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Online student engagement monitoring tools based on computer vision and artificial 

intelligence are increasingly used in virtual classrooms to assess attentiveness through facial 

orientation, gaze, and posture. However, these systems largely capture superficial visual 

cues and fail to validate actual cognitive engagement or learning comprehension. This paper 

proposes a dual-layer, content-aware framework that verifies behavioural engagement 

scores (E-scores) using comprehension-based validation through lecture-specific quizzes. 

The framework integrates Whisper for real-time transcription and T5 for automatic 

generation of concise, content-aligned multiple-choice questions. Experiments were 

conducted across ten live lectures involving one hundred undergraduate students. 

Continuous engagement scores (0-100) received through a commercial system of 

engagement monitoring were in comparison with comprehension scores (C-scores) based 

on post-lecture quizzes using categorical thresholds: Low (0-49), Moderate (50-74), and 

High (75-100). The analysis discloses a low correlation between both E-, C-scores, and the 

prevalence of cases of mismatch (e.g., High-E/Low-C), where the visual attention was 

dissenting with the real. Some of the factors include cognitive overload, off-camera 

activities and partial occlusion. The modular pipeline runs more efficiently on a GPU-

enabled workstation with CPU fallback support. Combining the understanding-based 

evaluation with the behavioural analytics, the proposed system enhances the validity of 

engagement measurement and enables the adaptive pedagogical practices in the online 

learning setting.  
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1. INTRODUCTION

The shift to online and hybrid education models has 

significantly increased reliance on AI-based engagement 

monitoring tools in virtual classrooms. During live sessions, 

most engagement tools infer attentiveness from webcam-

based signals—face recognition, gaze trajectories, and coarse 

posture cues [1-3]. Commercial platforms such as GoGuardian 

convert these streams into live dashboards by analyzing 

camera feeds alongside interaction activity [2, 3]. Yet prior 

work shows that such indicators describe what is visible rather 

than what is understood [4, 5]. Learners can look focused and 

still miss core ideas [6, 7], whereas others may grasp the 

material without displaying the expected on-screen cues (e.g., 

sustained screen-directed gaze) [5, 8]. Routine conditions such 

as uneven lighting, camera angle, and network latency also 

decrease measurement and may confuse both algorithms and 

observers [9, 10]. Collectively, these problems reduce the 

validity and instructional worth of scores calculated based on 

vision alone, which explains why multimodal research has 

become popular in recent times that combines audio, linguistic 

content, and behavioral traces to enhance reliability [11, 12]. 

However, the majority of the existing solutions do not provide 

a formalized system of checking the translation of engagement 

to comprehension, which is an essential educational result. 

Although webcams record the behavioral cues, including gaze, 

head position, and posture, they cannot be used to predict 

cognitive engagement, the mental effort to interpret and 

combine new information. A learner may seem to be listening, 

but not to be processing the information or may seem to be 

minimally expressive on camera, but be busy taking notes. 

This disparity drives a validation layer that connects visible 

behavior with content comprehension estimated as an 

immediate result of instruction. 

A new dual-layer validation model is suggested in the given 

context that would complement the traditional engagement 

monitoring scheme with the machine-learning-based 

evaluation of lecture understanding. It uses the pre-trained 

models of Whisper as a live speech transcription [13], 

multimodal transformer as a summary [14], and T5 as a 

generative model of real-time multiple-choice questions [15, 

16]. Students will then be given a comprehension quiz right 

after the lecture and the performance compared with the 

software results of the engagement score is calculated.  

The AI/ML has had a significant impact on various 

industries such as agriculture [17, 18], healthcare [19], security 
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[20], and finance [21]. The domain-specific datasets that are 

of high quality have been provided by several authors [22-24], 

which form the basis of the models used in this paper. 

Continuing this momentum, our research incorporates 

machine learning into the sphere of online learning validation 

that is a scalable.  

In pedagogical studies, the engagement is usually classified 

into behavioural, emotional, and cognitive levels. The 

behavioural engagements refer to the observable activities; 

emotional part to interest and affect; and cognitive to the 

extent of mental processing. Since classroom video is 

primarily a manifestation of behavioural clues, this paper 

operationalises comprehension (MCQ-based) as a 

performance proxy of cognitive engagement. Unlike 

sustained-attention heuristics or self-reports, comprehension 

outcomes directly indicate whether instruction was mentally 

understood. 

The article is further divided into Section 2, which is 

comprised of related work; Section 3 which is comprised of 

the framework; Section 4, which is comprised of the 

experimental setup; Section 5, which is comprised of results 

and conducts a mismatch analysis; Section 6, which discusses 

implications and limitations; and finally, Section 7 provides 

the conclusion and future scope of this research.  

 

 

2. RELATED WORK 

 

The sphere of artificial intelligence-based surveillance of 

student engagement has been evolving quickly along with the 

popularity of online studies. The first systems mainly used 

visual cues (eye gaze and facial expressions and the position 

of a head) to determine the presence of attention during virtual 

meetings. Hossen and Uddin [1] used models that were based 

on convolutional neural networks to identify attentiveness 

using webcam feeds, despite the fact that they tended to have 

low accuracy in uncontrolled settings. There were also 

commercial visual engagement analytics at scale tools like 

GoGuardian [2] which provided attentiveness dashboards on 

live lectures in real-time. However, such systems mostly focus 

on behavioural cues at the surface level and cannot detect if 

learners are processing information or retaining whatever they 

are receiving. 

The restrictions of engagement tools, which are based on 

the visual input only, are widely documented in existing 

literature. According to Ma and Shi [6], there had been a 

continued discrepancy between objective performance of 

students and how students self-rated their attentiveness in 

virtual classroom settings. Wang and Zheng [5] made an 

argument in a parallel study that visual cues are not reliable 

proxies of actual learning outcomes, particularly in cases 

where learners are looking at each other but failing to process 

learning material. All these observations echo the larger 

concerns about the legitimacy of web-based analytics, 

especially when such environmental factors as distractions at 

work, unsuitable lighting conditions, and privacy limitations 

undermine fidelity of data [9]. As a result, even the largest 

videoconferencing tools, such as Zoom, have rolled out their 

attention-tracking tools due to the reliability and ethical issues 

associated with them [4].  

Multimodal interaction identification Multimodal 

interaction detection in order to overcome these shortcomings, 

recent research has sought to adopt multimodal interaction 

detection, combining visual, audio, and affective techniques to 

enhance predictive power. The evidence presented by 

Angeline and Nithya [12] indicates that multimodal fusion 

leads to increased engagement detection accuracy; however, 

the literature available does not include much information on 

the ways to determine whether the understanding or actual 

learning is achieved. Simultaneously, progress in natural 

language processing, particularly transformer-based models, 

has led to a variety of novel tasks, such as automated 

summarization and automatic question generation. Zhu et al. 

[14] used multimodal transformer to derive brief summaries of 

educational content to teach people, but Dhanya et al. [15] 

used the T5 model to get multiple-choice questions based on 

the lecture transcripts. 

Despite these technological advances, a critical gap 

remains:  

(1) Engagement monitoring systems are rarely cross-

validated against actual student understanding. 

(2) Most tools continue to assume that attention equates to 

comprehension, leading to potential misclassifications. For 

instance, students who appear disengaged due to camera issues 

or personal habits may score highly on assessments, while 

others who maintain screen focus may perform poorly.  

This highlights the need for systems capable of verifying 

engagement claims through performance-based validation.  

Novelty relative to prior work: Prior studies primarily (i) 

estimate engagement from visual behavior, (ii) combine 

multimodal signals (e.g., audio, context), or (iii) assess 

learning outcomes in isolation. To the best of our knowledge, 

no prior classroom study has positioned content-aligned 

comprehension as a systematic validation criterion for vision-

based engagement dashboards in live instruction. The 

proposed framework operationalizes this link and reports 

when and why behavioral and cognitive indicators diverge. 

This work makes three contributions: 

(1) Introduced a content-aware comprehension layer that 

validates commercial behavioral E-scores using immediate 

post-lecture C-scores. 

(2) Implements a Whisper–BERTSUM–T5 workflow, 

optimized for GPU acceleration yet deployable on a single 

workstation in classroom settings. 

(3) Across ten lectures involving one hundred students, 

demonstrates a weak E–C correlation and provides mismatch 

analyses showing when behavioral attention diverges from 

learning comprehension, thereby informing pedagogical 

feedback. 

 

Table 1. Comparison of existing engagement monitoring 

methods 

 

Feature 

Traditional 

Visual 

Monitoring 

Multimodal 

Systems 

Type of input 

Facial 

expressions, gaze, 

posture 

Visual + audio + 

sensors (e.g., heart 

rate) 

Real-time capability Yes Yes 

Measures cognitive 

understanding 
No Partial 

Scalability High Medium 

Hardware 

dependency 
Low High 

Assessment 

integration 
No No 

Accuracy under 

diverse conditions 
Low to Medium Medium to High 
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Table 1 summarizes the key characteristics of two widely 

adopted engagement monitoring methods: Traditional Visual 

Monitoring and Multimodal Systems. Earlier engagement 

systems mainly relied on what they could see — a student’s 

face or eye movement — to judge attentiveness. These 

methods are easy to scale and need little hardware, but they 

fail to show how much the learner actually understands and 

often give mixed results when lighting or background changes. 

Some newer models combine different types of data, such as 

sound or body signals, to make the predictions more stable. 

However, these systems need additional sensors and are 

difficult to apply in large online classes. More importantly, 

both approaches overlook what the student actually 

understands during the lesson, showing why a validation layer 

like the one proposed in this study is necessary. 

 

 

3. PROPOSED METHODOLOGY 

 

To address the boundaries of systems that decides 

engagement only by appearance, our method works in two 

connected parts. The first, called the behavioural layer, takes 

an Engagement Score (E-score) from an existing vision tool, 

which measures how attentive a student appears on camera. 

The second, the comprehension layer, converts the lecture’s 

audio into short summaries and builds quick, topic-based 

MCQs to calculate a Comprehension Score (C-score). These 

two layers run together for every lecture and every student, 

helping us check whether visible attention truly matches actual 

understanding.  

The framework is built for live online classes, where most 

engagement tools watch eye direction, facial expressions, and 

neck position to find an E-score. Yet these visible signs do not 

always show what a student actually understands. To 

overcome this gap, the model adds a second layer that 

measures C-scores, taken from short quizzes created 

automatically with natural language processing (NLP) 

techniques after each lecture. The system’s dashboard shows 

a continuous E-score from 0 to 100. For grouped results, 

engagement levels are marked as i) Low (0-49) ii) Moderate 

(50-74), and iii) High (75-100). For simple yes-or-no analysis, 

students with E ≥ 75 are counted as Engaged, and those with 

E < 75 as Disengaged. Tests with slightly different cut-off 

values (± 5 points) showed that the overall patterns stayed the 

same.  

Whisper speech-to-text model is used to covert lecture 

audio into text. The transcript is then shortened into a summary 

with BERTSUM, and then T5 model uses that summary to 

create five to ten multiple-choice questions focused on key 

ideas. Each question has the same weight, and the 

comprehension score is calculated as follows: 

 

100
Correct Resonses

C score
Total Question

− =   (1) 

 

Score C ≥ 70 represents satisfactory comprehension, 

consistent with standard mastery thresholds in classroom 

assessment. 

Three pretrained machine learning models were used in the 

framework: 

(1) Whisper (OpenAI) – To transcribes live lecture audio 

[13], 

(2) BERTSUM – To summarizes transcribed content [14], 

(3) T5 – To generates content aligned MCQs from the 

summary [15]. 

The quizzes are given right after each lecture, and the 

students’ results are then compared with their E-scores to 

check how closely observed attention matches actual 

understanding. 

 

 
 

Figure 1. Overall system architecture integrating the 

proposed ML-based engagement validation module 

 

Figure 1 shows how the system works as a whole, 

connecting the live lecture, webcam-based engagement 

tracking, and comprehension checking. While the class is in 

progress, the lecture audio passes through the ASR–NLP 

pipeline, and the vision module records visual engagement. 

The NLP component creates a short summary and a quick 

quiz, and the students’ answers generate a C-score. This score 

is then compared with the related E-score to see how well the 

two align. 

 

 
 

Figure 2. System architecture for engagement validation via 

lecture comprehension 

 

Figure 2 enlarges the ML pipeline, showing its add-in 

stages: audio capture -> transcription ->summarization -> 

MCQ generation -> quiz delivery and scoring -> statistical 

comparison between E-score and C-score. After scoring, the 

Pearson correlation coefficient (r) is calculated to measure the 

relationship between the two scores. 

This modular and platform-independent design allows 

whole integration with any vision-based tracker, linking its 

behavioral outputs with performance-based comprehension 

rather than presence alone. 
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3.1 Research contributions 

 

The approach aims to close the gap between what students 

seem to pay attention to and what they truly understand. It also 

brings a few useful improvements, both in method and in 

practice, to the field of AI-supported learning. The main ideas 

and contributions of this work are outlined below: 

(1) A dual-layer workflow pairing behavioral engagement 

estimates with post-lecture comprehension test [7, 8, 11]. 

(2) Replaces subjective surveys or manual rubrics [6] with 

automatically generated quizzes, providing a quantifiable 

reference for student understanding. 

(3) The correlation module enables comparisons across 

commercial or academic engagement tools without modifying 

their internal algorithms. 

(4) Inspired by ML use cases in healthcare, agriculture, 

finance and IoT domains [17-24], the framework is optimized 

for real classroom integration with minimal hardware and 

software dependencies. 

Together, these components form a practical and scalable, 

tested framework that introduces accountability and cognitive 

depth into online learning engagement systems. 

 

 

4. EXPERIMENTAL SETUP 

 

This section explains the setup, data, and steps used to test 

the dual-layer engagement validation framework in real 

classroom sessions. The configuration was designed to 

replicate realistic online-learning scenarios where computer-

vision-based engagement monitoring runs in parallel with 

automated comprehension assessment. 

 

4.1 Experimental environment 

 

The experiments were conducted in a controlled virtual-

classroom setup integrating a standard video-conferencing 

platform (Google Meet) with a commercial vision-based 

engagement monitor (GoGuardian) [2]. Ten independent 45-

minute lectures were delivered to a cohort of 100 

undergraduate students from the Computer Science 

programme. During each live session, facial-orientation, gaze-

direction, and posture data were continuously analyzed to 

compute real-time engagement scores (E-scores) ranging from 

0 to 100. 

 

Table 2. Reviews the components employed in the study 

 

Component Tool / Model Used Purpose 

Virtual classroom Google Meet 
Live lecture 

delivery 

Engagement 

monitoring 

GoGuardian / 

Engageli 

Real-time visual 

engagement 

tracking 

Speech recognition Whisper (OpenAI) 
Live ASR for 

lecture audio 

Summarization & 

MCQ generation 

T5 (fine-tuned) / 

BERTSUM (pilot) 

Content 

summarization -> 

quiz creation 

Quiz interface Flask Web App 
Secure post-lecture 

testing 

Statistical analysis NumPy, SciPy Pearson r, p-values 

 

In parallel, lecture audio was routed to the Whisper 

automatic speech-recognition (ASR) model [13] for live 

transcription. The transcripts were summarized by the T5 

transformer [15], and concise multiple-choice questions 

(MCQs) were generated automatically and delivered 

immediately after the lecture through a secure Flask-based 

quiz interface. All models were built using Python 3.10 SDK 

(Software Development Kit) using the Hugging Face 

Transformers library and executed locally within a Docker 

environment on an Intel i7 workstation (32 GB RAM, RTX 

3060 GPU). This setup ensured real-time operation while 

emulating the bandwidth and latency constraints typical of 

remote teaching in Table 2. 

 

4.2 Dataset and participants 

 

To test the dual-layer engagement validation framework, we 

created our own dataset that records both visual engagement 

signals and students’ quiz responses during live online classes. 

The data was gathered only for research and comparison under 

controlled classroom conditions. It includes matched E-scores 

from a commercial vision-based tool and C-scores from short 

quizzes given right after each lecture. 

A separate set of 16,000 labelled facial expression images 

was also created to fine-tune a local vision model, used only 

for testing and comparing results with the commercial E-

scores. The live classroom study itself depended entirely on 

the commercial engagement tool and the new comprehension 

layer, while this extra dataset was included to help others 

reproduce the work and run future comparisons. Images were 

captured using a OnePlus 7 Profor high-resolution input, a 

Realme UI 5.0 or mid-range performance, and a Lenovo 300 

FHD Webcam. This variety of devices represents the mixed 

hardware available to students, which can influence both 

image quality and engagement detection accuracy. 

In the comprehension layer, the same group of students took 

automatically generated MCQ tests right after each lecture. 

For every student, a Comprehension Score (C-score) was 

worked out by dividing the number of correct answers by the 

total questions, which helped show how well each learner 

understood the topic. The study involved students aged 10 to 

32 years, covering both school and undergraduate levels, so 

that the framework could be tested across different age groups 

and learning abilities. All data were collected under the 

institute’s ethical approval process, and personal details were 

removed before analysis to maintain privacy. 

The dataset was created with two clear purposes. One was 

to recognize engagement levels from visible behaviors, and the 

other was to see if those behaviors actually reflected real 

understanding. The combined record of E-scores and C-scores 

provided the key information for measuring how closely 

observed attention matched genuine comprehension, which 

forms the core of this framework’s validation. 

 

4.3 Result and analysis 

 

Figure 3 describes the working of online student 

engagement tool. During the live session, the engagement tool 

continuously captured visual cues while the lecture audio was 

processed in parallel. The Whisper model converted the audio 

to text, which was then summarized by T5 and turned into a 

ten-question, content-based MCQ quiz. Students completed 

the quiz right after the lecture, and the system calculated their 

Comprehension Score (C-score) as the percentage of correct 

answers, as shown in Eq. (1). 

A C-score of 70 or above was taken as a sign of good 

understanding, which matches the usual mastery level used in 
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education. The summaries and quizzes created by the system 

were reviewed by two senior teachers to make sure the content 

was accurate and matched the learning goals. Their agreement 

was strong, with reliability values of κ = 0.82 for relevance 

and κ = 0.79 for difficulty, showing that the generated material 

was of good quality. 

Student engagement was divided into three groups — Low 

(0–49), Moderate (50–74), and High (75–100). The E-scores 

and C-scores were compared using Pearson’s correlation (r) to 

find how closely visible attention matched actual learning. The 

whole process ran automatically in the background, without 

interrupting the lecture or disturbing the students. 

 

 
 

Figure 3. Experimental setup for validating online student 

engagement 

 

Table 3. Sample results mapping: Comprehension vs 

engagement scores 

 
Student 

Id 

Lecture 

Id 

E-

Score 
E-Level 

C-

Score 
C-Level 

S001 L1 82 High 84 High 

S002 L1 76 High 78 High 

S003 L1 63 Moderate 72 High 

S004 L1 91 High 62 Moderate 

S005 L1 58 Moderate 45 Low 

S006 L2 69 Moderate 81 High 

S007 L2 49 Moderate 39 Low 

S008 L2 80 High 52 Moderate 

S009 L2 54 Moderate 77 High 

S010 L2 44 Low 48 Low 

 

Table 3 shows sample results for ten students chosen at 

random. In several cases, the level of visible engagement did 

not match the actual understanding. For example, student S008 

had an E-score of 80 (High) but a C-score of 52 (Moderate), 

while student S006 showed the opposite pattern with E = 69 

(Moderate) and C = 81 (High). These differences make it clear 

that paying attention on camera does not always mean the 

content was fully understood. 

When all records were analysed, the Pearson correlation 

between E-scores and C-scores was r = 0.31, showing only a 

weak link between the two. As seen in Figure 4, the scatter plot 

spreads widely with just a slight upward trend, which means 

that webcam-based attention does not consistently reflect real 

understanding. These results highlight why a content-aware 

and performance-based layer is important for making sense of 

engagement data. 

 

 
 

Figure 4. Correlation scatter plot – E-score vs C-score 

 

 

5. PERFORMANCE EVALUATION 

 

This section shows the numerical results comparing the E-

scores from visual tracking with the C-scores produced by the 

proposed comprehension layer. To check how closely the two 

measures matched, both standard classification methods and 

correlation analysis were used to test the accuracy and 

reliability of the framework. 

 

5.1 Evaluation metrics 

 

To estimate the relationship between engagement and 

comprehension, five commonly used metrics were adopted: 

Accuracy, Precision, Recall, F1-Score, and the Pearson 

Correlation Coefficient (r). These provide both categorical and 

continuous perspectives on model alignment. 

 

Accuracy (Acc): 

Accuracy represents the proportion of correctly predicted 

engagement–comprehension alignments among all 

predictions: 

 

TP TN
Accuracy

TP FP FN TN

+
=

+ + +
 (2) 

 

where,  

TP = True Positives (High E-score and High C-score) 

TN = True Negatives (Low E-score and Low C-score) 

FP = False Positives (High E-score but Low C-score) 

FN = False Negatives (Low E-score but High C-score) 

 

Precision (P): 

Accuracy represents the proportion of correctly predicted 

engagement–comprehension alignments among all 

predictions: 

 

TP
Precision

TP FP
=

+
 (3) 
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A higher precision indicates fewer false identifications of 

engagement.  

 

Recall (R): 

 

TP
Recall

TP FN
=

+
 (4) 

 

This measures how effectively the system detects all 

genuinely engaged students. 

 

F1-Score: 

 

1 2
Re a

Precision Recall
F

Precision c ll


= 

+
 (5) 

 

The F1-score provides a balanced evaluation when data 

across engagement categories are unevenly distributed. 

 

Pearson Correlation Coefficient (r): 

To quantify the linear association between E-scores and C-

scores, the Pearson correlation coefficient was calculated as: 

 

( )( )

( ) ( )
22

.

Ei E Ci C
r

Ei E Ci C

− −
=

− −



 
 (6) 

 

where Ei and Ci represent individual engagement and 

comprehension scores, and 𝐸̅ 𝑎𝑛𝑑 𝐶̅ denote their means. 

In this study, the correlation value was r = 0.31, showing 

only a weak positive relationship. This means that students 

who appeared more attentive on camera did not always score 

higher in comprehension. 

 

5.2 Quantitative results and confusion metrics 

 

To further analyze classification reliability, a confusion 

matrix was produced using comprehension outcomes as the 

performance-based ground truth. Engagement was classified 

as Engaged (E ≥ 80) or Disengaged (E < 80), while 

comprehension was considered Actually Engaged if C ≥ 70. 

 

Table 4. Confusion matrix for binary classification 

 

 
Predicted 

Engaged 

Predicted 

Disengaged 

Actually engaged 36 14 

Actually 

disengaged 
19 31 

 

Based on this matrix, the following metrics were calculated: 

Accuracy: (36 + 31) / 100 = 0.67 

Precision: 36 / (36 + 19) = 0.65 

Recall: 36 / (36 + 14) = 0.72 

F1-Score: 2 × (0.65 × 0.72) / (0.65 + 0.72) = 0.685 

 

The results show that the system performed moderately 

well, with the engagement software matching actual 

comprehension in about 67% of the cases. In the remaining 

third, it either rated students as attentive when they weren’t or 

missed signs of genuine understanding in Table 4.  

These differences highlight the restrictions of relying only 

on visual signals to judge engagement. To overcome this, the 

proposed dual-layer framework links visible behaviour with 

real learning outcomes through a comprehension-based check, 

offering a more trustworthy way to measure true engagement. 

 

 

6. RESULT AND ANALYSIS 

 

This section compares the Engagement Scores (E-scores) 

from visual tracking with the Comprehension Scores (C-

scores) produced by the dual-layer framework. The analysis 

covers basic statistics, correlation results, both multi-class and 

binary classifications, and cases where visible attention and 

actual understanding do not match. All findings are based on 

data from 100 students who took part in ten live lectures 

conducted under the setup described earlier. 

 

6.1 Comprehension–engagement mapping 

 

Each lecture was tracked by an automatically generated 

post-lecture quiz using the T5 model. Continuous E-scores (0 

to 100) were obtained from commercial vision-based tools 

such as GoGuardian and Engageli, while C-scores were 

derived from the students’ performance in quiz. 

For consistency with engagement software outputs, three 

categorical bands were adopted for both metrics i) Low (0 to 

49), ii) Moderate (50 to 74), and iii) High (75 to 100). For 

binary evaluation, thresholds were defined as Engaged (E ≥ 

75) and Actually Engaged (C ≥ 70). 

Representative examples demonstrate the deviation 

between behavioral and cognitive indicators. Student S007 

achieved a high E-score of 82 yet obtained a C-score of 49, 

reflecting weak comprehension despite seeming focus. 

Conversely, Student S004 recorded moderate engagement (E 

= 60) but a C-score of 91, indicating deep understanding 

despite limited visible cues. Such discrepancies validate the 

core hypothesis that visual attentiveness alone is an 

untrustworthy factor for cognitive engagement. 

 

6.2 Correlation analysis 

 

Across all lectures, the Pearson correlation between 

continuous E-scores and C-scores was r = 0.31 (p < 0.05), 

showing only a weak positive link between visual attention 

and actual comprehension. As seen in Figure 4, the scatter plot 

shows a wide spread of data points around the regression line, 

meaning that higher E-scores only slightly relate to higher C-

scores. This pattern supports previous research suggesting that 

webcam-based measures mainly capture surface-level 

attention. In numerous cases, students who appeared highly 

engaged on camera performed poorly on comprehension tests, 

while others with moderate engagement showed strong 

understanding. These differences clearly highlight the gap 

between observed behaviour and real cognitive learning that 

still exists in many AI-driven monitoring systems. 

 

6.3 Classification performance 

 

To compare engagement and comprehension across clear 

categories, both E-scores and C-scores were grouped into three 

levels — High, Moderate, and Low. The summary of these 

classification results is shown in Table 5. 

The findings show that the vision-based monitoring system 

was fairly reliable in matching engagement with 

comprehension results. Even so, about one-third of the cases 
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showed mismatches, where students either appeared highly 

engaged but understood less, or seemed less attentive yet 

showed strong comprehension. 

Using binary thresholds (E ≥ 75; C ≥ 70), the confusion 

matrix presented in Figure 5 and Table 5 quantifies this 

relationship. The model achieved an overall accuracy of 

68.7%, with precision = 0.72, recall = 0.65, and F1 = 0.68. 

 

Table 5. Sample results mapping: Comprehension vs 

engagement scores 

 
Metric Value 

Accuracy 72.5% 

Precision 71.3% 

Recall 68.9% 

F1-Score 70.1% 

Pearson (r) 0.31 

 

 
 

Figure 5. Confusion matrix – engagement classification vs. 

comprehension assessment 

 

6.4 Discussion and findings 

 

The weak correlation (r = 0.31) and reasonable accuracy 

suggest that behavioural E-scores on their own do not give a 

full picture of learning. A student may appear focused on 

camera but still fail to grasp the topic, while another who looks 

less attentive—or even works off camera—might understand 

the lesson very well. 

Adding a comprehension-based check benefits cut down 

these wrong classifications and turns basic behavioural data 

into insights that teachers can actually use. This shows that the 

proposed dual-layer framework makes AI-based engagement 

analysis more meaningful and trustworthy by connecting what 

is seen on camera with what students truly understand. 

 

 

7. CONCLUSION AND FUTURE SCOPE 

 

This study proposed and validated a dual-layer, content-

aware framework that cross-verifies vision-based behavioral 

engagement scores with comprehension outcomes derived 

from immediate, lecture-aligned assessments. Integrating 

Whisper for real-time transcription and T5 for summarization 

and quiz generation, experiments with 100 students across 10 

lectures showed only a weak correlation (r = 0.31, p < 0.05) 

between behavioral attention (E-scores) and comprehension 

(C-scores). The model achieved 68.7% accuracy, confirming 

that nearly one-third of predictions from visual-only systems 

misrepresent true learning. 

By linking engagement analytics with measurable 

comprehension, the framework offers a trustworthy and 

learner-centric alternative to conventional webcam-based 

monitoring. It provides an adaptable layer that can be 

embedded into existing EdTech platforms to support evidence-

based feedback and adaptive instruction. 

Future work will expand validation across larger and more 

diverse datasets, integrate multimodal inputs (gaze, speech, 

context), and apply explainable-AI techniques to enhance 

transparency. Extending comprehension analysis to open-

ended responses will further improve the framework’s ability 

to capture deeper learning outcomes. 
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