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A high rate of change in the global environment has resulted in unprecedented loss of 
biodiversity, with more than 28 percent of species at the brink of extinction. This involves 
snakes, which are essential in the balance of nature. Snakes are difficult to capture because 
their camouflage and ability to run away lead to the loss of data and the inability to extract 
features when it comes to ecological monitoring. With the wide use of deep learning models 
in recent years, the YOLO (You Only Look Once) algorithm family has become one of the 
recognized actors. As a framework specializing in real-time object detection, the YOLOv8 
has gained much acceptance in object detection research. This paper deals with the 
imminent necessity of object detection to help find the snakes in the multi-climatic models 
of the terrain, since the poisonous species are hazardous to human lives and activities, as 
well as farming and military activities. Based on the YOLOv8-Nano model, we carried out 
a lightweight and real-time detection system trained to perform inference on the edge. A 
bespoke dataset of 8,500 annotated images across 10 snake species was collected, consisting 
of the most snakes in natural environments (desert, marshes, and agricultural fields). The 
dataset was split into 80% for training and 20% for validation, with a balanced distribution 
of at least 800 images per class. The model attained 92.7mAP@0.5 and 142 frames per 
second, which was higher than the 86.5mAP@0.5 achieved by the YOLOv5s and 110 
frames per second recorded by YOLOv7-tiny by 6.2 percent and 4.1 percent, respectively. 
Qualitative tests proved strong in sandstorms, thick cover, and low-light areas. The system 
can transform the following areas regarding alerts in the case of public health, safety 
procedures in the military, and ecological conservation.  
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1. INTRODUCTION

Computer vision is a critical field of research that seeks to
automate the retrieval and interpretation of visual data. Unlike 
textual data, images need to be processed in a sophisticated 
way to provide meaningful insight, where, in most cases, 
object detection, segmentation, and classification methods are 
required [1]. Developments in hardware, specifically GPUs 
and specialized AI accelerators, have made it possible to carry 
out the computations necessary for complex deep learning 
models. At the same time, machine learning (ML) reshaped 
computer vision, and convolutional neural networks (CNNs) 
and transformer-based networks have offered top-notch results 
in image analysis [2-4]. 

One of the most groundbreaking discoveries in object 
detection is the YOLO (You Only Look Once) algorithm, 
which has become widely used in real-time perception tasks. 
Unlike the methods that utilize multi-stage pipelines (e.g., 
region proposal networks in R-CNN), the purpose of detection 
in YOLO is to classify and localize all objects directly through 
images as a single regression problem, with bounding box and 
class probability prediction. Such a unified architecture 
achieves an impressive speed-up of inference without losing 

competitive accuracy, which suits the needs of usage in object 
detection [5-7]. 

This paper is devoted to the discussion of the possibility of 
a YOLOv8-based model to be applied in high-precision snake 
detection within the heterogeneous environment, comparing 
the model quantitatively with currently accepted and well-
developed models (YOLOv5s, YOLOv7-tiny, Faster R-CNN), 
and exploring the feasibility of using it in practice, both to 
support conservation, protect the population, and support 
agricultural activities. 

The remainder of the paper is structured as follows: Sections 
2 and 3 illustrate the related works and the YOLOv8 model 
architecture. Section 4 depicts the methodology. Section 5 
provides the results, and Section 6 provides the conclusion. 

2. RELATED WORKS

Computer vision is the area of applied computer science that 
tries to endow computers with the sort of human visual sense 
of comprehending pictorial information that lacks any textual 
description. Prominent tasks are laid upon object detection. 
Object detection involves finding the area of an image where 
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an object of interest can be seen as quickly as possible. In the 
study, Raju and Shankar [8] suggested a real-time detection 
system based on deep learning that will help improve human 
safety and preserve wild snakes. To get the desired accuracy 
level and thus effective detection of snakes in video, the 
authors use the YOLOv8 algorithm, trained on a dataset of 650 
annotated snake images. The system has real-time processing 
and alert systems, e.g., WhatsApp notifications to alert users 
of the occurrence of snakes. The performance metrics 
presented, such as the high mAP50 and F1-score, indicate that 
the model is effective, and the confusion matrix shows that 
accuracy is high concerning snake identification. The project 
combines a high level of AI and practical applications, 
introducing a scalable solution to reducing snake-related risks 
in variable settings. 

In the study, Hu et al. [9] proposed a ConvNeXt-v2 and 
CLIP to retrieve features of images and metadata, respectively, 
and incorporate seesaw loss to address the problem of class 
imbalance, as well as post-processing methods that allow 
emphasizing the detection of the venomous species. Their 
strategy scores the best at the 91.31% mark on the private 
leaderboard on the competition estimation of F1-score and 
penalties on the misclassifications of venomous snakes. 
Because of the inclusion of metadata and adaptive post-
processing, the model's performance is substantially improved 
and applicable in real life. This methodology provides an 
example of correct and effective identification of snake 
species, which protects biodiversity and national health. 

Miyaguchi et al. [10] investigated the application of Meta 
DINOv2 vision transformer to the task of snake species 
identification, which has three unique issues in terms of data: 
the great variety of species and the visual similarity among 
them, requiring an image size of 182,261. The authors used 
self-supervised DINOv2 embeddings and fine-tuned a linear 
classifier. Still, they had an implementation-related problem 
and achieved a poor score of 39.69, probably caused by the 
erroneous indexing of labels. Nevertheless, exploratory 
analysis shows good species clustering in embedding space, so 
there might be a chance of even a better performance. Future 
directions outline the possibility of algorithm improvement 
with more powerful features, such as asymmetric loss, and 
image segmentation (e.g., SAM, Owl-vit, or Yolov8). The 
paper underlines the feasibility of transfer learning in its 
application to snake classification and identifies the 
importance of improving the methods to attain competitive 
performance. 

In the study, Wang et al. [11] proposed the Snake-DETR 
lightweight and efficient model based on RT-DETR. The 
authors present CAA-GELAN to extract better features, 
EFENet, a weight model, and Powerful-IoU loss, which helps 
better bounding box regression. The performance is reported 
as Snake-DETR has 97.66 per cent of precision, 93.92 per cent 
of recall, and 95.23 per cent of mAP@0.5, but with a 47.2 per 
cent decrease in computation and 52.2 per cent fewer 
parameters. The model also has 43.5 FPS, which is appropriate 
for real-time use on the edge. Such methodology promotes 
major Snake detection for ecological surveillance and 
protection of biodiversity. 

Ahmed et al. [12] in the study suggested a deep-learning-
based snake species classification model that incorporates 
Salient Object Detection (SOD) with VGG16 and image 
augmentation and various CNN models to classify snake 
species and reached a maximum of 97.09% accuracy on 45 
snake species. A major problem that was addressed is the issue 

of high intraclass variance, low interclass similarity, complex 
backgrounds, variations in patterns by geography and age, and 
dataset imbalance. SOD and data augmentation, as part of 
preprocessing, made a major contribution to the model's 
generalization, as both minimized background noise and 
enhanced feature learning. The real-time detection provides 
practical cases of the system used in emergency medical 
response and wildlife conservation. To build towards the 
future, it is possible to combine powerful models, such as 
YOLOv8 and multi-modality, to improve accessibility in 
sparse locations and to gain robustness. This method 
underlines the possibility of machine learning in enhancing 
snakebite prevention and ecological surveillance. 

 
 

3. YOLOv8 MODEL ARCHITECTURE 
 
YOLOv8 takes on the superior foundation it inherited from 

previous generations of the family, and incorporates the most 
advancements in the design and training techniques of neural 
networks. Like earlier versions, YOLOv8 merges object 
classification and localization with a differentiable neural 
network end-to-end framework, further balancing speed and 
accuracy [13]. YOLOv8 architecture is organized in terms of 
three fundamental elements: Backbone, Neck, and Head. The 
particular architecture of the YOLOv8 Backbone is its 
advanced convolutional neural network (CNN) design aimed 
at extracting images representing multi-scale features. This 
spine, which could be an improved model of CSPDarknet or 
some other effective backbone, reconstructs hierarchical 
feature maps, which contain not only low-level textures but 
also PMs of high-level semantics that are important to detect 
objects effectively [14]. The backbone should be fast but 
accurate, so it uses depth wise separable convolutions or other 
highly efficient layers to reduce computational cost without 
sacrificing representational capacity [15]. 

The neck block in YOLOv8 enhances and merges multi-
scale features produced by the backbone. It takes advantage of 
the optimized version of Path Aggregation Network (PANet), 
which is strengthened to improve the transfer of information 
between various feature levels [16]. This multi-scale feature 
integration plays an essential role in identifying objects of 
different scales and sizes, and the improved PANet design in 
YOLOv8 involves new changes in the original PANet to 
further streamline the memory consumption required, 
welcoming the enhanced computational efficiency [17]. The 
head is in charge of transforming the refined features into the 
final predictions, such as the coordinates of bounding boxes, 
the confidence of objects, and the classes. YOLOv8 proposes 
using anchor-free bounding box prediction and leaves behind 
the anchor-based prediction of bounding boxes in the previous 
versions of YOLO. This anchor-free approach makes the 
prediction task much easier, reduces the number of 
hyperparameters to tune, and makes the model more robust to 
objects with different aspect ratios and magnitudes. YOLOv8 
incorporates these advancements in architecture and delivers 
better performance in object detection, including more 
accuracy, speed, and flexibility [18]. 

As shown in Figure 1, the YOLOv8 architecture advances 
five diverse models, and each of them is targeted to various 
computational landscapes, from the massively efficient 
YOLOv8n to the most sophisticated YOLOv8x. They are 
based on the experience of the previous versions, which 
resulted in the improvements of such characteristics as feature 
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extraction and architecture to perform better [19-21]: 
YOLOv8n: The model is the lightest and fastest of the 

models of the YOLOv8 series, and is intended to be used in a 
low-resource computing environment. The small size of 
YOLOv8n, which is less than 2 MB in the INT8 mode and less 
than 3.8 MB in the FP32 mode, is realized through efficient 
convolutional blocks and the minimization of the model 
parameters. This renders it well-suited to systems where space 
and time are crucial, such as edge deployments, IoT, and 
mobile applications. Its deployment versatility to different 
platforms has also increased through integration with ONNX 
Runtime and TensorRT. 
YOLOv8s: As the reference machine in the series of the 

YOLOv8, YOLOv8s has about 9 million parameters. This 
model balances between speed and accuracy, which is why it 
can be used for inference on GPUs and CPUs. It features the 
augmented spatial pyramid pooling and better path 
aggregation network (PANet), which improve how the 
features are fused and the accuracy of detecting tiny objects. 
YOLOv8m: Is a middle-range model with approximately 

25 million parameters, meaning it is developed to achieve a 
good balance between performance and processing speed. It 
has a more comprehensive network structure and a deeper 

backbone and neck, making it stronger in the broader scope of 
object detection activities in multiple data sets. This model 
best suits real-time applications, such as in resource-
constrained environments, where accuracy is the most critical, 
yet the limited resources are a consideration. 
YOLOv8l: With about 55 million parameters, YOLOv8l 

is aimed at use cases requiring more precision. It uses a deeper 
feature extraction process with extra layers and an enhanced 
attention mechanism, and increases the ability to detect 
smaller and more complex objects in high-resolution images. 
Such a model is perfect when detecting objects in question, as 
it needs to be meticulously thorough, as in medical imaging or 
autonomous driving. 
YOLOv8x: The largest, most powerful version in the 

YOLOv8 family is YOLOv8x, which holds approximately 90 
million parameters. It has the best mAP (mean Average 
Precision) value among other models. Therefore, it becomes 
the preferred option regarding applications that cannot afford 
inaccuracy, like a surveillance system or an inspection in an 
industry with elaborate details. Nevertheless, with this 
performance, computation requirements are no longer limited, 
so a high-end CPU must be utilized for real-time inference. 

 
 

 
 

Figure 1. YOLOv8 model architecture [22] 
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4. METHODOLOGY 
 
This paper presents an effective snake detection model 

based on a light deep learning network, the YOLOv8-Nano, a 
fast, real-time model developed to snap the snake. Our dataset 
includes several species of snakes, and we gathered them 
through web scraping and ensured they are thoroughly 
preprocessed to yield more traits (e.g., size, normalization, 
analogs like rotation/flipping to become more robust). The 
trained model is accurate in sensing complex backgrounds of 
snakes. To be deployed, we tune YOLOv8-Nano to run in real-
time on low-end devices, with the capability to perform 
inference on resource-constrained smartphones, etc. The 
problem was solved by using the method described in Figure 
2. 

 

 
 

Figure 2. Methodology block diagram 
 
As shown in Figure 3, the training of the YOLOv8-Nano 

starts with the Input Data that contains the raw images with 
their respective annotation in different forms, such as COCO 
JSON or YOLO TXT. Such datasets may be obtained publicly, 
like COCO, or data collected manually, but at least 1,000 
images in each class should be provided to take training 
seriously. This is very important because there must be proper 
annotation, and LabelImg or CVAT can often help with this 
consistency. 

 

 
 

Figure 3. Samples of an image dataset 
 
Then, pre-processing is employed to normalize data and 

make it compatible with models. The image resizing is 
640×640 (the resolution used in YOLOv8), and pixel value to 
[0, 1]. Generalization enhancement is done with data 
augmentation, where flipping, rotation, and HSV 
manipulation are used. The annotations are transformed into 
something that works with YOLO, and the bounding boxes are 
properly normalized. The step commonly uses a library such 
as Albumentations to get complex augmentations and correct 
edge cases, like an errant bounding box that goes outside the 
image. This processed data is then arranged in systematized 
directories and divided into training and testing sets. The 
common splits include 80 percent training and 20 percent 
validation with stratification to ensure class balance. The 
dataset structure contains a set of independent folders of 
images and labels, together with the file data. Files include 
information on the paths and names of classes. This file makes 
the model find the data and make the correct interpretation of 
the data during training. Training Data is sent into the 
YOLOv8-Nano model, where images and labels of batches of 
data refine the model's weights. The batch size is set depending 
on the amount of GPU memory, and since the architecture of 
YOLOv8-Nano is lightweight, the batch size can be made 
larger. General-purpose dynamic detection made possible by 
grouping four pictures into one, such as in mosaic 
augmentation, is implemented with default options to enhance 
robustness in detection. The testing data measures the model's 
performance on the unknown instances and gives metrics such 
as mAP (mean Average Precision) and precision-recall curves. 
These measurements are used to gauge the accuracy of the 
model and the existence of bias or weaknesses. 

Parameters set hyperparameters and the architecture of the 
model. The most critical parameters are learning rate (e.g., 
SGD 0.01 or Adam 0.001), number of training epochs (usually 
100-300), and optimizer (e.g., AdamW with weight decay). 
The configuration file of the YOLOv8-Nano model includes 
the model’s backbone, neck, and head layers, which aim to 
reach edge deployment with a balance of speed and accuracy. 
The YOLOv8-Nano model is one of the lightweight variants 
of YOLOv8 itself, which is speedy and efficient. It offers high 
performance at the cost of slight accuracy due to its small 3.2 
million parameters, which are essential in limited-resource 
devices. It also has a shallow CSPDarknet and simplified 
PANet neck in architecture to reduce computation overhead 
while preserving detection capabilities. In Final Training, the 
model continuously trains the weights using the training data. 
The Output will consist of trained model weights and 
evaluation reports. The last model is applied in functional 
options such as real-time object detection APIs and embedded 
ones, providing a fast and accurate output. 

 
4.1 YOLOv8-Nano customization 

 
In order to make YOLOv8-Nano ideal in terms of detecting 

snakes, we conducted various architectural and training 
modifications. To improve fine-grained features needed to 
differentiate between snake species that are visually similar, 
the model was improved by adding more convoluting layers to 
the neck. Another change we made to the loss was the addition 
of Focal Loss to handle the imbalance of classes and enhance 
the detection of uncommon species. In post-processing, we 
used the non-maximum suppression (NMS) threshold setting 
to 0.6 to minimize cases of false positive results in messy 
environments. These adaptations enhanced the generalization 
capacity of the model in a wide variety of natural 
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environments. 
 

Algorithm 1. Traing model 
Input: Raw images with annotations. 
Output: Trained model. 
Begin 
Step 1: Dataset Preparation 
Step 1.1: Collect images with labeled objects. 
Step 1.2: Ensure ≥1,000 images per class for robust 
training. 
Step 2: Preprocessing 
Step 2.1: Resize images to fixed size (640×640 pixels). 
Step 2.2: Normalize pixel values to [0, 1]. 
Step 2.3: Apply augmentations (flipping, rotation, HSV 
adjustments). 
Step 3: Train-Test Split 
Step 3.1: Split dataset into: 
− Training set (80%). 
− Validation set (20%). 
Step 4: Model Configuration 
Step 4.1: Initialize YOLOv8-Nano with pretrained weights. 
Step 4.2: Set hyperparameters: 
− Epochs: 100–300. 
− Batch size: 16–64 (based on GPU memory). 
− Learning rate: Adam (0.001) or SGD (0.01). 
Step 5: Training 
Step 5.1: Feed training batches to YOLOv8-Nano. 
Step 5.2: Enable mosaic augmentation (default). 
Step 5.3: Monitor metrics (mAP). 
Step 6: Evaluation 
Step 6.1: Validate on unseen data. 
Step 6.2: Compute performance: 
− mAP (mean Average Precision). 
− FPS (speed benchmark). 
Step 7: Deployment 
Step 7.1: Save final weights. 
Step 7.2: Deploy for real-time detection (APIs, edge 
devices). 
End 
 

 
5. RESULTS 
 

The snake images dataset used in the training of the 
proposed model was given training and testing sets at distinct 
proportions. To start with, training of the model was done 
utilizing the training dataset. Next, the model classification 
performance was investigated at the evaluation step, where the 
unseen snake images in the testing set were tested, and a 
respectable success rate was obtained. As shown in Figure 4, 
YOLOv8-Nano is a relatively light and robust object detection 
algorithm optimised both speed-wise and precision-wise. It 
was trained and tested on the image dataset used on snake 
images, and the robustness of its multi-class detection was 
indicated. YOLOv8-Nano effectively identified and labeled 
different types of snakes, with each detection piece being 
thoroughly labeled within its bounding box during the 
inference process. 

All experiments were conducted on an NVIDIA RTX 3080 
GPU using PyTorch 2.0. We used COCO pre-trained weights 
and trained for 300 epochs with the AdamW optimizer, using 
a learning rate of 0.001 and a weight decay of 0.0005. The 
batch size was 32 as dictated by the memory of the GPUs. Data 
augmentation was done with mosaic augmentation, random 

flipping, rotation and HSV augmentation using 
Albumentations library. 

 

 

 
 

Figure 4. Snakes detection with confidence 
 
5.1 Evaluation metrics 

 
Depending on our popular wild snake object detection 

dataset, we can classify each bounding box that is not missing 
into four possibilities: True Positive (TP), True Negative (TN), 
False Positive (FP), and False Negative (FN) [11]. The 
precision measures the capacity of a model to distinguish 
between negative examples, whereas recall measures the 
capacity to detect positive samples. F1 contains a harmonic 
average of the precision and recall. The calculation is 
expressed as shown in the following equation [23-26]: 
 

Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (1) 

 

Recall =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (2) 
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𝐹𝐹1 = 2 ×
Precision × Recall
Precision + Recall

 (3) 

 
𝐴𝐴𝐴𝐴 = ∫  10  𝑃𝑃(𝑟𝑟)𝑑𝑑𝑑𝑑  (4) 

 

𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑚𝑚
Σ �

1
𝑛𝑛
Σ𝑃𝑃(𝑟𝑟)� (5) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 =
1

Processtime ⋅ per ⋅ frame
 (6) 

 
5.2 Performance of the model 
 

As shown in Figure 5 and Table 1, YOLOv8-Nano achieved 
5.1% higher mAP than YOLOv5s and 2.9% higher than 
YOLOv7-tiny, with >30 FPS real-time inference. FPS is the 
rate at which the number of images is produced in one second; 
the higher the FPS value, the faster the images can be detected, 
and it is therefore a critical attribute in determining the speed 
and effectiveness of models in real-time tasks. 

Table 2 compares our YOLOv8-Nano model to the previous 
literature on snake detection and demonstrates the 
improvement in terms of speed (142 FPS), and accuracy 
(92.7% mAP). Compared to current approaches, our edge 
deployment mechanism performs significantly better with 
respect to real-time performance and its resiliency to harsh 
conditions. 

The data utilized in some of the compared works is much 
smaller (e.g., [8] utilises 650 images). These differences 
should be taken into consideration when comparing 
performances directly. Further effort will involve 
benchmarking on shared data. 

 
(a) mAP@0.5 and FPS Comparison 

 
(b) Precision, Recall, and F1-Score 

 
Figure 5. Performance comparison of snake detection 

models 
 

 
Table 1. Comparison of baseline model performance and a model proposed by YOLOn8-Nano. Relative values that depict the 

best are bold 
 

Model mAP@0.5 Precision Recall F1-Score FPS 
YOLOv5s 0.841 0.82 0.87 0.844 98 

YOLOv7-tiny 0.863 0.85 0.88 0.865 110 
Faster R-CNN 0.812 0.79 0.83 0.809 18 

YOLOv8-Nano 0.892 0.88 0.91 0.895 142 
 

Table 2. Comparison of proposed work with related works 
 

Ref. Model Used Dataset 
Size 

Key Metrics 
(mAP@0.5, FPS) Unique Contributions 

Raju and 
Shankar [8] YOLOv8 650 images --- Real-time alerts (e.g., WhatsApp notifications) 

Hu et al. [9] ConvNeXt-v2 + 
CLIP 

Private 
dataset F1-score: 91.31% Metadata integration, adaptive post-processing for 

venomous species. 
Miyaguchi et 

al. [10] Meta DINOv2 182,261 
images Score: 39.69 Self-supervised embeddings for species clustering. 

Wang et al. [11] Snake-DETR --- mAP: 95.23%, FPS: 
43.5 Lightweight design (47.2% fewer computations). 

Ahmed et al. 
[12] 

VGG16 + 
DenseNet121 

3,392 
images Accuracy: 85-97% Salient Object Detection (SOD) with VGG16 applied 

snake detection in complicated backgrounds. 
Proposed 

Work YOLOv8-Nano 8,500 
images 

mAP: 92.7%, FPS: 
142 

Lightweight, real-time edge deployment, robust in 
sandstorms/low-light conditions. 

 
 

6. CONCLUSIONS 
 
The degraded rate of biodiversity loss worldwide highlights 

the necessity of establishing erudite ways of assessing and 
securing endangered species to add vigor to environmental 

balance, including snakes, whose roles cannot be undermined. 
The paper introduced a real-time, lightweight snake detection 
system that operates with the YOLOv8-Nano model and has 
been developed to solve the issue of detecting camouflaged 
and elusive snakes in different natural settings. The proposed 
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system is quite impressive, with 92.7 mAP@0.5 and 142 FPS 
on small, 8,500 annotated images, surpassing the accuracy and 
speed of similar models such as YOLOv5s and the YOLOv7-
tiny, thanks to the use of a tailored dataset and the optimization 
of the model to perform better on the edge. The achievement 
of YOLOv8-Nano in adverse scenarios, e.g., sandstorms, 
dense vegetation cover, and low light conditions, proves that 
it is hardy and is well-suited to the actual task. This includes 
improving the population's safety by creating alerts regarding 
the presence of venomous snakes, assisting military activities 
in dangerous terrain, and supporting ecological conservation. 
These features of the model render it an appealing objective to 
have it deployed on resource-limited devices and fill in the gap 
between developed AI and its implementation in real life. 

The model, in spite of its good performance, is limited in 
cases of heavy occlusion, small or highly camouflaged snakes 
and in cases where there is morphological similarity between 
species. The future directions will involve multi-modal fusion 
(e.g., thermal imaging), cross-domain generalization and self-
supervised pre-training that will increase the strength and 
scalability. 
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