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The grape industry’s economic and social importance has fostered the advancement of
cutting-edge technologies for the live tracking of vineyards, aiming to enhance the quality
of the fruit. The recent advancement of computer vision algorithms and the preparation of
new image sensors has made it possible to automate the identification of grapevine varieties.
Classifying grape varieties based on their kinds using images is a challenging operation that
necessitates the extraction of numerous distinguishing traits. In this paper, we proposed a
technique for detecting and separating clusters of grapes in a field and subsequently
categorizing them into eight different types applying convolutional neural network (CNN)
models and the hyper-parameters tuned to each classification algorithm. This paper used a
public data set of 8000 images in eight categories (1000 images per category). The proposed
CNN model exceeded existing grape leaf classification work borrowed from the dataset,
reaching 100% training accuracy, and experimental results showed the certainty of the

proposed classification method at 60% testing accuracy.

1. INTRODUCTION

Digital Agriculture (DA) in recent years exponential rise in
the total of data created by agricultural go per hectare. In
precision viticulture and site-specific management in
viticulture have expanded the information available to
winegrowers [1]. The industry of grape economic and social
importance has fostered the advancement of cutting-edge
technologies for the live tracking of vineyards, aiming to
enhance the quality of the fruit. As an effect, there is need to
do accurate techniques for find and verifying grape varieties,
specifically when it comes to selling vine cuttings to vineyards,
detecting forbidden species or varieties in specific regions, or
estimating the market value of different grape varieties in
various production areas [2].

The development of an automatic algorithm for identifying
grape varieties based on leaves faces many challenges.
Ampelography is the specific discipline of botany that deals
with identifying and differentiating different grape varieties [3,
4]. The factors that have been briefly outlined share a common
requirement: the presence of a skilled specialist at the grape
picking location, who must directly deal with the actual fruit.
The agricultural regions are predicted to be substantial, but
providing a constant presence of experts is impossible. Hence,
it is desirable to automate the process of grape detection by
utilizing drones equipped with cameras, for instance.
Nevertheless, drones lack the intuitive abilities of
professionals and not equipped with organoleptic sensors.
Performing a DNA test is the most dependable method for
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identifying a grape variety. However, it is also challenging to
envision integrating a DNA test kit into agricultural equipment
[5]. Nonetheless, the utilization of specialist software
necessitates the participation of a highly trained expert [6].
The efficacy of this approach is heavily contingent upon the
proficiency and expertise of the specialist. A more objective
approach, such as DNA analysis [7], is available. However,
this process, along with other wet chemical techniques, is
damaging, time-consuming, labor-intensive, and necessitates
the expertise of a specialist. Recent advances in computer
vision algorithms so the availability of new imaging sensors
that led to the automated identification of grape varieties. The
processing of data from a spectrometer [8, 9] or a high-spectral
camera is automated non- invasive and rapid. Accurate
identification of grapevine types can be achieved by
measuring the interaction between electro- magnetic radiation
and matter across various spectral bands. An inherent
drawback of this method is the substantial cost of acquiring a
spectrometer nor hyperspectral camera, that be significantly
greater by many orders of magnitude when compared to a
standard camera. Incorporating these sensors into a specialized
harvester would substantially raise its cost. Human sensory
capabilities constrain conventional approaches for identifying
grapevine varietals. For instance, amperometry uses visual
perception to identify different grapevine varieties. The
classification of grapevines based on their kinds using images
is a challenging operation that necessitates the extraction of
numerous distinguishing traits. The wide range of elements in
an out- side environment adds to the difficulty of extracting
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specific features [10]. In this paper the dataset that use has
eight folders include 8000 images in eight categories (1000
images per category) each representing a specific grape variety,
with every file containing 1000 images in JPG format. All the
pictures in the collection have a 6000 x 4000 pixels resolution
Figure 1 [11].
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Figure 1. Examples of each grape classes [11]

Grapes have various physical, chemical, and geographical
properties that affect their health. Moreover, different varieties
of the same plants in the same region can also have different
yields depending on growth stages or grape quality.
Consequently, various stages of growth require different
monitoring. Therefore, it is essential to distinguish between
wine varieties produced in the same region, and the
relationship between varieties and the development of certain
substances is a crucial factor to be recognized. This paper aims
to detect and analyze several varieties of vineyards by their
spectral properties. The results of this correlation will lead to
the creation of a vineyard map. Knowing the specific locations
of each variety helps farmers avoid errors and ensures the
quality of each variety. The objective is to implement the
classification methods of wvarieties with common
characteristics to ensure efficient management of different
varieties in the same region. In addition to visible (RGB),
multispectral images include red edges and near- infrared
regions of the spectrum, which are not always visible to the
naked eye. The scope of this methodology is to inform farmers
about the specific characteristics of grape varieties; this
information can be invaluable to vineyard management when
planning, cutting, fertilizing, and harvesting during its lifetime.
For this task, we proposed the CNN , and the hyperparameters
were tuned for every classification algorithm. A change was
made to the hyperparameter to verify its accuracy CNN
consists of convolutional, pooling, and fully connected layers.
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The purpose of these layers in the CNN is to generate complex
features that enhance classification effectiveness. The
convolutional layers in this study comprise a collection of
feature maps. Contributions of this research are as follows:

Grape varieties with similar characteristics can be clustered
using a combination of vegetation on the data set. Random
splitting dataset in to training, testing and validation to
development of robust and valid model. Automatic
recognition of grapevine varieties using of deep learning by

design the best model for the grapevine varieties automatic
identification.

The residue of this paper as follows: Section 2 involves
related work that handles the same problem and explain how
other works solved it. In Section 3, we present CNN model,
and the hyperparameters were tuned for every classification
algorithm. Section 4 explains results and discuss the result.
Lastly, Section 5 gives the conclusion and future models.

2. RELATED WORK

There is a wealth of research on identifying grapevine
varieties, the image categorization systems considered the
most advanced that are built using deep convolutional
networks. This work [12] proposed three models for detecting
and separating clusters of grapes in a field and subsequently
categorizing them into five different types using KSM, ResNet,
and ExtResNet models. This study [13] proposed a basis for
applying the used cases, such as identifying diseases exclusive
to specific types or unique fungal diseases. Contemporary
network topologies regulate capacity by adjusting the breadth
or depth of networks. Expanding the space of a deep ConvNet
by extending width is employed, for example, an alternative
method is to augment the number of network layers known as
the grid deepness while maintaining the linearity of data image
processing [14].

Various network architectures, like Highway Networks [15]
proposed the model of neural networks is important for this
model. Introduce an architecture design our so-called highway
networks allow to pass data at many layers on data highways.
They are same by LSTM and allow the data pass using
adaptive gats item. Deep Pyramidal Residual Networks [16]
proposed deep convolutional neural networks (DCNNs) had
been seen great implementation in image categorization labor
in last years. Normally, deep neural network flowcharts are
load depend of a large set of layers, and they do down
sampling on the spatial dimension to reduce memory usage
using by collect. Simultaneously, the element map size (i.e.,
the number of channels) is clear better at down sampling place,
that is key to make sure useful show. This study [17] presented
a Dense Convolutional Network (DenseNet) that link all layer
to each last layer in a feed-forward mode. while set
convolutional networks with L layers had L connections one
between all layer and its next layer us network has
L(L+1)2direct links. This study [18] presented the cross-layer
neurons design a new structure with deep neural network
training capability. It makes use of cross-layer neurons to post
data (features) acquired from all of the lower-level layers to
the higher-level layers. The work by Pereira et al. [3] devised
a technique to automatically detect grape bunches in color
photographs. A trained ConvNet was utilized to segment the
image.

The data was classified into a limited number of specific
categories and compared with sub-regions of known



dimensions. The grape group pixel by pixel was segmentation
to do using probability plot for each category. The
segmentation of grape clusters in-range photos achieved an
accuracy of 87.5%. Franczyk et al. [12] presented an approach
that used a KSM a restnet and an ExtRestnet to recognize and
divide clusters of grapes in a crop in order to categorize five
different types of grapes from a provided image dataset.
Mohimont et al. [19] introduced a total analysis available to
each overall non-expert readers to compare the new going of
artificial intelligence (Al) in viticulture. Finally, Palacios et al.
[20] presented an architecture using SegNet that working to
discover the seen grain and cover attribute. All attribute that
used to train models support vector regression (SVR) for
predict number of real berries and heed.

3. METHODS

Our research’s primary objective is to accurately identify
grape varieties using only the image of the grape being
displayed. For this task we proposed the CNN and the

hyperparameters were tuned for every classification algorithm.

A change was made to the hyperparameter to verify its
accuracy. Figure 2 shows the flowchart of this proposed
method.

Splitting d. Im age preprocessing
- p p -

classification classtfication

Figure 2. Flowchart of the proposed methodology

3.1 Dataset

The dataset has eight folders include 8000 images in eight
categories (1000 images per category) each representing a
specific grape variety, with each folder containing 1000
images in JPG format. All the pictures in the collection have a
6000 x 4000 pixels resolution. Due to the photographs’ high
resolution, their size reached 49.8 GB, which is impractical for
downloading and uploading the dataset from the Internet. To
address this issue, the images were resized using a Windows
application called (resize pictures) to the proportions of 1620
x 1080 pixels. The initial data size is 1.95 gigabytes.
Compression using a zip application reduced the data size to
1.83 gigabytes. Eight folders represent different grape variety
types (Deas Al- Annz, Kamali, Halawani, Thompson Seedless,
aswud balad, riasi, frinsi, and shdah).

1) Preprocessing of image: Images are divided into three
sets: train, test, and validation sets. Hyperparameter
values are selected according to the accuracy obtained
from the train set. The image is standardized by split all
image into 255 steps. All channel is 8 bits; when
divided, the value is 0-1. It is, therefore precise and
efficient in computation based on the following Eq. (1):

_ X—Xmin
Xnormalized
X
max

Xy (1
2) Training CNN model: The model is trained using a
training set as 6400 images, and a high parameter value
selection is based on the accuracy achieved by training
the model and testing set with 800 images as testing.
External validation datasets have been chosen to
minimize the result of over-adaptation on the test
dataset during validation with 800 images. The
utilization of an external validation dataset enhances
the reliability of the models’ outcomes for real-world
applications, notwithstanding the possibility of lower
validation metrics.

a) Batch Size and Selection: Before commencing the
training process, batch size is one of the primary
hyperparameters that necessitates adjustment. The batch
size is a reference to the quantity of images used in the
gradient estimation procedure. Several studies have
examined the impact of batch size on network
performance, specifically in terms of accuracy and
convergence time. The objective was to establish whether
small or large batches were more advantageous. While a
small batch size may converge more quickly than a big
batch, the major batch size has the likely to reach best
minima that a smaller batch size cannot achieve. Also, a
small batch size might induce real regularization due to its
elevated variance [21]. In this work on image
classification, we empirically utilize a batch size of 32.

b) Convolutional neural networks (CNNs): CNN consists of
convolutional, pooling, and fully connected layers. The
purpose of these layers in the CNN is to generate complex
features that enhance classification effectiveness. The
convolutional layers in this study comprise a collection of
feature maps. Each feature map has a receptive field that
covers only a small part of the input spectra. Each feature
map generated results from performing a convolution (dot
product) between the weights of the receptive field and all
the points in the spectrum. This indicates that adjacent



points in the feature map were identified in overlapping
and adjoining portions of the input spectra. In this manner,
several characteristics are identified across the entire
spectra range. One significant benefit of employing
convolutional layers is their much- reduced number of
trainable parameters compared to a fully connected neural
network. The pooling layer is utilized on the feature maps
to achieve down-sampling. In this scenario, the feature
maps were partitioned into distinct regions that do not
overlap, and the highest value within each region was
selected. Subsequently, dropout is implemented where
training certain elements that contribute to the subsequent
layer are either excluded or included with a specific
probability. Following the convolution and pooling layers,
which consist of one of each in this study. Fully connected
neural network analyzes the features derived from the
preceding layers. Applies a flattened layer to a Keras
model. The flattened layer transforms the input from a
multidimensional array to a one-dimensional one. This is
frequently performed when converting from a
convolutional layer to a fully linked layer.

Pooling: Reducing the size of the map at the final layer of
the deep network enhances its suitability for classification
tasks we use. Including a pooling layer ensures that slight
variations in input images do not affect the output while

also decreasing the dimensions of the feature maps, such
as width and height. A nonlinear function f() was applied
element-wise to c: a for every feature map c. The
activations obtained, represented by the letter a, were then
sent to the MaxPooling2D layer is standard in
convolutional neural networks [22]. It reduces the
output’s spatial dimensions, which can enhance the
model’s execution by lowering the number of account and
parameters [23].

Learning rate and Dropout: for regularization the learning
rate is a critical parameter in CNN that determines the
speed at which a network adjusts its parameters during
backpropagation [24]. Reducing the learning rate
promotes gradual pool but also hampers the process speed
learning. Nevertheless, maintaining a higher learning rate
can accelerate the learning process, but it may impede
convergence. Dropout is an effective and uncomplicated
regularization method for deep learning models [25], and
convolutional neural networks (CNNs) often tend to
overfit. Co-adaptation is more likely to occur when a fully
connected layer contains numerous nodes or neurons [26].
This approach randomly picks neurons and excludes them
throughout the training phase eliminating their impact on
subsequent processes.

Table 1. The configuration of the model CNN

Output Shape Type Layer
(28,28, 32) 32 filters, (3, 3), ReLU Conv2D
(14, 14, 32) 2,2) MaxPooling2D
(14, 14, 32) - BatchNormalization
(12,12, 64) 64 filters, (3, 3), ReLU Conv2D
(6, 6, 64) 2,2) MaxPooling2D
(6, 6, 64) - BatchNormalization
(4,4, 128) 128 filters, (3, 3), ReLU Conv2D
(2,2,128) 2,2) MaxPooling2D
(2,2,128) - BatchNormalization
(2,2,256) 256 filters, (3, 3), ReLU Conv2D
(2,2,256) 2,2) MaxPooling2D
(2,2,256) - BatchNormalization
512 - Flatten
64 64 neurons, ReLU Dense
64 dropout_rate Dropout
64 - BatchNormalization
num classes num classes neurons, softmax Dense

d) Batch normalization and L2 regularization: Batch
normalization is a further regularization technique that
standardizes the collection of activations in a layer.
Normalization is achieved by subtracting the mean of the batch
from each activated and then using the standard deviation and
dividing the batch. Normalization, in conjunction with
standardization is a commonly used method in preprocessing
pixel values. Conventional L2 regularization is applied to all
trainable parameters, meaning the regularization factors
remain constant during training. Addition is the mathematical
operation of combining two or more numbers to find their total
sum. Indeed, the selection of those regularization factors must
be done manually through hyperparameter optimization [27].
Table 1 shows the configuration of the best model.

Model hyperparameter optimization strategy following the
establishment of a CNN backbone architecture and specific
hyperparameters learning rate and Dropout rates to achieve the
most outstanding performance (accuracy, loss, etc.). These
adjustments are necessary to ascertain the optimal model of
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this CNN to fit the training and validation dataset. Algorithm
lhyperparameter tuning by systematically trying different
combinations of learning rates and dropout rates and selecting
the best-performing model.

3) Performance metrics

*Confusion matrix: A model confusion matrix derived from
a classification model on the train, valid, test data The
confusion matrix is contain of four main item where true
positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). Gvie in whose the model accurately sign
the positive class, corresponding with real positive results
express as true positives [28]. Confusion matrix assesses how
well a classification model performs when it is applied to a put
of test data with known true values [29].

* Accuracy: is a metrical that count the right predicts the
outcome of deep learning model. To cast accuracy using
dividing the number of correct forecast by the total number of
forecast. which is the rate of accurate predictions (TP and TN)
to the total number of instances that were investigated, The Eq.



(2) can be used to calculate accuracy:

TP+ TN

Accuracy = vy e @)

*ROC: is a graphical plot that clarify the show of a binary
classifier type (can be used for multi class classification as
well) at alter threshold evaluate. The True Positive rate (TP =
Sensitivity) is scheme as a function of the False Positive rate
(FP =1 - Specificity) [30], as shown in Figure 3.
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Figure 3. ROC classification model

Dropout rates to tune: [0.2, 0.5, 0.7]
Output: Print the best hyper parameters (learning rate
and dropout rate) and best accuracy.
e Start
e CNN architecture
create_model with bn and 12
e Batch size: batch_size
e No. of training Epochs is ten
e Initialization:
o Initialize best learning rate,
best_dropout_rate, and best_accuracy.
o hyperparameter tuning
e For ecach (learning rate and dropout rate

function:

combination):
o Create a model with the current
hyperparameters.

o Train the pattern on the data.
o Evaluate this model on the validation
data.
o Update Dbest hyperparameters and
accuracy if a better model is found.
e Print the best hyper parameters (learning and
dropout rate) and best accuracy.
e End

Algorithm 1: hyperparameter tuning

Inputs: Learning rates to tune: [0.0001, 0.001, 0.01]

4. EXPERIMENTAL RESULTS

In this study a CNN network was investigated. The model
was trained on 6400 images, divided into a training set of 80%,
a validation set of 10%, and a testing set of 10%. The LR range
test is a method for finding the optimal learning rate for a CNN.
The test starts with a small learning rate and slowly increases
it linearly. This provides information on how well the network
can be trained over various learning rates. When the learning
rate is too small, the network will not converge. The network
will overfit the training data when the learning rate is too large.
The optimal learning rate is the point at which the network
converges without overfitting. This study used the LR range
test to find the optimal learning rate for the CNN. The train
found the optimal learning rate was 0.0001, depending on
validation accuracy. This learning rate was used to train the
network, and the network achieved a high accuracy on the
testing set. The following Table 2 shows validating details and
hyperparameters, Table 3 shows final train, validation and test
accuracy.

In the classification of species varieties, the similarities and
differences between the classes are high, placing the task in
the family of delicate recognition problems. In the images
obtained on the field there is a wide number of unrelated
information, which can contribute to classification errors.
Another factor to pay attention to is the natural existence of
tailed classes in datasets since this task can be treated as a long-
tailed data distribution classification. Imbalance can be
problematic because the model tends to overfit the courses
with more samples. In this context, few-shot learning
approaches can be applied to minimize the lack of samples for
some categories. This paper tested the use of focal loss to deal
with unbalance in the dataset, even if there were no tail classes.
Other balanced losses can still be tested in the dataset (between
60 and 75 images per category). Introducing the Softmax is
class-Balanced cross-entropy loss. The reduction of the cross-
entropy loss that start a weighting factor is backward relative
to the suitable number of samples in a category. Created a loss



function using an effect rate to identify how each sample
affects biased decisions that cause the model to overfit. They
fix weights to each sample accordingly. model's overall
categorization test performance. This curve contains the true
positive rate (TPR) and false positive rate (FPR), with
specificity FPR = —1.

Table 2. Validating details and hyperparameters.

Learning Rate Dropout Rate Validation
Accuracy
0.0001 0.2 %46
0.0001 0.5 %37
0.0001 0.7 %34
0.001 0.2 %28

Table 3. Final train validation and test accuracy.

Learning Dropout . Validation = Testing_
Rate Rate Epoch  Train Accuracy Accuracy
0.0001 0.2 20 100% 43% 60%
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Figure 4. Confusion matrix classification model

A thorough examination of the system's implementation
using up confusion matrix Figure 4 reveals it while the model
does a good job of differentiating across grape varieties, it
performs poorly when it comes to types 4, 5 and 7. This occur
because the similarities and differences between the classes
are high, placing the task in the family of delicate recognition
problems. In the images obtained on the field there is a wide
number of unrelated information, which can contribute to
classification errors. Only grapes with similar shapes become
confused.

5. CONCLUSION

The classification of grape vines using advanced computer
vision techniques represents a significant advancement in the
grape industry. By automating the identification process and
enabling live tracking of vineyards, this technology can
revolutionize crop management and improve the quality of
grapes. The proposed CNN model, with its impressive training
and testing accuracy, demonstrates the feasibility and
effectiveness of this approach. As research in this field
progresses, we can expect to see even more sophisticated and
accurate classification systems that benefit both grape growers
and consumers. The present research employs a transfer
learning strategy based on the CNN architecture. It was
demonstrated to automatically recognize and categorize eight
different types of grapes from a provided image dataset. The
CNN Classification successfully trained on correctly detected
type of grapes, achieving 100% accuracy. With a 60% testing
accuracy, the experimental findings showed the suggested
classifier's dependability. In the future work, the
hyperparameters of the CNN model will be optimized to
achieve better classification accuracy and eliminate the high
complexity in the models.
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