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Welding defect detection is a critical component of quality inspection systems in the
manufacturing industry. This study proposes the Trigonometry and Adaptive Histogram of
Oriented Gradients (TAHOG) method as an extension of the conventional Histogram of
Oriented Gradients (HOG), incorporating logarithmic and adaptive exponential functions
in the gradient angle decomposition process to enhance feature extraction sensitivity in X-
ray welding images. The methodology involves preprocessing, weld region segmentation,
and feature extraction using both HOG and TAHOG on a dataset of 500 X-ray images,
divided into training and testing sets. Comparatively, TAHOG demonstrates superior
performance in detecting defect quantity, orientation, and defect area. The HOG method
yields an average defect ratio of 7.58%, lower than 11.85% obtained using TAHOG, and
tends to generate fragmented defect mappings, leading to less representative damage
characterization. In contrast, TAHOG maintains higher sensitivity to variations in defect
structure and orientation. Experimental results indicate that TAHOG achieves 99.77%
accuracy, 100% precision, 99.54% recall, 99.77% F1-score, and 100% specificity,
reflecting an optimal balance between defect detection capability and avoidance of
misclassification in non-defective regions. Therefore, TAHOG effectively addresses the
limitations of HOG in detecting low-intensity defects and contributes significantly to
improving the accuracy and reliability of automated welding inspection systems in

industrial environments.

1. INTRODUCTION

TAHOG is a method derived from the Histogram of
Oriented Gradients (HOG), specifically developed to enhance
the effectiveness of visual feature extraction in image-based
welding defect detection. As the demand for automated
inspection systems in the manufacturing industry increases,
visual detection of welding defects has become essential to
ensure the quality of weld joints while minimizing the risk of
structural failures [1]. Welding itself is the process of joining
materials using heat or pressure, where the quality of the joint
strongly depends on the process parameters and techniques
employed [2]. Therefore, good weld joints—defined as those
free from defects—are a key factor in improving the strength
and reliability of welded structures. Previous studies have
demonstrated that wvariations in welding parameters
significantly affect the strength of dissimilar metal joints,
where changes in visual patterns of the welds can be extracted
using gradient orientation approaches such as HOG, thus
making visual methods increasingly relevant in modern
inspection systems [3].

HOG has proven effective in extracting critical features in
welding areas for both classification and surface defect
detection. Yu et al. [4] developed a butt weld penetration
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monitoring system based on infrared sensors and an improved
HOG algorithm, allowing stable penetration detection even in
the presence of arc light disturbances during the welding
process. The integration of HOG with convolutional neural
networks (CNN) has also been shown to improve
classification accuracy, as demonstrated by Zhang et al. [5] in
ship object recognition using SAR imagery. Optimization of
HOG parameters, such as cell size and gradient orientation,
has been conducted to improve visual detection performance
in industrial settings [6].

The combination of HOG with deep learning has also been
proven to increase welding defect detection accuracy by over
15% and to enhance sensitivity to finer surface defects [7].
Furthermore, feature fusion techniques that combine HOG
with other methods have effectively increased classification
accuracy in small-sized weld defect image datasets [8]. In
visual sensor-based surface defect detection, the
implementation of HOG-SVM methods has demonstrated
high accuracy and processing efficiency for various types of
defects [9]. Comparisons of feature extraction methods have
revealed that HOG achieved the highest classification
accuracy, up to 95%, on small radiographic datasets [10]. The
addition of data augmentation and integration of CNN and
HOG features has also been shown to improve multiclass
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classification accuracy to an average of 92% [11].

Furthermore, visual inspection methods utilizing gradient
features such as HOG combined with deep learning have
resulted in highly accurate automated detection [12]. HOG is
also recognized as an important baseline for defect recognition
from X-ray images, even when compared to the latest deep
learning methods [13]. Its application in visual infrastructure
such as pipelines and utility networks, has also proven
effective [14]. Other innovations, such as HOG—Poly-SVM
for defect detection on phased-array ultrasonic TFM images,
have achieved accuracy rates exceeding 93% [15]. Integration
of HOG into simple CNN architectures also provides
significant improvements in precision and recall [16], and
enables the identification of various types of weld defects on
radiographic images with competitive performance [17].

The application of HOG—Linear—SVM to ultrasonic NDT
images for minor flaw detection can achieve accuracies up to
98% [18], while HOG—Poly—SVM shows better performance
on ultrasonic phased array pipeline datasets [19]. Additionally,
the combination of visual attention mechanisms and HOG
features in deep learning models enhances precision and
provides interpretability for radiographic defect detection
results [20]. The application of these methods has also
expanded to nondestructive inspection of complex heat sink
fin welds using infrared images and deep learning [21], as well
as automated weld penetration measurement based on dual-
band imaging and neural networks with HOG features [22].

Beyond welding, HOG is also adopted for real-time human
tracking systems based on Faster R-CNN and metaheuristic
optimization [23], as well as for automated surface defect
detection using laser visual sensors with HOG-SVM,
achieving identification accuracy of up to 97.86%. Building
upon these prior studies, TAHOG is expected to make a
significant contribution to improving the accuracy, efficiency,
and reliability of automated welding defect detection. This
innovation offers substantial benefits for the industrial sector,
particularly in accelerating inspection processes, reducing
human error, and ensuring optimal manufacturing quality,
thereby supporting efficiency, safety, and competitiveness in
the modern industrial era.

2. PROPOSED SYSTEM

This section describes the proposed feature extraction
framework designed to enhance welding defect detection
performance. The TAHOG method is introduced as an
extended development of the conventional Histogram of
Oriented Gradients (HOG) approach. In this study, the
standard HOG method is retained as a baseline reference to
enable a fair and measurable comparison of feature extraction
performance. While HOG computes gradient orientation
features using a fixed cell-block structure, TAHOG integrates
an adaptive trigonometric logarithmic gradient decomposition
mechanism to improve sensitivity to low contrast defect
patterns and fine structural details in X-ray welding images.

2.1 Block and cell size

In the conventional HOG descriptor, the image is
partitioned into spatial regions called cells of size 16x16
pixels, and several adjacent cells are grouped into overlapping
blocks to provide normalization against illumination
differences. This cell-block configuration is retained in this

study to ensure consistent representation and to maintain
fairness in comparison. In TAHOG, the same cell and block
sizes are preserved. However, unlike HOG, the gradient
refinement is performed before histogram construction,
allowing enhanced directional sensitivity prior to cell block
aggregation.

2.2 Image gradient

The input RGB image is first converted into a grayscale
representation to reduce computational complexity while
preserving structural information. The horizontal and vertical
gradients are then computed using discrete convolution
operations as follows.

Ix:f(-x>y)_f(x>y+2) (1)
[‘=f(x’y)_f(x+2’y) (2)

The gradient magnitude and orientation at each pixel are
obtained using:

m(x,y) =17 +1} 3)

1
O(x,y)=tan™ [—} 4)

2.3 Bin orientation

For the conventional HOG method, each gradient
orientation is assigned to one of nine orientation bins spanning
0° to 180° with 20° resolution per bin. The gradient
magnitudes contribute to the histogram of each cell, forming
the core orientation distribution representation. This histogram
representation is later normalized across blocks to enhance
robustness to local contrast variation.

2.4 Trigonometric vector decomposition

This stage performs an adaptive decomposition of the
gradient contribution into two dominant orientation responses.
Let G and 6 denote the gradient magnitude and angle obtained
from imgradientxy. Two reference orientations are defined at
01=0° (horizontal) and 62=90° (vertical). The gradient vector
is projected toward these references using trigonometric
weighting as follows:

Gy
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Trigonometric-Based

However, trigonometric projection alone remains sensitive
to noise in low-contrast weld regions. Therefore, an adaptive
logarithmic—exponential weighting is introduced to improve
angular discriminability:



Ll=log(1+e ™ 7M7), L2 =log(1+e 7% 7) (7)
where, a controls the sharpness of angular selectivity and f
regulates smoothing. The logarithmic term suppresses noise in
homogeneous regions, while the exponential term amplifies
subtle angular variations, enabling the detection of fine and
weak weld defects that are frequently lost under HOG’s block-
based averaging.
The final directional gradient maps are then computed as:

G =G
=G —
Li+L
Ly L ®)
G, =G ———
2 L+ L,
Algorithmic and Exponential-Based
This pixel-wise adaptive projection preserves small

discontinuities and crack-like patterns, thereby improving
sensitivity to low-intensity defects that are typically smoothed
out in traditional HOG cell-block normalization.

2.5 Block normalization

Block normalization is performed to minimize the impact of
illumination and contrast variations, ensuring that the
extracted TAHOG features remain stable under different
image intensity conditions. The normalization process is
expressed as:

vy = |

n

)

I+

To ensure a fair and unbiased performance comparison,
both the conventional HOG and the proposed TAHOG method
are designed to produce the same final feature dimensionality.
For an input image of size 256x256 pixels, both methods yield
a 9,216-dimensional feature vector. This equivalency in
representation size guarantees that any observed performance
improvements are attributed solely to the adaptive gradient
decomposition mechanism introduced in TAHOG, rather than
to differences in feature dimensionality or descriptor scale.
Accordingly, the enhancement reported in this study reflects
the intrinsic effect of the trigonometric logarithmic gradient
refinement, independent of classifier influence or feature
length expansion.

Here is the framework illustrating the development from
HOG to the proposed TAHOG method:

The framework presented in Figure 1 illustrates the
workflow of the proposed welding defect detection system in
X-ray images. The process begins with image acquisition,
followed by a preprocessing stage aimed at enhancing
structural detail and suppressing irrelevant visual variations.
This stage includes noise reduction, contrast stretching, local
enhancement, intensity normalization, and high-pass filtering
to emphasize gradient transitions and fine surface
irregularities.

After preprocessing, the image undergoes segmentation to
isolate the weld seam as the primary region of interest. Feature
extraction is then performed using two comparative
approaches, namely the conventional Histogram of Oriented
Gradients (HOG) and the proposed Trigonometry-Adapted
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Histogram of Oriented Gradients (TAHOG). In HOG, gradient
descriptors are computed and aggregated within a fixed cell—
block structure. In contrast, TAHOG introduces an adaptive
trigonometric—logarithmic gradient decomposition
mechanism designed to preserve low-intensity directional
variations that are typically diminished by cell-block
normalization in HOG.

Input Image > Prepocessing Extraction

Segmentation

>

L]
Ates Deveiopment

{ Tigonometr| Adsptif
TAHOG Hostoy Oriented Gradient )

Noise Removal aram Of
L

Contras Streaching

Enhancement
5.Block Normalization

v

Normalization 1

¥ Detection

High Pass Filter § ¥

Defect Non Defect

Figure 1. TAHOG processing pipeline for welding defect
detection

The extracted features are subsequently analyzed to identify
discontinuities, texture distortions, or directional irregularities
indicative of weld defects. It should be noted that this study is
focused on evaluating improvements at the feature extraction
level, and therefore does not employ an external classifier.
Accordingly, the performance comparison between HOG and
TAHOG reflects the intrinsic contribution of the proposed
gradient decomposition mechanism, rather than the influence
of classifier parameters or behavior.

It is important to clarify that the objective of this study is to
assess the improvement at the feature extraction stage.
Therefore, no external classifier is employed in the detection
pipeline. This ensures that the performance comparison
between HOG and TAHOG reflects the intrinsic enhancement
introduced by the proposed gradient decomposition
mechanism, independent of classifier behavior or training bias.

3. RESULTS AND DISCUSSION

This section emphasizes the need for an effective feature
extraction method to enhance detection accuracy. The
TAHOG method, an adaptive extension of HOG, is used for
its improved sensitivity in capturing directional and structural
image features. The process starts by importing labeled images
(weldingl to weldingl0) to train the system for input
recognition, as illustrated in Figure 2.

The dataset includes three primary weld defect types
frequently encountered in radiographic inspection, as
classified under ISO 6520-1 (Classification of Geometric
Imperfections in Metallic Materials — Welds): elongated
defects (100-series), round or porosity defects (200-series),
and lack-of-fusion defects (401). Elongated defects manifest
as stretched or linear discontinuities along the weld seam,
round defects appear as circular voids resulting from trapped
gas, and lack-of-fusion defects arise when the filler metal fails
to adequately bond with the base material. These defect types
exhibit distinct gradient and texture characteristics, making
them appropriate for performance evaluation using the
proposed TAHOG feature extraction method.

Noise Removal is the first preprocessing step in welding X-



ray images, removing noise to improve clarity and highlight
defect structures, as illustrated in Figure 3.

Contrast stretching enhances the pixel intensity distribution
in welding X-ray images, thereby improving visual contrast
and facilitating clearer detection of weld lines and defect
regions, as illustrated in Figure 4.

Contrast Enhancement enhances intensity differences in
welding X-ray images to reveal subtle defects, enabling more
accurate weld quality assessment, as illustrated in Figure 5.

Normalization equalizes the intensity distribution in
welding X-ray images to minimize lighting variations, thereby

improving the detectability of weld defects, as illustrated in
Figure 6.

High-pass filter highlights fine details in welding X-ray
images, making weld defects clearer and easier to detect, as
illustrated in Figure 7.

Segmentation separates the weld area from the background
in a black-and-white format, facilitating defect detection and
further analysis, as illustrated in Figure §.

Segmentation extracts the weld region, HOG highlights
potential defects, and TAHOG offers clearer and more
sensitive defect localization, as illustrated in Figure 9.

No Imaﬁes Description
1 - Welding.1
~ .
2 - Welding.2
3 - Welding.3
r——
4 i Welding.4
3 e Welding.5
6 - Welding.6
7 - Welding.7
8 ’ Welding.8
9 - Welding.9
10 m Welding.10

Figure 2. Initialization of the welding image dataset, labeled sequentially from Welding.1 To Welding.10

No Description Images Noise Removal
1 Welding. 1 - n.ll :
| |
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Figure 3. Welding X-ray images before and after noise removal
No Description Noise Removal Contras Strechin
1 Welding. 1 -.Il | ol
2 Welding.2 - [—
3 Welding.3 - e
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Figure 4. Welding X-ray images after noise removal and contrast stretching

No Description Contras Streching Enhancement
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Figure 5. Welding X-ray images after contrast stretching and enhancement

No Description Enhancement Normalization
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Figure 6. Welding X-ray images after enhancement and normalization

No Description Normalization Highpass Filter
1 Welding.1 E h. :
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No Description Normalization Highpass Filter
2 Welding.2 —
3 Welding.3
4 Welding.4
5 Welding.5
6 Welding.6
7 Welding.7
8 Welding.8
9 Welding.9
10 Welding.10

Figure 7. Welding X-ray images after normalization and high pass filter

No Description Highpass Filter Segmentation
1 Welding. 1 , 5
2 Welding.2 m
3 Welding.3 Eom—

4 Welding .4 —
5 Welding.5
6 Welding.6 " .
7 Welding.7 E
8 Welding.8 ‘ *3 s
9 Welding.9
10 Welding.10 ﬂ
Figure 8. Welding X-ray images after high pass filter and segmentation
No Description Segmentation TAHOG
1 Welding.1 :
2 Welding.2
3 Welding.3
4 Welding.4
5 Welding.5
6 Welding.6
7 Welding.7
8 Welding.8
9 Welding.9
10 Welding.10

Figure 9. Visualization of segmentation and welding defect detection utilizing HOG and TAHOG methods
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Table 1. Processing results obtained using HOG

HOG
Number of Defects  Horizontal Detection (G1)  Vertical Detection (G2)  Total Defect Area  Weld Seam Area  Defect Ratio
4 2 2 1920 51529 3.73%
1 0 1 8320 51529 16.15%
1 0 1 4800 51529 9.32%
4 2 2 1280 51529 2.48%
2 0 2 3328 51529 6.46%
2 1 1 2368 51529 4.60%
1 0 1 3328 51529 6.46%
1 1 0 4864 51529 9.44%
5 0 5 5376 51529 10.43%
1 0 1 3456 51529 6.71%
Table 2. Processing results obtained using TAHOG
TAHOG
Number of Defects  Horizontal Detection (G1)  Vertical Detection (G2) Total Defect Area  Weld Seam Area  Defect Ratio
4 1 3 4402 51529 8.54%
1 1 0 12150 51529 23.58%
1 0 1 8697 51529 16.88%
3 1 2 2093 51529 4.06%
2 1 1 5331 51529 10.35%
2 2 0 4047 51529 7.85%
1 1 0 4950 51529 9.61%
1 0 1 7040 51529 13.66%
3 2 1 6940 51529 13.47%
1 1 0 5406 51529 10.49%

The following table presents the performance comparison
between HOG and TAHOG in this study. For greater clarity,
the processing results obtained using the HOG method are
provided in Table 1.

The results obtained from the processing using the TAHOG
method are presented in Table 2.

Based on the comparison table, the TAHOG method
outperforms HOG in detecting welding defects, offering more
realistic defect ratios and balanced directional detections (G1
and G2), indicating higher sensitivity and accuracy under
complex image conditions. This is further illustrated in the
graph below.

The following is a comparison between HOG and TAHOG,
showing that TAHOG provides more accurate defect detection
with higher sensitivity to gradient variations and image
complexity.

TAHOG consistently demonstrates higher sensitivity
compared to HOG. TAHOG produces a larger average defect
ratio of 11.85% compared to 7.58% obtained using HOG.
Although the number of detected defects is sometimes equal
or slightly lower, TAHOG merges fragmented regions into
unified objects and maps a wider defect area, resulting in a
more representative depiction of weld damage severity. The
G1-G2 directional patterns are also more adaptive, frequently
switching dominant orientations, indicating strong robustness
to variations in defect direction. In practical terms, this
confirms the superiority of TAHOG in capturing subtle or low-
contrast defects and providing a more detailed quantification
of weld damage than the conventional HOG method.

The confusion matrix in Figure 10 illustrates the
performance of the model on a testing dataset consisting of
500 welding X-ray images. The model successfully classified
defective and non-defective regions, yielding only three false
negatives and no false positives. Based on this configuration,
the model achieved an accuracy of 99.77%, 100% precision
for the defect class, 99.54% recall, 99.77% F1-score, 100%
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specificity, and 99.77% balanced accuracy. These results
demonstrate both high sensitivity and perfect specificity,
indicating that the proposed TAHOG method is highly reliable
for welding quality inspection, with a minimal risk of false
defect detection and strong suitability for real-time industrial
implementation.

Confusion Matrix (Light & Fast)

defect

True Class

non_defect

defect non_defect
Predicted Class

Figure 10. Confusion matrix

M Akurasi ® Precision W Recall mF1-Score M Specifity

Figure 11. Performance evaluation diagram



The diagram in Figure 11 illustrates the performance of the
TAHOG-based welding defect detection system evaluated
using five standard metrics: accuracy, precision, recall, F1-
score, and specificity. The experimental results indicate that
the system achieves an accuracy of 99.77%, reflecting a very
low overall misclassification rate. A precision value of 100%
demonstrates that all defect predictions correspond to actual
defects, with no false positive occurrences.

Meanwhile, a recall of 99.54% indicates that nearly all
existing defects in the test images were successfully detected,
with only a minimal number of false negatives. The F1-score
of 99.77% reveals an optimal balance between precision and
recall. Moreover, a specificity value of 100% confirms the
system’s ability to accurately identify non-defect regions
without false detections.

Overall, these results affirm that the proposed TAHOG
method provides highly reliable, stable, and effective
performance in detecting welding defects in X-ray images,
making it well-suited for deployment in real-world industrial
quality inspection systems based on computer vision.

4. CONCLUSION

The development of the TAHOG method has proven
effective in enhancing defect detection accuracy compared to
the conventional HOG approach. By incorporating gradient
angle decomposition based on adaptive logarithmic—
exponential functions, TAHOG provides higher sensitivity to
variations in defect orientation and low-intensity structural
details within welding X-ray images. Additionally, TAHOG
demonstrates the ability to detect a greater number of defects
with more balanced directional responses in both horizontal
and vertical orientations, thereby improving the overall
coverage of automated inspection. Furthermore, TAHOG
consistently delivers more accurate estimations of defect area
and shape, resulting in more realistic defect characterization.
These improvements originate solely from the adaptive
gradient decomposition mechanism, as the feature vector
dimensionality is maintained equal to that of HOG. Therefore,
the proposed TAHOG method can be regarded as a reliable
enhancement for feature extraction in welding inspection
systems. However, this study has certain limitations that
should be acknowledged. The research focuses only on the
feature extraction stage and does not involve the use of
advanced classification models such as convolutional neural
networks (CNN) or other deep learning architectures. As a
result, the performance comparison is limited to the classical
HOG baseline and does not yet reflect competitiveness against
modern end-to-end automated detection frameworks. Future
work should integrate the TAHOG descriptor with deep
learning-based classifiers and evaluate performance across
larger and more diverse industrial datasets to validate its
robustness in real-world inspection conditions.
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