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The quick growth of the Internet of Things (IoT) has produced severe security issues 

because of sensor node diversity, scale of deployment, and power limitations. Intrusion 

detection systems (IDS) are often not flexible and can consume significant energy or 

computing resources, and are usually not suited for real-time protection in a resource-

limited environment. The paper proposes a deep reinforcement learning-based energy-

aware intrusion prevention system (DRL-EAIPS). The proposed system is a novel 

framework to integrate a lightweight quantized convolutional neural network (CNN) 

module for fast and energy-efficient anomaly detection at the node level, with a deep Q-

network (DQN)-based agent that learns to make intrusion prevention decisions that are 

dynamically decided to learn the whole IoT environment. Thus, the system can extract 

useful features with minimal computation overhead, but also improves intrusion 

prevention in an adaptive and energy-aware way using reinforcement learning (RL), 

which stresses both detection accuracy and energy usage. The reward function is designed 

with a recognized multi-objective approach, aiming to optimize detection rates while 

minimizing energy usage, which is crucial to deploy in resource-constrained 

environments such as IoT systems practically. The extensive simulations done with 

MATLAB and NS-3 using datasets of NSL-KDD, BoT-IoT, and UNSW-NB15 

demonstrated that the DRL-EAIPS outperformed existing methodologies with a good 

accuracy of 97.21%, a low false positive rate (FPR) of 2.65%, and low energy 

consumption. Additionally, the routable model expands the network lifetime and lowers 

latency and transmission expenditure compared to existing DQN-based, CNN-GRU, and 

trust-aware IDS models. The results demonstrated the scalability, resilience, and real-time 

utility of the DRL-EAIPS in current IoT paradigms. 
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1. INTRODUCTION

The Internet of Things (IoT) keeps growing fast, and 

billions of smart sensors and devices now connect worldwide. 

Experts think we'll have about 75 billion IoT devices by 2025 

[1]. This quick growth makes it easier for cybercriminals to 

attack. IoT devices often work alone in tough spots, so they 

can fall victim to many kinds of attacks. Some common threats 

are denial-of-service (DoS) attacks, spoofing, jamming, 

eavesdropping, data manipulation, and man-in-the-middle 

tricks [2]. Also, IoT systems mix many different devices that 

don't have much CPU, memory, or energy [3]. Their small 

batteries and weak processing power mean that normal 

security fixes made for strong servers just don't work well [4]. 

Making sure IoT security is strong is a big challenge. The 

usual intrusion detection systems (IDS)/intrusion prevention 

systems (IPS) systems that use rules or signatures have 

problems with too many false alarms and can't adapt to fit the 

always-changing big IoT world. People have suggested using 

machine learning (ML) and deep learning (DL) a lot to make 

IoT security better by learning attack patterns on their own [5]. 

IDS with ML added can spot weird traffic without needing 

exact signatures. New studies show that smart IDS using 

ML/DL can find unknown threats and work in real-time, 

which IoT networks need [6]. But ML/DL models can need a 

lot of computer power. In IoT devices with limited resources, 

the energy cost to run complex models is something to think 

about [7]. In fact, today's ML/DL often needs a lot of CPU 
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power and drains batteries fast [8]. 

Reinforcement learning (RL) has become a promising way 

to tackle these problems. By interacting with their 

surroundings, RL agents can make security decisions one after 

another (like when and how to check traffic) and adjust to 

shifting attack patterns [9]. Deep RL (which combines neural 

networks with RL) can deal with complex network states and 

figure out intricate defense strategies. Earlier studies show that 

RL-based IDS can adapt to new threats and work within 

resource limits [10]. For example, previous researchers 

demonstrated that a deep deterministic policy gradient 

(DDPG) agent can trade off intrusion detection accuracy 

against devices' energy use, achieving fairly effective intrusion 

detection but with minimal battery energy consumption. 

However, while deep RL helps with detection, IoT security 

requires consideration of energy-aware intrusion prevention 

[11]. In other words, the device's security defenses must detect 

IoT intrusions accurately, while optimizing the devices' energy 

consumption to increase the lifetime of the network [12]. 

In spite of the steady advancements in the ML and DL-

based IDS, there remain various important limitations that 

make the actual implementation of IDSs in IOT environments 

unfeasible. First, the vast majority of ML/DL modeling 

frameworks require extensive computational resources and 

continuous training on high-volume data and datasets, which 

is often not possible to meet in the low-power contexts of IoT 

devices. This results in a trade-off between either 

compromising the accuracy by using lightweight models or 

significantly increasing the energy consumption to enable 

complex models. Second, most traditional IDS approaches are 

primarily based on the accuracy of detection and either do not 

have much focus on energy consumption, which impacts the 

device lifetime, and therefore impacts the network longevity 

in the IOT domain. Third, most traditional approaches to 

intrusion detection do not dynamically adapt to the changing 

network environment and threat landscape, so they remain 

static and could lead to more false positives or slower 

responses. Finally, current intrusion detection and intrusion 

prevention systems differentiate between both and therefore 

miss out on the decision-making process on how to optimize 

security efficiency at the same time. 

In this paper, we propose a deep RL framework for energy-

aware intrusion prevention for IoT devices. We model the 

intrusion prevention problem as a Markov decision process 

(MDP), where the agent can take actions that will include a 

security check or countermeasure, and the reward function that 

penalizes energy use, packet passing delay, in addition to 

missed intrusion detections. Our mathematical model, 

described below, explicitly defines uses energy for monitoring 

and communication, allowing the RL agent to learn policies 

that optimize the security-energy tradeoff.  

The contributions of this paper are threefold:  

(1) A unique deep RL-based IDS designed specifically for 

energy-constrained IoT.  

(2) A full mathematical formulation of our system states, 

actions, and reward showing energy level and network 

metrics.  

(3) A simulation-based evaluation showing significant 

savings in energy consumption, network lifetime, and delay in 

comparison to benchmarks. 

Using RL allows our method to compare to the state-of-the-

art, not only to reduce energy-based security overhead on IoT 

nodes dynamically while still offering a robust threat 

prevention defense technique, but also fills a gap in the 

academic research space. 

 

 

2. RELATED WORK 

 

In recent years, there has been substantial research on IoT 

security that makes use of AI techniques. Many have pursued 

DL-based IDS (in an earlier stage). For example, Gyamfi and 

Jurcut [13] have approached the class imbalance in IoT IDS 

with a class-imbalance, focusing on focal loss in certain types 

of DL models in their training, and have shown promising and 

significant gains in precision and F1-score. Many other DL 

models, like convolutional neural networks (CNNs), LSTMs, 

and auto encoders, have been developed for anomaly detection 

in IoT traffic. And the results have reported high detection 

accuracies across lots of data sets. Transfer-learning was also 

explored by Lazzarini et al. [14], have proposed an IDS 

framework designed for 5G IoT based on transfer-learning 

principles to reuse knowledge in different domains, and also 

improve the detection of zero-day attacks. Traditional ML 

methods like SVM, random forest, and ensemble are still 

applied in IoT IDS, but deep and transfer models have fared 

better at wrapping up the complexity of attack patterns. 

One of the ideas of Green AI is to decrease the 

computational costs related to ML models. For example, 

Deshmukh and Ravulakollu [15] have proposed an 

EnergyCIDN, which is essentially a collaborative IDS in 

which the authors integrated an energy-aware trust model to 

reduce the verification cost required to validate IoT nodes. 

Research has found considerable battery life savings with the 

addition of energy considerations: Tharewal et al. [16] have 

reported up to 35% energy savings when combining energy-

aware design with RL, and a different project reported that 

they gained 21% more energy efficiency in IDS by 

dynamically scaling model complexity. Similarly, enhancing 

energy efficiency as a significant area of research, such as 

towards efficient deep models like model pruning, 

quantization, and knowledge distillation, are all learning 

aspects of how to reduce energy without impact on accuracy. 

Research into energy-efficient models has primarily focused 

on static ML models while changing the characteristics of the 

IDS in IoT environments. 

RL has the prospect of adaptivity and is being looked at as 

a means of providing adaptive and flexible IDS. Given the 

adaptive nature of security in IoT contexts, RL agents will 

simply know when and where to implement security measures. 

For example, Taşcı [17] have developed a deep Q-network 

(DQN)-based IDS named DQN-HIDS for social IoT. The 

proposed guild of learning for identifying intrusions relies in 

part on LSTM-DQN that incrementally improves the 

correctness of labelled intrusions, with fewer samples needed. 

In the results, the DQN-HIDS shows a high level of 

classification accuracy with fewer training samples than 

purely supervised approaches. Recent studies in wireless 

networks and IoT-based networks have researched many 

possible approaches to assist with intrusion detection and to 

improve resilience to cyberattacks. AGR et al. [18] have 

addressed one component of wireless networks, the distributed 

denial-of-service (DDoS) flooding attack. They proposed a 

new mechanism that uses dynamic path identifiers for 

resilience by limiting the probability of exploitation of a single 

route, which led to improved detection and reduced false 

positives. While their strategy effectively countered flooding-

based DDoS, it has limited scalability when extended to IoT 
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on a large scale. The dynamic paths they had to manage 

created overload, and their mechanism was insufficient to 

counter multi-vector or application-layer attacks.  

Moving towards DL solutions, Yaras and Dener [19] have 

developed an IoT-based IDS with a hybrid DL model 

consisting of a combination of convolutional and recurrent 

neural networks. This system captured both spatial and 

temporal features of network traffic, improving accuracy 

against many different types of IoT attacks. However, the 

model's computational cost and complexity in training made it 

less appropriate for the resource-limited design of IoT nodes. 

Additionally, it relied on labeled datasets, which limited real-

time adaptation to zero-day threats without huge retraining. 

To tackle the data imbalance problem in intrusion detection, 

Dener et al. [20] have developed the STLGBM-DDS 

framework which was a combination of synthetic minority 

oversampling technique (SMOTE) and light gradient boosting 

machine (LGBM), which markedly improved detection of the 

minority attack classes and were scalable to big data solutions, 

but its incorporating of set preprocessing and balancing step 

caused latency, which impacted the real-time application of 

the model. Similar to this, using pre-engineered features 

reduced its usability in responding to new and evolving attack 

types.  

Sunitha and Chandrika [21] have examined similar 

undergraduate issues that persist in wireless sensor networks 

(WSNs), such as reliable routing, fault tolerance, and anomaly 

detection. They proposed that data mining and soft computing 

techniques could optimize sensor operation to improve 

anomaly detection. This is informative based on their 

consideration of computational intelligence as a management 

strategy for WSNs, but the study was mostly conceptual and 

lacked experimental support. While the study did represent 

new thinking when developed, many of the challenges needed 

for WSNs related to the continuous evolution of IoT 

technologies, and concerns related to an active attack surface 

and data-centric issues were not encompassed in their 

framework. 

Kaur et al. [22] have proposed P2ADF, a privacy-preserving 

attack detection framework for fog-IoT environments. The 

authors proposed using lightweight cryptographic 

mechanisms, along with distributed anomaly detection, to 

maintain data confidentiality and security in IoT ecosystems. 

P2ADF provided a trade-off between privacy and detection, 

but it did add computational overheads that increased energy 

consumption; this was problematic for battery-constrained IoT 

devices. Moreover, while the system put security mechanisms 

in place during transmission, limited mechanisms existed for 

protecting data-at-rest at fog nodes. 

This study progresses the field by proposing a novel DRL-

EAIPS framework, consisting of an optimized, quantized 

CNN scoring module for node-level anomaly detection tightly 

integrated with a DQN agent learning energy-aware 

prevention policies. This structure reduces both computational 

overhead and energy consumption while producing reliable 

and accurate detection. In addition, modeling the intrusion 

prevention problem as an MDP with a multi-objective reward 

function addressing both detection rate and energy efficiency 

provides an adaptive and real-time intrusion prevention 

process to the energy-constrained IoT networks. Our extensive 

simulation results demonstrate a longer network lifetime, 

lower latency, and minimal false positives compared to the 

benchmark models, and address key limitations in existing 

methods. 

3. PROPOSED MODEL 

 
3.1 System model and assumptions 

 

The system model depicts a multi-hop WSN of NNN 

distributed sensor nodes deployed to support data sensing and 

communication in an IoT context. Each node was initialized 

with a fixed energy 𝐸𝑖(0)  amount and acts under limited 

power resources. These nodes send sensed data to a central 

base station or sink node via selected intermediate nodes while 

utilizing a multi-hop infrastructure. At any given time, 

communication paths can be established, changed, or 

terminated based on link quality and viability of the path 

through the present energy level and cost. Figure 1 uses arrows 

to show data forwarding paths that change over time based on 

node failures, detection of an attack, etc., or the power level 

depleted from the nodes. 

 

 
 

Figure 1. System model and network assumptions 

 

Accordingly, this non-threatened environment will be at the 

mercy of stochastic and unpredictable attempts to gain access 

and compromise the overall reliability of the network. These 

include malicious packet injections, DoS attempts, or routing 

failures, and all could be directed towards either specific or 

arbitrary nodes. Attack surfaces will be treated as external 

entities that are attempting to compromise the reliability and 

security of the network. An attack that involves a targeted 

malicious node can leave itself open to packet injections, 

hijacked routes, or deterioration of energy usage, before 

critical quality-of-service and network lifetimes are affected. 

Therefore, a centralized DRL agent is to be a part of the overall 

architecture. 

The DRL agent has both the option of periodically polling 

the state of the network continuously through state information 

from sensor nodes and/or edge gateways, and an event-driven 

operation that allows it to only respond when lightweight 

anomaly detectors i.e., CNN modules, are raising alerts. The 

state information will consist of state variables such as Et
i , 

residual energy; Dt
i , delay; Tt

i, total cost of transmission; and 

At
i , the anomaly score. The DRL agent takes in these state 

parameters to derive an action that attempts to balance the 

principles of energy efficiency with threat mitigation. 

The DRL agent can derive an action that results in one of 

these three basic types of actions: Inspect, Isolate, and Ignore. 

The Inspect action will initiate some additional packet-level or 

behavioral analysis and will incur some additional sensing or 

processing overhead, but will produce greater detection rates. 

The Isolate action is used when a suspicious node needs to be 
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temporarily blocked or quarantined, mostly to help contain the 

spread of malicious activity, but also to use up energy on 

rerouting and updates. The agent is also going to want to 

conserve energy, especially when protecting critical paths, 

when it selects the Ignore action, especially if the threat level 

is low or the energy cost for counteraction might exceed 

damage levels. Action types also include energy cost and level 

of impact on communication quality, both of which are 

explicitly represented in the DRL reward function. 

This model operates under a time-slotted paradigm where 

decisions, detections, and data transmissions are made at 

discrete time frames. All actions, detections, and transmissions 

are made within those time slots, while accommodating the 

level of coordination of the actions to ensure operations are 

scheduled efficiently. It is important to note that all nodes 

should have the capability to assess their local conditions and 

transmit those state-relevant metrics without excessive 

overhead. As the DRL agent will be creating a model of what 

actions have the most impact on security and energy 

sustainability over time, it needs only to adapt its model due to 

changes in the attack profiles and constraints associated with 

the available resources. 

This system model creates a malleable, yet representative 

model that highlights the primary complexities of IoT 

operation with respect to security: energy awareness in 

decision-making, time-sensitive intrusion prevention, and 

scalable learning. With this model, an RL-based DRL-EAIPS 

framework is described to enable optimization of the trade-off 

between the effectiveness of protection and the preservation of 

available resources, in constrained IoT networks. 

 

3.2 DRL-EAIPS 

 

In the contemporary IoT environment, energy-constrained 

sensor nodes face increased vulnerabilities stemming from 

more complex cyber-attacks such as DDoS attacks, spoofing, 

and wormhole attacks. Traditional IDSs are generally static, 

non-adaptive, and energy-draining. Our proposed framework 

is a DRL-EAIPS. This IDS performs real-time detection and 

adaptive executions based on environmental feedback to make 

decisions. It contains a feature extraction layer that can 

implement the learning on low-resource IoT nodes, a DQN 

agent that learns and updates optimal defense policies from 

historical and real-time stored information, a limited energy 

monitor and threat profiler that keeps track of health within the 

network layer, and an object that executes response action. The 

distributed architecture of DRL-EAIPS enables adaptive, 

intelligent, and autonomous intrusion response while limiting 

energy usage in IoT systems. Moreover, energy usage 

generates accurate QoS. 

The proposed DRL-EAIPS consists of four primary 

elements: the observation space for state representation, the 

action space, the reward function, and the policy learning 

component. Each of these elements is essential to the system's 

ability to control intrusion response effectiveness in a way that 

optimizes both energy efficiency and its QoS properties with 

respect to the dynamically changing IoT environment in which 

the DRL-EAIPS operates. 

 

3.2.1 State representation 

The observation space, i.e., the system's state, uniquely 

represents the contextual features in an IoT environment at 

each action moment. The system must observe and cumulate 

the residual energy of all the IoT nodes, the observed latency 

as delay due to the actual data transmission, the determined 

cost of transmission given factors such as hop count, 

bandwidth available, and channel condition, and then at the 

edge, the decision-making agent will compute an anomaly 

score using the lightweight intrusion detection threat detection 

mechanism. Addressing all of these metrics collectively 

provides a physical view of the health of the network's 

operations and threat exposure. The observation space is a 

multi-dimensional state vector that continuously updates and 

represents the data transmitted.  

This continuous multi-dimensional state vector will allow 

the decision-making agent to feed information into its 

situational understanding to learn useful actions based on 

previous action states taken. Each current state at a selected 

time step t's states the operational/physical condition of each 

respective node. The state vector contains decision-making 

agent information regarding four main metrics, are shown in 

Eq. (1). These observations form the state vector st, which is 

used as input for the policy network. 

 

St
i = {Et

i, Dt
i , Tt

i, At
i } (1) 

 

where, Et
i represents the node i’s remaining energy, Dt

i  is an 

average packet delay, Tt
i is the cost to transmit one unit of data 

based on hop count and channel quality, At
i  specifies an 

anomaly score representing evidence of malicious behavior 

from local IDS. Each observation has its place in the state 

vector st, which is used as input to the policy network. This 

vector is sent to a local edge gateway or fog node, which 

merges data from all nodes into a global state as shown in Eq. 

(2):  

 

St = {st
1, st

2, … , st
N} (2) 

 

This state represents the health and security context of the 

network overall, at time t. The Anomaly Score At
i  uses a 

lightweight CNN at the node level. The model has been trained 

offline and packaged in quantized form for edge inference as 

localized classification. It examined packet characteristics, 

including header patterns, frequency of bytes, and timing 

anomalies. The convolutional filter passes along the input, 

extracting local spatial/temporal correlations as shown in Eq. 

(3): 

zi,j
1 = (xt

i ∗  W1)
i,j

+  b1  (3) 

 

where, * is the convolution operation, W1 is the filter/kernel 

of size m × k, b1 is the bias term, zi,j
1  is in the image convolved 

at location (i,j). In general, the convolution captures patterns 

such as port scanning, repeated packet sizes, and multiple 

combinations of anomalous header flags are shown in Eq. (4): 

 

ai,j
1 = ReLU(zi,j

1 ) = max(0, zi,j
1 )  (4) 

 

This provides the model with non-linearity to learn more 

complicated patterns. The dimensionality reduction and 

retention of significant features are displayed in Eq. (5):  

 

pi,j
1 =  max

(u,v)ϵpool
au,v

1   (5) 

 

This step gives a form of translation invariance, resulting in 

a smaller memory footprint. We flatten the pooled output or 

states and perform a dot product with a matrix of weights (W2) 
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as shown in Eq. (6): 

 

Z2 = W2 ⋅ flatten(p1) + b2 (6) 

 

where, W2 ∈ Rd×f  represents the weights for the fully 

connected layer, d is the number of hidden units, and f is the 

total number of features in the flattened input. The final output 

is a scalar anomaly score At
i ∈ [0,1] as shown in Eq. (7): 

 

At
i = σ(z2) =

1

1+e−z2  (7) 

 

The output will be a sigmoid function, which is structured 

so that At
i ≈ 0  for normal or benign traffic and At

i ≈ 1 for 

highly suspicious or malicious traffic. The convolution unveils 

patterns such as port scanning, repeat packet sizes, and 

impossible header flag combinations. Where, At
i : feature 

vector of traffic at the node I, and θ is the quantized CNN 

parameters. The anomaly score is normalized in [0,1], so that 

if the score is above 0.5, this indicates suspicious behavior. 

This preliminary filtering can be executed on upstream devices 

and saves potential collision overhead that invokes DRL, 

which is usually a heavy portion of the algorithm. The full 

state St is provided as the input to a unique DQN that estimates 

Q-values for all possible actions as shown in Eq. (8): 

 

Q(St, a;  θ) → Er (8) 

 

The agent selects which action at to take using a ε-greedy 

policy as shown in Eq. (9): 

 

at = {
rand(a)          with probability ε

argmaxaQ(St, a;  θ) with probability(1 −  ε)
 (9) 

 

3.2.2 Action space 

The action space is the set of possible actions that the system 

can take if there is a detection of a threat or anomaly. The 

traditional way of decision-making by binary values 

(allow/deny) is replaced by a fine-grained set of actions: 

Allow, Drop, Quarantine, and Reroute. The Allow action is 

taken to forward the packet normally when the traffic is 

deemed safe. The Drop action is taken to drop the packet(s) 

that have been scored as magic/suspicious. The Quarantine 

action is taken to temporarily isolate a node's communication 

so that it can be observed before a major action occurs, 

allowing the neutrality of the traffic and preventing an analyst 

from acting immediately due to a false positive. The Reroute 

action is taken to divert traffic to a different communications 

path if the node or path has potentially been compromised. 

These fine-grained action outputs enable the system to make 

decisions and reduce the effect of threats on the network flow. 

The actions are chosen based on long-term expected reward, 

based on the energy and security constraints as shown in Eq. 

(10):  

 

A = {Allow, Drop, Quarantine, Reroute} (10) 

 

The action space is the set of possible responses the IDS 

agent can employ: Allow means forward packets as normal 

(benign traffic), Dropped means discard packets that have 

been flagged as malicious (low threat score), Quarantine 

means temporarily isolate a node to observe its behavior, and 

Reroute means temporarily divert traffic around suspicious 

and congested paths. 

3.2.3 Reward function 

A reward function in RL is a critical component. His reward 

function gives feedback in the form of rewards based on the 

agent's actions to facilitate learning. The proposed structural 

framework fosters a multi-objective reward function to reward 

security actions, but still accounts for efficient resource usage 

in choosing a security preference. Some positive feedback is 

provided for a correct threat mitigation measured by some 

score of security, and I decide to penalize actions with a lot of 

energy usage, high latency, and cost of transmission. I penalize 

for excessive consumption in a weighted manner so that an 

agent will also try to learn to minimize extreme energy 

consumption and also excessive rerouting. Instead, I want the 

agent to develop policies to keep the network functioning in 

the long term for addressing the security threat. To the agent, 

functions give gradients of feedback as a reward in the form of 

the following Eq. (11): 

 

rt = λ1St −  λ2Et − λ3Dt − λ4Ct (11) 

 

where, St  is the threat mitigation, or score, which gives a 

higher reward for correctly blocking attacks,Et is the energy 

consumed to take action at, Dt is the delay created by taking 

an action, for example, rerouting can create delay, Ct is the 

communication cost based on forwarding, isolation, or route 

discovery. The reward function encourages security actions 

but still considers arriving at the most resource-conservative 

option. For the coefficients λ1  to λ4 , they can be tuned to 

account for specific network behaviors or essentially how 

important user priorities play into the reward, for example, if 

a network was security-critical, λ1  would be significantly 

higher. 

 

3.2.4 Policy learning 

The final element is the policy learning mechanism, which 

is a DQN that learns the optimal mapping from states to 

actions. The DQN approximates the action-value function 

Q(s, a), which is the expected cumulative reward received for 

taking action a in state s. The DQN learns by iterative training 

with experience replay and updating its predictions with the 

target network. The learning mechanism works on the basis of 

experience from actions taken. As the agent receives feedback 

from its actions, its internal model is updated in a way that 

maximizes the anticipated reward from its next decisions. 

Experience from the past, in the form of cumulative total 

rewards, is retained and allows the DRL-EAIPS agent to 

dynamically adapt to changing network-state conditions and 

unknown attack patterns in real time without additional re-

configuration by the user. The DRL agent updates its Q-values 

with experience replay and the Bellman Eq. (12): 

 

Q(St, at) ← Q(St, at) + α [rt +  γ max
a′

Q(st+1, a′) −

Q(St, at)]  
(12) 

 

where, α represents the learning rate, γ represents the discount 

factor for future rewards, and transitions (St, at, rt, St+1) are 

stored in a replay buffer and sampled randomly to break the 

correlation between the samples. A target network Q′  is 

updated every K  steps to make the learning process more 

stable. The work learns an optimal mapping of states to actions 

through a DQN as shown in Eq. (13): 
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Q(st, at;  θ) ≈ E [rt + γ max
a′

Q(st+1, a′; θ′)] (13) 

 

where, Q represents an estimated cumulative reward of state-

action pairs, θ represents the DNN weights, γ represents the 

discount factor of future rewards, and θ′ represents the target 

network weights for stable learning. The DQN was used with 

experience replay for storage, and sample past interactions and 

target network separation made learning unstable. The thing is 

to maximize the cumulative reward as shown in Eq. (14): 

 

max
π

E[∑ γTrt
T
t=0 ]  (14) 

 

Subject to, Energy constraints is Ei ≥ EminoS constraints is 

Di  ≤ Dmax  and Correct intrusion mitigation is St ≥ δ. This 

format helps ensure the agent learns a sustainable defensive 

policy in a stochastic, partially observable IoT environment. 

 

 

4. RESULTS AND DISCUSSION 

 

To provide a thorough evaluation of the proposed DRL-

EAIPS, three benchmark datasets with varying IoT threat 

profiles were selected: NSL-KDD, UNSW-NB15, and BoT-

IoT. Each of these datasets provides a wide array of network 

traffic patterns and types of attack that ultimately allow for the 

ability to verify the generalizability of the model. 

• NSL-KDD: A cleaned version of the KDD Cup 1999 

dataset, NSL-KDD addresses some of the problems 

with KDD, such as redundant records and unbalanced 

classes. It has around 125,973 training records and 

22,544 testing records that are labeled into five classes: 

Normal, DoS, Probe, R2L, and U2R attacks. Each class 

contains a balanced number of samples, allowing for 

more reliable training and testing. 

• UNSW-NB15: This dataset was created under real, 

modern network traffic and contains 2.54 million 

records with nine different attack types, including 

Fuzzers, Analysis, Backdoors, DoS, Exploits, and 

Worms. The attacks and evasion attempts present in 

this dataset exhibit a considerable amount of variation 

and are designed to imitate new styles of attacks in a 

live and modern IoT network environment that contains 

evasive actions from highly sophisticated attackers.  

• BoT-IoT: The focus of this dataset is threats that are 

based on IoT, focusing on the botnet traffic with a lot 

of class imbalance. It contains records of attacks with 

records that capture more than 72 million records with 

multiple attack types like DDoS, DoS, reconnaissance, 

or keylogging. 
The dataset's imbalance was managed by utilizing data 

augmentation to create better data balance in conjunction with 

stratified sampling during training in order to reduce bias, 

which could affect performance, caused by strongly 

imbalanced majority classes. For a realistic and dynamic 

attack simulation with NS-3, the following attack scenarios 

were implemented, each encompassing the following forms of 

attacks: 

• DoS Attacks: There are a few commonly defined forms 

of `DoS`, such as flooding and jamming, in which an 

attacker will use a number of nodes to generate and 

send excessive amounts of traffic to overwhelm 

legitimate routing of necessary communications. In our 

simulations, we used passive and stochastic traffic 

generation methods to produce traffic bursts 

periodically over the attacker nodes, targeting key 

nodes of the network. 

• Malicious Packet Injection: The attacker node(s) 

attempt to inject malformed packets or spoofed packets 

into the network, victimizing the legitimate nodes to 

cause a route failure or gain access to a node's integrity. 

• Sinkhole Attacks: The attacker node(s) will advertise to 

the network that they are the best route for legitimate 

packets while dropping packets or otherwise 

manipulating legitimate packets. In our simulations, we 

used dynamic route manipulation through AODV to 

simulate attack nodes. 

• Replay Attacks: The attacker node(s) will serialize 

packets in order to replay the packets, in hopes of 

confusing a specific protocol stack or creating false 

positives, which would generate alarms on a wiretap 

node. 
The attacker nodes were selected randomly at the beginning 

of each simulation to give variability to the simulation. The 

attack nodes' behavior was controlled by probabilistic timers, 

each simulating that the attack nodes were capable of 

becoming active in order of regular and sporadic attack bursts. 

This method evaluated the survivability of the system against 

predictable and unpredictable threat events. The simulations 

ran on a testbed consisting of an Intel Core i7 processor, 16 

GB of RAM, and running with Ubuntu 22.04 LTS. The 

adopted simulated model was time-slotted, where each time 

slot represented one second of network activity, allowing the 

observers to effectively sync the detection, decision, and 

communication processes. The key metrics collected by the 

simulations were energy consumption, network lifetime, end-

to-end delay, and throughput. 

The simulated WSN consisted of randomly deployed nodes, 

either 50, 100, or 150 nodes, inside a 500m × 500m movement 

area. Each sensor node was initialized with 2.0 Joules of 

energy and was capable of communicating with a ZigBee 

compatible radio model based upon IEEE 802.15.4 within an 

80m range, i.e., AODV to enable multi-hop routing of 

communication. The communication among sensor nodes 

relied upon the routing model based on the AODV protocol 

that has been previously modified, e.g., route re-routing and 

isolating actions that were initiated by the DRL agent. The 

CBR traffic of the sensor nodes was one packet every second 

sent to another source node, with each packet a size of 64 

bytes. The simulation was capped at 5000 time-slots, or until 

20% of the nodes used up their energy. 

To simulate potential real-world threats, several attack 

models were implemented, such as DoS attacks, e.g., flooding 

and jamming, malicious packet injection, sinkhole routing 

replication, and replay attacks. Attackers were homed on 

random nodes that then utilized either periodic or stochastic 

behaviors. This variable characteristic permits the testing of 

the DRL-EAIPS under both periodic and random attack 

conditions to simulate a dynamic or unpredictable IoT 

condition. The foundation of the DRL-EAIPS is the DQN that 

takes the state of the environment as input and maps it to the 

appropriate defense action. The DQN consisted of two hidden 

layers of 128 and 64 neurons with ReLU activation. A replay 

buffer of size 10,000 was implemented to store past 

experiences, with training carried out in mini-batches of size 

64. The learning rate and discount factor γ were set to 0.001 

and 0.95, respectively. A target network is synchronized once 

every 100 training steps to stabilize learning. An epsilon-
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greedy exploration strategy was implemented, in which ε 

decayed from 1.0 to 0.05 shown in Table 1, to allow the trading 

off of exploration and exploitation. 

 

Table 1. Parameters and values 

 
Parameter Value / Description 

Number of Sensor Nodes 50-150  

Deployment Area 500 × 500 meters 

Communication Range 80 meters 

Initial Node Energy Ei(0) 2.0 Joules 

Packet Generation Rate 1 packet/sec (CBR) 

Packet Size 64 bytes 

Routing Protocol AODV  

MAC/PHY Protocol IEEE 802.15.4 / CSMA-CA 

Base Station Position Center of field 

 

Each IoT node comprised a lightweight CNN module that 

enabled real-time anomaly detection. Each IoT node received 

a 2D feature matrix (of 16 features such as TCP flags, byte 

entropy, inter-arrival times) per packet, which was trained 

offline using both the NSL-KDD and BoT-IoT datasets. The 

CNN architecture comprised of a Conv1D layer with 32 filters 

of size 3, followed by a ReLU activation, max-pooling layer, 

and a final dense fully connected layer with a sigmoid output 

producing At
i ∈  [0,1]  anomaly score. The model was 

quantized for edge device deployment using TensorFlow Lite 

to minimize memory use and processing overhead. The 

evaluation involved three benchmark datasets: NSL-KDD, 

UNSW-NB15, and BoT-IoT, each with different threat 

profiles: NSL-KDD for simple classification, UNSW-NB15 

for recent network attack vectors, and BoT-IoT for botnet 

traffic, which is significantly imbalanced. These datasets were 

employed within the traffic generation module of NS-3 to 

reflect realistic attack behaviour during runtime. The anomaly 

scores generated by the CNN were combined with energy, 

delays, and link costs to form the state inputs provided to the 

DRL agent.  

Table 2 and Figures 2 to 6 show a low-density deployment 

in the range of 50 nodes, typically seen in agricultural or 

remote environmental monitoring circumstances. The 

proposed DRL-EAIPS was shown to clearly perform better 

overall. The DRL-EAIPS achieved the best detection accuracy 

of 94.86% with the lowest false positive rate (FPR) of 3.42% 

over the other models. The total energy consumed per node 

was also lowest across all models at 0.129 J, resulting in an 

increased network lifetime of 3875 rounds, which is important 

when considering batteries for sensor deployments. The 

average communication delay was only 11.3 ms, and the 

transmission cost was also low due to selective inspections and 

low control overhead. 

Table 3 shows that the deployment of 100 nodes for DRL-

EAIPS exhibited superior performance. DRL-EAIPS reached 

the best accuracy rate at 96.87%, the lowest FPR at 2.91% and 

energy consumption per node of 0.143 J, leading to a 

prolonged network lifetime of 4321 rounds. The average delay 

was reduced to 12.4 ms, and the transmission costs were low 

as a result of the DRL agent's energy-aware conditions to 

either inspect or ignore packets based on its RL experience. 

Other models, such as CNN-GRU Hybrid IDS, could not 

achieve DRL-EAIPS's accuracy of 94.23% or delay of 14.2 

ms, but they consumed more energy of 0.178 J, thereby 

impacting lifetime compared to DRL-EAIPS. Even though 

DQN-Based IDS was adaptable, it did not include any energy-

constrained aspects in its reward model, so it suffered with 

respect to energy and lifetime performance. These results 

demonstrate that inclusion of both energy and anomaly context 

when applying RL leads to balanced and ecologically valid 

intrusion prevention behavior. 

 

Table 2. Comprehensive comparative analysis (50 nodes, 10,000 iterations) 

 

Model 
Accuracy 

(%) 

FPR 

(%) 

Energy Consumption 

(J) 

Network Lifetime 

(Rounds) 

Average Delay 

(ms) 

Proposed DRL-EAIPS 94.86 3.42 0.129 3875 11.3 

DQN-Based IDS 90.45 5.91 0.168 2950 13.9 

Energy-Aware SVM 85.62 6.98 0.183 2694 16.4 

CNN-GRU Hybrid IDS 92.17 4.45 0.159 3120 12.7 

TDRL IDS (Trust-

Based) 
89.88 6.11 0.172 2804 14.8 

 
 

Figure 2. Accuracy vs. number of nodes 

 
 

Figure 3. FPR vs. number of nodes 
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Figure 4. Energy consumption vs. number of nodes 

 

 
 

Figure 5. Network lifetime vs. number of nodes 

 

 
 

Figure 6. Average delay vs. number of nodes 

 

Table 3. Comprehensive comparative analysis (100 nodes, 10,000 iterations) 

 

Model 
Accuracy 

(%) 

FPR 

(%) 

Energy Consumption 

(J) 

Network Lifetime 

(Rounds) 

Average Delay 

(ms) 

Proposed DRL-EAIPS 96.87 2.91 0.143 4321 12.4 

DQN-Based IDS 92.41 5.13 0.189 3275 15.8 

Energy-Aware SVM 87.34 6.40 0.205 2980 18.6 

CNN-GRU Hybrid IDS 94.23 4.05 0.178 3510 14.2 

TDRL IDS (Trust-

Based) 
91.05 5.82 0.196 3102 16.3 

 

Table 4. Comprehensive comparative analysis (150 nodes, 10,000 iterations) 

 

Model 
Accuracy 

(%) 

FPR 

(%) 

Energy Consumption 

(J) 

Network Lifetime 

(Rounds) 

Average Delay 

(ms) 

Proposed DRL-EAIPS 97.21 2.65 0.149 4578 13.2 

DQN-Based IDS 93.87 4.75 0.193 3431 16.6 

Energy-Aware SVM 88.54 5.85 0.214 3194 19.4 

CNN-GRU Hybrid IDS 95.05 3.80 0.184 3690 15.0 

TDRL IDS (Trust-

Based) 
92.45 5.11 0.201 3312 17.2 

 

Misclassification Rate: The main misclassification 

problem we dealt with was FPR, which was benign traffic that 

was misidentified as malicious. Even though our average FPR 

was 2.65% to 3.42%, if we look closely, we can see that false 

positives generally occurred most frequently during times of 

network congestion, as well as in rapidly changing topologies, 
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especially in the denser (150-node) deployments. The high 

variability of legitimate traffic patterns and transient delays 

that were sometimes observable in the denser deployments 

may have resulted in false spikes in CNN anomaly scores. 

Likewise, amongst the missed detections (i.e., false negatives) 

were sophisticated, low-rate attacks, typically stealthy 

sinkhole and replay attacks, attacks that look similar to normal 

traffic patterns. Although DRL-EAIPS reduced missed 

detections from the baseline models, detecting these subtle 

threats will continue to be difficult due to the low-profile 

nature of these attacks. 

Table 4 shows the deployment with 150 nodes, where both 

the routing complexity is higher, and energy contention is also 

elevated; the DRL-EAIPS maintained its superiority and 

achieved an impressive accuracy of 97.21% (FPR 2.65%), 

topping all competing models. Notably, despite the network 

complexity, energy consumption per node was maintained at 

0.149 J, and a network lifetime of 4578 rounds was allowed. 

Delay was a tad higher at 13.2 ms, which is reasonable 

considering the heightened packet routing among nodes from 

the dense network, and the transmission cost was low due to 

the DRL agent's context-aware action selection. 

Comparatively, the CNN-GRU performed well at 95.05% 

accuracy but had a slightly higher delay of 15.0 ms, too, and 

used more energy of 0.184 J. Other models, Energy-Aware 

SVM and Trust-Based IDS, have even lower accuracy, higher 

false positives, and shorter lifetimes, indicating that DRL-

EAIPS is highly scalable and demonstrates robustness in 

complex, high-volume IoT infrastructures. 

The DRL-EAIPS approach performed better than in all 

three deployment changes, 50, 100, and 150 nodes in overall 

detection accuracy while consuming less energy, having lower 

delay, and increasing the lifetime of the network. These results 

indicate the benefits of combining deep RL with a lightweight 

CNN-based anomaly scoring model, along with an energy-

aware reward model to create a scalable, real-time, resource-

efficient IDS applicable to any IoT environment. The DRL-

EAIPS successfully adapts to different node densities and 

threat conditions when compared to both standard ML models 

and more recent hybrid IDS models. 

 

 

5. CONCLUSIONS 

 

This paper provides a framework for using a deep RL agent 

for intrusion prevention in IoT networks. The approach seeks 

to balance energy use and energy efficiency. The model 

considers the challenge of protecting IoT resources from 

unpredictable cyberattacks or threats. Here, we can view 

intrusion prevention as an energy-aware RL problem. Our 

approach blends the strengths of deep neural networks for 

feature extraction with the advantages of an RL agent that has 

the ability to plan security checks and actions to limit threats 

while minimizing energy use. We develop a model, configure 

state and action spaces, and define a reward function that can 

minimize the energy use while maximizing threat prevention. 

We test our approach in a simulated NS-3 IoT environment. 

Our findings highlight that the proposed deep RL intrusion 

prevention (DRL-IP) approach can maximize time to network 

failure, minimize energy use, and reduce communication 

delays compared to standard IDS/IPS approaches.   

DRL-IP demonstrates connections that reduce end-to-end 

delay, improve the accuracy of 97.21% and outperform a few 

existing mechanisms. These results suggest that deep RL could 

provide a flexible intrusion prevention approach that 

minimizes battery life for device connections while 

maintaining robust security. For future work, there are a 

number of distinct paths that can help to advance this work, 

including, but not limited to, Advancing Energy Models, 

Multi-layer IoT Networks and Heterogeneous Networks, 

Adversarial Robustness, and Real-world Deployment and 

Validation. 
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