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Welding defect detection is a critical component of quality inspection systems in the 

manufacturing industry. This study proposes the Trigonometry and Adaptive Histogram of 

Oriented Gradients (TAHOG) method as an extension of the conventional Histogram of 

Oriented Gradients (HOG), incorporating logarithmic and adaptive exponential functions 

in the gradient angle decomposition process to enhance feature extraction sensitivity in X-

ray welding images. The methodology involves preprocessing, weld region segmentation, 

and feature extraction using both HOG and TAHOG on a dataset of 500 X-ray images, 

divided into training and testing sets. Comparatively, TAHOG demonstrates superior 

performance in detecting defect quantity, orientation, and defect area. The HOG method 

yields an average defect ratio of 7.58%, lower than 11.85% obtained using TAHOG, and 

tends to generate fragmented defect mappings, leading to less representative damage 

characterization. In contrast, TAHOG maintains higher sensitivity to variations in defect 

structure and orientation. Experimental results indicate that TAHOG achieves 99.77% 

accuracy, 100% precision, 99.54% recall, 99.77% F1-score, and 100% specificity, 

reflecting an optimal balance between defect detection capability and avoidance of 

misclassification in non-defective regions. Therefore, TAHOG effectively addresses the 

limitations of HOG in detecting low-intensity defects and contributes significantly to 

improving the accuracy and reliability of automated welding inspection systems in 

industrial environments. 
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1. INTRODUCTION

TAHOG is a method derived from the Histogram of 

Oriented Gradients (HOG), specifically developed to enhance 

the effectiveness of visual feature extraction in image-based 

welding defect detection. As the demand for automated 

inspection systems in the manufacturing industry increases, 

visual detection of welding defects has become essential to 

ensure the quality of weld joints while minimizing the risk of 

structural failures [1]. Welding itself is the process of joining 

materials using heat or pressure, where the quality of the joint 

strongly depends on the process parameters and techniques 

employed [2]. Therefore, good weld joints—defined as those 

free from defects—are a key factor in improving the strength 

and reliability of welded structures. Previous studies have 

demonstrated that variations in welding parameters 

significantly affect the strength of dissimilar metal joints, 

where changes in visual patterns of the welds can be extracted 

using gradient orientation approaches such as HOG, thus 

making visual methods increasingly relevant in modern 

inspection systems [3]. 

HOG has proven effective in extracting critical features in 

welding areas for both classification and surface defect 

detection. Yu et al. [4] developed a butt weld penetration 

monitoring system based on infrared sensors and an improved 

HOG algorithm, allowing stable penetration detection even in 

the presence of arc light disturbances during the welding 

process. The integration of HOG with convolutional neural 

networks (CNN) has also been shown to improve 

classification accuracy, as demonstrated by Zhang et al. [5] in 

ship object recognition using SAR imagery. Optimization of 

HOG parameters, such as cell size and gradient orientation, 

has been conducted to improve visual detection performance 

in industrial settings [6]. 

The combination of HOG with deep learning has also been 

proven to increase welding defect detection accuracy by over 

15% and to enhance sensitivity to finer surface defects [7]. 

Furthermore, feature fusion techniques that combine HOG 

with other methods have effectively increased classification 

accuracy in small-sized weld defect image datasets [8]. In 

visual sensor-based surface defect detection, the 

implementation of HOG–SVM methods has demonstrated 

high accuracy and processing efficiency for various types of 

defects [9]. Comparisons of feature extraction methods have 

revealed that HOG achieved the highest classification 

accuracy, up to 95%, on small radiographic datasets [10]. The 

addition of data augmentation and integration of CNN and 

HOG features has also been shown to improve multiclass 
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classification accuracy to an average of 92% [11]. 

Furthermore, visual inspection methods utilizing gradient 

features such as HOG combined with deep learning have 

resulted in highly accurate automated detection [12]. HOG is 

also recognized as an important baseline for defect recognition 

from X-ray images, even when compared to the latest deep 

learning methods [13]. Its application in visual infrastructure 

such as pipelines and utility networks, has also proven 

effective [14]. Other innovations, such as HOG–Poly–SVM 

for defect detection on phased-array ultrasonic TFM images, 

have achieved accuracy rates exceeding 93% [15]. Integration 

of HOG into simple CNN architectures also provides 

significant improvements in precision and recall [16], and 

enables the identification of various types of weld defects on 

radiographic images with competitive performance [17]. 

The application of HOG–Linear–SVM to ultrasonic NDT 

images for minor flaw detection can achieve accuracies up to 

98% [18], while HOG–Poly–SVM shows better performance 

on ultrasonic phased array pipeline datasets [19]. Additionally, 

the combination of visual attention mechanisms and HOG 

features in deep learning models enhances precision and 

provides interpretability for radiographic defect detection 

results [20]. The application of these methods has also 

expanded to nondestructive inspection of complex heat sink 

fin welds using infrared images and deep learning [21], as well 

as automated weld penetration measurement based on dual-

band imaging and neural networks with HOG features [22]. 

Beyond welding, HOG is also adopted for real-time human 

tracking systems based on Faster R-CNN and metaheuristic 

optimization [23], as well as for automated surface defect 

detection using laser visual sensors with HOG–SVM, 

achieving identification accuracy of up to 97.86%. Building 

upon these prior studies, TAHOG is expected to make a 

significant contribution to improving the accuracy, efficiency, 

and reliability of automated welding defect detection. This 

innovation offers substantial benefits for the industrial sector, 

particularly in accelerating inspection processes, reducing 

human error, and ensuring optimal manufacturing quality, 

thereby supporting efficiency, safety, and competitiveness in 

the modern industrial era. 

 

 

2. PROPOSED SYSTEM 

 

This section describes the proposed feature extraction 

framework designed to enhance welding defect detection 

performance. The TAHOG method is introduced as an 

extended development of the conventional Histogram of 

Oriented Gradients (HOG) approach. In this study, the 

standard HOG method is retained as a baseline reference to 

enable a fair and measurable comparison of feature extraction 

performance. While HOG computes gradient orientation 

features using a fixed cell–block structure, TAHOG integrates 

an adaptive trigonometric logarithmic gradient decomposition 

mechanism to improve sensitivity to low contrast defect 

patterns and fine structural details in X-ray welding images. 

 

2.1 Block and cell size 

 

In the conventional HOG descriptor, the image is 

partitioned into spatial regions called cells of size 16×16 

pixels, and several adjacent cells are grouped into overlapping 

blocks to provide normalization against illumination 

differences. This cell-block configuration is retained in this 

study to ensure consistent representation and to maintain 

fairness in comparison. In TAHOG, the same cell and block 

sizes are preserved. However, unlike HOG, the gradient 

refinement is performed before histogram construction, 

allowing enhanced directional sensitivity prior to cell block 

aggregation. 

 

2.2 Image gradient  

 

The input RGB image is first converted into a grayscale 

representation to reduce computational complexity while 

preserving structural information. The horizontal and vertical 

gradients are then computed using discrete convolution 

operations as follows. 

 

( ), ( , 2)xI f x y f x y= − +  (1) 

 

( ), ( 2, )yI f x y f x y= − +  (2) 

 

The gradient magnitude and orientation at each pixel are 

obtained using: 

 

( ) 2 2, x ym x y I I= +  (3) 
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2.3 Bin orientation 

 

For the conventional HOG method, each gradient 

orientation is assigned to one of nine orientation bins spanning 

0° to 180° with 20° resolution per bin. The gradient 

magnitudes contribute to the histogram of each cell, forming 

the core orientation distribution representation. This histogram 

representation is later normalized across blocks to enhance 

robustness to local contrast variation. 

 

2.4 Trigonometric vector decomposition 

 

This stage performs an adaptive decomposition of the 

gradient contribution into two dominant orientation responses. 

Let G and θ denote the gradient magnitude and angle obtained 

from imgradientxy. Two reference orientations are defined at 

θ1=0∘ (horizontal) and θ2=90∘ (vertical). The gradient vector 

is projected toward these references using trigonometric 

weighting as follows: 

 

𝐺1
= 𝐺

∙
sin⁡(𝜃2 − 𝜃)

sin(𝜃2 − 𝜃) cos(𝜃 − 𝜃1) + sin(𝜃 − 𝜃1) cos⁡(𝜃2 − 𝜃)
 

(5) 

 

𝐺2
= 𝐺

∙
sin⁡(𝜃 − 𝜃1)

sin(𝜃2 − 𝜃) cos(𝜃 − 𝜃1) + sin(𝜃 − 𝜃1) cos⁡(𝜃2 − 𝜃)
 

(6) 

 

Trigonometric-Based 

However, trigonometric projection alone remains sensitive 

to noise in low-contrast weld regions. Therefore, an adaptive 

logarithmic–exponential weighting is introduced to improve 

angular discriminability: 
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1 2 )1 1 ,  ( 1) (2L log e L log e       − − − −= + = +∣ ∣ ∣ ∣  (7) 

 

where, α controls the sharpness of angular selectivity and β 

regulates smoothing. The logarithmic term suppresses noise in 

homogeneous regions, while the exponential term amplifies 

subtle angular variations, enabling the detection of fine and 

weak weld defects that are frequently lost under HOG’s block-

based averaging. 

The final directional gradient maps are then computed as: 

 

𝐿1

{
 

 𝐺1 = 𝐺 ∙
𝐿1

𝐿1 + 𝐿2

𝐺2 = 𝐺 ∙
𝐿2

𝐿1 + 𝐿2

 (8) 

 

Algorithmic and Exponential-Based 

This pixel-wise adaptive projection preserves small 

discontinuities and crack-like patterns, thereby improving 

sensitivity to low-intensity defects that are typically smoothed 

out in traditional HOG cell–block normalization. 

 

2.5 Block normalization 

 

Block normalization is performed to minimize the impact of 

illumination and contrast variations, ensuring that the 

extracted TAHOG features remain stable under different 

image intensity conditions. The normalization process is 

expressed as: 

 

n

v
V

v 
=

+
 (9) 

 

To ensure a fair and unbiased performance comparison, 

both the conventional HOG and the proposed TAHOG method 

are designed to produce the same final feature dimensionality. 

For an input image of size 256×256 pixels, both methods yield 

a 9,216-dimensional feature vector. This equivalency in 

representation size guarantees that any observed performance 

improvements are attributed solely to the adaptive gradient 

decomposition mechanism introduced in TAHOG, rather than 

to differences in feature dimensionality or descriptor scale. 

Accordingly, the enhancement reported in this study reflects 

the intrinsic effect of the trigonometric logarithmic gradient 

refinement, independent of classifier influence or feature 

length expansion.  

Here is the framework illustrating the development from 

HOG to the proposed TAHOG method: 

The framework presented in Figure 1 illustrates the 

workflow of the proposed welding defect detection system in 

X-ray images. The process begins with image acquisition, 

followed by a preprocessing stage aimed at enhancing 

structural detail and suppressing irrelevant visual variations. 

This stage includes noise reduction, contrast stretching, local 

enhancement, intensity normalization, and high-pass filtering 

to emphasize gradient transitions and fine surface 

irregularities. 

After preprocessing, the image undergoes segmentation to 

isolate the weld seam as the primary region of interest. Feature 

extraction is then performed using two comparative 

approaches, namely the conventional Histogram of Oriented 

Gradients (HOG) and the proposed Trigonometry-Adapted 

Histogram of Oriented Gradients (TAHOG). In HOG, gradient 

descriptors are computed and aggregated within a fixed cell–

block structure. In contrast, TAHOG introduces an adaptive 

trigonometric–logarithmic gradient decomposition 

mechanism designed to preserve low-intensity directional 

variations that are typically diminished by cell–block 

normalization in HOG. 

 

 
 

Figure 1. TAHOG processing pipeline for welding defect 

detection 

 

The extracted features are subsequently analyzed to identify 

discontinuities, texture distortions, or directional irregularities 

indicative of weld defects. It should be noted that this study is 

focused on evaluating improvements at the feature extraction 

level, and therefore does not employ an external classifier. 

Accordingly, the performance comparison between HOG and 

TAHOG reflects the intrinsic contribution of the proposed 

gradient decomposition mechanism, rather than the influence 

of classifier parameters or behavior. 

It is important to clarify that the objective of this study is to 

assess the improvement at the feature extraction stage. 

Therefore, no external classifier is employed in the detection 

pipeline. This ensures that the performance comparison 

between HOG and TAHOG reflects the intrinsic enhancement 

introduced by the proposed gradient decomposition 

mechanism, independent of classifier behavior or training bias. 

 

 

3. RESULTS AND DISCUSSION 

 

This section emphasizes the need for an effective feature 

extraction method to enhance detection accuracy. The 

TAHOG method, an adaptive extension of HOG, is used for 

its improved sensitivity in capturing directional and structural 

image features. The process starts by importing labeled images 

(welding1 to welding10) to train the system for input 

recognition, as illustrated in Figure 2. 

The dataset includes three primary weld defect types 

frequently encountered in radiographic inspection, as 

classified under ISO 6520-1 (Classification of Geometric 

Imperfections in Metallic Materials – Welds): elongated 

defects (100-series), round or porosity defects (200-series), 

and lack-of-fusion defects (401). Elongated defects manifest 

as stretched or linear discontinuities along the weld seam, 

round defects appear as circular voids resulting from trapped 

gas, and lack-of-fusion defects arise when the filler metal fails 

to adequately bond with the base material. These defect types 

exhibit distinct gradient and texture characteristics, making 

them appropriate for performance evaluation using the 

proposed TAHOG feature extraction method. 

Noise Removal is the first preprocessing step in welding X-
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ray images, removing noise to improve clarity and highlight 

defect structures, as illustrated in Figure 3. 

Contrast stretching enhances the pixel intensity distribution 

in welding X-ray images, thereby improving visual contrast 

and facilitating clearer detection of weld lines and defect 

regions, as illustrated in Figure 4. 

Contrast Enhancement enhances intensity differences in 

welding X-ray images to reveal subtle defects, enabling more 

accurate weld quality assessment, as illustrated in Figure 5. 

Normalization equalizes the intensity distribution in 

welding X-ray images to minimize lighting variations, thereby 

improving the detectability of weld defects, as illustrated in 

Figure 6. 

High-pass filter highlights fine details in welding X-ray 

images, making weld defects clearer and easier to detect, as 

illustrated in Figure 7. 

Segmentation separates the weld area from the background 

in a black-and-white format, facilitating defect detection and 

further analysis, as illustrated in Figure 8. 

Segmentation extracts the weld region, HOG highlights 

potential defects, and TAHOG offers clearer and more 

sensitive defect localization, as illustrated in Figure 9. 

 
No Images Description 

1 
 

Welding.1 

2 
 

Welding.2 

3 
 

Welding.3 

4 
 

Welding.4 

5 
 

Welding.5 

6 
 

Welding.6 

7 
 

Welding.7 

8 
 

Welding.8 

9 
 

Welding.9 

10 
 

Welding.10 

 

Figure 2. Initialization of the welding image dataset, labeled sequentially from Welding.1 To Welding.10 

 
No Description Images Noise Removal 

1 Welding.1 
  

2 Welding.2 
  

3 Welding.3 
  

4 Welding.4 
  

5 Welding.5 
  

6 Welding.6 
  

7 Welding.7 
  

8 Welding.8 
  

9 Welding.9 
  

10 Welding.10 
  

 

Figure 3. Welding X-ray images before and after noise removal 

 
No Description Noise Removal Contras Streching 

1 Welding.1 
  

2 Welding.2 
  

3 Welding.3 
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No Description Noise Removal Contras Streching 

4 Welding.4 
  

5 Welding.5 
  

6 Welding.6 
  

7 Welding.7 
  

8 Welding.8 
  

9 Welding.9 
  

10 Welding.10 
  

 

Figure 4. Welding X-ray images after noise removal and contrast stretching 

 
No Description Contras Streching Enhancement 

1 Welding.1 
  

2 Welding.2 
  

3 Welding.3 
  

4 Welding.4 
  

5 Welding.5 
  

6 Welding.6 
  

7 Welding.7 
  

8 Welding.8 
  

9 Welding.9 
  

10 Welding.10 
  

 

Figure 5. Welding X-ray images after contrast stretching and enhancement 

 
No Description Enhancement Normalization 

1 Welding.1 
  

2 Welding.2 
  

3 Welding.3 
  

4 Welding.4 
  

5 Welding.5 
  

6 Welding.6 
  

7 Welding.7 
  

8 Welding.8 
  

9 Welding.9 
  

10 Welding.10 
  

 

Figure 6. Welding X-ray images after enhancement and normalization 

 
No Description Normalization Highpass Filter 

1 Welding.1 
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No Description Normalization Highpass Filter 

2 Welding.2 
  

3 Welding.3 
  

4 Welding.4 
  

5 Welding.5 
  

6 Welding.6 
  

7 Welding.7 
  

8 Welding.8 
  

9 Welding.9 
  

10 Welding.10 
  

 

Figure 7. Welding X-ray images after normalization and high pass filter 

 
No Description Highpass Filter Segmentation 

1 Welding.1 
  

2 Welding.2 
  

3 Welding.3 
  

4 Welding.4 
  

5 Welding.5 
  

6 Welding.6 
  

7 Welding.7 
  

8 Welding.8 
  

9 Welding.9 
  

10 Welding.10 
  

 

Figure 8. Welding X-ray images after high pass filter and segmentation 

 
No Description Segmentation Hog TAHOG 

1 Welding.1 
   

2 Welding.2 
   

3 Welding.3 
   

4 Welding.4 
   

5 Welding.5 
   

6 Welding.6 
   

7 Welding.7 
   

8 Welding.8 
   

9 Welding.9 
   

10 Welding.10 
   

 

Figure 9. Visualization of segmentation and welding defect detection utilizing HOG and TAHOG methods 
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Table 1. Processing results obtained using HOG 

 
HOG 

Number of Defects Horizontal Detection (G1) Vertical Detection (G2) Total Defect Area Weld Seam Area Defect Ratio 

4 2 2 1920 51529 3.73% 

1 0 1 8320 51529 16.15% 

1 0 1 4800 51529 9.32% 

4 2 2 1280 51529 2.48% 

2 0 2 3328 51529 6.46% 

2 1 1 2368 51529 4.60% 

1 0 1 3328 51529 6.46% 

1 1 0 4864 51529 9.44% 

5 0 5 5376 51529 10.43% 

1 0 1 3456 51529 6.71% 

 

Table 2. Processing results obtained using TAHOG 

 
TAHOG 

Number of Defects Horizontal Detection (G1) Vertical Detection (G2) Total Defect Area Weld Seam Area Defect Ratio 

4 1 3 4402 51529 8.54% 

1 1 0 12150 51529 23.58% 

1 0 1 8697 51529 16.88% 

3 1 2 2093 51529 4.06% 

2 1 1 5331 51529 10.35% 

2 2 0 4047 51529 7.85% 

1 1 0 4950 51529 9.61% 

1 0 1 7040 51529 13.66% 

3 2 1 6940 51529 13.47% 

1 1 0 5406 51529 10.49% 

 

The following table presents the performance comparison 

between HOG and TAHOG in this study. For greater clarity, 

the processing results obtained using the HOG method are 

provided in Table 1. 

The results obtained from the processing using the TAHOG 

method are presented in Table 2. 

Based on the comparison table, the TAHOG method 

outperforms HOG in detecting welding defects, offering more 

realistic defect ratios and balanced directional detections (G1 

and G2), indicating higher sensitivity and accuracy under 

complex image conditions. This is further illustrated in the 

graph below. 

The following is a comparison between HOG and TAHOG, 

showing that TAHOG provides more accurate defect detection 

with higher sensitivity to gradient variations and image 

complexity. 

TAHOG consistently demonstrates higher sensitivity 

compared to HOG. TAHOG produces a larger average defect 

ratio of 11.85% compared to 7.58% obtained using HOG. 

Although the number of detected defects is sometimes equal 

or slightly lower, TAHOG merges fragmented regions into 

unified objects and maps a wider defect area, resulting in a 

more representative depiction of weld damage severity. The 

G1–G2 directional patterns are also more adaptive, frequently 

switching dominant orientations, indicating strong robustness 

to variations in defect direction. In practical terms, this 

confirms the superiority of TAHOG in capturing subtle or low-

contrast defects and providing a more detailed quantification 

of weld damage than the conventional HOG method. 

The confusion matrix in Figure 10 illustrates the 

performance of the model on a testing dataset consisting of 

500 welding X-ray images. The model successfully classified 

defective and non-defective regions, yielding only three false 

negatives and no false positives. Based on this configuration, 

the model achieved an accuracy of 99.77%, 100% precision 

for the defect class, 99.54% recall, 99.77% F1-score, 100% 

specificity, and 99.77% balanced accuracy. These results 

demonstrate both high sensitivity and perfect specificity, 

indicating that the proposed TAHOG method is highly reliable 

for welding quality inspection, with a minimal risk of false 

defect detection and strong suitability for real-time industrial 

implementation. 

 

 
 

Figure 10. Confusion matrix 

 

 
 

Figure 11. Performance evaluation diagram 
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The diagram in Figure 11 illustrates the performance of the 

TAHOG-based welding defect detection system evaluated 

using five standard metrics: accuracy, precision, recall, F1-

score, and specificity. The experimental results indicate that 

the system achieves an accuracy of 99.77%, reflecting a very 

low overall misclassification rate. A precision value of 100% 

demonstrates that all defect predictions correspond to actual 

defects, with no false positive occurrences. 

Meanwhile, a recall of 99.54% indicates that nearly all 

existing defects in the test images were successfully detected, 

with only a minimal number of false negatives. The F1-score 

of 99.77% reveals an optimal balance between precision and 

recall. Moreover, a specificity value of 100% confirms the 

system’s ability to accurately identify non-defect regions 

without false detections. 

Overall, these results affirm that the proposed TAHOG 

method provides highly reliable, stable, and effective 

performance in detecting welding defects in X-ray images, 

making it well-suited for deployment in real-world industrial 

quality inspection systems based on computer vision. 

 

 

4. CONCLUSION 

 

The development of the TAHOG method has proven 

effective in enhancing defect detection accuracy compared to 

the conventional HOG approach. By incorporating gradient 

angle decomposition based on adaptive logarithmic–

exponential functions, TAHOG provides higher sensitivity to 

variations in defect orientation and low-intensity structural 

details within welding X-ray images. Additionally, TAHOG 

demonstrates the ability to detect a greater number of defects 

with more balanced directional responses in both horizontal 

and vertical orientations, thereby improving the overall 

coverage of automated inspection. Furthermore, TAHOG 

consistently delivers more accurate estimations of defect area 

and shape, resulting in more realistic defect characterization. 

These improvements originate solely from the adaptive 

gradient decomposition mechanism, as the feature vector 

dimensionality is maintained equal to that of HOG. Therefore, 

the proposed TAHOG method can be regarded as a reliable 

enhancement for feature extraction in welding inspection 

systems. However, this study has certain limitations that 

should be acknowledged. The research focuses only on the 

feature extraction stage and does not involve the use of 

advanced classification models such as convolutional neural 

networks (CNN) or other deep learning architectures. As a 

result, the performance comparison is limited to the classical 

HOG baseline and does not yet reflect competitiveness against 

modern end-to-end automated detection frameworks. Future 

work should integrate the TAHOG descriptor with deep 

learning-based classifiers and evaluate performance across 

larger and more diverse industrial datasets to validate its 

robustness in real-world inspection conditions. 
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