the pre-trained
models of Whisper as a live speech transcription [13],
multimodal transformer as a summary [14], and T5 as a
generative model of real-time multiple-choice questions [15,
16]. Students will then be given a comprehension quiz right
after the lecture and the performance compared with the
software results of the engagement score is calculated.

The AI/ML has had a significant impact on various
industries such as agriculture [17, 18], healthcare [19], security
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[20], and finance [21]. The domain-specific datasets that are
of high quality have been provided by several authors [22-24],
which form the basis of the models used in this paper.
Continuing this momentum, our research incorporates
machine learning into the sphere of online learning validation
that is a scalable.

In pedagogical studies, the engagement is usually classified
into behavioural, emotional, and cognitive levels. The
behavioural engagements refer to the observable activities;
emotional part to interest and affect; and cognitive to the
extent of mental processing. Since classroom video is
primarily a manifestation of behavioural clues, this paper
operationalises ~ comprehension = (MCQ-based) as a
performance proxy of cognitive engagement. Unlike
sustained-attention heuristics or self-reports, comprehension
outcomes directly indicate whether instruction was mentally
understood.

The article is further divided into Section 2, which is
comprised of related work; Section 3 which is comprised of
the framework; Section 4, which is comprised of the
experimental setup; Section 5, which is comprised of results
and conducts a mismatch analysis; Section 6, which discusses
implications and limitations; and finally, Section 7 provides
the conclusion and future scope of this research.

2. RELATED WORK

The sphere of artificial intelligence-based surveillance of
student engagement has been evolving quickly along with the
popularity of online studies. The first systems mainly used
visual cues (eye gaze and facial expressions and the position
of a head) to determine the presence of attention during virtual
meetings. Hossen and Uddin [1] used models that were based
on convolutional neural networks to identify attentiveness
using webcam feeds, despite the fact that they tended to have
low accuracy in uncontrolled settings. There were also
commercial visual engagement analytics at scale tools like
GoGuardian [2] which provided attentiveness dashboards on
live lectures in real-time. However, such systems mostly focus
on behavioural cues at the surface level and cannot detect if
learners are processing information or retaining whatever they
are receiving.

The restrictions of engagement tools, which are based on
the visual input only, are widely documented in existing
literature. According to Ma and Shi [6], there had been a
continued discrepancy between objective performance of
students and how students self-rated their attentiveness in
virtual classroom settings. Wang and Zheng [5] made an
argument in a parallel study that visual cues are not reliable
proxies of actual learning outcomes, particularly in cases
where learners are looking at each other but failing to process
learning material. All these observations echo the larger
concerns about the legitimacy of web-based analytics,
especially when such environmental factors as distractions at
work, unsuitable lighting conditions, and privacy limitations
undermine fidelity of data [9]. As a result, even the largest
videoconferencing tools, such as Zoom, have rolled out their
attention-tracking tools due to the reliability and ethical issues
associated with them [4].

Multimodal  interaction  identification = Multimodal
interaction detection in order to overcome these shortcomings,
recent research has sought to adopt multimodal interaction
detection, combining visual, audio, and affective techniques to
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enhance predictive power. The evidence presented by
Angeline and Nithya [12] indicates that multimodal fusion
leads to increased engagement detection accuracy; however,
the literature available does not include much information on
the ways to determine whether the understanding or actual
learning is achieved. Simultaneously, progress in natural
language processing, particularly transformer-based models,
has led to a variety of novel tasks, such as automated
summarization and automatic question generation. Zhu et al.
[14] used multimodal transformer to derive brief summaries of
educational content to teach people, but Dhanya et al. [15]
used the TS model to get multiple-choice questions based on
the lecture transcripts.

Despite these technological advances, a critical gap
remains:

(1) Engagement monitoring systems are rarely cross-
validated against actual student understanding.

(2) Most tools continue to assume that attention equates to
comprehension, leading to potential misclassifications. For
instance, students who appear disengaged due to camera issues
or personal habits may score highly on assessments, while
others who maintain screen focus may perform poorly.

This highlights the need for systems capable of verifying
engagement claims through performance-based validation.

Novelty relative to prior work: Prior studies primarily (i)
estimate engagement from visual behavior, (ii) combine
multimodal signals (e.g., audio, context), or (iii) assess
learning outcomes in isolation. To the best of our knowledge,
no prior classroom study has positioned content-aligned
comprehension as a systematic validation criterion for vision-
based engagement dashboards in live instruction. The
proposed framework operationalizes this link and reports
when and why behavioral and cognitive indicators diverge.
This work makes three contributions:

(1) Introduced a content-aware comprehension layer that
validates commercial behavioral E-scores using immediate
post-lecture C-scores.

(2) Implements a Whisper-BERTSUM-T5 workflow,
optimized for GPU acceleration yet deployable on a single
workstation in classroom settings.

(3) Across ten lectures involving one hundred students,
demonstrates a weak E—C correlation and provides mismatch
analyses showing when behavioral attention diverges from
learning comprehension, thereby informing pedagogical
feedback.

Table 1. Comparison of existing engagement monitoring

methods
Tra(.iltlonal Multimodal
Feature Visual Svstems
Monitoring ¥
Facial Visual + audio +
Type of input expressions, gaze,  sensors (e.g., heart
posture rate)
Real-time capability Yes Yes
Measures cognitive No Partial
understanding
Scalability High Medium
Hardware .
dependency Low High
Assessment No No
Integration
Accuracy under Low to Medium Medium to High

diverse conditions




Table 1 summarizes the key characteristics of two widely
adopted engagement monitoring methods: Traditional Visual
Monitoring and Multimodal Systems. Earlier engagement
systems mainly relied on what they could see — a student’s
face or eye movement — to judge attentiveness. These
methods are easy to scale and need little hardware, but they
fail to show how much the learner actually understands and
often give mixed results when lighting or background changes.
Some newer models combine different types of data, such as
sound or body signals, to make the predictions more stable.
However, these systems need additional sensors and are
difficult to apply in large online classes. More importantly,
both approaches overlook what the student actually
understands during the lesson, showing why a validation layer
like the one proposed in this study is necessary.

3. PROPOSED METHODOLOGY

To address the boundaries of systems that decides
engagement only by appearance, our method works in two
connected parts. The first, called the behavioural layer, takes
an Engagement Score (E-score) from an existing vision tool,
which measures how attentive a student appears on camera.
The second, the comprehension layer, converts the lecture’s
audio into short summaries and builds quick, topic-based
MCQs to calculate a Comprehension Score (C-score). These
two layers run together for every lecture and every student,
helping us check whether visible attention truly matches actual
understanding.

The framework is built for live online classes, where most
engagement tools watch eye direction, facial expressions, and
neck position to find an E-score. Yet these visible signs do not
always show what a student actually understands. To
overcome this gap, the model adds a second layer that
measures C-scores, taken from short quizzes created
automatically with natural language processing (NLP)
techniques after each lecture. The system’s dashboard shows
a continuous E-score from 0 to 100. For grouped results,
engagement levels are marked as i) Low (0-49) ii) Moderate
(50-74), and iii) High (75-100). For simple yes-or-no analysis,
students with E > 75 are counted as Engaged, and those with
E < 75 as Disengaged. Tests with slightly different cut-off
values (£ 5 points) showed that the overall patterns stayed the
same.

Whisper speech-to-text model is used to covert lecture
audio into text. The transcript is then shortened into a summary
with BERTSUM, and then T5 model uses that summary to
create five to ten multiple-choice questions focused on key

ideas. Each question has the same weight, and the
comprehension score is calculated as follows:
C— score = Correct Resonses <100 M

Total Question

Score C > 70 represents satisfactory comprehension,
consistent with standard mastery thresholds in classroom
assessment.

Three pretrained machine learning models were used in the
framework:

(1) Whisper (OpenAl) — To transcribes live lecture audio
[13],

(2) BERTSUM - To summarizes transcribed content [ 14],

(3) T5 — To generates content aligned MCQs from the
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summary [15].

The quizzes are given right after each lecture, and the
students’ results are then compared with their E-scores to
check how closely observed attention matches actual
understanding.
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Figure 1. Overall system architecture integrating the
proposed ML-based engagement validation module
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Figure 1 shows how the system works as a whole,
connecting the live lecture, webcam-based engagement
tracking, and comprehension checking. While the class is in
progress, the lecture audio passes through the ASR-NLP
pipeline, and the vision module records visual engagement.
The NLP component creates a short summary and a quick
quiz, and the students’ answers generate a C-score. This score
is then compared with the related E-score to see how well the
two align.
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Figure 2. System architecture for engagement validation via
lecture comprehension

Figure 2 enlarges the ML pipeline, showing its add-in
stages: audio capture -> transcription ->summarization ->
MCQ generation -> quiz delivery and scoring -> statistical
comparison between E-score and C-score. After scoring, the
Pearson correlation coefficient (7) is calculated to measure the
relationship between the two scores.

This modular and platform-independent design allows
whole integration with any vision-based tracker, linking its
behavioral outputs with performance-based comprehension
rather than presence alone.



3.1 Research contributions

The approach aims to close the gap between what students
seem to pay attention to and what they truly understand. It also
brings a few useful improvements, both in method and in
practice, to the field of Al-supported learning. The main ideas
and contributions of this work are outlined below:

(1) A dual-layer workflow pairing behavioral engagement
estimates with post-lecture comprehension test [7, 8, 11].

(2) Replaces subjective surveys or manual rubrics [6] with
automatically generated quizzes, providing a quantifiable
reference for student understanding.

(3) The correlation module enables comparisons across
commercial or academic engagement tools without modifying
their internal algorithms.

(4) Inspired by ML use cases in healthcare, agriculture,
finance and IoT domains [17-24], the framework is optimized
for real classroom integration with minimal hardware and
software dependencies.

Together, these components form a practical and scalable,
tested framework that introduces accountability and cognitive
depth into online learning engagement systems.

4. EXPERIMENTAL SETUP

This section explains the setup, data, and steps used to test
the dual-layer engagement validation framework in real
classroom sessions. The configuration was designed to
replicate realistic online-learning scenarios where computer-
vision-based engagement monitoring runs in parallel with
automated comprehension assessment.

4.1 Experimental environment

The experiments were conducted in a controlled virtual-
classroom setup integrating a standard video-conferencing
platform (Google Meet) with a commercial vision-based
engagement monitor (GoGuardian) [2]. Ten independent 45-
minute lectures were delivered to a cohort of 100
undergraduate students from the Computer Science
programme. During each live session, facial-orientation, gaze-
direction, and posture data were continuously analyzed to
compute real-time engagement scores (E-scores) ranging from
0 to 100.

Table 2. Reviews the components employed in the study

Component Tool / Model Used Purpose
Virtual classroom Google Meet Live lecture
de.llver}{
Engagement GoGuardian / Real-time visual
monitoring Engageli engagement
. tracking
Speech recognition ~ Whisper (OpenAl) ]]‘;Z;isai;i(:
Content

Summarization &
MCQ generation

TS (fine-tuned) /

BERTSUM (pilot) summarization ->

quiz creation
Secure post-lecture
testing
Pearson r, p-values

Quiz interface Flask Web App

Statistical analysis NumPy, SciPy

In parallel, lecture audio was routed to the Whisper
automatic speech-recognition (ASR) model [13] for live
transcription. The transcripts were summarized by the T5
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transformer [15], and concise multiple-choice questions
(MCQs) were generated automatically and delivered
immediately after the lecture through a secure Flask-based
quiz interface. All models were built using Python 3.10 SDK
(Software Development Kit) using the Hugging Face
Transformers library and executed locally within a Docker
environment on an Intel i7 workstation (32 GB RAM, RTX
3060 GPU). This setup ensured real-time operation while
emulating the bandwidth and latency constraints typical of
remote teaching in Table 2.

4.2 Dataset and participants

To test the dual-layer engagement validation framework, we
created our own dataset that records both visual engagement
signals and students’ quiz responses during live online classes.
The data was gathered only for research and comparison under
controlled classroom conditions. It includes matched E-scores
from a commercial vision-based tool and C-scores from short
quizzes given right after each lecture.

A separate set of 16,000 labelled facial expression images
was also created to fine-tune a local vision model, used only
for testing and comparing results with the commercial E-
scores. The live classroom study itself depended entirely on
the commercial engagement tool and the new comprehension
layer, while this extra dataset was included to help others
reproduce the work and run future comparisons. Images were
captured using a OnePlus 7 Profor high-resolution input, a
Realme UI 5.0 or mid-range performance, and a Lenovo 300
FHD Webcam. This variety of devices represents the mixed
hardware available to students, which can influence both
image quality and engagement detection accuracy.

In the comprehension layer, the same group of students took
automatically generated MCQ tests right after each lecture.
For every student, a Comprehension Score (C-score) was
worked out by dividing the number of correct answers by the
total questions, which helped show how well each learner
understood the topic. The study involved students aged 10 to
32 years, covering both school and undergraduate levels, so
that the framework could be tested across different age groups
and learning abilities. All data were collected under the
institute’s ethical approval process, and personal details were
removed before analysis to maintain privacy.

The dataset was created with two clear purposes. One was
to recognize engagement levels from visible behaviors, and the
other was to see if those behaviors actually reflected real
understanding. The combined record of E-scores and C-scores
provided the key information for measuring how closely
observed attention matched genuine comprehension, which
forms the core of this framework’s validation.

4.3 Result and analysis

Figure 3 describes the working of online student
engagement tool. During the live session, the engagement tool
continuously captured visual cues while the lecture audio was
processed in parallel. The Whisper model converted the audio
to text, which was then summarized by T5 and turned into a
ten-question, content-based MCQ quiz. Students completed
the quiz right after the lecture, and the system calculated their
Comprehension Score (C-score) as the percentage of correct
answers, as shown in Eq. (1).

A C-score of 70 or above was taken as a sign of good
understanding, which matches the usual mastery level used in



education. The summaries and quizzes created by the system
were reviewed by two senior teachers to make sure the content
was accurate and matched the learning goals. Their agreement
was strong, with reliability values of k = 0.82 for relevance
and k= 0.79 for difficulty, showing that the generated material
was of good quality.

Student engagement was divided into three groups — Low
(0—49), Moderate (50-74), and High (75-100). The E-scores
and C-scores were compared using Pearson’s correlation (r) to
find how closely visible attention matched actual learning. The
whole process ran automatically in the background, without
interrupting the lecture or disturbing the students.

[ LIVE ONLINE LECTURE ]

l

‘ VIRTUAL MEETING ]

PLATFORM
ENGAGEMENT LECTURE
MONITORING AUDIO
I S
LECTURE
ENgégE'z'sENT TRANSCRIPPT
MODULE
QUESTION
GENERATION
MODULE
COMPREHENSION
TEST

[ COMPARATIVE ANALYSIS ]

Figure 3. Experimental setup for validating online student
engagement

Table 3. Sample results mapping: Comprehension vs
engagement scores

Student  Lecture E- C-

Id Id Score E-Level Score C-Level
S001 L1 82 High 84 High
S002 L1 76 High 78 High
S003 L1 63 Moderate 72 High
S004 L1 91 High 62 Moderate
S005 L1 58 Moderate 45 Low
S006 L2 69 Moderate 81 High
S007 L2 49 Moderate 39 Low
S008 L2 80 High 52 Moderate
S009 L2 54 Moderate 77 High
S010 L2 44 Low 48 Low

Table 3 shows sample results for ten students chosen at
random. In several cases, the level of visible engagement did
not match the actual understanding. For example, student S008
had an E-score of 80 (High) but a C-score of 52 (Moderate),
while student S006 showed the opposite pattern with E = 69
(Moderate) and C = 81 (High). These differences make it clear
that paying attention on camera does not always mean the
content was fully understood.

When all records were analysed, the Pearson correlation
between E-scores and C-scores was r = 0.31, showing only a
weak link between the two. As seen in Figure 4, the scatter plot
spreads widely with just a slight upward trend, which means

that webcam-based attention does not consistently reflect real
understanding. These results highlight why a content-aware
and performance-based layer is important for making sense of
engagement data.

100
920 X
80 X
70

60

Comprehension Score (C-score)

50 X

30
40 50 60 70 80 90 100
Engagement Score (E-score)

Figure 4. Correlation scatter plot — E-score vs C-score

5. PERFORMANCE EVALUATION

This section shows the numerical results comparing the E-
scores from visual tracking with the C-scores produced by the
proposed comprehension layer. To check how closely the two
measures matched, both standard classification methods and
correlation analysis were used to test the accuracy and
reliability of the framework.

5.1 Evaluation metrics

To estimate the relationship between engagement and
comprehension, five commonly used metrics were adopted:
Accuracy, Precision, Recall, F1-Score, and the Pearson
Correlation Coefficient (r). These provide both categorical and
continuous perspectives on model alignment.

Accuracy (Acc):
Accuracy represents the proportion of correctly predicted

engagement—comprehension  alignments  among  all
predictions:
TP+TN
Accuracy = )
TP+ FP+FN+TN
where,

TP = True Positives (High E-score and High C-score)
TN = True Negatives (Low E-score and Low C-score)
FP = False Positives (High E-score but Low C-score)
FN = False Negatives (Low E-score but High C-score)

Precision (P):
Accuracy represents the proportion of correctly predicted

engagement—comprehension  alignments  among  all
predictions:
TP
Precision = ——— (3)
TP+ FP



A higher precision indicates fewer false identifications of
engagement.

Recall (R):

P

Recall = ———
TP+ FN

“4)

This measures how effectively the system detects all
genuinely engaged students.

F1-Score:

Fle2x Precision x Recall

)

Precision+Recall

The Fl-score provides a balanced evaluation when data
across engagement categories are unevenly distributed.

Pearson Correlation Coefficient (r):
To quantify the linear association between E-scores and C-
scores, the Pearson correlation coefficient was calculated as:

o > (Ei-E)(Ci-C)
WX(E-E) X(ci-c)

where Ei and Ci represent individual engagement and
comprehension scores, and E and C denote their means.

In this study, the correlation value was r = 0.31, showing
only a weak positive relationship. This means that students
who appeared more attentive on camera did not always score
higher in comprehension.

(6)

5.2 Quantitative results and confusion metrics

To further analyze classification reliability, a confusion
matrix was produced using comprehension outcomes as the
performance-based ground truth. Engagement was classified
as Engaged (E > 80) or Disengaged (E < 80), while
comprehension was considered Actually Engaged if C > 70.

Table 4. Confusion matrix for binary classification

Predicted Predicted
Engaged Disengaged
Actually engaged 36 14
Actually
disengaged 19 3

Based on this matrix, the following metrics were calculated:
Accuracy: (36 +31) /100 =0.67

Precision: 36 / (36 + 19) = 0.65

Recall: 36 / (36 + 14) =0.72

F1-Score: 2 x (0.65 x 0.72) / (0.65 + 0.72) = 0.685

The results show that the system performed moderately
well, with the engagement software matching actual
comprehension in about 67% of the cases. In the remaining
third, it either rated students as attentive when they weren’t or
missed signs of genuine understanding in Table 4.

These differences highlight the restrictions of relying only
on visual signals to judge engagement. To overcome this, the
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proposed dual-layer framework links visible behaviour with
real learning outcomes through a comprehension-based check,
offering a more trustworthy way to measure true engagement.

6. RESULT AND ANALYSIS

This section compares the Engagement Scores (E-scores)
from visual tracking with the Comprehension Scores (C-
scores) produced by the dual-layer framework. The analysis
covers basic statistics, correlation results, both multi-class and
binary classifications, and cases where visible attention and
actual understanding do not match. All findings are based on
data from 100 students who took part in ten live lectures
conducted under the setup described earlier.

6.1 Comprehension—engagement mapping

Each lecture was tracked by an automatically generated
post-lecture quiz using the T5 model. Continuous E-scores (0
to 100) were obtained from commercial vision-based tools
such as GoGuardian and Engageli, while C-scores were
derived from the students’ performance in quiz.

For consistency with engagement software outputs, three
categorical bands were adopted for both metrics i) Low (0 to
49), ii) Moderate (50 to 74), and iii) High (75 to 100). For
binary evaluation, thresholds were defined as Engaged (E >
75) and Actually Engaged (C > 70).

Representative examples demonstrate the deviation
between behavioral and cognitive indicators. Student S007
achieved a high E-score of 82 yet obtained a C-score of 49,
reflecting weak comprehension despite seeming focus.
Conversely, Student S004 recorded moderate engagement (E
= 60) but a C-score of 91, indicating deep understanding
despite limited visible cues. Such discrepancies validate the
core hypothesis that wvisual attentiveness alone is an
untrustworthy factor for cognitive engagement.

6.2 Correlation analysis

Across all lectures, the Pearson correlation between
continuous E-scores and C-scores was r = 0.31 (p < 0.05),
showing only a weak positive link between visual attention
and actual comprehension. As seen in Figure 4, the scatter plot
shows a wide spread of data points around the regression line,
meaning that higher E-scores only slightly relate to higher C-
scores. This pattern supports previous research suggesting that
webcam-based measures mainly capture surface-level
attention. In numerous cases, students who appeared highly
engaged on camera performed poorly on comprehension tests,
while others with moderate engagement showed strong
understanding. These differences clearly highlight the gap
between observed behaviour and real cognitive learning that
still exists in many Al-driven monitoring systems.

6.3 Classification performance

To compare engagement and comprehension across clear
categories, both E-scores and C-scores were grouped into three
levels — High, Moderate, and Low. The summary of these
classification results is shown in Table 5.

The findings show that the vision-based monitoring system
was fairly reliable in matching engagement with
comprehension results. Even so, about one-third of the cases



showed mismatches, where students either appeared highly
engaged but understood less, or seemed less attentive yet
showed strong comprehension.

Using binary thresholds (E > 75; C > 70), the confusion
matrix presented in Figure 5 and Table 5 quantifies this
relationship. The model achieved an overall accuracy of
68.7%, with precision = 0.72, recall = 0.65, and F1 = 0.68.

Table 5. Sample results mapping: Comprehension vs
engagement scores

Metric Value
Accuracy 72.5%
Precision 71.3%

Recall 68.9%
F1-Score 70.1%

Pearson (r) 0.31

Confusion Matrix

"l

Actually Engaged (C = 70) 36
1)
5) 19
1 NG -

Actual Class

Actually Disengaged (C < 70)

(G

Predicted Class

Figure 5. Confusion matrix — engagement classification vs.
comprehension assessment

6.4 Discussion and findings

The weak correlation (r = 0.31) and reasonable accuracy
suggest that behavioural E-scores on their own do not give a
full picture of learning. A student may appear focused on
camera but still fail to grasp the topic, while another who looks
less attentive—or even works off camera—might understand
the lesson very well.

Adding a comprehension-based check benefits cut down
these wrong classifications and turns basic behavioural data
into insights that teachers can actually use. This shows that the
proposed dual-layer framework makes Al-based engagement
analysis more meaningful and trustworthy by connecting what
is seen on camera with what students truly understand.

7. CONCLUSION AND FUTURE SCOPE

This study proposed and validated a dual-layer, content-
aware framework that cross-verifies vision-based behavioral
engagement scores with comprehension outcomes derived
from immediate, lecture-aligned assessments. Integrating
Whisper for real-time transcription and T5 for summarization
and quiz generation, experiments with 100 students across 10
lectures showed only a weak correlation (r = 0.31, p < 0.05)
between behavioral attention (E-scores) and comprehension
(C-scores). The model achieved 68.7% accuracy, confirming
that nearly one-third of predictions from visual-only systems
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misrepresent true learning.

By linking engagement analytics with measurable
comprehension, the framework offers a trustworthy and
learner-centric alternative to conventional webcam-based
monitoring. It provides an adaptable layer that can be
embedded into existing EdTech platforms to support evidence-
based feedback and adaptive instruction.

Future work will expand validation across larger and more
diverse datasets, integrate multimodal inputs (gaze, speech,
context), and apply explainable-Al techniques to enhance
transparency. Extending comprehension analysis to open-
ended responses will further improve the framework’s ability
to capture deeper learning outcomes.
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