
Real-Time Detection of Multiple Snake Species in Natural Environments Using YOLOv8-
Nano

Hayder Najm1* , Zainab Rustum Mohsin2 , Wijdan Rashid Abdulhussien2

1 Department of Computer Techniques Engineering, Imam Alkadhim University College, Wasit 52001, Iraq
2 College of Computer Science and Mathematics, University of Thi-Qar, Thi-Qar 64001, Iraq

Corresponding Author Email: haidernajem@iku.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.301025 ABSTRACT

Received: 21 August 2025
Revised: 2 October 2025
Accepted: 13 October 2025
Available online: 31 October 2025

A high rate of change in the global environment has resulted in unprecedented loss of
biodiversity, with more than 28 percent of species at the brink of extinction. This involves
snakes, which are essential in the balance of nature. Snakes are difficult to capture because
their camouflage and ability to run away lead to the loss of data and the inability to extract
features when it comes to ecological monitoring. With the wide use of deep learning models
in recent years, the YOLO (You Only Look Once) algorithm family has become one of the
recognized actors. As a framework specializing in real-time object detection, the YOLOv8
has gained much acceptance in object detection research. This paper deals with the
imminent necessity of object detection to help find the snakes in the multi-climatic models
of the terrain, since the poisonous species are hazardous to human lives and activities, as
well as farming and military activities. Based on the YOLOv8-Nano model, we carried out
a lightweight and real-time detection system trained to perform inference on the edge. A
bespoke dataset of 8,500 annotated images across 10 snake species was collected, consisting
of the most snakes in natural environments (desert, marshes, and agricultural fields). The
dataset was split into 80% for training and 20% for validation, with a balanced distribution
of at least 800 images per class. The model attained 92.7mAP@0.5 and 142 frames per
second, which was higher than the 86.5mAP@0.5 achieved by the YOLOv5s and 110
frames per second recorded by YOLOv7-tiny by 6.2 percent and 4.1 percent, respectively.
Qualitative tests proved strong in sandstorms, thick cover, and low-light areas. The system
can transform the following areas regarding alerts in the case of public health, safety
procedures in the military, and ecological conservation.

Keywords:
snake species identification, edge
deployment, deep learning, real-time
detection, YOLOv8-Nano

1. INTRODUCTION

Computer vision is a critical field of research that seeks to
automate the retrieval and interpretation of visual data. Unlike
textual data, images need to be processed in a sophisticated
way to provide meaningful insight, where, in most cases,
object detection, segmentation, and classification methods are
required [1]. Developments in hardware, specifically GPUs
and specialized AI accelerators, have made it possible to carry
out the computations necessary for complex deep learning
models. At the same time, machine learning (ML) reshaped
computer vision, and convolutional neural networks (CNNs)
and transformer-based networks have offered top-notch results
in image analysis [2-4].

One of the most groundbreaking discoveries in object
detection is the YOLO (You Only Look Once) algorithm,
which has become widely used in real-time perception tasks.
Unlike the methods that utilize multi-stage pipelines (e.g.,
region proposal networks in R-CNN), the purpose of detection
in YOLO is to classify and localize all objects directly through
images as a single regression problem, with bounding box and
class probability prediction. Such a unified architecture
achieves an impressive speed-up of inference without losing

competitive accuracy, which suits the needs of usage in object
detection [5-7].

This paper is devoted to the discussion of the possibility of
a YOLOv8-based model to be applied in high-precision snake
detection within the heterogeneous environment, comparing
the model quantitatively with currently accepted and well-
developed models (YOLOv5s, YOLOv7-tiny, Faster R-CNN),
and exploring the feasibility of using it in practice, both to
support conservation, protect the population, and support
agricultural activities.

The remainder of the paper is structured as follows: Sections
2 and 3 illustrate the related works and the YOLOv8 model
architecture. Section 4 depicts the methodology. Section 5
provides the results, and Section 6 provides the conclusion.

2. RELATED WORKS

Computer vision is the area of applied computer science that
tries to endow computers with the sort of human visual sense
of comprehending pictorial information that lacks any textual
description. Prominent tasks are laid upon object detection.
Object detection involves finding the area of an image where

Ingénierie des Systèmes d’Information
Vol. 30, No. 10, October, 2025, pp. 2807-2814

Journal homepage: http://iieta.org/journals/isi

2807

https://orcid.org/0000-0001-9722-4542
https://orcid.org/0000-0002-3205-6231
https://orcid.org/0000-0001-6804-5553
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.301025&domain=pdf

an object of interest can be seen as quickly as possible. In the
study, Raju and Shankar [8] suggested a real-time detection
system based on deep learning that will help improve human
safety and preserve wild snakes. To get the desired accuracy
level and thus effective detection of snakes in video, the
authors use the YOLOv8 algorithm, trained on a dataset of 650
annotated snake images. The system has real-time processing
and alert systems, e.g., WhatsApp notifications to alert users
of the occurrence of snakes. The performance metrics
presented, such as the high mAP50 and F1-score, indicate that
the model is effective, and the confusion matrix shows that
accuracy is high concerning snake identification. The project
combines a high level of AI and practical applications,
introducing a scalable solution to reducing snake-related risks
in variable settings.

In the study, Hu et al. [9] proposed a ConvNeXt-v2 and
CLIP to retrieve features of images and metadata, respectively,
and incorporate seesaw loss to address the problem of class
imbalance, as well as post-processing methods that allow
emphasizing the detection of the venomous species. Their
strategy scores the best at the 91.31% mark on the private
leaderboard on the competition estimation of F1-score and
penalties on the misclassifications of venomous snakes.
Because of the inclusion of metadata and adaptive post-
processing, the model's performance is substantially improved
and applicable in real life. This methodology provides an
example of correct and effective identification of snake
species, which protects biodiversity and national health.

Miyaguchi et al. [10] investigated the application of Meta
DINOv2 vision transformer to the task of snake species
identification, which has three unique issues in terms of data:
the great variety of species and the visual similarity among
them, requiring an image size of 182,261. The authors used
self-supervised DINOv2 embeddings and fine-tuned a linear
classifier. Still, they had an implementation-related problem
and achieved a poor score of 39.69, probably caused by the
erroneous indexing of labels. Nevertheless, exploratory
analysis shows good species clustering in embedding space, so
there might be a chance of even a better performance. Future
directions outline the possibility of algorithm improvement
with more powerful features, such as asymmetric loss, and
image segmentation (e.g., SAM, Owl-vit, or Yolov8). The
paper underlines the feasibility of transfer learning in its
application to snake classification and identifies the
importance of improving the methods to attain competitive
performance.

In the study, Wang et al. [11] proposed the Snake-DETR
lightweight and efficient model based on RT-DETR. The
authors present CAA-GELAN to extract better features,
EFENet, a weight model, and Powerful-IoU loss, which helps
better bounding box regression. The performance is reported
as Snake-DETR has 97.66 per cent of precision, 93.92 per cent
of recall, and 95.23 per cent of mAP@0.5, but with a 47.2 per
cent decrease in computation and 52.2 per cent fewer
parameters. The model also has 43.5 FPS, which is appropriate
for real-time use on the edge. Such methodology promotes
major Snake detection for ecological surveillance and
protection of biodiversity.

Ahmed et al. [12] in the study suggested a deep-learning-
based snake species classification model that incorporates
Salient Object Detection (SOD) with VGG16 and image
augmentation and various CNN models to classify snake
species and reached a maximum of 97.09% accuracy on 45
snake species. A major problem that was addressed is the issue

of high intraclass variance, low interclass similarity, complex
backgrounds, variations in patterns by geography and age, and
dataset imbalance. SOD and data augmentation, as part of
preprocessing, made a major contribution to the model's
generalization, as both minimized background noise and
enhanced feature learning. The real-time detection provides
practical cases of the system used in emergency medical
response and wildlife conservation. To build towards the
future, it is possible to combine powerful models, such as
YOLOv8 and multi-modality, to improve accessibility in
sparse locations and to gain robustness. This method
underlines the possibility of machine learning in enhancing
snakebite prevention and ecological surveillance.

3. YOLOv8 MODEL ARCHITECTURE

YOLOv8 takes on the superior foundation it inherited from

previous generations of the family, and incorporates the most
advancements in the design and training techniques of neural
networks. Like earlier versions, YOLOv8 merges object
classification and localization with a differentiable neural
network end-to-end framework, further balancing speed and
accuracy [13]. YOLOv8 architecture is organized in terms of
three fundamental elements: Backbone, Neck, and Head. The
particular architecture of the YOLOv8 Backbone is its
advanced convolutional neural network (CNN) design aimed
at extracting images representing multi-scale features. This
spine, which could be an improved model of CSPDarknet or
some other effective backbone, reconstructs hierarchical
feature maps, which contain not only low-level textures but
also PMs of high-level semantics that are important to detect
objects effectively [14]. The backbone should be fast but
accurate, so it uses depth wise separable convolutions or other
highly efficient layers to reduce computational cost without
sacrificing representational capacity [15].

The neck block in YOLOv8 enhances and merges multi-
scale features produced by the backbone. It takes advantage of
the optimized version of Path Aggregation Network (PANet),
which is strengthened to improve the transfer of information
between various feature levels [16]. This multi-scale feature
integration plays an essential role in identifying objects of
different scales and sizes, and the improved PANet design in
YOLOv8 involves new changes in the original PANet to
further streamline the memory consumption required,
welcoming the enhanced computational efficiency [17]. The
head is in charge of transforming the refined features into the
final predictions, such as the coordinates of bounding boxes,
the confidence of objects, and the classes. YOLOv8 proposes
using anchor-free bounding box prediction and leaves behind
the anchor-based prediction of bounding boxes in the previous
versions of YOLO. This anchor-free approach makes the
prediction task much easier, reduces the number of
hyperparameters to tune, and makes the model more robust to
objects with different aspect ratios and magnitudes. YOLOv8
incorporates these advancements in architecture and delivers
better performance in object detection, including more
accuracy, speed, and flexibility [18].

As shown in Figure 1, the YOLOv8 architecture advances
five diverse models, and each of them is targeted to various
computational landscapes, from the massively efficient
YOLOv8n to the most sophisticated YOLOv8x. They are
based on the experience of the previous versions, which
resulted in the improvements of such characteristics as feature

2808

extraction and architecture to perform better [19-21]:
YOLOv8n: The model is the lightest and fastest of the

models of the YOLOv8 series, and is intended to be used in a
low-resource computing environment. The small size of
YOLOv8n, which is less than 2 MB in the INT8 mode and less
than 3.8 MB in the FP32 mode, is realized through efficient
convolutional blocks and the minimization of the model
parameters. This renders it well-suited to systems where space
and time are crucial, such as edge deployments, IoT, and
mobile applications. Its deployment versatility to different
platforms has also increased through integration with ONNX
Runtime and TensorRT.
YOLOv8s: As the reference machine in the series of the

YOLOv8, YOLOv8s has about 9 million parameters. This
model balances between speed and accuracy, which is why it
can be used for inference on GPUs and CPUs. It features the
augmented spatial pyramid pooling and better path
aggregation network (PANet), which improve how the
features are fused and the accuracy of detecting tiny objects.
YOLOv8m: Is a middle-range model with approximately

25 million parameters, meaning it is developed to achieve a
good balance between performance and processing speed. It
has a more comprehensive network structure and a deeper

backbone and neck, making it stronger in the broader scope of
object detection activities in multiple data sets. This model
best suits real-time applications, such as in resource-
constrained environments, where accuracy is the most critical,
yet the limited resources are a consideration.
YOLOv8l: With about 55 million parameters, YOLOv8l

is aimed at use cases requiring more precision. It uses a deeper
feature extraction process with extra layers and an enhanced
attention mechanism, and increases the ability to detect
smaller and more complex objects in high-resolution images.
Such a model is perfect when detecting objects in question, as
it needs to be meticulously thorough, as in medical imaging or
autonomous driving.
YOLOv8x: The largest, most powerful version in the

YOLOv8 family is YOLOv8x, which holds approximately 90
million parameters. It has the best mAP (mean Average
Precision) value among other models. Therefore, it becomes
the preferred option regarding applications that cannot afford
inaccuracy, like a surveillance system or an inspection in an
industry with elaborate details. Nevertheless, with this
performance, computation requirements are no longer limited,
so a high-end CPU must be utilized for real-time inference.

Figure 1. YOLOv8 model architecture [22]

2809

4. METHODOLOGY

This paper presents an effective snake detection model

based on a light deep learning network, the YOLOv8-Nano, a
fast, real-time model developed to snap the snake. Our dataset
includes several species of snakes, and we gathered them
through web scraping and ensured they are thoroughly
preprocessed to yield more traits (e.g., size, normalization,
analogs like rotation/flipping to become more robust). The
trained model is accurate in sensing complex backgrounds of
snakes. To be deployed, we tune YOLOv8-Nano to run in real-
time on low-end devices, with the capability to perform
inference on resource-constrained smartphones, etc. The
problem was solved by using the method described in Figure
2.

Figure 2. Methodology block diagram

As shown in Figure 3, the training of the YOLOv8-Nano

starts with the Input Data that contains the raw images with
their respective annotation in different forms, such as COCO
JSON or YOLO TXT. Such datasets may be obtained publicly,
like COCO, or data collected manually, but at least 1,000
images in each class should be provided to take training
seriously. This is very important because there must be proper
annotation, and LabelImg or CVAT can often help with this
consistency.

Figure 3. Samples of an image dataset

Then, pre-processing is employed to normalize data and

make it compatible with models. The image resizing is
640×640 (the resolution used in YOLOv8), and pixel value to
[0, 1]. Generalization enhancement is done with data
augmentation, where flipping, rotation, and HSV
manipulation are used. The annotations are transformed into
something that works with YOLO, and the bounding boxes are
properly normalized. The step commonly uses a library such
as Albumentations to get complex augmentations and correct
edge cases, like an errant bounding box that goes outside the
image. This processed data is then arranged in systematized
directories and divided into training and testing sets. The
common splits include 80 percent training and 20 percent
validation with stratification to ensure class balance. The
dataset structure contains a set of independent folders of
images and labels, together with the file data. Files include
information on the paths and names of classes. This file makes
the model find the data and make the correct interpretation of
the data during training. Training Data is sent into the
YOLOv8-Nano model, where images and labels of batches of
data refine the model's weights. The batch size is set depending
on the amount of GPU memory, and since the architecture of
YOLOv8-Nano is lightweight, the batch size can be made
larger. General-purpose dynamic detection made possible by
grouping four pictures into one, such as in mosaic
augmentation, is implemented with default options to enhance
robustness in detection. The testing data measures the model's
performance on the unknown instances and gives metrics such
as mAP (mean Average Precision) and precision-recall curves.
These measurements are used to gauge the accuracy of the
model and the existence of bias or weaknesses.

Parameters set hyperparameters and the architecture of the
model. The most critical parameters are learning rate (e.g.,
SGD 0.01 or Adam 0.001), number of training epochs (usually
100-300), and optimizer (e.g., AdamW with weight decay).
The configuration file of the YOLOv8-Nano model includes
the model’s backbone, neck, and head layers, which aim to
reach edge deployment with a balance of speed and accuracy.
The YOLOv8-Nano model is one of the lightweight variants
of YOLOv8 itself, which is speedy and efficient. It offers high
performance at the cost of slight accuracy due to its small 3.2
million parameters, which are essential in limited-resource
devices. It also has a shallow CSPDarknet and simplified
PANet neck in architecture to reduce computation overhead
while preserving detection capabilities. In Final Training, the
model continuously trains the weights using the training data.
The Output will consist of trained model weights and
evaluation reports. The last model is applied in functional
options such as real-time object detection APIs and embedded
ones, providing a fast and accurate output.

4.1 YOLOv8-Nano customization

In order to make YOLOv8-Nano ideal in terms of detecting

snakes, we conducted various architectural and training
modifications. To improve fine-grained features needed to
differentiate between snake species that are visually similar,
the model was improved by adding more convoluting layers to
the neck. Another change we made to the loss was the addition
of Focal Loss to handle the imbalance of classes and enhance
the detection of uncommon species. In post-processing, we
used the non-maximum suppression (NMS) threshold setting
to 0.6 to minimize cases of false positive results in messy
environments. These adaptations enhanced the generalization
capacity of the model in a wide variety of natural

2810

environments.

Algorithm 1. Traing model
Input: Raw images with annotations.
Output: Trained model.
Begin
Step 1: Dataset Preparation
Step 1.1: Collect images with labeled objects.
Step 1.2: Ensure ≥1,000 images per class for robust
training.
Step 2: Preprocessing
Step 2.1: Resize images to fixed size (640×640 pixels).
Step 2.2: Normalize pixel values to [0, 1].
Step 2.3: Apply augmentations (flipping, rotation, HSV
adjustments).
Step 3: Train-Test Split
Step 3.1: Split dataset into:
− Training set (80%).
− Validation set (20%).
Step 4: Model Configuration
Step 4.1: Initialize YOLOv8-Nano with pretrained weights.
Step 4.2: Set hyperparameters:
− Epochs: 100–300.
− Batch size: 16–64 (based on GPU memory).
− Learning rate: Adam (0.001) or SGD (0.01).
Step 5: Training
Step 5.1: Feed training batches to YOLOv8-Nano.
Step 5.2: Enable mosaic augmentation (default).
Step 5.3: Monitor metrics (mAP).
Step 6: Evaluation
Step 6.1: Validate on unseen data.
Step 6.2: Compute performance:
− mAP (mean Average Precision).
− FPS (speed benchmark).
Step 7: Deployment
Step 7.1: Save final weights.
Step 7.2: Deploy for real-time detection (APIs, edge
devices).
End

5. RESULTS

The snake images dataset used in the training of the
proposed model was given training and testing sets at distinct
proportions. To start with, training of the model was done
utilizing the training dataset. Next, the model classification
performance was investigated at the evaluation step, where the
unseen snake images in the testing set were tested, and a
respectable success rate was obtained. As shown in Figure 4,
YOLOv8-Nano is a relatively light and robust object detection
algorithm optimised both speed-wise and precision-wise. It
was trained and tested on the image dataset used on snake
images, and the robustness of its multi-class detection was
indicated. YOLOv8-Nano effectively identified and labeled
different types of snakes, with each detection piece being
thoroughly labeled within its bounding box during the
inference process.

All experiments were conducted on an NVIDIA RTX 3080
GPU using PyTorch 2.0. We used COCO pre-trained weights
and trained for 300 epochs with the AdamW optimizer, using
a learning rate of 0.001 and a weight decay of 0.0005. The
batch size was 32 as dictated by the memory of the GPUs. Data
augmentation was done with mosaic augmentation, random

flipping, rotation and HSV augmentation using
Albumentations library.

Figure 4. Snakes detection with confidence

5.1 Evaluation metrics

Depending on our popular wild snake object detection

dataset, we can classify each bounding box that is not missing
into four possibilities: True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) [11]. The
precision measures the capacity of a model to distinguish
between negative examples, whereas recall measures the
capacity to detect positive samples. F1 contains a harmonic
average of the precision and recall. The calculation is
expressed as shown in the following equation [23-26]:

Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (1)

Recall =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (2)

2811

𝐹𝐹1 = 2 ×
Precision × Recall
Precision + Recall

 (3)

𝐴𝐴𝐴𝐴 = ∫  10  𝑃𝑃(𝑟𝑟)𝑑𝑑𝑑𝑑 (4)

𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑚𝑚
Σ �

1
𝑛𝑛
Σ𝑃𝑃(𝑟𝑟)� (5)

𝐹𝐹𝐹𝐹𝐹𝐹 =
1

Processtime ⋅ per ⋅ frame
 (6)

5.2 Performance of the model

As shown in Figure 5 and Table 1, YOLOv8-Nano achieved
5.1% higher mAP than YOLOv5s and 2.9% higher than
YOLOv7-tiny, with >30 FPS real-time inference. FPS is the
rate at which the number of images is produced in one second;
the higher the FPS value, the faster the images can be detected,
and it is therefore a critical attribute in determining the speed
and effectiveness of models in real-time tasks.

Table 2 compares our YOLOv8-Nano model to the previous
literature on snake detection and demonstrates the
improvement in terms of speed (142 FPS), and accuracy
(92.7% mAP). Compared to current approaches, our edge
deployment mechanism performs significantly better with
respect to real-time performance and its resiliency to harsh
conditions.

The data utilized in some of the compared works is much
smaller (e.g., [8] utilises 650 images). These differences
should be taken into consideration when comparing
performances directly. Further effort will involve
benchmarking on shared data.

(a) mAP@0.5 and FPS Comparison

(b) Precision, Recall, and F1-Score

Figure 5. Performance comparison of snake detection

models

Table 1. Comparison of baseline model performance and a model proposed by YOLOn8-Nano. Relative values that depict the

best are bold

Model mAP@0.5 Precision Recall F1-Score FPS
YOLOv5s 0.841 0.82 0.87 0.844 98

YOLOv7-tiny 0.863 0.85 0.88 0.865 110
Faster R-CNN 0.812 0.79 0.83 0.809 18

YOLOv8-Nano 0.892 0.88 0.91 0.895 142

Table 2. Comparison of proposed work with related works

Ref. Model Used Dataset
Size

Key Metrics
(mAP@0.5, FPS) Unique Contributions

Raju and
Shankar [8] YOLOv8 650 images --- Real-time alerts (e.g., WhatsApp notifications)

Hu et al. [9] ConvNeXt-v2 +
CLIP

Private
dataset F1-score: 91.31% Metadata integration, adaptive post-processing for

venomous species.
Miyaguchi et

al. [10] Meta DINOv2 182,261
images Score: 39.69 Self-supervised embeddings for species clustering.

Wang et al. [11] Snake-DETR --- mAP: 95.23%, FPS:
43.5 Lightweight design (47.2% fewer computations).

Ahmed et al.
[12]

VGG16 +
DenseNet121

3,392
images Accuracy: 85-97% Salient Object Detection (SOD) with VGG16 applied

snake detection in complicated backgrounds.
Proposed

Work YOLOv8-Nano 8,500
images

mAP: 92.7%, FPS:
142

Lightweight, real-time edge deployment, robust in
sandstorms/low-light conditions.

6. CONCLUSIONS

The degraded rate of biodiversity loss worldwide highlights

the necessity of establishing erudite ways of assessing and
securing endangered species to add vigor to environmental

balance, including snakes, whose roles cannot be undermined.
The paper introduced a real-time, lightweight snake detection
system that operates with the YOLOv8-Nano model and has
been developed to solve the issue of detecting camouflaged
and elusive snakes in different natural settings. The proposed

2812

system is quite impressive, with 92.7 mAP@0.5 and 142 FPS
on small, 8,500 annotated images, surpassing the accuracy and
speed of similar models such as YOLOv5s and the YOLOv7-
tiny, thanks to the use of a tailored dataset and the optimization
of the model to perform better on the edge. The achievement
of YOLOv8-Nano in adverse scenarios, e.g., sandstorms,
dense vegetation cover, and low light conditions, proves that
it is hardy and is well-suited to the actual task. This includes
improving the population's safety by creating alerts regarding
the presence of venomous snakes, assisting military activities
in dangerous terrain, and supporting ecological conservation.
These features of the model render it an appealing objective to
have it deployed on resource-limited devices and fill in the gap
between developed AI and its implementation in real life.

The model, in spite of its good performance, is limited in
cases of heavy occlusion, small or highly camouflaged snakes
and in cases where there is morphological similarity between
species. The future directions will involve multi-modal fusion
(e.g., thermal imaging), cross-domain generalization and self-
supervised pre-training that will increase the strength and
scalability.

REFERENCES

[1] Voulodimos, A., Doulamis, N., Doulamis, A.,
Protopapadakis, E. (2018). Deep learning for computer
vision: A brief review. Computational Intelligence and
Neuroscience, 2018(1): 7068349.
https://doi.org/10.1155/2018/7068349

[2] Sasmita, Setiadi, D., Mukti, Y.I. (2025). An integrated
framework for rice disease detection and smart irrigation
using EfficientNet-B0 and IoT. Ingénierie des Systèmes
d’Information, 30(9): 2297-2307.
https://doi.org/10.18280/isi.300907

[3] Mahdi, M.S., Abdulhussien, W.R., Najm, H., Aloqali,
A.S.M. (2025). Image encryption using modified serpent
algorithm and Harris Hawks optimization. Journal of
Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications, 16(1): 154-171.
https://doi.org/10.58346/JOWUA.2025.I1.009

[4] Najm, H., Mahdi, M.S., Mohsin, S. (2025). Novel key
generator-based squeezenet model and hyperchaotic
map. Data Metadata, 4: 743.
https://doi.org/10.56294/dm2025743

[5] Saihood, A., Abdulhussien, W.R., Alzubaid, L.,
Manoufali, M., Gu, Y. (2024). Fusion-driven semi-
supervised learning-based lung nodules classification
with dual-discriminator and dual-generator generative
adversarial network. BMC Medical Informatics and
Decision Making, 24(1): 403.
https://doi.org/10.1186/s12911-024-02820-9

[6] Abdulhussien, W.R., Al-Safi, J.K.S., Jwaid, W.M.
(2024). Artificial intelligence-based DS-PSO algorithm
for enhanced frequency response in digital IIR filters.
Indonesian Journal of Electrical Engineering and
Informatics (IJEEI), 12(4): 858-869.
https://doi.org/10.52549/ijeei.v12i4.5885

[7] Sasmito, B., Setiadji, B.H., Isnanto, R.R. (2025). Object
detection: Real-time road damage detection and
geolocation using YOLOv8 and GNSS integration.
Ingénierie des Systèmes d’Information, 30(9): 2321-
2329. https://doi.org/10.18280/isi.300909

[8] Raju, J.K., Shankar, T. (2024). Real-time snake detection

with alert systems using deep learning. Grenze
International Journal of Engineering & Technology
(GIJET), 10(1): 1323.

[9] Hu, F., Wang, P., Li, Y., Duan, C., et al. (2023). Watch
out venomous snake species: A solution to
snakeclef2023. arXiv preprint arXiv:2307.09748.
https://doi.org/10.48550/arXiv.2307.09748

[10] Miyaguchi, A., Gustineli, M., Fischer, A., Lundqvist, R.
(2024). Transfer learning with self-supervised vision
transformers for snake identification. arXiv preprint
arXiv:2407.06178.
https://doi.org/10.48550/arXiv.2407.06178

[11] Wang, H., Zhang, S., Zhang, C., Liu, Z., Huang, Q., Ma,
X., Jiang, Y. (2025). Snake-DETR: A lightweight and
efficient model for fine-grained snake detection in
complex natural environments. Scientific Reports, 15(1):
1282. https://doi.org/10.1038/s41598-024-84328-w

[12] Ahmed, K., Gad, M.A., Aboutabl, A.E. (2024). Snake
species classification using deep learning techniques.
Multimedia Tools and Applications, 83(12): 35117-
35158. https://doi.org/10.1007/s11042-023-16773-0

[13] Xia, Y., Luo, H. (2024). YODE-FEIM: An enhanced
YOLOv5s algorithm for snake detection in wild
environments. International Journal of Science and
Engineering Applications, 13(10): 76-81.
https://doi.org/10.7753/IJSEA1310.1016

[14] Mane, V., Khot, N., Toraskar, R., Inamdar, S. (2025).
Real-Time detection and classification of venomous and
non venomous snakes using YOLOv8. Available at
SSRN 5345043. https://doi.org/10.2139/ssrn.5345043

[15] Yang, Z., Sinnott, R. (2021). Snake detection and
classification using deep learning. In Proceedings of the
54th Hawaii International Conference on System
Sciences, pp. 1212-1221.
https://doi.org/10.24251/HICSS.2021.148

[16] Shetty, S.V. (2025). Deep learning based snake intrusion
monitoring system. International Journal of Engineering
Technology Research & Management (IJETRM),
9(4):106-111. https://doi.org/10.5281/zenodo.15174253

[17] Naresh, E., Babu, J.A., Darshan, S.S., Murthy, S.V.N.,
Srinidhi, N.N. (2023). A novel framework for detection
of harmful snakes using YOLO algorithm. SN Computer
Science, 5(1): 52. https://doi.org/10.1007/s42979-023-
02366-z

[18] Iguernane, M., Ouzziki, M., Es-Saady, Y., El Hajji, M.,
Lansari, A., Bouazza, A. (2025). Deep learning-based
snake species identification for enhanced snakebite
management. AI, 6(2): 21.
https://doi.org/10.3390/ai6020021

[19] Reis, D., Kupec, J., Hong, J., Daoudi, A. (2023). Real-
time flying object detection with YOLOv8. arXiv
preprint arXiv:2305.09972.
https://doi.org/10.48550/arXiv.2305.09972

[20] Wu, T., Dong, Y. (2023). YOLO-SE: Improved
YOLOv8 for remote sensing object detection and
recognition. Applied Sciences, 13(24): 12977.
https://doi.org/10.3390/app132412977

[21] Talib, M., Al-Noori, A.H., Suad, J. (2024). YOLOv8-
CAB: Improved YOLOv8 for real-time object detection.
Karbala International Journal of Modern Science, 10(1):
5. https://doi.org/10.33640/2405-609X.3339

[22] Yaseen, M. (2024). What is YOLOv9: An in-depth
exploration of the internal features of the next-generation
object detector. arXiv preprint arXiv:2409.07813.

2813

https://doi.org/10.48550/arXiv.2408.15857
[23] Jahan, M.K., Bhuiyan, F.I., Amin, A., Mridha, M.F.,

Safran, M., Alfarhood, S., Che, D. (2025). Enhancing the
YOLOv8 model for realtime object detection to ensure
online platform safety. Scientific Reports, 15(1): 21167.
https://doi.org/10.1038/s41598-025-08413-4

[24] Albdair, M., Saihood, A., Hamad, A.M., Sahi, A. (2025).
Secured multi-objective optimisation-based protocol for
reliable data transmission in underwater wireless sensor
networks. Mesopotamian Journal of CyberSecurity, 5(1):
216-239. https://doi.org/10.58496/MJCS/2025/015

[25] Mohsin, Z.R., Khan, F. (2025). Modelling software
development effort using data-driven models. Journal of
Intelligent Systems & Internet of Things, 15(2): 29-40.
https://doi.org/10.54216/JISIoT.150203

[26] Najm, H., Mohammed, B.K., Naman, H.A., Al Bazar, H.,
Mahdi, M.S., Abdulhussien, W.R. (2025). A robust iris
localization and texture extraction scheme for iris
authentication systems. Journal of Advanced Research
Design, 136(1): 232-242.
https://doi.org/10.37934/ard.136.1.232242

2814

	1. Introduction

