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The quick growth of the Internet of Things (IoT) has produced severe security issues
because of sensor node diversity, scale of deployment, and power limitations. Intrusion
detection systems (IDS) are often not flexible and can consume significant energy or
computing resources, and are usually not suited for real-time protection in a resource-
limited environment. The paper proposes a deep reinforcement learning-based energy-
aware intrusion prevention system (DRL-EAIPS). The proposed system is a novel
framework to integrate a lightweight quantized convolutional neural network (CNN)
module for fast and energy-efficient anomaly detection at the node level, with a deep Q-
network (DQN)-based agent that learns to make intrusion prevention decisions that are
dynamically decided to learn the whole IoT environment. Thus, the system can extract
useful features with minimal computation overhead, but also improves intrusion
prevention in an adaptive and energy-aware way using reinforcement learning (RL),
which stresses both detection accuracy and energy usage. The reward function is designed
with a recognized multi-objective approach, aiming to optimize detection rates while
minimizing energy usage, which is crucial to deploy in resource-constrained
environments such as IoT systems practically. The extensive simulations done with
MATLAB and NS-3 using datasets of NSL-KDD, BoT-IoT, and UNSW-NBI5
demonstrated that the DRL-EAIPS outperformed existing methodologies with a good
accuracy of 97.21%, a low false positive rate (FPR) of 2.65%, and low energy
consumption. Additionally, the routable model expands the network lifetime and lowers
latency and transmission expenditure compared to existing DQN-based, CNN-GRU, and
trust-aware IDS models. The results demonstrated the scalability, resilience, and real-time
utility of the DRL-EAIPS in current loT paradigms.

1. INTRODUCTION

Making sure IoT security is strong is a big challenge. The
usual intrusion detection systems (IDS)/intrusion prevention

The Internet of Things (IoT) keeps growing fast, and
billions of smart sensors and devices now connect worldwide.
Experts think we'll have about 75 billion IoT devices by 2025
[1]. This quick growth makes it easier for cybercriminals to
attack. IoT devices often work alone in tough spots, so they
can fall victim to many kinds of attacks. Some common threats
are denial-of-service (DoS) attacks, spoofing, jamming,
eavesdropping, data manipulation, and man-in-the-middle
tricks [2]. Also, IoT systems mix many different devices that
don't have much CPU, memory, or energy [3]. Their small
batteries and weak processing power mean that normal
security fixes made for strong servers just don't work well [4].
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systems (IPS) systems that use rules or signatures have
problems with too many false alarms and can't adapt to fit the
always-changing big IoT world. People have suggested using
machine learning (ML) and deep learning (DL) a lot to make
IoT security better by learning attack patterns on their own [5].
IDS with ML added can spot weird traffic without needing
exact signatures. New studies show that smart IDS using
ML/DL can find unknown threats and work in real-time,
which IoT networks need [6]. But ML/DL models can need a
lot of computer power. In IoT devices with limited resources,
the energy cost to run complex models is something to think
about [7]. In fact, today's ML/DL often needs a lot of CPU
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power and drains batteries fast [8].

Reinforcement learning (RL) has become a promising way
to tackle these problems. By interacting with their
surroundings, RL agents can make security decisions one after
another (like when and how to check traffic) and adjust to
shifting attack patterns [9]. Deep RL (which combines neural
networks with RL) can deal with complex network states and
figure out intricate defense strategies. Earlier studies show that
RL-based IDS can adapt to new threats and work within
resource limits [10]. For example, previous researchers
demonstrated that a deep deterministic policy gradient
(DDPQG) agent can trade off intrusion detection accuracy
against devices' energy use, achieving fairly effective intrusion
detection but with minimal battery energy consumption.
However, while deep RL helps with detection, IoT security
requires consideration of energy-aware intrusion prevention
[11]. In other words, the device's security defenses must detect
[oT intrusions accurately, while optimizing the devices' energy
consumption to increase the lifetime of the network [12].

In spite of the steady advancements in the ML and DL-
based IDS, there remain various important limitations that
make the actual implementation of IDSs in IOT environments
unfeasible. First, the vast majority of ML/DL modeling
frameworks require extensive computational resources and
continuous training on high-volume data and datasets, which
is often not possible to meet in the low-power contexts of IoT
devices. This results in a trade-off between either
compromising the accuracy by using lightweight models or
significantly increasing the energy consumption to enable
complex models. Second, most traditional IDS approaches are
primarily based on the accuracy of detection and either do not
have much focus on energy consumption, which impacts the
device lifetime, and therefore impacts the network longevity
in the IOT domain. Third, most traditional approaches to
intrusion detection do not dynamically adapt to the changing
network environment and threat landscape, so they remain
static and could lead to more false positives or slower
responses. Finally, current intrusion detection and intrusion
prevention systems differentiate between both and therefore
miss out on the decision-making process on how to optimize
security efficiency at the same time.

In this paper, we propose a deep RL framework for energy-
aware intrusion prevention for IoT devices. We model the
intrusion prevention problem as a Markov decision process
(MDP), where the agent can take actions that will include a
security check or countermeasure, and the reward function that
penalizes energy use, packet passing delay, in addition to
missed intrusion detections. Our mathematical model,
described below, explicitly defines uses energy for monitoring
and communication, allowing the RL agent to learn policies
that optimize the security-energy tradeoff.

The contributions of this paper are threefold:

(1) A unique deep RL-based IDS designed specifically for
energy-constrained IoT.

(2) A full mathematical formulation of our system states,
actions, and reward showing energy level and network
metrics.

(3) A simulation-based evaluation showing significant
savings in energy consumption, network lifetime, and delay in
comparison to benchmarks.

Using RL allows our method to compare to the state-of-the-
art, not only to reduce energy-based security overhead on IoT
nodes dynamically while still offering a robust threat
prevention defense technique, but also fills a gap in the
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academic research space.

2. RELATED WORK

In recent years, there has been substantial research on IoT
security that makes use of Al techniques. Many have pursued
DL-based IDS (in an earlier stage). For example, Gyamfi and
Jurcut [13] have approached the class imbalance in IoT IDS
with a class-imbalance, focusing on focal loss in certain types
of DL models in their training, and have shown promising and
significant gains in precision and F1-score. Many other DL
models, like convolutional neural networks (CNNs), LSTMs,
and auto encoders, have been developed for anomaly detection
in IoT traffic. And the results have reported high detection
accuracies across lots of data sets. Transfer-learning was also
explored by Lazzarini et al. [14], have proposed an IDS
framework designed for 5G loT based on transfer-learning
principles to reuse knowledge in different domains, and also
improve the detection of zero-day attacks. Traditional ML
methods like SVM, random forest, and ensemble are still
applied in IoT IDS, but deep and transfer models have fared
better at wrapping up the complexity of attack patterns.

One of the ideas of Green Al is to decrease the
computational costs related to ML models. For example,
Deshmukh and Ravulakollu [15] have proposed an
EnergyCIDN, which is essentially a collaborative IDS in
which the authors integrated an energy-aware trust model to
reduce the verification cost required to validate IoT nodes.
Research has found considerable battery life savings with the
addition of energy considerations: Tharewal et al. [16] have
reported up to 35% energy savings when combining energy-
aware design with RL, and a different project reported that
they gained 21% more energy efficiency in IDS by
dynamically scaling model complexity. Similarly, enhancing
energy efficiency as a significant area of research, such as
towards efficient deep models like model pruning,
quantization, and knowledge distillation, are all learning
aspects of how to reduce energy without impact on accuracy.
Research into energy-efficient models has primarily focused
on static ML models while changing the characteristics of the
IDS in IoT environments.

RL has the prospect of adaptivity and is being looked at as
a means of providing adaptive and flexible IDS. Given the
adaptive nature of security in IoT contexts, RL agents will
simply know when and where to implement security measures.
For example, Tasct [17] have developed a deep Q-network
(DQN)-based IDS named DQN-HIDS for social IoT. The
proposed guild of learning for identifying intrusions relies in
part on LSTM-DQN that incrementally improves the
correctness of labelled intrusions, with fewer samples needed.
In the results, the DQN-HIDS shows a high level of
classification accuracy with fewer training samples than
purely supervised approaches. Recent studies in wireless
networks and IoT-based networks have researched many
possible approaches to assist with intrusion detection and to
improve resilience to cyberattacks. AGR et al. [18] have
addressed one component of wireless networks, the distributed
denial-of-service (DDoS) flooding attack. They proposed a
new mechanism that uses dynamic path identifiers for
resilience by limiting the probability of exploitation of a single
route, which led to improved detection and reduced false
positives. While their strategy effectively countered flooding-
based DDoS, it has limited scalability when extended to IoT



on a large scale. The dynamic paths they had to manage
created overload, and their mechanism was insufficient to
counter multi-vector or application-layer attacks.

Moving towards DL solutions, Yaras and Dener [19] have
developed an IoT-based IDS with a hybrid DL model
consisting of a combination of convolutional and recurrent
neural networks. This system captured both spatial and
temporal features of network traffic, improving accuracy
against many different types of IoT attacks. However, the
model's computational cost and complexity in training made it
less appropriate for the resource-limited design of IoT nodes.
Additionally, it relied on labeled datasets, which limited real-
time adaptation to zero-day threats without huge retraining.

To tackle the data imbalance problem in intrusion detection,
Dener et al. [20] have developed the STLGBM-DDS
framework which was a combination of synthetic minority
oversampling technique (SMOTE) and light gradient boosting
machine (LGBM), which markedly improved detection of the
minority attack classes and were scalable to big data solutions,
but its incorporating of set preprocessing and balancing step
caused latency, which impacted the real-time application of
the model. Similar to this, using pre-engineered features
reduced its usability in responding to new and evolving attack
types.

Sunitha and Chandrika [21] have examined similar
undergraduate issues that persist in wireless sensor networks
(WSNSs), such as reliable routing, fault tolerance, and anomaly
detection. They proposed that data mining and soft computing
techniques could optimize sensor operation to improve
anomaly detection. This is informative based on their
consideration of computational intelligence as a management
strategy for WSNs, but the study was mostly conceptual and
lacked experimental support. While the study did represent
new thinking when developed, many of the challenges needed
for WSNs related to the continuous evolution of IoT
technologies, and concerns related to an active attack surface
and data-centric issues were not encompassed in their
framework.

Kaur et al. [22] have proposed P2ADF, a privacy-preserving
attack detection framework for fog-loT environments. The
authors  proposed using lightweight  cryptographic
mechanisms, along with distributed anomaly detection, to
maintain data confidentiality and security in [oT ecosystems.
P2ADF provided a trade-off between privacy and detection,
but it did add computational overheads that increased energy
consumption; this was problematic for battery-constrained [oT
devices. Moreover, while the system put security mechanisms
in place during transmission, limited mechanisms existed for
protecting data-at-rest at fog nodes.

This study progresses the field by proposing a novel DRL-
EAIPS framework, consisting of an optimized, quantized
CNN scoring module for node-level anomaly detection tightly
integrated with a DQN agent learning energy-aware
prevention policies. This structure reduces both computational
overhead and energy consumption while producing reliable
and accurate detection. In addition, modeling the intrusion
prevention problem as an MDP with a multi-objective reward
function addressing both detection rate and energy efficiency
provides an adaptive and real-time intrusion prevention
process to the energy-constrained IoT networks. Our extensive
simulation results demonstrate a longer network lifetime,
lower latency, and minimal false positives compared to the
benchmark models, and address key limitations in existing
methods.
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3. PROPOSED MODEL
3.1 System model and assumptions

The system model depicts a multi-hop WSN of NNN
distributed sensor nodes deployed to support data sensing and
communication in an IoT context. Each node was initialized
with a fixed energy E;(0) amount and acts under limited
power resources. These nodes send sensed data to a central
base station or sink node via selected intermediate nodes while
utilizing a multi-hop infrastructure. At any given time,
communication paths can be established, changed, or
terminated based on link quality and viability of the path
through the present energy level and cost. Figure 1 uses arrows
to show data forwarding paths that change over time based on
node failures, detection of an attack, etc., or the power level
depleted from the nodes.

DRL
Agent

Alerts:

Inspects, Isolates
Ignore

Figure 1. System model and network assumptions

Accordingly, this non-threatened environment will be at the
mercy of stochastic and unpredictable attempts to gain access
and compromise the overall reliability of the network. These
include malicious packet injections, DoS attempts, or routing
failures, and all could be directed towards either specific or
arbitrary nodes. Attack surfaces will be treated as external
entities that are attempting to compromise the reliability and
security of the network. An attack that involves a targeted
malicious node can leave itself open to packet injections,
hijacked routes, or deterioration of energy usage, before
critical quality-of-service and network lifetimes are affected.
Therefore, a centralized DRL agent is to be a part of the overall
architecture.

The DRL agent has both the option of periodically polling
the state of the network continuously through state information
from sensor nodes and/or edge gateways, and an event-driven
operation that allows it to only respond when lightweight
anomaly detectors i.e., CNN modules, are raising alerts. The
state information will consist of state variables such as E{,
residual energy; DL, delay; T{, total cost of transmission; and
AL, the anomaly score. The DRL agent takes in these state
parameters to derive an action that attempts to balance the
principles of energy efficiency with threat mitigation.

The DRL agent can derive an action that results in one of
these three basic types of actions: Inspect, Isolate, and Ignore.
The Inspect action will initiate some additional packet-level or
behavioral analysis and will incur some additional sensing or
processing overhead, but will produce greater detection rates.
The Isolate action is used when a suspicious node needs to be



temporarily blocked or quarantined, mostly to help contain the
spread of malicious activity, but also to use up energy on
rerouting and updates. The agent is also going to want to
conserve energy, especially when protecting critical paths,
when it selects the Ignore action, especially if the threat level
is low or the energy cost for counteraction might exceed
damage levels. Action types also include energy cost and level
of impact on communication quality, both of which are
explicitly represented in the DRL reward function.

This model operates under a time-slotted paradigm where
decisions, detections, and data transmissions are made at
discrete time frames. All actions, detections, and transmissions
are made within those time slots, while accommodating the
level of coordination of the actions to ensure operations are
scheduled efficiently. It is important to note that all nodes
should have the capability to assess their local conditions and
transmit those state-relevant metrics without excessive
overhead. As the DRL agent will be creating a model of what
actions have the most impact on security and energy
sustainability over time, it needs only to adapt its model due to
changes in the attack profiles and constraints associated with
the available resources.

This system model creates a malleable, yet representative
model that highlights the primary complexities of IoT
operation with respect to security: energy awareness in
decision-making, time-sensitive intrusion prevention, and
scalable learning. With this model, an RL-based DRL-EAIPS
framework is described to enable optimization of the trade-off
between the effectiveness of protection and the preservation of
available resources, in constrained IoT networks.

3.2 DRL-EAIPS

In the contemporary IoT environment, energy-constrained
sensor nodes face increased vulnerabilities stemming from
more complex cyber-attacks such as DDoS attacks, spoofing,
and wormhole attacks. Traditional IDSs are generally static,
non-adaptive, and energy-draining. Our proposed framework
is a DRL-EAIPS. This IDS performs real-time detection and
adaptive executions based on environmental feedback to make
decisions. It contains a feature extraction layer that can
implement the learning on low-resource IoT nodes, a DQN
agent that learns and updates optimal defense policies from
historical and real-time stored information, a limited energy
monitor and threat profiler that keeps track of health within the
network layer, and an object that executes response action. The
distributed architecture of DRL-EAIPS enables adaptive,
intelligent, and autonomous intrusion response while limiting
energy usage in IoT systems. Moreover, energy usage
generates accurate QoS.

The proposed DRL-EAIPS consists of four primary
elements: the observation space for state representation, the
action space, the reward function, and the policy learning
component. Each of these elements is essential to the system's
ability to control intrusion response effectiveness in a way that
optimizes both energy efficiency and its QoS properties with
respect to the dynamically changing IoT environment in which
the DRL-EAIPS operates.

3.2.1 State representation

The observation space, i.e., the system's state, uniquely
represents the contextual features in an IoT environment at
each action moment. The system must observe and cumulate
the residual energy of all the IoT nodes, the observed latency
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as delay due to the actual data transmission, the determined
cost of transmission given factors such as hop count,
bandwidth available, and channel condition, and then at the
edge, the decision-making agent will compute an anomaly
score using the lightweight intrusion detection threat detection
mechanism. Addressing all of these metrics collectively
provides a physical view of the health of the network's
operations and threat exposure. The observation space is a
multi-dimensional state vector that continuously updates and
represents the data transmitted.

This continuous multi-dimensional state vector will allow
the decision-making agent to feed information into its
situational understanding to learn useful actions based on
previous action states taken. Each current state at a selected
time step t's states the operational/physical condition of each
respective node. The state vector contains decision-making
agent information regarding four main metrics, are shown in
Eq. (1). These observations form the state vector s;, which is
used as input for the policy network.

St = {E, DL, T{, A}} (1
where, El represents the node i’s remaining energy, Di is an
average packet delay, T} is the cost to transmit one unit of data
based on hop count and channel quality, A} specifies an
anomaly score representing evidence of malicious behavior
from local IDS. Each observation has its place in the state
vector sy, which is used as input to the policy network. This
vector is sent to a local edge gateway or fog node, which
merges data from all nodes into a global state as shown in Eq.

2):

S = {st, 52, .,sN) @)
This state represents the health and security context of the
network overall, at time ¢. The Anomaly Score Al uses a
lightweight CNN at the node level. The model has been trained
offline and packaged in quantized form for edge inference as
localized classification. It examined packet characteristics,
including header patterns, frequency of bytes, and timing
anomalies. The convolutional filter passes along the input,
extracting local spatial/temporal correlations as shown in Eq.
3):
zi; = (xt* Wl)i’j + b! (3)
where, * is the convolution operation, W* is the filter/kernel
of size m x k, b! is the bias term, zil,]- is in the image convolved
at location (i,j). In general, the convolution captures patterns
such as port scanning, repeated packet sizes, and multiple
combinations of anomalous header flags are shown in Eq. (4):
ajj = ReLU(z;) = max(0,z)) )
This provides the model with non-linearity to learn more
complicated patterns. The dimensionality reduction and
retention of significant features are displayed in Eq. (5):

max ayy

1 _
pl‘] (u,v)epool

®)

This step gives a form of translation invariance, resulting in
a smaller memory footprint. We flatten the pooled output or
states and perform a dot product with a matrix of weights (W?)



as shown in Eq. (6):

Z? = W2 - flatten(p?) + b? (6)
where, W? € R% represents the weights for the fully
connected layer, d is the number of hidden units, and f is the
total number of features in the flattened input. The final output
is a scalar anomaly score A} € [0,1] as shown in Eq. (7):

1
22

i (2) —
At =o(z )_1+e (7)
The output will be a sigmoid function, which is structured
so that Al ~ 0 for normal or benign traffic and Al ~ 1 for
highly suspicious or malicious traffic. The convolution unveils
patterns such as port scanning, repeat packet sizes, and
impossible header flag combinations. Where, Al : feature
vector of traffic at the node I, and 0 is the quantized CNN
parameters. The anomaly score is normalized in [0,1], so that
if the score is above 0.5, this indicates suspicious behavior.
This preliminary filtering can be executed on upstream devices
and saves potential collision overhead that invokes DRL,
which is usually a heavy portion of the algorithm. The full
state S; is provided as the input to a unique DQN that estimates
Q-values for all possible actions as shown in Eq. (8):
Q(Sy,a; 6) > Er ®)
The agent selects which action a, to take using a e-greedy
policy as shown in Eq. (9):

_ rand(a) with probability € 9
ac= {argmaXaQ(St, a; 0) with probability(1 — ¢) ©)
3.2.2 Action space

The action space is the set of possible actions that the system
can take if there is a detection of a threat or anomaly. The
traditional way of decision-making by binary values
(allow/deny) is replaced by a fine-grained set of actions:
Allow, Drop, Quarantine, and Reroute. The Allow action is
taken to forward the packet normally when the traffic is
deemed safe. The Drop action is taken to drop the packet(s)
that have been scored as magic/suspicious. The Quarantine
action is taken to temporarily isolate a node's communication
so that it can be observed before a major action occurs,
allowing the neutrality of the traffic and preventing an analyst
from acting immediately due to a false positive. The Reroute
action is taken to divert traffic to a different communications
path if the node or path has potentially been compromised.
These fine-grained action outputs enable the system to make
decisions and reduce the effect of threats on the network flow.
The actions are chosen based on long-term expected reward,
based on the energy and security constraints as shown in Eq.
(10):

A = {Allow, Drop, Quarantine, Reroute} (10)

The action space is the set of possible responses the IDS
agent can employ: Allow means forward packets as normal
(benign traffic), Dropped means discard packets that have
been flagged as malicious (low threat score), Quarantine
means temporarily isolate a node to observe its behavior, and
Reroute means temporarily divert traffic around suspicious
and congested paths.
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3.2.3 Reward function

A reward function in RL is a critical component. His reward
function gives feedback in the form of rewards based on the
agent's actions to facilitate learning. The proposed structural
framework fosters a multi-objective reward function to reward
security actions, but still accounts for efficient resource usage
in choosing a security preference. Some positive feedback is
provided for a correct threat mitigation measured by some
score of security, and I decide to penalize actions with a lot of
energy usage, high latency, and cost of transmission. I penalize
for excessive consumption in a weighted manner so that an
agent will also try to learn to minimize extreme energy
consumption and also excessive rerouting. Instead, I want the
agent to develop policies to keep the network functioning in
the long term for addressing the security threat. To the agent,
functions give gradients of feedback as a reward in the form of
the following Eq. (11):

Iy = A St — AME; — A3De — A,C (11)

where, S; is the threat mitigation, or score, which gives a
higher reward for correctly blocking attacks,E; is the energy
consumed to take action a;, Dy is the delay created by taking
an action, for example, rerouting can create delay, C; is the
communication cost based on forwarding, isolation, or route
discovery. The reward function encourages security actions
but still considers arriving at the most resource-conservative
option. For the coefficients A; to A,, they can be tuned to
account for specific network behaviors or essentially how
important user priorities play into the reward, for example, if
a network was security-critical, A; would be significantly
higher.

3.2.4 Policy learning

The final element is the policy learning mechanism, which
is a DQN that learns the optimal mapping from states to
actions. The DQN approximates the action-value function
Q(s, a), which is the expected cumulative reward received for
taking action a in state s. The DQN learns by iterative training
with experience replay and updating its predictions with the
target network. The learning mechanism works on the basis of
experience from actions taken. As the agent receives feedback
from its actions, its internal model is updated in a way that
maximizes the anticipated reward from its next decisions.
Experience from the past, in the form of cumulative total
rewards, is retained and allows the DRL-EAIPS agent to
dynamically adapt to changing network-state conditions and
unknown attack patterns in real time without additional re-
configuration by the user. The DRL agent updates its Q-values
with experience replay and the Bellman Eq. (12):

QSua) < Q(Sua) + afr+ ymaxQsee,a) -

12

QS a0 w
where, a represents the learning rate, y represents the discount
factor for future rewards, and transitions (S, a, 'y, Sey1) are
stored in a replay buffer and sampled randomly to break the
correlation between the samples. A target network Q' is
updated every K steps to make the learning process more

stable. The work learns an optimal mapping of states to actions
through a DQN as shown in Eq. (13):



Q(sp,ap; ) =~ E [rt + ymax Q(s¢4q,a’; 6’)] (13)
a

where, Q represents an estimated cumulative reward of state-
action pairs, 0 represents the DNN weights, y represents the
discount factor of future rewards, and 8’ represents the target
network weights for stable learning. The DQN was used with
experience replay for storage, and sample past interactions and
target network separation made learning unstable. The thing is
to maximize the cumulative reward as shown in Eq. (14):
max E[X{oy're] (14)

Subject to, Energy constraints is E; > E;,0S constraints is
D; < Djax and Correct intrusion mitigation is S; = 6. This

format helps ensure the agent learns a sustainable defensive
policy in a stochastic, partially observable IoT environment.

4. RESULTS AND DISCUSSION

To provide a thorough evaluation of the proposed DRL-
EAIPS, three benchmark datasets with varying loT threat
profiles were selected: NSL-KDD, UNSW-NB15, and BoT-
IoT. Each of these datasets provides a wide array of network
traffic patterns and types of attack that ultimately allow for the
ability to verify the generalizability of the model.

* NSL-KDD: A cleaned version of the KDD Cup 1999
dataset, NSL-KDD addresses some of the problems
with KDD, such as redundant records and unbalanced
classes. It has around 125,973 training records and
22,544 testing records that are labeled into five classes:
Normal, DoS, Probe, R2L, and U2R attacks. Each class
contains a balanced number of samples, allowing for
more reliable training and testing.

« UNSW-NBI1S5: This dataset was created under real,
modern network traffic and contains 2.54 million
records with nine different attack types, including
Fuzzers, Analysis, Backdoors, DoS, Exploits, and
Worms. The attacks and evasion attempts present in
this dataset exhibit a considerable amount of variation
and are designed to imitate new styles of attacks in a
live and modern IoT network environment that contains
evasive actions from highly sophisticated attackers.
BoT-IoT: The focus of this dataset is threats that are
based on IoT, focusing on the botnet traffic with a lot
of class imbalance. It contains records of attacks with
records that capture more than 72 million records with
multiple attack types like DDoS, DoS, reconnaissance,
or keylogging.

The dataset's imbalance was managed by utilizing data
augmentation to create better data balance in conjunction with
stratified sampling during training in order to reduce bias,
which could affect performance, caused by strongly
imbalanced majority classes. For a realistic and dynamic
attack simulation with NS-3, the following attack scenarios
were implemented, each encompassing the following forms of
attacks:

*  DoS Attacks: There are a few commonly defined forms
of "DoS’, such as flooding and jamming, in which an
attacker will use a number of nodes to generate and
send excessive amounts of traffic to overwhelm
legitimate routing of necessary communications. In our
simulations, we used passive and stochastic traffic
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generation methods to produce traffic bursts
periodically over the attacker nodes, targeting key
nodes of the network.

* Malicious Packet Injection: The attacker node(s)
attempt to inject malformed packets or spoofed packets
into the network, victimizing the legitimate nodes to
cause a route failure or gain access to a node's integrity.

»  Sinkhole Attacks: The attacker node(s) will advertise to
the network that they are the best route for legitimate
packets while dropping packets or otherwise
manipulating legitimate packets. In our simulations, we
used dynamic route manipulation through AODV to
simulate attack nodes.

Replay Attacks: The attacker node(s) will serialize
packets in order to replay the packets, in hopes of
confusing a specific protocol stack or creating false
positives, which would generate alarms on a wiretap
node.

The attacker nodes were selected randomly at the beginning
of each simulation to give variability to the simulation. The
attack nodes' behavior was controlled by probabilistic timers,
each simulating that the attack nodes were capable of
becoming active in order of regular and sporadic attack bursts.
This method evaluated the survivability of the system against
predictable and unpredictable threat events. The simulations
ran on a testbed consisting of an Intel Core i7 processor, 16
GB of RAM, and running with Ubuntu 22.04 LTS. The
adopted simulated model was time-slotted, where each time
slot represented one second of network activity, allowing the
observers to effectively sync the detection, decision, and
communication processes. The key metrics collected by the
simulations were energy consumption, network lifetime, end-
to-end delay, and throughput.

The simulated WSN consisted of randomly deployed nodes,
either 50, 100, or 150 nodes, inside a 500m x 500m movement
area. Each sensor node was initialized with 2.0 Joules of
energy and was capable of communicating with a ZigBee
compatible radio model based upon IEEE 802.15.4 within an
80m range, i.e., AODV to enable multi-hop routing of
communication. The communication among sensor nodes
relied upon the routing model based on the AODV protocol
that has been previously modified, e.g., route re-routing and
isolating actions that were initiated by the DRL agent. The
CBR traffic of the sensor nodes was one packet every second
sent to another source node, with each packet a size of 64
bytes. The simulation was capped at 5000 time-slots, or until
20% of the nodes used up their energy.

To simulate potential real-world threats, several attack
models were implemented, such as DoS attacks, e.g., flooding
and jamming, malicious packet injection, sinkhole routing
replication, and replay attacks. Attackers were homed on
random nodes that then utilized either periodic or stochastic
behaviors. This variable characteristic permits the testing of
the DRL-EAIPS under both periodic and random attack
conditions to simulate a dynamic or unpredictable IoT
condition. The foundation of the DRL-EAIPS is the DQN that
takes the state of the environment as input and maps it to the
appropriate defense action. The DQN consisted of two hidden
layers of 128 and 64 neurons with ReLU activation. A replay
buffer of size 10,000 was implemented to store past
experiences, with training carried out in mini-batches of size
64. The learning rate and discount factor y were set to 0.001
and 0.95, respectively. A target network is synchronized once
every 100 training steps to stabilize learning. An epsilon-



greedy exploration strategy was implemented, in which €
decayed from 1.0 to 0.05 shown in Table 1, to allow the trading
off of exploration and exploitation.

Table 1. Parameters and values

Parameter Value / Description
Number of Sensor Nodes 50-150
Deployment Area 500 x 500 meters
Communication Range 80 meters
Initial Node Energy E;q) 2.0 Joules
Packet Generation Rate 1 packet/sec (CBR)
Packet Size 64 bytes
Routing Protocol AODV
MAC/PHY Protocol IEEE 802.15.4 / CSMA-CA
Base Station Position Center of field

Each IoT node comprised a lightweight CNN module that
enabled real-time anomaly detection. Each IoT node received
a 2D feature matrix (of 16 features such as TCP flags, byte
entropy, inter-arrival times) per packet, which was trained
offline using both the NSL-KDD and BoT-IoT datasets. The
CNN architecture comprised of a Conv1D layer with 32 filters
of size 3, followed by a ReLU activation, max-pooling layer,
and a final dense fully connected layer with a sigmoid output
producing A} € [0,1] anomaly score. The model was
quantized for edge device deployment using TensorFlow Lite
to minimize memory use and processing overhead. The
evaluation involved three benchmark datasets: NSL-KDD,
UNSW-NB15, and BoT-IoT, each with different threat
profiles: NSL-KDD for simple classification, UNSW-NBI15
for recent network attack vectors, and BoT-IoT for botnet
traffic, which is significantly imbalanced. These datasets were
employed within the traffic generation module of NS-3 to
reflect realistic attack behaviour during runtime. The anomaly

scores generated by the CNN were combined with energy,
delays, and link costs to form the state inputs provided to the
DRL agent.

Table 2 and Figures 2 to 6 show a low-density deployment
in the range of 50 nodes, typically seen in agricultural or
remote environmental monitoring circumstances. The
proposed DRL-EAIPS was shown to clearly perform better
overall. The DRL-EAIPS achieved the best detection accuracy
of 94.86% with the lowest false positive rate (FPR) of 3.42%
over the other models. The total energy consumed per node
was also lowest across all models at 0.129 J, resulting in an
increased network lifetime of 3875 rounds, which is important
when considering batteries for sensor deployments. The
average communication delay was only 11.3 ms, and the
transmission cost was also low due to selective inspections and
low control overhead.

Table 3 shows that the deployment of 100 nodes for DRL-
EAIPS exhibited superior performance. DRL-EAIPS reached
the best accuracy rate at 96.87%, the lowest FPR at 2.91% and
energy consumption per node of 0.143 J, leading to a
prolonged network lifetime of 4321 rounds. The average delay
was reduced to 12.4 ms, and the transmission costs were low
as a result of the DRL agent's energy-aware conditions to
either inspect or ignore packets based on its RL experience.
Other models, such as CNN-GRU Hybrid IDS, could not
achieve DRL-EAIPS's accuracy of 94.23% or delay of 14.2
ms, but they consumed more energy of 0.178 J, thereby
impacting lifetime compared to DRL-EAIPS. Even though
DQN-Based IDS was adaptable, it did not include any energy-
constrained aspects in its reward model, so it suffered with
respect to energy and lifetime performance. These results
demonstrate that inclusion of both energy and anomaly context
when applying RL leads to balanced and ecologically valid
intrusion prevention behavior.

Table 2. Comprehensive comparative analysis (50 nodes, 10,000 iterations)

Model Accuracy FPR Energy Consumption Network Lifetime Average Delay
(%) (%) (@) (Rounds) (ms)
Proposed DRL-EAIPS 94.86 3.42 0.129 3875 11.3
DQN-Based IDS 90.45 591 0.168 2950 13.9
Energy-Aware SVM 85.62 6.98 0.183 2694 16.4
CNN-GRU Hybrid IDS 92.17 4.45 0.159 3120 12.7
TDRL IDS (Trust- 89.88 6.11 0.172 2804 14.8
Based)
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Table 3. Comprehensive comparative analysis (100 nodes, 10,000 iterations)

Model Accuracy FPR Energy Consumption Network Lifetime Average Delay
(%) (%) (0)) (Rounds) (ms)
Proposed DRL-EAIPS 96.87 291 0.143 4321 12.4
DQN-Based IDS 92.41 5.13 0.189 3275 15.8
Energy-Aware SVM 87.34 6.40 0.205 2980 18.6
CNN-GRU Hybrid IDS 94.23 4.05 0.178 3510 14.2
TDRL IDS (Trust- 91.05 5.82 0.196 3102 163

Based)
Table 4. Comprehensive comparative analysis (150 nodes, 10,000 iterations)

Model Accuracy FPR Energy Consumption Network Lifetime Average Delay
(%) (%) Q) (Rounds) (ms)
Proposed DRL-EAIPS 97.21 2.65 0.149 4578 13.2
DQN-Based IDS 93.87 4.75 0.193 3431 16.6
Energy-Aware SVM 88.54 5.85 0.214 3194 19.4
CNN-GRU Hybrid IDS 95.05 3.80 0.184 3690 15.0
TDRL IDS (Trus- 92.45 5.11 0.201 3312 17.2

Based)

Misclassification Rate:

The main misclassification
problem we dealt with was FPR, which was benign traffic that
was misidentified as malicious. Even though our average FPR

was 2.65% to 3.42%, if we look closely, we can see that false
positives generally occurred most frequently during times of
network congestion, as well as in rapidly changing topologies,
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especially in the denser (150-node) deployments. The high
variability of legitimate traffic patterns and transient delays
that were sometimes observable in the denser deployments
may have resulted in false spikes in CNN anomaly scores.
Likewise, amongst the missed detections (i.e., false negatives)
were sophisticated, low-rate attacks, typically stealthy
sinkhole and replay attacks, attacks that look similar to normal
traffic patterns. Although DRL-EAIPS reduced missed
detections from the baseline models, detecting these subtle
threats will continue to be difficult due to the low-profile
nature of these attacks.

Table 4 shows the deployment with 150 nodes, where both
the routing complexity is higher, and energy contention is also
elevated; the DRL-EAIPS maintained its superiority and
achieved an impressive accuracy of 97.21% (FPR 2.65%),
topping all competing models. Notably, despite the network
complexity, energy consumption per node was maintained at
0.149 J, and a network lifetime of 4578 rounds was allowed.
Delay was a tad higher at 13.2 ms, which is reasonable
considering the heightened packet routing among nodes from
the dense network, and the transmission cost was low due to
the DRL agent's context-aware action selection.
Comparatively, the CNN-GRU performed well at 95.05%
accuracy but had a slightly higher delay of 15.0 ms, too, and
used more energy of 0.184 J. Other models, Energy-Aware
SVM and Trust-Based IDS, have even lower accuracy, higher
false positives, and shorter lifetimes, indicating that DRL-
EAIPS is highly scalable and demonstrates robustness in
complex, high-volume IoT infrastructures.

The DRL-EAIPS approach performed better than in all
three deployment changes, 50, 100, and 150 nodes in overall
detection accuracy while consuming less energy, having lower
delay, and increasing the lifetime of the network. These results
indicate the benefits of combining deep RL with a lightweight
CNN-based anomaly scoring model, along with an energy-
aware reward model to create a scalable, real-time, resource-
efficient IDS applicable to any IoT environment. The DRL-
EAIPS successfully adapts to different node densities and
threat conditions when compared to both standard ML models
and more recent hybrid IDS models.

5. CONCLUSIONS

This paper provides a framework for using a deep RL agent
for intrusion prevention in loT networks. The approach seeks
to balance energy use and energy efficiency. The model
considers the challenge of protecting IoT resources from
unpredictable cyberattacks or threats. Here, we can view
intrusion prevention as an energy-aware RL problem. Our
approach blends the strengths of deep neural networks for
feature extraction with the advantages of an RL agent that has
the ability to plan security checks and actions to limit threats
while minimizing energy use. We develop a model, configure
state and action spaces, and define a reward function that can
minimize the energy use while maximizing threat prevention.
We test our approach in a simulated NS-3 IoT environment.
Our findings highlight that the proposed deep RL intrusion
prevention (DRL-IP) approach can maximize time to network
failure, minimize energy use, and reduce communication
delays compared to standard IDS/IPS approaches.

DRL-IP demonstrates connections that reduce end-to-end
delay, improve the accuracy of 97.21% and outperform a few
existing mechanisms. These results suggest that deep RL could
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provide a flexible intrusion prevention approach that
minimizes battery life for device connections while
maintaining robust security. For future work, there are a
number of distinct paths that can help to advance this work,
including, but not limited to, Advancing Energy Models,
Multi-layer IoT Networks and Heterogeneous Networks,
Adversarial Robustness, and Real-world Deployment and
Validation.
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