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One of the auspicious nanomaterials which has exceptionally enticed researchers is carbon 

nanotubes (CNTs) as the result of their excellent thermal properties. In this investigation, 

an experiment was carried out on three kinds of CNTs-nanofluids with various CNTs added 

to de-ionized water to compared and analyze their thermal conductivity properties. The 

main purpose of this study was to introduce a combination of experimental and modelling 

approaches to forecast the amount of thermal conductivity using four different neural 

networks. Between MLP-ANN, ANFIS, LSSVM, and RBF-ANN Methods, it was found 

that the LSSVM produced better results with the lowest deviation factor and reflected the 

most accurate responses between the proposed models. the regression diagram of 

experimental and estimated values shows an R2 coefficient of 0.9806 and 0.9579 for 

training and testing sections of the ANFIS method in part a, and in the b, c and d parts of 

the diagram, coefficients of determination were 0.9893& 0.9967 and 0.9974 & 0.9992 and 

0.9996& 0.9989 for training and testing part of MLP-ANN, RBF-ANN and LSSVM 

models. Also, the effect of different parameters was investigated using a sensitivity analysis 

method which demonstrates that the temperature is the most affecting parameter on the 

thermal conductivity with a relevancy factor of 0.66866. 
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1. INTRODUCTION

There are continuous efforts all over the world to enhance 

heat transfer rates with minimal utilization of energy and 

different strategies have been found in their way [1-3]. All 

these strategies may be broadly classified either as Passive 

technique or Active technique. Passive technique includes 

improving properties of the fluids and materials, design 

modifications etc., which doesn’t need any secondary power 

for increasing heat transfer rate whereas active technique 

requires auxiliary power for enhancing heat transfer [4-6]. 

Since saving energy is call for the better environment, passive 

techniques always gain attention first [7, 8]. An eminent 

passive technique for improving thermal properties of liquids 

is adding high thermal conductive solid particles to liquid [9-

11]. The resulting mixture of solid-liquid exhibits increased 

thermal conductivity than the pure liquid [12-15].  

One of the auspicious nanomaterials which has 

exceptionally enticed researchers is carbon nanotubes (CNTs) 

as the result of their excellent thermal properties. Different 

energy systems and industrial processes involve with heat 

transfer by using working fluids [16, 17]. Under this condition, 

the fluids’ thermal properties perform a crucial part in 

providing equipments with energy-effective heat transfer. 

Nonetheless, oil, ethylene glycol and water as conventional 

heat transfer fluids are not favorable due to approximately low 

thermal conductivities. Therefore, a lot of endeavors have 

been carried out with the aim of improving the thermal 

properties of these fluids by applying different enhancement 

methods. In this way, applying nanofluids can be mentioned 

as the most appealing approaches [18-20]. Generally, the 

efficient heat transfer can be obtained by using nanofluids with 

higher thermal properties, which leads to low-cost and energy-

efficient heat transfer appliances. As an example, the 

comparison of applying nanofluids in a heat exchanger and its 

base fluid expresses an augmentation in heat transfer 

coefficient with the help of using nanofluids [21-23]. 

Recently, the utilizations of various types of nanomaterials 

like SiO2, Al2O3, carbon nanotubes, Cu, and CuO are 

considerably prevailing in order to develop nanofluids for the 

thermal property enhancements. In this way among these 

nanomaterials, carbon nanotubes with exceptional and 

particular properties can be enumerated as the most auspicious 

nanomaterials for their excellent thermal properties [8, 9]. 

Favorable and remarkable thermal properties belong to CNTs 

with high aspect ratio due to their exceptional performance 

along the length direction. In addition, CNTs have ultra-high 

thermal conductivity (2000–6000W/mK) which is tens times 
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higher than their oxide and hundreds times higher than 

metallic nanomaterial utilized in nanofluids [24–26]. 

In the past few years, a great number of efforts have been 

carried out with the aim of applying nanofluids in different 

thermal engineering issues [27–35]. Adding nanoparticles 

with higher thermal conductivity to the base fluid increases the 

thermal properties and higher thermal conductivity can be 

achieved. Different metallic and non-metallic nanoparticles 

with the average sizes of 100 nm are added to the base fluid. 

Additionally, more compact designs and energy-efficient 

systems can be achieved in heat exchangers and refrigeration 

systems, respectively, with the help of using nanofluids. Other 

thermal applications in which nanofluids are utilized can be 

enumerated as photovoltaic thermal and thermal storage 

systems. The thermal conductivity of the nanofluids is affected 

by many factors like particle type, shape, and size, the thermal 

conductivity of nanoparticles and the base fluid. Among 

various particles, the higher thermal conductivity belongs to 

carbon nanotubes (CNT) [36-37]. 

A research was conducted by Ding et al in which they 

researched on CNT nanofluids and the increase of convection 

heat transfer. They did the experiment under constant heat 

flow and laminar regime circumstances and they found that 

using this nanofluid with the concentration of 0.5 % wt CNT 

brought about 350 % enhancement in heat transfer rate at 

Re=800 [38]. Wang et al by utilizing 0.05 % and 0.24 % 

volume concentration of CNT/water nanofluid saw that 70 % 

and 190 % heat exchange improvement was acquired in a flat 

cylinder when Re number was equal to 120. A few 

investigations on finless heat exchangers were carried out in 

order to find Nusselt number of shell side [39]. A few 

relationships were derived by Alimoradi et al. [40], to estimate 

the Nusselt number of these sort of heat exchanger. According 

to the literature review, by using size and volume fraction of 

solid phase in addition to temperature accurate predictive 

models are achievable for a single nanofluid [41-45]. In this 

article, the data were gathered from different studies [46-50] 

to achieve a comprehensive model applicable in various 

operating conditions. The present study estimates the amount 

of the thermal conductivity of a CNT/Water system by 

utilizing three methods of soft computing techniques like 

MLP-ANN, ANFIS, LSSVM, and RBF-ANN. 

 

 

2. THEORY 

 

2.1 Multilayer perceptron artificial neural network (MLP-

ANN) 

 

A type of feedforward artificial neural network constructed 

from nodes, layers and neurons in each layer is named 

multilayer perceptron (MLP). Every single node and its 

connection are called an artificial neuron. The signals sent 

through connections among nodes can be processed with the 

help of these neurons. In overall, the determination of the 

output contributed to each artificial neuron is obtained with the 

help of the neuron by using a non-linear summation of inputs 

of neuron [51]. Additionally, MLP can be differentiated from 

a linear perceptron with the help of its multiple layers and non-

linear activation.  

Equations (1) to (3) show some of the most used functions 

in ANNs: 

 

𝑓(𝑥) = 𝑥                                              (1) 

𝑓(𝑥) =
1

1+𝑒−𝑥                                  (2) 

 

𝒇(𝒙) =
𝒆𝒙−𝒆−𝒙

𝒆𝒙+𝒆−𝒙                                      (3) 

 

Presented equations are representing a linear function, a 

sigmoid function and a hyperbolic tangent function, 

respectively.  

A supervised learning method named backpropagation is 

used by MLP in order to train. The errors’ backward 

propagation is the succinct format of backpropagation due to 

the backward distribution of a computed error at the output 

throughout the network’s layers [52]. It is widely utilized for 

training deep neural networks. 

ANN method uses a back propagation algorithm to develop 

a learning ability. This method takes the benefit of nonlinear 

functions as its activation function. MLP-ANN can be 

categorized as a feed-forward neural network [53-57]. 

 

2.2 Adaptive neuro-fuzzy inference system (ANFIS) 

 

Even though the fuzzy logic introduced by Zadeh [58] has 

been used for describing complex systems and been favorably 

applied in different problems, lack of systematic proceeding to 

design a fuzzy controller can be mentioned as its major 

problem. On the other hand, learning from the environment 

(input–output pairs) and self-organizing its structure can be 

stated as a capability of a neural network [59]. 

ANFIS strategy utilizes the Takagi-Sugeno structure in 

order to explain the nonlinear reliance of inputted data and the 

results [60]. A schematic of the ANFIS structure is presented 

in Figure 1. Suppose a system with two inputs of X1 and X2, 

in an ordinary ANFIS structure, if-then principles will be 

defined as: 

 

f1=m1X1+n1X2+r1                          (4) 

 

f2=m2X1+n2X2+r2                (5) 

 

f3=m3X1+n3X2+r3                (6) 

 

f4=m4X1+n4X2+r4      (7) 

 

where f demonstrate outputs and for i=1 and i=2, Ai and Bi 

represent logic sets for inputted X1 and X2 parameters and is 

supposed that in for each output (f) logic sets be equal to the 

inputted data. The whole nodes in the first layer are considered 

to be adaptive. The layer 1’s outputs are the inputs’ fuzzy 

membership grade, which are provided with: 

 

𝑶𝒊
𝟏 = 𝝁𝑨𝒊

 (𝒙)                  𝒊 = 𝟏, 𝟐                    (8) 

 

𝑶𝒊
𝟏 = 𝝁𝑩𝒊−𝟐

 (𝒚)               𝒊 = 𝟑, 𝟒                    (9) 

 

where O is representing the output. In present work the 

Gaussian membership was used. An optimization procedure is 

necessary to optimize the parameters of membership functions. 

The nodes in the second layer are considered to be fixed. Their 

label M indicates which they operate as a simple multiplier. 

The following equation (10) expresses the outputs of this layer: 

 

𝑶𝒊
𝟐 = 𝒘𝒊 = 𝜷𝑨𝒊(𝒙)𝜷𝑩𝒊(𝒚)   i=1,2              (10) 
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𝑂𝑖
2 is the so-called firing strengths of the rules. The nodes 

in the third layer are also considered to be fixed. Their label N 

indicates which they perform a normalization role to the firing 

strengths from the previous layer: 

 

                     i=1, 2                          (11)
 

 

The nodes in the fourth layer are considered to be adaptive. 

The normalized firing strength and a first order polynomial’s 

product (for a first order Sugeno model) is the output of each 

node in this layer. Therefore, this layer’s outputs can be 

provided by: 

 

               (12) 

 

The only one single fixed node exists in the fifth layer 

labeled with S. All incoming signals’ summation is performed 

with the help of this node. Thus, the following equation 

describes the model’s overall output: 

 

                             (13)
 

 

 
 

Figure 1. Typical structure of the ANFIS 

 

2.3 Least squares support vector machine (LSSVM) 

 

In function estimation and pattern recognition problems, 

support vector machines are so favorable. It is a supervised 

learning system which is used to classify and analyze data. The 

SVM method uses a function which is given by:  

 

𝑓 (𝑥) =  𝑤𝑇(𝑥)φ(𝑥) + 𝑏        (14) 

 

b and ω and are a constant coefficient and weight vector 

which are obtained from the data of training step. Below 

equations are used to determine their optimal value [61]. 

 

       (15) 

 

where “Min” is the cost function. With the end goal of 

calculating the most precise results, minimization of the cost 

function is needed. Equation 16 represents the constraints 

which are applied to the cost function: 

 

  (16) 

 

where nth input is denoted by xn and its output is expressed by 

yn. ε is the maximum acceptable error for the function, and 𝜉𝑛 

and 𝜉𝑛
∗  show the margin of acceptable error. 

Suykenes and Vandewalle did a modification on the SVM 

method in order to reach the result more easily than by an SVM 

method. They developed the least squares SVM model [62]. In 

their method the cost function was changed as follows:   

 

                 (17) 

 

And applied constraint was defined as: 

 

𝑦𝑛 = 𝑤𝑇𝜑(𝑥𝑛) + 𝑏 + 𝑒𝑛      (18) 

 

where en is the error variable and γ is the tuning function. 

Additionally, The Lagrangian function for this method can be 

defined as: 

 

 (19) 

 

where An is Lagrangian coefficients. Eventually, the results of 

the optimization procedures are determined by: 

 

(20) 
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The radial basis function (RBF) must be determined to 

complete the tuning procedure. The current study utilizes the 

following equation as RB function: 

 

    (21) 

 

In this equation tuning of σ2 and in addition to that, 

optimization of γ are needed. In this point with the aim of 

optimization, the differences between real and estimated 

values must be minimized:  

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝐻𝑖

𝑒𝑥𝑝.
− 𝐻𝑖

𝑐𝑎𝑙.)
2𝑁

𝑖=1                   (22) 

 

where in this formulation N represents the number of values? 

Figure 2 depicts a schematic structure of the PSO-LSSVM 

approach. 

 

 
 

Figure 2. A schematic illustration of PSO-LSSVM 

 

2.4 RBF-ANN 

 

The configuration of an RBF-ANN system is similar to the 

structure of MLP-ANN, but a complex RBF function is 

applied to the hidden layers. The result of RBF-ANN is: 

 

𝑦𝑖(𝑥) = ∑ 𝑤𝑘𝑖∅(‖𝑥 − 𝑐𝑘‖)ℎ
𝑘=1                               (23) 

 

where x is an input pattern, yi(x) is i th output, wki is the weight 

of connection from the kth interior element to the ith element 

of outcome layer. ‖   ‖ represents the Euclidean norm and ck is 

the archetype of the middle of the kth interior element. 

Conventionally, the RBF (φ) is picked out as the Gaussian 

operator which is presented below. 

 

ℎ(𝑥) = expa(−
(𝑥−𝑐)2

𝑟2 )               (24) 

 

The radius (r) and center (c) are parameters of Gaussian 

RBF. Away from the center, it decreases uniformly. Vice versa, 

a multi quadric RBF increases uniformly with distance from 

the center (see Eq. 25). 

 

ℎ(𝑥) =
√𝒓𝟐+(𝒙−𝒄)𝟐

𝒓
                             (25) 

3. METHODOLOGY 

 

3.1 Pre-analysis phase 

 

In the current paper, three analysis and model building 

procedures were applied for estimating the nanofluid’s thermal 

conductivity. Figure 3 shows the bubble curve of thermal 

conductivity versus the mass fraction and temperature in 

which the size of each bubble is dependent on the size of 

particles. Resulted data form experimental section of the study 

at the first step are used to train the models. Just about 25 % 

of data are used to test the models. A normalization process 

according to the equation 26 was done to normalize data: 

 

𝐷𝑘 = 2
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
− 1                        (26) 

 

where x is the value of the nth parameter. The absolute value 

of 𝐷𝑘 will be less than unity. The other values are fed to the 

neural network systems and the models are built to predict the 

thermal conductivity as the main output.  

 

 
 

Figure 3. Bubble curves of suggested experimental data set 

 

3.2 Outlier detection 

 

On the condition of implementing statistical approaches or 

training machine learning algorithms, outliers or anomalies 

could be mentioned as a severe concern. They are generally 

made due to the measurements’ errors or excellent systems 

conditions, as the result cannot illustrate the prevailing 

functioning of the underlying system. Certainly, applying an 

outlier removal phase before proceeding with additional 

investigation can be stated as the exceptional practice. The 

leverage value procedure applied as an outlier detection 

method in this study. The Hat and the residual values of any 

input were calculated. The following formulation applied to 

calculate the Hat matrix: 
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𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇                      (27) 

 

X is a matrix of size N×P, where N represents the total 

number of data points and P denotes the number of input 

parameters. T and -l are transposed and inverse operators, 

respectively. The standardized residual value of each data 

point calculated and employed to plot standardized values 

versus hat values, called Williams plot. A warning leverage 

value is also defined using the following expression: 

 

𝐻∗ =
3(𝑃+1)

𝑁
                  (28) 

 

A rectangular area restricted to R=±3 and 0≤H≤H* is 

considered as the feasible region. 

 

3.3 Model development and verification methodology 

 

In order develop corresponding models pre-mentioned 

methods (MLP-ANN, LSSVM and ANFIS) were used and the 

models accuracy were examined Using statistical approaches. 

Three main evaluating parameters were used to calculate the 

error and estimate the accuracy of the results. Equations 29 to 

33 are some of these methods that are used in the present study. 

All of them are used to evaluate the proposed models by 

measuring the differences between real and modelled data. 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑋𝑗

𝑟𝑒𝑎𝑙. − 𝑋𝑗
𝑚𝑜𝑑.)

2𝑁
𝑗=1                (29) 

 

𝐴𝑅𝐷(%) =
100

𝑁
∑

|𝑋𝑗
𝑟𝑒𝑎𝑙.−𝑋𝑗

𝑚𝑜𝑑.|

𝑋𝑗
𝑚𝑜𝑑.

𝑁
𝑗=1                 (30) 

 

𝑆𝑇𝐷 = (
1

𝑁−1
∑ (𝑋𝑗

𝑟𝑒𝑎𝑙. − 𝑋𝑗
𝑚𝑜𝑑.)

2𝑁
𝑗=1 )

0.5

             (31) 

 

𝑹𝑴𝑺𝑬 = (
𝟏

𝑵
∑ (𝑿𝒋

𝒓𝒆𝒂𝒍. − 𝑿𝒋
𝒎𝒐𝒅.)

𝟐𝑵
𝒋=𝟏 )

𝟎.𝟓

           (32) 

 

                (33)

 

 

where X is a property, N shows the total data points, real. is a 

notation for experimental values and mod. is showing the 

modelled values. �̅�𝒓𝒆𝒂𝒍  is the mean value of experimentally 

calculate thermal conductivity. 

 

 

4. RESULTS AND DISCUSSION 

 

The proposed MLP-ANN, RBF-ANN, ANFIS, and LSSVM 

strategies were associated with common optimization 

algorithms like Levenberg Marquardt and particle swarm 

optimization (PSO). The detailed information of MLP-ANN 

including the number of neurons in hidden and output layers 

are listed in Table 1. 

In this table the amount of weight parameter for different 

inputs (temperature, mass fraction and diameter of CNTs) and 

also the bias numbers for the interior and the output layers is 

presented. In association with ANFIS strategy, the particle 

swarm optimization (PSO) method is utilized to determine 

optimum parameters. Training results of membership 

functions for different parameters and various clusters are 

demonstrated in Figure 4, where the plot of degree of 

membership versus average diameter of particles, mass 

fraction and temperature are illustrated. Detailed information 

about the proposed models such as used membership and 

activation functions, number of clusters, interior and exterior 

layers and the optimization methods are reported in Table 2. 

Two kind of tuning parameters (γ and σ2) were used in the 

LSSVM machine. The optimized values for γ and σ2 are 

57857.45 and 0.25784, respectively.  

 

 
 

 
 

 
 

Figure 4. The trained membership functions for different 

input parameters 
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Table 1. Optimal weight and bias values for the MLP-ANN method 

 
 Hidden layer Output layer 

 Weight Bias Weight Bias 

Neuron Temperature Mass fraction Diameter b1 K b2 

1 0.394618 4.957805 4.940364 -6.02809 -1.80586 48.5559 

2 -7.68724 -7.61198 -2.54537 9.047065 0.152903  

3 -0.86057 80.07941 -52.7706 28.08972 1.193638  

4 0.008949 0.055302 3.624039 -5.54485 51.70556  

5 -1.54882 -18.373 11.9616 -5.14446 -0.72265  

6 120.1593 -119.734 106.5318 26.70881 0.205017  

 

Table 2. Evaluating the performance of proposed models using statistical analysis 

 

Model Data set R2 MRE (%) MSE RMSE STD 

ANFIS Train 0.981 3.841 0.004 0.063 0.051 

Test 0.979 3.493 0.003 0.053 0.044 

Total 0.979 3.756 0.004 0.053 0.049 

MLP-ANN Train 0.989 2.289 0.002 0.043 0.036 

Test 0.997 2.613 0.001 0.035 0.027 

Total 0.990 2.369 0.002 0.035 0.034 

RBF-ANN Train 0.9974 1.0160 0.0003 0.0182 0.0154 

Test 0.9992 0.9355 0.0003 0.0162 0.0135 

Total 0.9982 0.9962 0.0003 0.0162 0.0149 

LSSVM Train 1.000 0.367 0.000 0.009 0.008 

Test 0.999 0.320 0.000 0.012 0.012 

Total 0.999 0.356 0.000 0.012 0.009 

4.1 Model validation results 

 

We applied both graphical and statistical approaches to 

evaluate the models’ performances regarding the estimation of 

the thermal conductivity. Figure 5 illustrates the MSE error for 

the MLP-ANN method. By increasing the number of iterations, 

MSE error was decreased to a final value of 2×10-3. Figure 6 

demonstrate the performance of the LM algorithm to MSE for 

RBF-ANN approach. RBF-approach shows a more rapid 

decreasing in MSE than the MLP-ANN and finally gave a zero 

error after iteration number 30. Figure 7 shows information 

about the performance of ANFIS method evaluated by PSO 

approach. Figure 8 plots the resulted thermal conductivities 

obtained from proposed models. In this figure the results of 

prediction are plotted verses data index and shows the training 

and testing procedure results. From this figure in can be seen 

that the LSSVM and RBF-ANN had a better prediction 

capability and led to more precise results. The coefficient of 

determination (R2) indicates how close predicted values are to 

experimental values. This parameter usually lies between 0 

and 1.0. Closer values to unity indicate more accurate 

predictions. Near unity coefficients of determination for 

proposed models, represent their capability in predicting the 

thermal conductivity. As is demonstrate in different parts of 

Figure 9, the regression diagram of experimental and 

estimated values shows an R2 coefficient of 0.9806 and 0.9786 

for training and testing sections of the ANFIS method in part 

a, and in the b, c and d parts of the diagram, coefficients of 

determination were 0.9893& 0.9967 and 0.9974 & 0.9992 and 

0.9996& 0.9989 for training and testing part of MLP-ANN, 

RBF-ANN and LSSVM models. The majority of data points 

for both training and testing datasets are concentrated around 

the Y=X line which implies the accurate predictions of the 

proposed models. In addition to the conclusion derived from 

figure 8, figure 9 also verifies the accurateness and the 

prediction capability of LSSVM and the RBF-ANN 

approaches. Different parts of Figure 10 illustrate the 

percentage of the relative deviation for developed models. It 

was observed that the LSSVM model had the best accuracy 

than the others and its relative deviation does not exceed from 

5 percent band. Relative deviation of RBF-ANN also lies 

between +6 and -8 percent. 

 
 

Figure 5. The performance of the LM algorithm according to 

MSE in different iterations for the MLP-ANN 

 

 
 

Figure 6. The performance of the LM algorithm according to 

MSE in different iterations for the RBF-ANN 
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Detection of suspicious dataset for different models were 

done based on pre-mentioned strategy of outlier detection and 

results are illustrated in Figure 11. According to these analyses, 

based on various plots of standard residual versus Hat values, 

in ANFIS, MLP-ANN, RBF-ANN and LSSVM approaches 6, 

3, 4 and 9 data were considered as outliers. 

 

 
 

Figure 7. ANFIS performance during training stage using 

PSO approach 

 

 
 

 

 
 

 
 

Figure 8. Estimated thermal conductivity values compared to 

experimental data using different models; (a) ANFIS, (b) 

MLP-ANN, (c) RBF-ANN, (d) LSSVM 
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Figure 9. Regression diagram to predict thermal conductivity 

using different models in the training and testing steps; (a) 

ANFIS, (b) MLP-ANN, (c) RBF-ANN, (d) LSSVM 

 

 
 

 
 

 
 

 
 

Figure 10. Relative deviation (%) of testing and training data 

using different models; (a) ANFIS, (b) MLP-ANN, (c) RBF-

ANN, (d) LSSVM 
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Figure 11. Detection of suspicious dataset for different 

models; (a) ANFIS, (b) MLP-ANN, (c) RBF-ANN, (d) 

LSSVM 

 

4.2. Sensitivity analysis 

 

A bunch of Sensitivity analyses were carried out to find out 

how each input parameter affects the target variable, namely 

the thermal conductivity. Quantitative effect of each parameter 

calculated using a relevancy factor defined by the following 

expression: 

 

               (34)

 

 

where N, Xk,i, Yi, X̅k, Y̅ are the total number of data points, 

ith input value of the kth parameter, ith output value, average 

value of the kth input parameter, and mean value of the output 

parameter, respectively. The relevancy factor lays between -1 

and +1 which higher absolute values represent the higher 

effect of the corresponding parameter. Positive effect reflects 

the target variable’s increment as a specific input parameter 

increases, while the negative effect reflects the target 

variable’s decrement as a specific input parameter increases. 

From three main input parameters, temperature and the mass 

fraction showed direct impact on the results; meanwhile, the 

average diameter showed reverse reflect on the thermal 

conductivity which means any increase in average diameter of 

CNT nanoparticles leads to reduction of thermal conductivity. 

Figure 12 illustrates the sensitivity analysis results, which 

temperature had the highest positive effects with relevancy 

factor of 0.67. 

 

 
 

Figure 12. Sensitivity analysis to determine the effect of 

inputs on thermal conductivity 

 

 

5. CONCLUSION 

 

Enhancement of heat transfer rates with the lowest 

utilization of energy attracted a lot of attention during recent 

decades. Carbon nanotubes (CNTs) are considered as 

promising nanomaterials and have been in the center of 

attention. In the present study, four soft computing based 

approaches including MLP-ANN, ANFIS and LSSVM and 

RBF-ANN were used in order to model the amount of thermal 

conductivity of CNT-Water nanofluid system. Among MLP-

ANN, ANFIS and LSSVM and RBF-ANN methods, it was 

found that the LSSVM produced better results with the lowest 

deviation factor and reflected the most accurate responses. The 
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regression diagram of experimental and estimated values 

shows the R2 coefficient of 0.9806 and 0.9789 for training and 

testing sections of the ANFIS method in part a, and also in the 

b, c and d parts of the diagram, coefficients of determination 

were 0.9893& 0.9967 and 0.9974 & 0.9992 and 0.9996& 

0.9989 for training and testing part of MLP-ANN, RBF-ANN 

and LSSVM models. Furthermore, LSSVM model had the 

best accuracy than the others and its relative deviation does not 

exceed from 5 percent band. Relative deviation of RBF-ANN 

also lies between +6 and -8 percent. Results from sensitivity 

analysis revealed that temperature and the mass fraction had 

direct impact on the results; meanwhile, the average diameter 

showed reverse reflect on the thermal conductivity which 

means any increase in average diameter of CNT nanoparticles 

leads to reduction of thermal conductivity. The Presented 

study can be worthy to reach a better understanding of 

nanofluids and their applications in heat transfer phenomenon 

especially when a high level of performance is needed. 

 

 

REFERENCES 

 

[1] Ahmadi, M.H., Tatar, A., Seifaddini, P., Ghazvini, M., 

Ghasempour, R., Sheremet, M.A. (2018). Thermal 

conductivity and dynamic viscosity modeling of Fe2O3 

/water nanofluid by applying various connectionist 

approaches. Numer Heat Transf Part A, 4: 1301-22. 

https://doi.org/10.1080/10407782.2018.1505092 

[2] Esfe, M.H., Rostamian, H., Esfandeh, S., Afrand, M. 

(2018). Modeling and prediction of rheological behavior 

of Al2O3-MWCNT/5W50 hybrid nano-lubricant by 

artificial neural network using experimental data. 

Physica A: Statistical Mechanics and its Applications, 

510: 625-634. 

https://doi.org/10.1016/J.PHYSA.2018.06.041 

[3] Esfe, M.H., Kamyab, M.H., Afrand, M., Amiri, M.K. 

(2018). Using artificial neural network for investigating 

of concurrent effects of multi-walled carbon nanotubes 

and alumina nanoparticles on the viscosity of 10W-40 

engine oil. Physica A: Statistical Mechanics and its 

Applications, 510: 610-624. 

https://doi.org/10.1016/J.PHYSA.2018.06.029 

[4] Motevasel, M., Nazar, A.R.S., Jamialahmadi, M. (2017). 

Experimental investigation of turbulent flow convection 

heat transfer of MgO/water nanofluid at low 

concentrations–Prediction of aggregation effect of 

nanoparticles. International Journal of Heat and 

Technology, 35(4): 755-764. 

https://doi.org/10.18280/ijht.350409 

[5] Nasrin, R., Alim, M. (2015). Thermal performance of 

nanofluid filled solar flat plate collector. Int J Heat 

Technol, 33: 17-24. https://doi.org/10.18280/ijht.330203 

[6] Rahman, M.M., Aziz, A. (2012). Heat transfer in water 

based nanofluids (TiO2-H2O, Al2O3-H2O and Cu-H2O) 

over a stretching cylinder. International Journal of Heat 

and Technology, 30: 43-49. 

https://doi.org/10.18280/ijht.300205 

[7] Mukherjee, S., Mishra, P.C. (2018). Theoretical 

modeling and optimization of microchannel heat sink 

cooling with TiO2-water and ZnO-water nanofluids. 

International Journal of Heat and Technology, 36: 165-

172. 

[8] Ajeel, R.K., Salim, W.S.W. (2018). Numerical 

investigations of flow and heat transfer enhancement in 

a semicircle zigzag corrugated channel using nanofluids. 

International Journal of Heat and Technology, 36: 1292-

1303. 

[9] Esfe, M.H., Nadooshan, A.A., Arshi, A., Alirezaie, A. 

(2018). Convective heat transfer and pressure drop of 

aqua based TiO2 nanofluids at different diameters of 

nanoparticles: Data analysis and modeling with artificial 

neural network. Phys E Low-Dimensional Syst 

Nanostructures, 97: 155-161. 

https://doi.org/10.1016/J.PHYSE.2017.10.002 

[10] Esfe, M.H., Tatar, A., Ahangar, M.R.H., Rostamian, H. 

(2018). A comparison of performance of several artificial 

intelligence methods for predicting the dynamic viscosity 

of TiO2/SAE 50 nano-lubricant. Phys E Low-

Dimensional Syst Nanostructures, 96: 85-93. 

https://doi.org/10.1016/J.PHYSE.2017.08.019 

[11] Esfe, M.H., Rostamian, H., Sarlak, M.R., Rejvani, M., 

Alirezaie, A. (2017). Rheological behavior 

characteristics of TiO2-MWCNT/10w40 hybrid nano-oil 

affected by temperature, concentration and shear rate: An 

experimental study and a neural network simulating. 

Phys E Low-Dimensional Syst Nanostructures, 94: 231-

40. https://doi.org/10.1016/J.PHYSE.2017.07.012 

[12] Afrand, M., Esfe, M.H., Abedini, E., Teimouri, H. (2017). 

Predicting the effects of magnesium oxide nanoparticles 

and temperature on the thermal conductivity of water 

using artificial neural network and experimental data. 

Phys E Low-Dimensional Syst Nanostructures, 87: 242-

247. https://doi.org/10.1016/J.PHYSE.2016.10.020 

[13] Karimipour, A., Esfe, M.H., Safaei, M.R., Semiromi, 

D.T., Jafari, S., Kazi, S.N. (2014). Mixed convection of 

copper–water nanofluid in a shallow inclined lid driven 

cavity using the lattice Boltzmann method. Phys A Stat 

Mech Its Appl, 402: 150-168. 

https://doi.org/10.1016/J.PHYSA.2014.01.057 

[14] Bahrami, M., Akbari, M., Bagherzadeh, S.A., 

Karimipour, A., Afrand, M., Goodarzi, M. (2019). 

Develop 24 dissimilar ANNs by suitable architectures 

&amp; training algorithms via sensitivity analysis to 

better statistical presentation: Measure MSEs between 

targets &amp; ANN for Fe–CuO/Eg–Water nanofluid. 

Phys A Stat Mech Its Appl, 519: 159-168. 

https://doi.org/10.1016/J.PHYSA.2018.12.031 

[15] Akhilesh, M., Santarao, K., Babu, M.V.S. (2018). 

Thermal conductivity of CNT-wated nanofluids: a 

review. Mechanics and Mechanical Engineering, 22(1): 

207-220.  

[16] Vafaei, M., Afrand, M., Sina, N., Kalbasi, R., Sourani, F., 

Teimouri, H. (2017). Evaluation of thermal conductivity 

of MgO-MWCNTs/EG hybrid nanofluids based on 

experimental data by selecting optimal artificial neural 

networks. Phys E Low-Dimensional Syst Nanostructures, 

85: 90-96. 

https://doi.org/10.1016/J.PHYSE.2016.08.020 

[17] Nafchi, P.M., Karimipour, A., Afrand, M. (2019). The 

evaluation on a new non-Newtonian hybrid mixture 

composed of TiO2/ZnO/EG to present a statistical 

approach of power law for its rheological and thermal 

properties. Phys A Stat Mech Its Appl, 516: 1-18. 

https://doi.org/10.1016/J.PHYSA.2018.10.015 

[18] Godson, L., Raja, B., Lal, D.M., Wongwises, S. (2010). 

Enhancement of heat transfer using nanofluids—An 

overview. Renew Sustain Energy Rev, 14: 629-641. 

https://doi.org/10.1016/J.RSER.2009.10.004 

80



 

[19] Hussein, A.M., Sharma, K.V., Bakar, R.A., Kadirgama, 

K. (2014). A review of forced convection heat transfer 

enhancement and hydrodynamic characteristics of a 

nanofluid. Renew Sustain Energy Rev, 29: 734-743. 

https://doi.org/10.1016/J.RSER.2013.08.014 

[20] Ghanbarpour, M., Haghigi, E.B., Khodabandeh, R. 

(2014). Thermal properties and rheological behavior of 

water based Al2O3 nanofluid as a heat transfer fluid. Exp 

Therm Fluid Sci, 53: 227-235. 

https://doi.org/10.1016/J.EXPTHERMFLUSCI.2013.12

.013 

[21] Huminic, G., Huminic, A. (2012). Application of 

nanofluids in heat exchangers: A review. Renew Sustain 

Energy Rev, 16: 5625-5638. 

https://doi.org/10.1016/J.RSER.2012.05.023 

[22] Elias, M.M., Shahrul, I.M., Mahbubul, I.M., Saidur, R., 

Rahim, N.A. (2014). Effect of different nanoparticle 

shapes on shell and tube heat exchanger using different 

baffle angles and operated with nanofluid. Int J Heat 

Mass Transf, 70: 289-297. 

https://doi.org/10.1016/J.IJHEATMASSTRANSFER.20

13.11.018 

[23] Anoop, K., Cox, J., Sadr, R. (2013). Thermal evaluation 

of nanofluids in heat exchangers. Int Commun Heat Mass 

Transf, 49: 5-9. 

https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2

013.10.002 

[24] Murshed, S.M.S., De Castro, C.A.N. (2014). Superior 

thermal features of carbon nanotubes-based nanofluids–

A review. Renew Sustain Energy Rev, 37: 155-167. 

https://doi.org/10.1016/j.rser.2014.05.017 

[25] Salaway, R.N., Zhigilei, L.V. (2014). Molecular 

dynamics simulations of thermal conductivity of carbon 

nanotubes: Resolving the effects of computational 

parameters. International Journal of Heat and Mass 

Transfer, 70: 954-964. 

https://doi.org/10.1016/J.IJHEATMASSTRANSFER.20

13.11.065 

[26] Chen, L., Xie, H. (2010). Surfactant-free nanofluids 

containing double- and single-walled carbon nanotubes 

functionalized by a wet-mechanochemical reaction. 

Thermochim Acta, 497: 67-71. 

https://doi.org/10.1016/J.TCA.2009.08.009 

[27] Sarkar, S., Ganguly, S. (2015). Fully developed thermal 

transport in combined pressure and electroosmotically 

driven flow of nanofluid in a microchannel under the 

effect of a magnetic field. Microfluid Nanofluidics, 18: 

623-636. https://doi.org/10.1007/s10404-014-1461-4. 

[28] Oztop, H.F., Abu-Nada, E. (2008). Numerical study of 

natural convection in partially heated rectangular 

enclosures filled with nanofluids. Int J Heat Fluid Flow, 

29: 1326-1336. 

https://doi.org/10.1016/J.IJHEATFLUIDFLOW.2008.0

4.009 

[29] Selimefendigil, F., Öztop, H.F. (2015). Numerical 

investigation and reduced order model of mixed 

convection at a backward facing step with a rotating 

cylinder subjected to nanofluid. Comput Fluids, 109: 27-

37. https://doi.org/10.1016/J.COMPFLUID.2014.12.007 

[30] Sheikholeslami, M., Gorji-Bandpy, M., Ganji, D.D. 

(2013). Numerical investigation of MHD effects on 

Al2O3–water nanofluid flow and heat transfer in a semi-

annulus enclosure using LBM. Energy, 60: 501-510. 

https://doi.org/10.1016/J.ENERGY.2013.07.070 

[31] Hamad, M.A.A., Pop, I., Md Ismail, A.I. (2011). 

Magnetic field effects on free convection flow of a 

nanofluid past a vertical semi-infinite flat plate. 

Nonlinear Anal Real World Appl, 12: 1338-1346. 

https://doi.org/10.1016/J.NONRWA.2010.09.014 

[32] Selimefendigil, F., Öztop, H.F. (2014). Numerical study 

of MHD mixed convection in a nanofluid filled lid driven 

square enclosure with a rotating cylinder. Int J Heat Mass 

Transf, 78: 741-754. 

https://doi.org/10.1016/J.IJHEATMASSTRANSFER.20

14.07.031 

[33] Sarkar, S., Ganguly, S., Biswas, G. (2014). Buoyancy 

driven convection of nanofluids in an infinitely long 

channel under the effect of a magnetic field. Int J Heat 

Mass Transf, 2014: 71: 328-340. 

https://doi.org/10.1016/J.IJHEATMASSTRANSFER.20

13.12.033 

[34] Selimefendigil, F., Öztop, H.F. (2014). Pulsating 

nanofluids jet impingement cooling of a heated 

horizontal surface. Int J Heat Mass Transf, 69: 54-65. 

https://doi.org/10.1016/J.IJHEATMASSTRANSFER.20

13.10.010 

[35] Piratheepan, M., Anderson, T.N. (2014). An 

experimental investigation of turbulent forced 

convection heat transfer by a multi-walled carbon-

nanotube nanofluid. Int Commun Heat Mass Transf, 57: 

286-290. 

https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2

014.08.010 

[36] Kamali, R., Binesh, A.R. (2010). Numerical 

investigation of heat transfer enhancement using carbon 

nanotube-based non-Newtonian nanofluids. Int Commun 

Heat Mass Transf, 37: 1153-1157. 

https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2

010.06.001 

[37] Rahman, M.M., Mojumder, S., Saha, S., Mekhilef, S., 

Saidur, R. (2014). Effect of solid volume fraction and tilt 

angle in a quarter circular solar thermal collectors filled 

with CNT–water nanofluid. Int Commun Heat Mass 

Transf, 57: 79-90. 

https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2

014.07.005 

[38] Ding, Y., Alias, H., Wen, D., Williams, R.A. (2006). 

Heat transfer of aqueous suspensions of carbon 

nanotubes (CNT nanofluids). Int J Heat Mass Transf, 49: 

240-250. 

https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009. 

[39] Wang, J., Zhu, J., Zhang, X., Chen, Y. (2013). Heat 

transfer and pressure drop of nanofluids containing 

carbon nanotubes in laminar flows. Exp Therm Fluid Sci, 

44: 716-721. 

https://doi.org/10.1016/J.EXPTHERMFLUSCI.2012.09

.013 

[40] Alimoradi, A., Veysi, F. (2016). Prediction of heat 

transfer coefficients of shell and coiled tube heat 

exchangers using numerical method and experimental 

validation. Int J Therm Sci, 107: 196-208. 

https://doi.org/10.1016/J.IJTHERMALSCI.2016.04.010. 

[41] Ahmadi, M.H., Hajizadeh, F., Rahimzadeh, M.J., Shafii, 

M.B., Chamkha, A.J. (2018). Application GMDH 

artificial neural network for modeling of Al2O3 / water 

and Al2O3 / Ethylene glycol thermal conductivity 2018. 

[42] Ahmadi, M.H., Nazari, M.A., Ghasempour, R., Madah, 

H., Shafii, M.B., Ahmadi, M.A. (2018). Thermal 

81



 

conductivity ratio prediction of Al2O3/water nanofluid 

by applying connectionist methods. Colloids Surfaces a 

Physicochem. Eng. Asp, 541: 154-164. 

https://doi.org/10.1016/J.COLSURFA.2018.01.030 

[43] Ahmadi, M.H., Ahmadi, M.A., Nazari, M.A., Mahian, O., 

Ghasempour, R. (2019). A proposed model to predict 

thermal conductivity ratio of Al2O3/EG nanofluid by 

applying least squares support vector machine (LSSVM) 

and genetic algorithm as a connectionist approach. J 

Therm Anal Calorim, 135: 271-281. 

https://doi.org/10.1007/s10973-018-7035-z 

[44] Baghban, A., Jalali, A., Shafiee, M., Ahmadi, M.H., 

Chau, K. (2019). Developing an ANFIS-based swarm 

concept model for estimating the relative viscosity of 

nanofluids. Eng. Appl. Comput. Fluid Mech, 13: 26-39. 

https://doi.org/10.1080/19942060.2018.1542345 

[45] Ahmadi, M.A., Ahmadi, M.H., Alavi, M.F., 

Nazemzadegan, M.R., Ghasempour, R., Shamshirband, 

S. (2018). Determination of thermal conductivity ratio of 

CuO/ethylene glycol nanofluid by connectionist 

approach. J Taiwan Inst Chem Eng., 91: 383-395. 

https://doi.org/10.1016/J.JTICE.2018.06.003 

[46] Xing, M., Yu, J., Wang, R. (2015). Experimental study 

on the thermal conductivity enhancement of water based 

nanofluids using different types of carbon nanotubes. Int 

J Heat Mass Transf., 88: 609-616. 

https://doi.org/10.1016/J.IJHEATMASSTRANSFER.20

15.05.005 

[47] Farbod, M., Ahangarpour, A., Etemad, S.G. (2015). 

Stability and thermal conductivity of water-based carbon 

nanotube nanofluids. Particuology, 22: 59-65. 

https://doi.org/10.1016/J.PARTIC.2014.07.005 

[48] Sabiha, M.A., Mostafizur, R.M., Saidur, R., Mekhilef, S. 

(2016). Experimental investigation on thermo physical 

properties of single walled carbon nanotube nanofluids. 

Int J Heat Mass Transf., 93: 862-871. 

https://doi.org/10.1016/J.IJHEATMASSTRANSFER.20

15.10.071 

[49] Glory, J., Bonetti, M., Helezen, M., Mayne-L’Hermite, 

M., Reynaud, C. (2008). Thermal and electrical 

conductivities of water-based nanofluids prepared with 

long multiwalled carbon nanotubes. J Appl Phys, 103: 

94309. https://doi.org/10.1063/1.2908229 

[50] Walvekar, R., Faris, I.A., Khalid, M. (2012). Thermal 

conductivity of carbon nanotube nanofluid-Experimental 

and theoretical study. Heat Transf. Res, 41: 145-163. 

https://doi.org/10.1002/htj.20405 

[51] Baghban, A., Kahani, M., Nazari, M.A., Ahmadi, M.H., 

Yan, W.M. (2019). Sensitivity analysis and application 

of machine learning methods to predict the heat transfer 

performance of CNT/water nanofluid flows through coils. 

Int J Heat Mass Transf., 128: 825-835. 

https://doi.org/10.1016/J.IJHEATMASSTRANSFER.20

18.09.041 

[52] Nielsen, M.A. (2015). Neural Networks and Deep 

Learning 2015. 

[53] Baghban, A., Kardani, M.N., Habibzadeh, S. (2017). 

Prediction viscosity of ionic liquids using a hybrid 

LSSVM and group contribution method. J Mol Liq., 236: 

452-464. 

https://doi.org/10.1016/J.MOLLIQ.2017.04.019 

[54] Baghban, A., Sasanipour, J., Haratipour, P., Alizad, M., 

Vafaee Ayouri, M. (2017). ANFIS modeling of 

rhamnolipid breakthrough curves on activated carbon. 

Chem Eng. Res Des, 126: 67-75. 

https://doi.org/10.1016/J.CHERD.2017.08.007 

[55] Mohanraj, M., Jayaraj, S., Muraleedharan, C. (2015). 

Applications of artificial neural networks for thermal 

analysis of heat exchangers – A review. Int J Therm. Sci, 

90: 150-172. 

https://doi.org/10.1016/J.IJTHERMALSCI.2014.11.030 

[56] Saeedan, M., Solaimany Nazar, A.R., Abbasi, Y., Karimi, 

R. (2016). CFD Investigation and neutral network 

modeling of heat transfer and pressure drop of nanofluids 

in double pipe helically baffled heat exchanger with a 3-

D fined tube. Appl Therm. Eng., 100: 721-729. 

https://doi.org/10.1016/J.APPLTHERMALENG.2016.0

1.125 

[57] Maddah, H., Ghazvini, M., Ahmadi, M.H. (2019). 

Predicting the efficiency of CuO/water nanofluid in heat 

pipe heat exchanger using neural network. Int Commun. 

Heat Mass Transf., 104: 33-40. 

https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2

019.02.002 

[58] Zadeh, L.A. (1965). Fuzzy sets. Inf Control, 8: 338-353. 

https://doi.org/10.1016/S0019-9958(65)90241-X 

[59] Chang, F.J., Chang, Y.T. (2006). Adaptive neuro-fuzzy 

inference system for prediction of water level in reservoir. 

Adv Water Resour, 29: 1-10. 

https://doi.org/10.1016/J.ADVWATRES.2005.04.015 

[60] Sugeno, M., Kang, G. (1988). Structure identification of 

fuzzy model. Fuzzy Sets Syst, 28: 15-33. 

https://doi.org/10.1016/0165-0114(88)90113-3 

[61] Baghban, A., Ahmadi, M.A., Pouladi, B., Amanna, B. 

(2015). Phase equilibrium modeling of semi-clathrate 

hydrates of seven commonly gases in the presence of 

TBAB ionic liquid promoter based on a low parameter 

connectionist technique. J Supercrit Fluids, 101: 184-192. 

https://doi.org/10.1016/J.SUPFLU.2015.03.004 

[62] Suykens, J.A.K., Vandewalle, J. (1999). Least squares 

support vector machine classifiers. Neural Process Lett, 

9: 293-300. https://doi.org/10.1023/A:1018628609742 

 

 

NOMENCLATURE 

 

B dimensionless heat source length 

CP specific heat, J. kg-1. K-1 

g 

k 

gravitational acceleration, m.s-2 

thermal conductivity, W.m-1. K-1 

Nu local Nusselt number along the heat source 

 

Greek symbols 

 

 

 thermal diffusivity, m2. s-1 

 thermal expansion coefficient, K-1 

 solid volume fraction 

Ɵ dimensionless temperature 

µ dynamic viscosity, kg. m-1.s-1 

 

Subscripts 

 

 

p nanoparticle 

f fluid (pure water) 

nf nanofluid 
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