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The grape industry’s economic and social importance has fostered the advancement of 

cutting-edge technologies for the live tracking of vineyards, aiming to enhance the quality 

of the fruit. The recent advancement of computer vision algorithms and the preparation of 

new image sensors has made it possible to automate the identification of grapevine varieties. 

Classifying grape varieties based on their kinds using images is a challenging operation that 

necessitates the extraction of numerous distinguishing traits. In this paper, we proposed a 

technique for detecting and separating clusters of grapes in a field and subsequently 

categorizing them into eight different types applying convolutional neural network (CNN) 

models and the hyper-parameters tuned to each classification algorithm. This paper used a 

public data set of 8000 images in eight categories (1000 images per category). The proposed 

CNN model exceeded existing grape leaf classification work borrowed from the dataset, 

reaching 100% training accuracy, and experimental results showed the certainty of the 

proposed classification method at 60% testing accuracy. 
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1. INTRODUCTION

Digital Agriculture (DA) in recent years exponential rise in 

the total of data created by agricultural go per hectare. In 

precision viticulture and site-specific management in 

viticulture have expanded the information available to 

winegrowers [1]. The industry of grape economic and social 

importance has fostered the advancement of cutting-edge 

technologies for the live tracking of vineyards, aiming to 

enhance the quality of the fruit. As an effect, there is need to 

do accurate techniques for find and verifying grape varieties, 

specifically when it comes to selling vine cuttings to vineyards, 

detecting forbidden species or varieties in specific regions, or 

estimating the market value of different grape varieties in 

various production areas [2]. 

The development of an automatic algorithm for identifying 

grape varieties based on leaves faces many challenges. 

Ampelography is the specific discipline of botany that deals 

with identifying and differentiating different grape varieties [3, 

4]. The factors that have been briefly outlined share a common 

requirement: the presence of a skilled specialist at the grape 

picking location, who must directly deal with the actual fruit. 

The agricultural regions are predicted to be substantial, but 

providing a constant presence of experts is impossible. Hence, 

it is desirable to automate the process of grape detection by 

utilizing drones equipped with cameras, for instance. 

Nevertheless, drones lack the intuitive abilities of 

professionals and not equipped with organoleptic sensors. 

Performing a DNA test is the most dependable method for 

identifying a grape variety. However, it is also challenging to 

envision integrating a DNA test kit into agricultural equipment 

[5]. Nonetheless, the utilization of specialist software 

necessitates the participation of a highly trained expert [6]. 

The efficacy of this approach is heavily contingent upon the 

proficiency and expertise of the specialist. A more objective 

approach, such as DNA analysis [7], is available. However, 

this process, along with other wet chemical techniques, is 

damaging, time-consuming, labor-intensive, and necessitates 

the expertise of a specialist. Recent advances in computer 

vision algorithms so the availability of new imaging sensors 

that led to the automated identification of grape varieties. The 

processing of data from a spectrometer [8, 9] or a high-spectral 

camera is automated non- invasive and rapid. Accurate 

identification of grapevine types can be achieved by 

measuring the interaction between electro- magnetic radiation 

and matter across various spectral bands. An inherent 

drawback of this method is the substantial cost of acquiring a 

spectrometer nor hyperspectral camera, that be significantly 

greater by many orders of magnitude when compared to a 

standard camera. Incorporating these sensors into a specialized 

harvester would substantially raise its cost. Human sensory 

capabilities constrain conventional approaches for identifying 

grapevine varietals. For instance, amperometry uses visual 

perception to identify different grapevine varieties. The 

classification of grapevines based on their kinds using images 

is a challenging operation that necessitates the extraction of 

numerous distinguishing traits. The wide range of elements in 

an out- side environment adds to the difficulty of extracting 
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specific features [10]. In this paper the dataset that use has 

eight folders include 8000 images in eight categories (1000 

images per category) each representing a specific grape variety, 

with every file containing 1000 images in JPG format. All the 

pictures in the collection have a 6000 × 4000 pixels resolution 

Figure 1 [11]. 

 

 
 

Figure 1. Examples of each grape classes [11] 

 

Grapes have various physical, chemical, and geographical 

properties that affect their health. Moreover, different varieties 

of the same plants in the same region can also have different 

yields depending on growth stages or grape quality. 

Consequently, various stages of growth require different 

monitoring. Therefore, it is essential to distinguish between 

wine varieties produced in the same region, and the 

relationship between varieties and the development of certain 

substances is a crucial factor to be recognized. This paper aims 

to detect and analyze several varieties of vineyards by their 

spectral properties. The results of this correlation will lead to 

the creation of a vineyard map. Knowing the specific locations 

of each variety helps farmers avoid errors and ensures the 

quality of each variety. The objective is to implement the 

classification methods of varieties with common 

characteristics to ensure efficient management of different 

varieties in the same region. In addition to visible (RGB), 

multispectral images include red edges and near- infrared 

regions of the spectrum, which are not always visible to the 

naked eye. The scope of this methodology is to inform farmers 

about the specific characteristics of grape varieties; this 

information can be invaluable to vineyard management when 

planning, cutting, fertilizing, and harvesting during its lifetime. 

For this task, we proposed the CNN , and the hyperparameters 

were tuned for every classification algorithm. A change was 

made to the hyperparameter to verify its accuracy CNN 

consists of convolutional, pooling, and fully connected layers. 

The purpose of these layers in the CNN is to generate complex 

features that enhance classification effectiveness. The 

convolutional layers in this study comprise a collection of 

feature maps. Contributions of this research are as follows:  

Grape varieties with similar characteristics can be clustered 

using a combination of vegetation on the data set. Random 

splitting dataset in to training, testing and validation to 

development of robust and valid model.  Automatic 

recognition of grapevine varieties using of deep learning by 

design the best model for the grapevine varieties automatic 

identification. 

The residue of this paper as follows: Section 2 involves 

related work that handles the same problem and explain how 

other works solved it. In Section 3, we present CNN  model, 

and the hyperparameters were tuned for every classification 

algorithm. Section 4 explains results and discuss the result. 

Lastly, Section 5 gives the conclusion and future models. 

 

 

2. RELATED WORK 

 

There is a wealth of research on identifying grapevine 

varieties, the image categorization systems considered the 

most advanced that are built using deep convolutional 

networks. This work [12] proposed three models for detecting 

and separating clusters of grapes in a field and subsequently 

categorizing them into five different types using KSM, ResNet, 

and ExtResNet models. This study [13] proposed a basis for 

applying the used cases, such as identifying diseases exclusive 

to specific types or unique fungal diseases. Contemporary 

network topologies regulate capacity by adjusting the breadth 

or depth of networks. Expanding the space of a deep ConvNet 

by extending width is employed, for example, an alternative 

method is to augment the number of network layers known as 

the grid deepness while maintaining the linearity of data image 

processing [14]. 

Various network architectures, like Highway Networks [15] 

proposed the model of neural networks is important for this 

model. Introduce an architecture design our so-called highway 

networks allow to pass data at many layers on data highways. 

They are same by LSTM and allow the data pass using 

adaptive gats item. Deep Pyramidal Residual Networks [16] 

proposed deep convolutional neural networks (DCNNs) had 

been seen great implementation in image categorization labor 

in last years. Normally, deep neural network flowcharts are 

load depend of a large set of layers, and they do down 

sampling on the spatial dimension to reduce memory usage 

using by collect. Simultaneously, the element map size (i.e., 

the number of channels) is clear better at down sampling place, 

that is key to make sure useful show. This study [17] presented 

a Dense Convolutional Network (DenseNet) that link all layer 

to each last layer in a feed-forward mode. while set 

convolutional networks with L layers had L connections one 

between all layer and its next layer us network has 

L(L+1)2direct links. This study [18] presented the cross-layer 

neurons design a new structure with deep neural network 

training capability. It makes use of cross-layer neurons to post 

data (features) acquired from all of the lower-level layers to 

the higher-level layers. The work by Pereira et al. [3] devised 

a technique to automatically detect grape bunches in color 

photographs. A trained ConvNet was utilized to segment the 

image. 

 The data was classified into a limited number of specific 

categories and compared with sub-regions of known 
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dimensions. The grape group pixel by pixel was segmentation 

to do using probability plot for each category. The 

segmentation of grape clusters in-range photos achieved an 

accuracy of 87.5%. Franczyk et al. [12] presented an approach 

that used a KSM a restnet and an ExtRestnet to recognize and 

divide clusters of grapes in a crop in order to categorize five 

different types of grapes from a provided image dataset. 

Mohimont et al. [19] introduced a total analysis available to 

each overall non-expert readers to compare the new going of 

artificial intelligence (AI) in viticulture. Finally, Palacios et al. 

[20] presented an architecture using SegNet that working to 

discover the seen grain and cover attribute. All attribute that 

used to train models support vector regression (SVR) for 

predict number of real berries and heed. 

 

 

3. METHODS 

 

Our research’s primary objective is to accurately identify 

grape varieties using only the image of the grape being 

displayed. For this task we proposed the CNN and the 

hyperparameters were tuned for every classification algorithm. 

A change was made to the hyperparameter to verify its 

accuracy. Figure 2 shows the flowchart of this proposed 

method. 

 

 
 

Figure 2. Flowchart of the proposed methodology 

3.1 Dataset 

 

The dataset has eight folders include 8000 images in eight 

categories (1000 images per category) each representing a 

specific grape variety, with each folder containing 1000 

images in JPG format. All the pictures in the collection have a 

6000 × 4000 pixels resolution. Due to the photographs’ high 

resolution, their size reached 49.8 GB, which is impractical for 

downloading and uploading the dataset from the Internet. To 

address this issue, the images were resized using a Windows 

application called (resize pictures) to the proportions of 1620 

× 1080 pixels. The initial data size is 1.95 gigabytes. 

Compression using a zip application reduced the data size to 

1.83 gigabytes. Eight folders represent different grape variety 

types (Deas Al- Annz, Kamali, Halawani, Thompson Seedless, 

aswud balad, riasi, frinsi, and shdah). 

 

1) Preprocessing of image: Images are divided into three 

sets: train, test, and validation sets. Hyperparameter 

values are selected according to the accuracy obtained 

from the train set. The image is standardized by split all 

image into 255 steps. All channel is 8 bits; when 

divided, the value is 0-1. It is, therefore precise and 

efficient in computation based on the following Eq. (1): 

 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑=
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (1) 

 

2) Training CNN model: The model is trained using a 

training set as 6400 images, and a high parameter value 

selection is based on the accuracy achieved by training 

the model and testing set with 800 images as testing. 

External validation datasets have been chosen to 

minimize the result of over-adaptation on the test 

dataset during validation with 800 images. The 

utilization of an external validation dataset enhances 

the reliability of the models’ outcomes for real-world 

applications, notwithstanding the possibility of lower 

validation metrics. 

a) Batch Size and Selection: Before commencing the 

training process, batch size is one of the primary 

hyperparameters that necessitates adjustment. The batch 

size is a reference to the quantity of images used in the 

gradient estimation procedure. Several studies have 

examined the impact of batch size on network 

performance, specifically in terms of accuracy and 

convergence time. The objective was to establish whether 

small or large batches were more advantageous. While a 

small batch size may converge more quickly than a big 

batch, the major batch size has the likely to reach best 

minima that a smaller batch size cannot achieve. Also, a 

small batch size might induce real regularization due to its 

elevated variance [21]. In this work on image 

classification, we empirically utilize a batch size of 32. 

b) Convolutional neural networks (CNNs): CNN consists of 

convolutional, pooling, and fully connected layers. The 

purpose of these layers in the CNN is to generate complex 

features that enhance classification effectiveness. The 

convolutional layers in this study comprise a collection of 

feature maps. Each feature map has a receptive field that 

covers only a small part of the input spectra. Each feature 

map generated results from performing a convolution (dot 

product) between the weights of the receptive field and all 

the points in the spectrum. This indicates that adjacent 
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points in the feature map were identified in overlapping 

and adjoining portions of the input spectra. In this manner, 

several characteristics are identified across the entire 

spectra range. One significant benefit of employing 

convolutional layers is their much- reduced number of 

trainable parameters compared to a fully connected neural 

network. The pooling layer is utilized on the feature maps 

to achieve down-sampling. In this scenario, the feature 

maps were partitioned into distinct regions that do not 

overlap, and the highest value within each region was 

selected. Subsequently, dropout is implemented where 

training certain elements that contribute to the subsequent 

layer are either excluded or included with a specific 

probability. Following the convolution and pooling layers, 

which consist of one of each in this study. Fully connected 

neural network analyzes the features derived from the 

preceding layers. Applies a flattened layer to a Keras 

model. The flattened layer transforms the input from a 

multidimensional array to a one-dimensional one. This is 

frequently performed when converting from a 

convolutional layer to a fully linked layer. 

Pooling: Reducing the size of the map at the final layer of 

the deep network enhances its suitability for classification 

tasks we use. Including a pooling layer ensures that slight 

variations in input images do not affect the output while 

also decreasing the dimensions of the feature maps, such 

as width and height. A nonlinear function f() was applied 

element-wise to c: a for every feature map c. The 

activations obtained, represented by the letter a, were then 

sent to the MaxPooling2D layer is standard in 

convolutional neural networks [22]. It reduces the 

output’s spatial dimensions, which can enhance the 

model’s execution by lowering the number of account and 

parameters [23]. 

c) Learning rate and Dropout: for regularization the learning 

rate is a critical parameter in CNN that determines the 

speed at which a network adjusts its parameters during 

backpropagation [24]. Reducing the learning rate 

promotes gradual pool but also hampers the process speed 

learning. Nevertheless, maintaining a higher learning rate 

can accelerate the learning process, but it may impede 

convergence. Dropout is an effective and uncomplicated 

regularization method for deep learning models [25], and 

convolutional neural networks (CNNs) often tend to 

overfit. Co-adaptation is more likely to occur when a fully 

connected layer contains numerous nodes or neurons [26]. 

This approach randomly picks neurons and excludes them 

throughout the training phase eliminating their impact on 

subsequent processes. 

 

Table 1. The configuration of the model CNN 

 
Output Shape Type Layer 

(28, 28, 32) 

(14, 14, 32) 

(14, 14, 32) 

(12, 12, 64) 

(6, 6, 64) 

(6, 6, 64) 

(4, 4, 128) 

(2, 2, 128) 

(2, 2, 128) 

(2, 2, 256) 

(2, 2, 256) 

(2, 2, 256) 

512 

64 

64 

64 

num_classes 

32 filters, (3, 3), ReLU 

(2, 2) 

- 

64 filters, (3, 3), ReLU 

(2, 2) 

- 

128 filters, (3, 3), ReLU 

(2, 2) 

- 

256 filters, (3, 3), ReLU 

(2, 2) 

- 

- 

64 neurons, ReLU 

dropout_rate 

- 

num_classes neurons, softmax 

Conv2D 

MaxPooling2D 

BatchNormalization 

Conv2D 

MaxPooling2D 

BatchNormalization 

Conv2D 

MaxPooling2D 

BatchNormalization 

Conv2D 

MaxPooling2D 

BatchNormalization 

Flatten 

Dense 

Dropout 

BatchNormalization 

Dense 

 

d) Batch normalization and L2 regularization: Batch 

normalization is a further regularization technique that 

standardizes the collection of activations in a layer. 

Normalization is achieved by subtracting the mean of the batch 

from each activated and then using the standard deviation and 

dividing the batch. Normalization, in conjunction with 

standardization is a commonly used method in preprocessing 

pixel values. Conventional L2 regularization is applied to all 

trainable parameters, meaning the regularization factors 

remain constant during training. Addition is the mathematical 

operation of combining two or more numbers to find their total 

sum. Indeed, the selection of those regularization factors must 

be done manually through hyperparameter optimization [27]. 

Table 1 shows the configuration of the best model. 

Model hyperparameter optimization strategy following the 

establishment of a CNN backbone architecture and specific 

hyperparameters learning rate and Dropout rates to achieve the 

most outstanding performance (accuracy, loss, etc.). These 

adjustments are necessary to ascertain the optimal model of 

this CNN to fit the training and validation dataset. Algorithm 

1hyperparameter tuning by systematically trying different 

combinations of learning rates and dropout rates and selecting 

the best-performing model. 

3) Performance metrics 

•Confusion matrix: A model confusion matrix derived from 

a classification model on the train, valid, test data The 

confusion matrix is contain of four main item where true 

positives (TP), false positives (FP), true negatives (TN), and 

false negatives (FN). Gvie in whose the model accurately sign 

the positive class, corresponding with real positive results 

express as true positives [28]. Confusion matrix assesses how 

well a classification model performs when it is applied to a put 

of test data with known true values [29]. 

•Accuracy: is a metrical that count the right predicts the 

outcome of deep learning model. To cast accuracy using 

dividing the number of correct forecast by the total number of 

forecast. which is the rate of accurate predictions (TP and TN) 

to the total number of instances that were investigated, The Eq. 
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(2) can be used to calculate accuracy: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (2) 

 

•ROC: is a graphical plot that clarify the show of a binary 

classifier type (can be used for multi class classification as 

well) at alter threshold evaluate. The True Positive rate (TP = 

Sensitivity) is scheme as a function of the False Positive rate 

(FP = 1 - Specificity) [30], as shown in Figure 3. 
 

 

 

 
 

Figure 3. ROC classification model 

 

Algorithm 1: hyperparameter tuning  

Inputs: Learning rates to tune: [0.0001, 0.001, 0.01] 

Dropout rates to tune: [0.2, 0.5, 0.7] 

Output: Print the best hyper parameters (learning rate 

and dropout rate) and best accuracy. 

• Start 

• CNN architecture function: 

create_model_with_bn_and_l2 

• Batch size: batch_size 

• No. of training Epochs is ten 

• Initialization: 

o Initialize best_learning_rate, 

best_dropout_rate, and best_accuracy. 

o hyperparameter tuning  

• For each (learning rate and dropout rate 

combination): 

o Create a model with the current 

hyperparameters. 

o Train the pattern on the data. 

o Evaluate this model on the validation 

data. 

o Update best hyperparameters and 

accuracy if a better model is found. 

• Print the best hyper parameters (learning and 

dropout rate) and best accuracy. 

• End 

 

 

4. EXPERIMENTAL RESULTS 

 

In this study a CNN network was investigated. The model 

was trained on 6400 images, divided into a training set of 80%, 

a validation set of 10%, and a testing set of 10%. The LR range 

test is a method for finding the optimal learning rate for a CNN. 

The test starts with a small learning rate and slowly increases 

it linearly. This provides information on how well the network 

can be trained over various learning rates. When the learning 

rate is too small, the network will not converge. The network 

will overfit the training data when the learning rate is too large. 

The optimal learning rate is the point at which the network 

converges without overfitting. This study used the LR range 

test to find the optimal learning rate for the CNN. The train 

found the optimal learning rate was 0.0001, depending on 

validation accuracy. This learning rate was used to train the 

network, and the network achieved a high accuracy on the 

testing set.  The following Table 2 shows validating details and 

hyperparameters, Table 3 shows final train, validation and test 

accuracy. 

In the classification of species varieties, the similarities and 

differences between the classes are high, placing the task in 

the family of delicate recognition problems. In the images 

obtained on the field there is a wide number of unrelated 

information, which can contribute to classification errors. 

Another factor to pay attention to is the natural existence of 

tailed classes in datasets since this task can be treated as a long-

tailed data distribution classification. Imbalance can be 

problematic because the model tends to overfit the courses 

with more samples. In this context, few-shot learning 

approaches can be applied to minimize the lack of samples for 

some categories.  This paper tested the use of focal loss to deal 

with unbalance in the dataset, even if there were no tail classes. 

Other balanced losses can still be tested in the dataset (between 

60 and 75 images per category). Introducing the Softmax is 

class-Balanced cross-entropy loss. The reduction of the cross-

entropy loss that start a weighting factor is backward relative 

to the suitable number of samples in a category. Created a loss 
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function using an effect rate to identify how each sample 

affects biased decisions that cause the model to overfit. They 

fix weights to each sample accordingly. model's overall 

categorization test performance. This curve contains the true 

positive rate (TPR) and false positive rate (FPR), with 

specificity FPR = −1. 

 

Table 2. Validating details and hyperparameters. 

 

Learning Rate Dropout Rate 
Validation 

Accuracy 

0.0001 0.2 %46 

0.0001 0.5 %37 

0.0001 0.7 %34 

0.001 0.2 %28 

 

Table 3. Final train validation and test accuracy. 

 
Learning 

Rate 

Dropout 

Rate 
Epoch Train 

Validation 

Accuracy 

Testing_ 

Accuracy 

0.0001 0.2 20 100% 43% 60% 

 

 

 

 
 

Figure 4. Confusion matrix classification model 

A thorough examination of the system's implementation 

using up confusion matrix Figure 4 reveals it while the model 

does a good job of differentiating across grape varieties, it 

performs poorly when it comes to types 4, 5 and 7. This occur 

because the similarities and differences between the classes 

are high, placing the task in the family of delicate recognition 

problems. In the images obtained on the field there is a wide 

number of unrelated information, which can contribute to 

classification errors. Only grapes with similar shapes become 

confused.  

 

 

5. CONCLUSION  

 

The classification of grape vines using advanced computer 

vision techniques represents a significant advancement in the 

grape industry. By automating the identification process and 

enabling live tracking of vineyards, this technology can 

revolutionize crop management and improve the quality of 

grapes. The proposed CNN model, with its impressive training 

and testing accuracy, demonstrates the feasibility and 

effectiveness of this approach. As research in this field 

progresses, we can expect to see even more sophisticated and 

accurate classification systems that benefit both grape growers 

and consumers. The present research employs a transfer 

learning strategy based on the CNN architecture. It was 

demonstrated to automatically recognize and categorize eight 

different types of grapes from a provided image dataset. The 

CNN Classification successfully trained on correctly detected 

type of grapes, achieving 100% accuracy. With a 60% testing 

accuracy, the experimental findings showed the suggested 

classifier's dependability. In the future work, the 

hyperparameters of the CNN model will be optimized to 

achieve better classification accuracy and eliminate the high 

complexity in the models. 
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