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Single view reconstruction is a problem of 3D reconstruction given only a single 2D RGB 

image. Recently, an end-to-end learning framework has been implemented, resulting in a 

3D point generation network. Despite the effectiveness of a 3D point generation network, 

there are needs for high storage and high computational cost during reconstruction. This 

paper proposes a new method of single view reconstruction using pruning and template-

based point generation network (PGN) given only a single RGB image as the input. The 

template, which is the encoded structure of the input image, used to guide the point 

generation process and helps maintain spatial consistency during reconstruction. We 

propose a 3D template-based PGN followed by network pruning that can reduce a 

significant number of resources while preserving the reconstruction performance. 

Experiments on the ShapeNet dataset achieved a 45% reduction of network parameters 

without sacrificing much Chamfer distance increment, i.e., 0.001238. This study shows that 

weight pruning on the image encoder layers can improve efficiency without reducing the 

effectiveness of a 3D point generation network.  
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1. INTRODUCTION

Single view reconstruction aims to reconstruct 3D structure 

inferences such as 3D points, meshes, given only a single 2D 

RGB image. The single view reconstruction covers a wide 

range of applications, including architectural surveying [1], 

cultural heritage preservations [2, 3], robotics [4], creation of 

digital content [5], and both virtual reality (VR) and 

augmented reality (AR) [3].  

In general, approaches to the 3D reconstruction of single 

images are called classical approaches, which have limitation 

in the number of required input images. These methods 

forecast 3D changes in the input images by employing image 

registration techniques. However, these conventional 

techniques can lead to mistakes both among different 

observers and within the same observer [6] because they 

require certain manual pre-processing steps, such as the 

manual alignment of landmarks. 

In recent years, deep learning-based methods for the 3D 

reconstruction of single-images problem became more popular 

largely driven by the accessibility of large datasets like 

ShapeNet [7] and ModelNet [8]. There is a growing body of 

literature that proposes end-to-end learning for the 3D 

reconstruction of single images. Based on the representation 

of the 3D reconstructed objects, methods that implemented 

voxel representation are widely used in research. Research in 

this area comprises 3D-R2N2 [9] and 3D-VAE-GAN [10]. 

The 3D-R2N2 model consists of a 3D convolutional LSTM 

network followed by a 3D deconvolutional neural network, 

capable of producing a 32 × 32 × 32 grid of voxels. At the 

same time, 3D-VAE-GAN consists of several elements: an 

image encoder, a decoder that employs a generator from 3D-

GAN, and a discriminator responsible for reconstructing a 

voxel grid measuring 64 × 64 × 64. Recently, a depth fusion 

approach that combines GAN-based coarse generation with 

depth-guided diffusion refinement was proposed [11]. The 

depth fusion approach needs depth map estimation to guide the 

3D model refinement. 

Additionally, point cloud representation characterizes 3D 

objects by an unordered collection of points on their surfaces. 

This approach is more adaptable than using voxel 

representation. Frontier works that employ point cloud 

representation for 3D reconstruction include PointNet [12], 

PointNet++ [13], and AtlasNet [14]. Furthermore, point cloud 

data have been useful for analyzing the existing environment 

during the architectural design process. Study by Alkadri et al. 

[15] investigated the use of point cloud data in constructing the

solar envelope during an architectural design process.

Despite its effectiveness in reconstructing 3D points given 

only a single 2D RGB image, the storage and computational 

costs of a 3D point reconstruction network are high. Therefore, 

the applicability of the network, e.g., in embedded systems, 

autonomous agents, or mobile devices, is limited. The deep 

architectures are composed of millions of parameters to be 

trained. Hence, it leads to model over-parameterization, 

meaning having more parameters than training samples. For 

example, the AtlasNet model for the task of single view 

reconstruction (SVR) has approximately 12.8 million model 

parameters, taking up more than 150MB in storage space to 

reconstruct 3D points from a single image. 

Overparameterization plays a crucial role in the effective 

training of neural networks. However, once a network 
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structure that generalizes well is achieved, pruning becomes 

essential to minimize redundancy while preserving robust 

performance [16]. Although much research has been carried 

out on pruning deep convolutional networks for image 

classification [17-24], little if any empirical work has been 

done to investigate network pruning for 3D reconstruction 

from single images.  Recent works that explore pruning in 

deep learning for 3D tasks, including the studies [25, 26], has 

demonstrated the benefits of pruning for model efficiency and 

generalization in 3D tasks, such as 3D ultrasound localization 

microscopy [25] and 3D point cloud registration [26]. 

This paper proposes a novel application of pruning methods 

to reduce the computational cost of well-trained 3D point 

reconstruction networks. The number of pruned neurons 

implies the network acceleration due to a reduction in matrix 

multiplications. The proposed method introduces a global 

unstructured weight pruning on the image encoder layers and 

reconstructs 3D point clouds more efficiently.  

In the following sections, we outline the structure of this 

paper. Section 2 delves into various studies that are pertinent 

to the method we propose. Then, the details of our proposed 

method are described in Section 3. Section 4 presents the 

experimental findings using our proposed approach. In Section 

5, we provide the conclusion. 

 

 

2. RELATED WORKS 

 

Neural network pruning is the task of reducing the size of a 

network by removing either nodes or weight parameters. 

Following the pruning framework as proposed in the study by 

Han et al. [27], the pruning technique consists of a three-step 

training pipeline: (1) train connectivity to convergence, (2) 

prune connections, and (3) fine-tuning for weight training. 

Steps (2) and (3) are iteratively performed in N iterations. Step 

(2) is the most crucial in the pruning framework. The criteria 

used for pruning should be stable and significantly reduce the 

computational complexity of deep neural networks [16].  

Generally, pruning methods varied primarily in the pruning 

structure (structured or unstructured), the pruning 

scoring/criteria, the pruning scheduling (all at once, fixed 

fraction or according to a more complex function) and the fine-

tuning (whether involving fine-tuning or not, if involving fine-

tuning, then whether continue or reinitialize training) [28]. For 

example, a pruning process may serve as a model accelerator 

applied to an algorithm based on a validation set [29]. A 

pruning step may also be used with transferability remaining 

in domain adaptation [30]. Another approach applied the 

model pruning on the server and further carry out fine-tuning 

on the clients [31].  

Additionally, Hawks et al. [32] introduced a mix of network 

pruning and network quantization during the training. Also 

performed during the training, Park et al. [33] proposed 

hypothesis pruning for selecting the best output in order to 

maintain the quality of the output. Zhu et al. [21] employed a 

Squeeze-Excitation-Pruning (SEP) block at the end of their 

hybrid CNN models for the task of breast cancer image 

classification. In the study by Shan et al. [34], reinforcement 

learning (RL) was used to predict pruning strategies based on 

feedback from the hardware condition. 

Recent development for person re-identification exploited 

pruning and demonstrated that pruning can significantly 

decrease model complexity besides preserving the accuracy 

[35]. Moreover, a recent systematic literature review also 

concluded that pruning can considerably reduce model sizes 

with little or no degradation in the network's performance. In 

addition, it was reported that almost all 81 surveyed recent 

papers employed Top-1 or Top-5 image classification 

accuracy changes to measure pruning quality. Therefore, we 

conclude that the application of pruning methods is currently 

mainly for image classification problems. 

 

 

3. METHODOLOGY 

 

3.1 Dataset preparation 

 

The single-view-reconstruction framework in our 

experiment employs an end-to-end learning method. 

Therefore, we need a dataset with a huge amount of 3D models 

and the corresponding 2D images of the 3D models. The 

ShapeNet dataset [7] consists of 3D objects categorized in 

several classes. We use the subset of the ShapeNet dataset 

consisting of thirteen categories, divided into two subsets: the 

train set, and the validation set. Table 1 shows the number of 

the 3D objects for each category used in the experiment. Note 

that each category has more than 1,000 unique 3D objects. 

Then, we use the rendering images of each 3D object as in the 

study by Choy et al. [9]. Each 3D model will have 24 images 

rendered from different views. Each image has the resolution 

of 224 × 224 pixels, whereas each 3D model is represented as 

1024 points per object.  

 

3.2 Network architecture and evaluation design 

 

This part outlines the network architecture introduced in this 

study, specifically the single-view-reconstruction framework, 

which includes an image encoder and a 3D point decoder, as 

illustrated in Figure 1. 

The performance evaluation of the network is an objective 

function comparing the 3D result with the 3D ground-truth, 

utilizing the Chamfer distance as in Eq. (1). Consider a 

scenario where we define a collection of 3D ground-truth 

points as S1 and a collection of 3D reconstructed points as S2. 

The Chamfer distance (dCD) between these two sets, S1 and S2, 

is calculated in the following manner: For each point in S1, 

determine the smallest distance to any point in S2, then sum the 

squares of these distances. Similarly, for each point in S2, find 

the smallest distance to any point in S1 and add up the squares 

of these distances. 

 

 
 

Figure 1. The single-view-reconstruction framework that 

consists of an image encoder and a 3D point decoder 
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The Chamfer distance between S1 and S2 is obtained by 

adding the outcomes of the two summations, as shown in Eq. 

(1): 

( )

2 1

1 2

1 2

2 2

2 2

,

min min

CD

y S x S

x S y S

d S S

x y x y 

 

=

− + − ‖ ‖ ‖ ‖ (1) 

where, x represents points in the point set S1, and y represents 

points in the point set S2. 

In addition, after our pruning method is applied, the 

performance evaluation is characterized by two metrics, i.e., 

the network quality measured by the Chamfer distance on our 

validation dataset and the network efficiency measured by the 

number of parameter reductions. 

Table 1. The number of 3D objects for each category within 

the dataset 

Category Train Set Validation Set Total 

airplane 3,326 809 4,045 

bench 1,452 364 1,816 

cabinet 1,257 315 1,572 

car 5,996 1,500 7,496 

chair 5,422 1,356 6,778 

display 876 219 1,095 

lamp 1,854 464 2,318 

loudspeaker 1,294 324 1,618 

rifle 1,897 475 2,372 

sofa 2,538 635 3,173 

table 6,807 1,702 8,509 

telephone 841 211 1,052 

vessel 1,551 388 1,939 

Total 35,021 8,762 43,783 

3.3 The pruning method 

In this part, we introduce a pruning technique for 

reconstructing 3D models from individual images. The 

proposed method performs a one-shot channel pruning using 

the L1-norm of weights for selecting filters because the filters 

with smaller weights always produce weaker activations. L1-

norm was chosen due to its effectiveness in inducing sparsity 

and simplicity in implementation. We illustrate the proposed 

method in Algorithm 1 (see Figure 2).  

In general, a feedforward neural network comprises neurons 

that are arranged in a series of layers, with each neuron 

receiving input from one or more previous layers and 

propagating its output to every neuron in subsequent layers via 

a potentially nonlinear mapping. Suppose that we represent 

neurons in the neural network using weight (W1, W2, ...) and 

bias (b1, b2, ...) parameters, then after the neural network is 

trained using training data, the weight and bias parameters are 

determined. 

The proposed pruning method is as follows. Given the 

weight parameters of a trained model net, find the unimportant 

synapse connections (the weight parameters) and set the 

weights to zero. To find the unimportant weights, we use the 

magnitude of the weights. This method to prune a network for 

3D point reconstruction is simple yet effective. In addition, 

there is no need for additional data samples after training.  

L1-norm pruning is based on the magnitude of individual 

weights, where weights with smaller absolute values are 

considered less important and are set to zero. This method is 

simple and effective, meaning that it does not require 

additional training data or complex computations. L1-norm 

naturally encourages sparsity in the network, which is 

beneficial for reducing model size and computational cost. 

Since it relies only on the trained weights, it can be applied 

directly after training without retraining or fine-tuning. 

In pruning scenarios, where the goal is to identify and 

remove unimportant synapse connections in a trained model 

for 3D reconstruction, L1-norm provides a straightforward 

way to reduce redundancy while preserving performance. L2-

norm, while useful for regularization during training, tends to 

retain small weights rather than eliminate them, which is less 

effective for pruning. 

Figure 2. The proposed pruning method 

4. RESULTS

This section reports results of the pruning experiment using 

our proposed method. The encoder of the trained model used 

in our experiment implements the ResNet-18 architecture. 

Therefore, the encoder consists of 18 convolutional layers. 

Firstly, we report the performance of our proposed method 

using pruning rates of {0%, 5%, 10%, ..., 90%}. Second, we 

report the visualization of the reconstructed 3D points using a 

sample input image to assess the performance of our proposed 

method.  

Table 2. Pruning performance shown as the Chamfer 

distance (CD) multiplied by 1,000 and the number of 

parameter reduction 

Pruning Rate 

(%) 
Chamfer Distance 

Parameter 

Reduction 

0 3.762 0 

5 3.762 575,958 

10 3.758 1,151,917 

15 3.760 1,727,875 

20 3.770 2,303,834 

25 3.808 2,879,792 

30 3.847 3,455,750 

35 3.975 4,031,709 

40 4.210 4,607,667 

45 4.784 5,183,626 

50 5.286 5,759,584 

55 6.475 6,335,542 

60 10.294 6,911,501 

65 21.603 7,487,459 

70 41.328 8,063,418 

75 62.070 8,639,376 

80 73.955 9,215,334 

85 84.396 9,791,293 

90 98.978 10,367,251 
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Figure 3. The curve of Chamfer distance versus pruning rate 

of a sample input image using pruning rates of 10% through 

90% 

Sample input Groundtruth Without pruning 

(a) (b) (c) 

10% 20% 30% 

(d) (e) (f) 

40% 50% 60% 

(g) (h) (i) 

70% 80% 90% 

(j) (k) (l) 

Figure 4. The visualization of a sample input image, the 

ground truth 3D points, and the reconstructed points without 

pruning followed by those using pruning rates of 10% 

through 90% 

Table 2 shows the performance evaluation characterized by 

two metrics, namely the Chamfer distance (CD) on the 

validation dataset and the number of parameter reductions. 

The parameter reduction value obtained by our pruning 

method almost reaches 5.2 million, 45% of the total network 

parameters while maintaining the Chamfer distance to be 

below 0.005. The total network parameters are 12.8 million.  

Visually, the quality of 3D reconstruction deteriorates 

noticeably when the Chamfer distance exceeds 0.005, 

indicating a significant deviation from the ground truth. As 

shown in Figure 3, we evaluated the reconstruction 

performance across a range of pruning rates: {0%, 5%, 

10%, ..., 90%}. The Chamfer distance between the 

reconstructed point cloud and the ground truth remains 

relatively stable up to a pruning rate of 45%. However, starting 

from 50%, the curve begins to rise sharply. This trend 

highlights the sensitivity of the model to aggressive pruning 

and underscores the importance of maintaining a balance 

between model compression and reconstruction accuracy. 

The visualization of the reconstructed 3D points using a 

sample input image is as shown in Figure 4. Figure 4(a) shows 

a sample input image, that is, a table. The ground truth points 

are shown in Figure 4(b). Without any pruning applied to the 

network, the reconstructed points are shown in Figure 4(c). 

The corresponding Chamfer distance between points in Figure 

4(b) and points in Figure 4(c) was 0.003762. Lastly, the 

corresponding reconstructed points using the proposed method 

at pruning rates of {10%, 20%, ..., 90%} are shown in Figure 

4(d)-4(l). The quality of the reconstruction degraded 

significantly after the pruning rate increased by more than 

50%. 

4.1 Ablation study 

To determine whether decoder layers are more crucial to the 

reconstruction performance, we perform decoder pruning as 

follows. The decoder of the trained model used in our 

experiment consists of five convolutional layers, namely: 

conv1, conv2, conv_list[0], conv_list[1], and last_conv.  

Each pruning strategy is applied using pruning rates of (0%, 

5%, 10%, ..., 90%) on each layer of the decoder. Figure 5 

shows the scatter plot of parameter reduction values and its 

Chamfer distance using the l1 unstructured method on each 

decoder layer. From Figure 5, it can be shown that pruning on 

the conv2 layer (shown as orange dots) of the decoder leads to 

the best pruning performance.  

Furthermore, when we choose a threshold value for the 3D 

reconstruction performance as 0.005, the highest pruning 

performance was the reduction of the 367,002 parameters, 

which was achieved by pruning the conv2 layer with 70% of 

the layer-wise pruning rate. Then, it was followed by the 

conv_list[1] layer with 75% layer-wise pruning rate that 

achieved 196,608 parameter reduction. The subsequent 

highest reduction was achieved by the conv_list[0] layer with 

70% layerwise pruning rate that reduced 183,501 parameters. 

The first and last convolutional layers have fewer parameters 

than the other layers. Hence, a high pruning rate will much 

affect the 3D reconstruction performance. We can observe this 

from the blue dots in Figure 5 that appear very close to the left 

side, i.e., the number of parameter reduction is very small. 

Next, we perform the same layer-wise pruning method on 

each encoder layer as follows. Using the unstructured method 

l1, Figure 6 shows the scatter plot of the number of parameter 

reductions and its Chamfer distance on individual encoder 
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layers. Several encoder layers have very high parameter 

reduction while maintaining the Chamfer distance minimum. 

The least significant reduction is obtained from the first 

convolutional layer. We may infer this observation as that the 

first convolutional layer is an important layer for the final 

reconstruction network. This observation agrees with Voita et 

al. [36]. 

Early layers tend to capture low-level features critical for 

spatial structure, making them more sensitive to pruning. Later 

layers, which capture higher-level abstractions, show more 

robustness. This is supported by empirical trends observed in 

our experiments. 

 

 
 

Figure 5. The visualization of the number of parameter reduction and the Chamfer distance for each decoder layer 

 

 
 

Figure 6. The visualization of the number of parameter reduction and the Chamfer distance for each encoder layer

Moreover, suppose that we set the maximum Chamfer 

distance allowed for the network pruning performance to be 

0.005, then the maximum parameter reduction obtained from 

each encoder layer is as described in Table 3. For each encoder 

layer, with reconstruction performance 0.004-0.005, Table 3 

shows the number of parameter reductions and the 

corresponding layer-wise pruning ratio. The convolutional 

layers C15, C16, and C17 obtain more than 1.5 million 

parameter reductions. Thus, the tail encoder layers, except the 

last, are the least important layers in the reconstruction 

network. 

The next experiment scenario is to implement the global 

pruning rather than the layerwise one. First, we prune globally 

only on the decoder layers. Table 4 shows the results of global 

pruning on the decoder layers, without and with the batch-

normalization layers. Secondly, we prune globally on both the 

encoder and decoder layers and the result is as shown in Table 

5. From Table 4 and Table 5, suppose that we set the maximum 

Chamfer distance allowed for the network pruning 

performance to be 0.005, then the maximum parameter 

reduction obtained by pruning decoder layers globally is 

limited, i.e., 263,936. A higher pruning performance was 

obtained by globally prune both decoder and encoder layers, 

i.e., 1,885,853 of parameter reduction value. The best pruning 

performance was reached by our pruning method as in 

Algorithm 1. Therefore, the decoder layers were not pruned. 
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This approach can reduce a significant number of parameters, 

that is, 5,183,626, as shown in Table 2. 

 

Table 3. The number of parameter reductions obtained by 

pruning an encoder layer using a layer-wise pruning rate  

 
Encoder 

Layer 

Chamfer 

Distance  

Parameter 

Reduction 

Pruning 

Rate 

C1 0.0047 7,056 75% 

C2 0.0047 23,962 65% 

C3 0.0038 20,275 55% 

C4 0.0048 33,178 90% 

C5 0.0040 27,648 75% 

C6 0.0044 66,355 90% 

C7 0.0050 125,338 85% 

C8 0.0045 132,710 90% 

C9 0.0047 132,710 85% 

C10 0.0046 265,421 90% 

C11 0.0046 530,842 90% 

C12 0.0046 501,350 85% 

C13 0.0045 530,842 90% 

C14 0.0047 943,718 80% 

C15 0.0047 1,887,437 80% 

C16 0.0046 1,769,472 75% 

C17 0.0045 1,887,437 80% 

C18 0.0047 340,787 65% 

 

Table 4. Pruning performance shown as the Chamfer 

distance (CD) multiplied by 1,000 and the number of 

parameter reduction that was applied on the five decoder 

layers, excluding and including the batch normalization (BN) 

layers 

 

 Without BN Layers With BN Layers 

Pruning 

Rate (%) 

Chamfer 

Distance  

Parameter 

Reduction 

Chamfer 

Distance  

Parameter 

Reduction 

0 3.762 0 3.762 0 

5 3.805 52,659 3.805 52,787 

10 3.850 105,318 3.850 105,574 

15 3.854 157,978 3.854 158,362 

20 4.100 210,637 4.100 211,149 

25 4.399 263,296 4.401 263,936 

30 5.686 315,955 6.092 316,723 

35 7.581 368,614 7.880 369,510 

40 20.355 421,274 21.164 422,298 

45 67.206 473,933 68.643 475,085 

50 98.520 526,592 100.457 527,872 

55 148.674 579,251 154.332 580,659 

60 221.365 631,910 222.362 633,446 

65 251.538 684,570 251.268 686,234 

70 268.826 737,229 268.821 739,021 

75 287.101 789,888 288.732 791,808 

80 301.928 842,547 304.969 844,595 

85 326.120 895,206 328.181 897,382 

90 348.817 947,866 343.447 950,170 

 

4.2 Comparison 

 

This section reports the comparison between the proposed 

pruning method and two other pruning methods, namely by 

randomly choosing the weight parameters in the encoder and 

choosing the minimum weight parameters across the encoder 

and decoder. Network pruning that is applied to both encoder 

and decoder networks has been used in a depth estimation 

design [37]. 

Figure 7 shows the quality performance measured in 

Chamfer distance at pruning rates of (0, 0.005, 0.01, …, 0.9) 

obtained by the proposed (blue), random (orange) and 

alternative (gray) methods. Our proposed method successfully 

maintains the reconstruction quality shown by almost flat blue 

lines up to a pruning rate of 55%. The two other methods only 

reach a 15%-20% pruning rate before they drop in the quality 

of the reconstruction. 

 

Table 5. Pruning performance shown as the Chamfer 

distance (CD) multiplied by 1,000 and the number of 

parameter reduction that was applied on the five decoder 

layers, excluding and including the batch normalization (BN) 

layers 

 

Pruning Rate 

(%) 
Chamfer Distance  Parameter Reduction 

0 3.762 0 

5 3.851 628,618 

10 3.863 1,257,235 

15 4.403 1,885,853 

20 6.136 2,514,470 

25 9.526 3,143,088 

30 28.159 3,771,706 

35 79.057 4,400,323 

40 101.994 5,028,941 

45 178.876 5,657,558 

50 203.963 6,286,176 

55 235.446 6,914,794 

60 262.055 7,543,411 

65 292.197 8,172,029 

70 310.637 8,800,646 

75 324.054 9,429,264 

80 334.895 10,057,882 

85 360.974 10,686,499 

90 360.974 11,315,117 

 

 
 

Figure 7. The reconstruction performance shown by 

Chamfer distance (lower better) after network pruning using 

several pruning methods at various pruning rate 

 

 

5. CONCLUSIONS 

 

We have presented a new application of neural network 

pruning for a single view reconstruction problem. The 

proposed method achieved a 45% reduction in network 

parameters without sacrificing much Chamfer distance 

increment, that is, 0.001238. This study shows that weight 
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pruning on the image encoder layers can improve the 

efficiency of a 3D point reconstruction network without 

reducing the effectiveness of the network. 
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