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Single view reconstruction is a problem of 3D reconstruction given only a single 2D RGB
image. Recently, an end-to-end learning framework has been implemented, resulting in a
3D point generation network. Despite the effectiveness of a 3D point generation network,
there are needs for high storage and high computational cost during reconstruction. This
paper proposes a new method of single view reconstruction using pruning and template-
based point generation network (PGN) given only a single RGB image as the input. The
template, which is the encoded structure of the input image, used to guide the point
generation process and helps maintain spatial consistency during reconstruction. We
propose a 3D template-based PGN followed by network pruning that can reduce a
significant number of resources while preserving the reconstruction performance.
Experiments on the ShapeNet dataset achieved a 45% reduction of network parameters
without sacrificing much Chamfer distance increment, i.e., 0.001238. This study shows that
weight pruning on the image encoder layers can improve efficiency without reducing the

effectiveness of a 3D point generation network.

1. INTRODUCTION

Single view reconstruction aims to reconstruct 3D structure
inferences such as 3D points, meshes, given only a single 2D
RGB image. The single view reconstruction covers a wide
range of applications, including architectural surveying [1],
cultural heritage preservations [2, 3], robotics [4], creation of
digital content [5], and both virtual reality (VR) and
augmented reality (AR) [3].

In general, approaches to the 3D reconstruction of single
images are called classical approaches, which have limitation
in the number of required input images. These methods
forecast 3D changes in the input images by employing image
registration techniques. However, these conventional
techniques can lead to mistakes both among different
observers and within the same observer [6] because they
require certain manual pre-processing steps, such as the
manual alignment of landmarks.

In recent years, deep learning-based methods for the 3D
reconstruction of single-images problem became more popular
largely driven by the accessibility of large datasets like
ShapeNet [7] and ModelNet [8]. There is a growing body of
literature that proposes end-to-end learning for the 3D
reconstruction of single images. Based on the representation
of the 3D reconstructed objects, methods that implemented
voxel representation are widely used in research. Research in
this area comprises 3D-R2N2 [9] and 3D-VAE-GAN [10].
The 3D-R2N2 model consists of a 3D convolutional LSTM
network followed by a 3D deconvolutional neural network,
capable of producing a 32 x 32 x 32 grid of voxels. At the
same time, 3D-VAE-GAN consists of several elements: an
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image encoder, a decoder that employs a generator from 3D-
GAN, and a discriminator responsible for reconstructing a
voxel grid measuring 64 x 64 x 64. Recently, a depth fusion
approach that combines GAN-based coarse generation with
depth-guided diffusion refinement was proposed [11]. The
depth fusion approach needs depth map estimation to guide the
3D model refinement.

Additionally, point cloud representation characterizes 3D
objects by an unordered collection of points on their surfaces.
This approach is more adaptable than using voxel
representation. Frontier works that employ point cloud
representation for 3D reconstruction include PointNet [12],
PointNet++ [13], and AtlasNet [14]. Furthermore, point cloud
data have been useful for analyzing the existing environment
during the architectural design process. Study by Alkadri et al.
[15] investigated the use of point cloud data in constructing the
solar envelope during an architectural design process.

Despite its effectiveness in reconstructing 3D points given
only a single 2D RGB image, the storage and computational
costs of a 3D point reconstruction network are high. Therefore,
the applicability of the network, e.g., in embedded systems,
autonomous agents, or mobile devices, is limited. The deep
architectures are composed of millions of parameters to be
trained. Hence, it leads to model over-parameterization,
meaning having more parameters than training samples. For
example, the AtlasNet model for the task of single view
reconstruction (SVR) has approximately 12.8 million model
parameters, taking up more than 150MB in storage space to
reconstruct 3D  points from a single image.
Overparameterization plays a crucial role in the effective
training of neural networks. However, once a network
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structure that generalizes well is achieved, pruning becomes
essential to minimize redundancy while preserving robust
performance [16]. Although much research has been carried
out on pruning deep convolutional networks for image
classification [17-24], little if any empirical work has been
done to investigate network pruning for 3D reconstruction
from single images. Recent works that explore pruning in
deep learning for 3D tasks, including the studies [25, 26], has
demonstrated the benefits of pruning for model efficiency and
generalization in 3D tasks, such as 3D ultrasound localization
microscopy [25] and 3D point cloud registration [26].

This paper proposes a novel application of pruning methods
to reduce the computational cost of well-trained 3D point
reconstruction networks. The number of pruned neurons
implies the network acceleration due to a reduction in matrix
multiplications. The proposed method introduces a global
unstructured weight pruning on the image encoder layers and
reconstructs 3D point clouds more efficiently.

In the following sections, we outline the structure of this
paper. Section 2 delves into various studies that are pertinent
to the method we propose. Then, the details of our proposed
method are described in Section 3. Section 4 presents the
experimental findings using our proposed approach. In Section
5, we provide the conclusion.

2. RELATED WORKS

Neural network pruning is the task of reducing the size of a
network by removing either nodes or weight parameters.
Following the pruning framework as proposed in the study by
Han et al. [27], the pruning technique consists of a three-step
training pipeline: (1) train connectivity to convergence, (2)
prune connections, and (3) fine-tuning for weight training.
Steps (2) and (3) are iteratively performed in N iterations. Step
(2) is the most crucial in the pruning framework. The criteria
used for pruning should be stable and significantly reduce the
computational complexity of deep neural networks [16].

Generally, pruning methods varied primarily in the pruning
structure  (structured or unstructured), the pruning
scoring/criteria, the pruning scheduling (all at once, fixed
fraction or according to a more complex function) and the fine-
tuning (whether involving fine-tuning or not, if involving fine-
tuning, then whether continue or reinitialize training) [28]. For
example, a pruning process may serve as a model accelerator
applied to an algorithm based on a validation set [29]. A
pruning step may also be used with transferability remaining
in domain adaptation [30]. Another approach applied the
model pruning on the server and further carry out fine-tuning
on the clients [31].

Additionally, Hawks et al. [32] introduced a mix of network
pruning and network quantization during the training. Also
performed during the training, Park et al. [33] proposed
hypothesis pruning for selecting the best output in order to
maintain the quality of the output. Zhu et al. [21] employed a
Squeeze-Excitation-Pruning (SEP) block at the end of their
hybrid CNN models for the task of breast cancer image
classification. In the study by Shan et al. [34], reinforcement
learning (RL) was used to predict pruning strategies based on
feedback from the hardware condition.

Recent development for person re-identification exploited
pruning and demonstrated that pruning can significantly
decrease model complexity besides preserving the accuracy
[35]. Moreover, a recent systematic literature review also
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concluded that pruning can considerably reduce model sizes
with little or no degradation in the network's performance. In
addition, it was reported that almost all 81 surveyed recent
papers employed Top-1 or Top-5 image -classification
accuracy changes to measure pruning quality. Therefore, we
conclude that the application of pruning methods is currently
mainly for image classification problems.

3. METHODOLOGY
3.1 Dataset preparation

The single-view-reconstruction framework in our
experiment employs an end-to-end learning method.
Therefore, we need a dataset with a huge amount of 3D models
and the corresponding 2D images of the 3D models. The
ShapeNet dataset [7] consists of 3D objects categorized in
several classes. We use the subset of the ShapeNet dataset
consisting of thirteen categories, divided into two subsets: the
train set, and the validation set. Table 1 shows the number of
the 3D objects for each category used in the experiment. Note
that each category has more than 1,000 unique 3D objects.
Then, we use the rendering images of each 3D object as in the
study by Choy et al. [9]. Each 3D model will have 24 images
rendered from different views. Each image has the resolution
of 224 x 224 pixels, whereas each 3D model is represented as
1024 points per object.

3.2 Network architecture and evaluation design

This part outlines the network architecture introduced in this
study, specifically the single-view-reconstruction framework,
which includes an image encoder and a 3D point decoder, as
illustrated in Figure 1.

The performance evaluation of the network is an objective
function comparing the 3D result with the 3D ground-truth,
utilizing the Chamfer distance as in Eq. (1). Consider a
scenario where we define a collection of 3D ground-truth
points as S; and a collection of 3D reconstructed points as S>.
The Chamfer distance (dcp) between these two sets, Si and S,
is calculated in the following manner: For each point in Si,
determine the smallest distance to any point in S>, then sum the
squares of these distances. Similarly, for each point in S, find
the smallest distance to any point in S and add up the squares
of these distances.

Encoder

Figure 1. The single-view-reconstruction framework that
consists of an image encoder and a 3D point decoder



The Chamfer distance between S; and S, is obtained by
adding the outcomes of the two summations, as shown in Eq.

(1):
dep (SwSz):
D min g llx—yl} + D min g | x—l}

x€eS) yes,

(1)

where, x represents points in the point set Si, and y represents
points in the point set S».

In addition, after our pruning method is applied, the
performance evaluation is characterized by two metrics, i.e.,
the network quality measured by the Chamfer distance on our
validation dataset and the network efficiency measured by the
number of parameter reductions.

Table 1. The number of 3D objects for each category within
the dataset

Category Train Set Validation Set Total
airplane 3,326 809 4,045
bench 1,452 364 1,816
cabinet 1,257 315 1,572
car 5,996 1,500 7,496
chair 5,422 1,356 6,778
display 876 219 1,095
lamp 1,854 464 2,318
loudspeaker 1,294 324 1,618
rifle 1,897 475 2,372
sofa 2,538 635 3,173
table 6,807 1,702 8,509
telephone 841 211 1,052
vessel 1,551 388 1,939
Total 35,021 8,762 43,783

3.3 The pruning method

In this part, we introduce a pruning technique for
reconstructing 3D models from individual images. The
proposed method performs a one-shot channel pruning using
the L1-norm of weights for selecting filters because the filters
with smaller weights always produce weaker activations. L1-
norm was chosen due to its effectiveness in inducing sparsity
and simplicity in implementation. We illustrate the proposed
method in Algorithm 1 (see Figure 2).

In general, a feedforward neural network comprises neurons
that are arranged in a series of layers, with each neuron
receiving input from one or more previous layers and
propagating its output to every neuron in subsequent layers via
a potentially nonlinear mapping. Suppose that we represent
neurons in the neural network using weight (W1, W>, ...) and
bias (b1, by, ...) parameters, then after the neural network is
trained using training data, the weight and bias parameters are
determined.

The proposed pruning method is as follows. Given the
weight parameters of a trained model net, find the unimportant
synapse connections (the weight parameters) and set the
weights to zero. To find the unimportant weights, we use the
magnitude of the weights. This method to prune a network for
3D point reconstruction is simple yet effective. In addition,
there is no need for additional data samples after training.

L1-norm pruning is based on the magnitude of individual
weights, where weights with smaller absolute values are
considered less important and are set to zero. This method is
simple and effective, meaning that it does not require
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additional training data or complex computations. L1-norm
naturally encourages sparsity in the network, which is
beneficial for reducing model size and computational cost.
Since it relies only on the trained weights, it can be applied
directly after training without retraining or fine-tuning.

In pruning scenarios, where the goal is to identify and
remove unimportant synapse connections in a trained model
for 3D reconstruction, L1-norm provides a straightforward
way to reduce redundancy while preserving performance. L2-
norm, while useful for regularization during training, tends to
retain small weights rather than eliminate them, which is less
effective for pruning.

Algorithm 1: Our Pruning Method
Input: model net, pruning rate r, training data X,, validation data X,

threshold ¢
1 Compute Chamfer Distance C'F) using net and X3
2 while C'D < f do
3 forall layers in the nel.encoder do
4 zero-out v weights from net where abs(weight) is minimal
5 end
[ Fine-tune net on Xy
7 Compute Chamfer Distance C'D using net and X ,;
s end

o return net

Figure 2. The proposed pruning method

4. RESULTS

This section reports results of the pruning experiment using
our proposed method. The encoder of the trained model used
in our experiment implements the ResNet-18 architecture.
Therefore, the encoder consists of 18 convolutional layers.
Firstly, we report the performance of our proposed method
using pruning rates of {0%, 5%, 10%, ..., 90%}. Second, we
report the visualization of the reconstructed 3D points using a
sample input image to assess the performance of our proposed
method.

Table 2. Pruning performance shown as the Chamfer
distance (CD) multiplied by 1,000 and the number of
parameter reduction

Prun(l‘l;f)Rate Chamfer Distance ll;zgﬁlclgzel:
0 3.762 0
5 3.762 575,958
10 3.758 1,151,917
15 3.760 1,727,875
20 3.770 2,303,834
25 3.808 2,879,792
30 3.847 3,455,750
35 3.975 4,031,709
40 4.210 4,607,667
45 4.784 5,183,626
50 5.286 5,759,584
55 6.475 6,335,542
60 10.294 6,911,501
65 21.603 7,487,459
70 41.328 8,063,418
75 62.070 8,639,376
80 73.955 9,215,334
85 84.396 9,791,293
90 98.978 10,367,251
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Figure 3. The curve of Chamfer distance versus pruning rate
of a sample input image using pruning rates of 10% through
90%
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Figure 4. The visualization of a sample input image, the
ground truth 3D points, and the reconstructed points without
pruning followed by those using pruning rates of 10%
through 90%

Table 2 shows the performance evaluation characterized by
two metrics, namely the Chamfer distance (CD) on the
validation dataset and the number of parameter reductions.
The parameter reduction value obtained by our pruning
method almost reaches 5.2 million, 45% of the total network
parameters while maintaining the Chamfer distance to be
below 0.005. The total network parameters are 12.8 million.

Visually, the quality of 3D reconstruction deteriorates
noticeably when the Chamfer distance exceeds 0.005,
indicating a significant deviation from the ground truth. As
shown in Figure 3, we evaluated the reconstruction
performance across a range of pruning rates: {0%, 5%,
10%, .., 90%}. The Chamfer distance between the
reconstructed point cloud and the ground truth remains
relatively stable up to a pruning rate of 45%. However, starting
from 50%, the curve begins to rise sharply. This trend
highlights the sensitivity of the model to aggressive pruning
and underscores the importance of maintaining a balance
between model compression and reconstruction accuracy.

The visualization of the reconstructed 3D points using a
sample input image is as shown in Figure 4. Figure 4(a) shows
a sample input image, that is, a table. The ground truth points
are shown in Figure 4(b). Without any pruning applied to the
network, the reconstructed points are shown in Figure 4(c).
The corresponding Chamfer distance between points in Figure
4(b) and points in Figure 4(c) was 0.003762. Lastly, the
corresponding reconstructed points using the proposed method
at pruning rates of {10%, 20%, ..., 90%} are shown in Figure
4(d)-4(1). The quality of the reconstruction degraded
significantly after the pruning rate increased by more than
50%.

4.1 Ablation study

To determine whether decoder layers are more crucial to the
reconstruction performance, we perform decoder pruning as
follows. The decoder of the trained model used in our
experiment consists of five convolutional layers, namely:
convl, conv2, conv_list[0], conv_list[1], and last_conv.

Each pruning strategy is applied using pruning rates of (0%,
5%, 10%, ..., 90%) on each layer of the decoder. Figure 5
shows the scatter plot of parameter reduction values and its
Chamfer distance using the 11 unstructured method on each
decoder layer. From Figure 5, it can be shown that pruning on
the conv2 layer (shown as orange dots) of the decoder leads to
the best pruning performance.

Furthermore, when we choose a threshold value for the 3D
reconstruction performance as 0.005, the highest pruning
performance was the reduction of the 367,002 parameters,
which was achieved by pruning the conv2 layer with 70% of
the layer-wise pruning rate. Then, it was followed by the
conv_list[1] layer with 75% layer-wise pruning rate that
achieved 196,608 parameter reduction. The subsequent
highest reduction was achieved by the conv_list[0] layer with
70% layerwise pruning rate that reduced 183,501 parameters.
The first and last convolutional layers have fewer parameters
than the other layers. Hence, a high pruning rate will much
affect the 3D reconstruction performance. We can observe this
from the blue dots in Figure 5 that appear very close to the left
side, i.e., the number of parameter reduction is very small.

Next, we perform the same layer-wise pruning method on
each encoder layer as follows. Using the unstructured method
11, Figure 6 shows the scatter plot of the number of parameter
reductions and its Chamfer distance on individual encoder



layers. Several encoder layers have very high parameter
reduction while maintaining the Chamfer distance minimum.
The least significant reduction is obtained from the first
convolutional layer. We may infer this observation as that the
first convolutional layer is an important layer for the final
reconstruction network. This observation agrees with Voita et

0.035
0.030
0.025
0.020

0.015

Chamfer Distance

0.010

0.005

0.000

50 100 150 200

250

al. [36].

Early layers tend to capture low-level features critical for
spatial structure, making them more sensitive to pruning. Later
layers, which capture higher-level abstractions, show more
robustness. This is supported by empirical trends observed in
our experiments.

300 350 400 450 500

Number of parameter reduction multiplied by 0.001

@ convl conv2

conv_|list0

conv_listl @ last_conv

Figure 5. The visualization of the number of parameter reduction and the Chamfer distance for each decoder layer
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Figure 6. The visualization of the number of parameter reduction and the Chamfer distance for each encoder layer

Moreover, suppose that we set the maximum Chamfer
distance allowed for the network pruning performance to be
0.005, then the maximum parameter reduction obtained from
each encoder layer is as described in Table 3. For each encoder
layer, with reconstruction performance 0.004-0.005, Table 3
shows the number of parameter reductions and the
corresponding layer-wise pruning ratio. The convolutional
layers C15, C16, and C17 obtain more than 1.5 million
parameter reductions. Thus, the tail encoder layers, except the
last, are the least important layers in the reconstruction
network.

The next experiment scenario is to implement the global
pruning rather than the layerwise one. First, we prune globally
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only on the decoder layers. Table 4 shows the results of global
pruning on the decoder layers, without and with the batch-
normalization layers. Secondly, we prune globally on both the
encoder and decoder layers and the result is as shown in Table
5. From Table 4 and Table 5, suppose that we set the maximum
Chamfer distance allowed for the network pruning
performance to be 0.005, then the maximum parameter
reduction obtained by pruning decoder layers globally is
limited, i.e., 263,936. A higher pruning performance was
obtained by globally prune both decoder and encoder layers,
i.e., 1,885,853 of parameter reduction value. The best pruning
performance was reached by our pruning method as in
Algorithm 1. Therefore, the decoder layers were not pruned.



This approach can reduce a significant number of parameters,
that is, 5,183,626, as shown in Table 2.

Table 3. The number of parameter reductions obtained by
pruning an encoder layer using a layer-wise pruning rate

Encoder Chamfer Parameter Pruning
Layer Distance Reduction Rate
Cl 0.0047 7,056 75%
C2 0.0047 23,962 65%
C3 0.0038 20,275 55%
C4 0.0048 33,178 90%
(O8] 0.0040 27,648 75%
C6 0.0044 66,355 90%
C7 0.0050 125,338 85%
C8 0.0045 132,710 90%
C9 0.0047 132,710 85%
C10 0.0046 265,421 90%
Cl1 0.0046 530,842 90%
Cl2 0.0046 501,350 85%
C13 0.0045 530,842 90%
Cl14 0.0047 943,718 80%
Cl15 0.0047 1,887,437 80%
Cl6 0.0046 1,769,472 75%
C17 0.0045 1,887,437 80%
Cl18 0.0047 340,787 65%

Table 4. Pruning performance shown as the Chamfer
distance (CD) multiplied by 1,000 and the number of
parameter reduction that was applied on the five decoder
layers, excluding and including the batch normalization (BN)
layers

Without BN Layers With BN Layers
Pruning Chamfer Parameter Chamfer Parameter
Rate (%) Distance Reduction Distance Reduction
0 3.762 0 3.762 0

5 3.805 52,659 3.805 52,787

10 3.850 105,318 3.850 105,574
15 3.854 157,978 3.854 158,362
20 4.100 210,637 4.100 211,149
25 4.399 263,296 4.401 263,936
30 5.686 315,955 6.092 316,723
35 7.581 368,614 7.880 369,510
40 20.355 421,274 21.164 422,298
45 67.206 473,933 68.643 475,085
50 98.520 526,592 100.457 527,872
55 148.674 579,251 154.332 580,659
60 221.365 631,910 222.362 633,446
65 251.538 684,570 251.268 686,234
70 268.826 737,229 268.821 739,021
75 287.101 789,888 288.732 791,808
80 301.928 842,547 304.969 844,595
85 326.120 895,206 328.181 897,382
90 348.817 947,866 343.447 950,170

4.2 Comparison

This section reports the comparison between the proposed
pruning method and two other pruning methods, namely by
randomly choosing the weight parameters in the encoder and
choosing the minimum weight parameters across the encoder
and decoder. Network pruning that is applied to both encoder
and decoder networks has been used in a depth estimation
design [37].

Figure 7 shows the quality performance measured in

Chamfer distance at pruning rates of (0, 0.005, 0.01, ..., 0.9)
obtained by the proposed (blue), random (orange) and
alternative (gray) methods. Our proposed method successfully
maintains the reconstruction quality shown by almost flat blue
lines up to a pruning rate of 55%. The two other methods only
reach a 15%-20% pruning rate before they drop in the quality
of the reconstruction.

Table 5. Pruning performance shown as the Chamfer
distance (CD) multiplied by 1,000 and the number of
parameter reduction that was applied on the five decoder
layers, excluding and including the batch normalization (BN)
layers

Pruning Rate Chamfer Distance Parameter Reduction

(%)
0 3.762 0
5 3.851 628,618
10 3.863 1,257,235
15 4.403 1,885,853
20 6.136 2,514,470
25 9.526 3,143,088
30 28.159 3,771,706
35 79.057 4,400,323
40 101.994 5,028,941
45 178.876 5,657,558
50 203.963 6,286,176
55 235.446 6,914,794
60 262.055 7,543,411
65 292.197 8,172,029
70 310.637 8,800,646
75 324.054 9,429,264
80 334.895 10,057,882
85 360.974 10,686,499
90 360.974 11,315,117

Figure 7. The reconstruction performance shown by
Chamfer distance (lower better) after network pruning using
several pruning methods at various pruning rate

5. CONCLUSIONS

We have presented a new application of neural network
pruning for a single view reconstruction problem. The
proposed method achieved a 45% reduction in network
parameters without sacrificing much Chamfer distance
increment, that is, 0.001238. This study shows that weight
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pruning on the image encoder layers can improve the
efficiency of a 3D point reconstruction network without
reducing the effectiveness of the network.
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