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 The natural convection flow of water between two coaxial cylinders where the inner cylinder 

generates a constant heat source is numerically studied. The outer cylinder is cold while the 

top and bottom walls are thermally insulated. For a laminar flow and an inclination angle equal 

0°, 45°, 90° the results are determined in the form of contours of the isotherms and streamlines, 

average Nusselt number in the annular space. The results show that the average Nusselt number 

is growing with increasing Rayleigh numbers. The best heat transfer is obtained for the 

inclination angle 90°.  
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1. INTRODUCTION 

 

Among the best renewable energy sources with minimal 

environmental impact is solar energy. In recent years, natural 

convection problems have attracted more attention because of 

its large applications, such as solar energy systems in energy 

sensing systems, which help to better understand this thermal 

phenomenon in cavities inclined. Natural convection is a 

fundamental phenomenon in many types of collectors and 

receivers. The difference in temperature causes a natural 

convection and the heat loss is achieved solely by conduction. 

It is well known that natural convection phenomena are quite 

sensitive to boundary conditions. From where we can find a 

very large number of studies in the literature concerning this 

phenomenon [1-6]. In solar collectors, the insulating air is 

generally confined in an enclosure formed by the sides of the 

collector, one or two of the panes, or the absorbing plate. If 

convection suppression walls (or honeycomb structures) are 

used in the collector, convection occurs in the volume 

enclosed by these partitions and by the windows or the 

absorber. Some cavity elements in the concentration collectors 

have open solar radiation that improves the opening, and 

because of this opening on one or more walls, the natural 

convection circuit is incomplete [7]. 

Our knowledge of convective heat transfer in ducts is 

widely developed and, when properly applied, this available 

information can be directly used in thermal analysis and solar 

collector design. 

Generally, the flow rate is very low in the liquid-heating 

collector ducts, and is therefore laminar and may develop for 

a good fraction along the tube. So we will have to examine 

them starting with the application of classical criteria. 

Noting that most of these criteria have been established for 

constant temperature or heat flux conditions, irrespective of 

buoyancy effects, i.e. for conditions that do not accurately 

represent the situation of the sensors. 

Numerical studies have been conducted to study natural 

convection inside a solar collector. The working fluid inside 

the solar collector is another challenge for the researchers in 

the field. Rehena et al. [8] presented a numerical investigation 

of the influence of physical parameters, wave amplitude, and 

wave number on the natural convection flow of the boundary 

layer inside a solar collector with water-Al2O3 nanofluid. 

Rahman et al. [9] studied the double-diffusive natural 

convection in a triangular solar collector where the effects of 

Rayleigh number and buoyancy rate are presented with 

streamlines, isotherms and iso-concentrations as well as heat 

and mass transfer rates. Other interesting works related to the 

subject can be found [10-18]. 

The effect of the inclination angle on the natural convection 

of a flow between two coaxial cylinders whose internal 

cylinder generates a constant heat source has never been the 

subject of a previous study. Our objective is to determine the 

thermal and dynamic field that arise on this type of flow as 

well the effect of Ra and the inclination angle on the heat 

transfer. 

 

 

2. GEOMETRY & MATHEMATICAL MODEL 

 

Pure water with a Prandt number, Pr=6.3 is the fluid chosen 

in this modest study. This fluid is located in the space between 

two coaxial cylinders where the inner cylinder generates a 

constant heat source, the outer cylinder is cold while the lower 
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and upper walls are adiabatic. γ is the inclination angle of the 

annulus (Figure 1). 

 

 
 

Figure 1. Geometry of studied configuration 

 

The space between the two cylinders, (Ro − Ri), is used as a 

characteristic length, the thermal diffusion time through space, 

(Ro − Ri)2/α, is the scalar time, and the scalar temperature is 

Q(Ro − Ri)/κ, where κ is the thermal conductivity and α is the 

thermal diffusivity of the fluid. The dimensionless temperature 

relative to the temperature of the outer cylinder is Θ = (T− 

Tf)κ/Q(Ro − Ri). [19] 

Based on reference [4], the dimensional governing 

equations are: 
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The flow is governed by the Rayleigh number, 
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where, / pC  =  is the thermal diffusivity of the liquid, k is 

the thermal conductivity and 
pC  its specific heat at a constant 

pressure. 

Based on the work of Mebarek-Oudina [19], the governing 

dimensionless equations are: 
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The initial and boundary conditions in dimensionless form 

are: 
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3. NUMERICAL SOLUTION 

 

The results of this study are obtained using the reference 

calculation code of Mebarek-Oudina [19]. This house code 

validated by the author with the results of Sankar et al. [20] 

has been adopted for the resolution of the studied 
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configuration. 

 

3.1 Grid independency test 

 

The area of large velocity and temperature gradients 

requires a larger number of nodes to resolve specific flow 

characteristics, and reduce numerical errors. So several non-

uniform grids will be used in this area (near the annulus walls). 

In order to examine the effect of the mesh on the numerical 

solution, a number of sizes are used to study the independence 

of the grid: 52×104, 72×144, 92×164 et 100× 200 nodes. 

By examining the curves shown in (Figure 2), we observe a 

variation less than 1 % of the values calculated between 100 × 

200 and 92 × 164 or 92 × 164 and 72 × 144. For this, the grid 

corresponding to 92 × 164 nodes are adopted for all numerical 

simulations, in order to optimize the CPU time and the cost of 

the calculations. 

 

 
 

Figure 2. Radial distribution of dimensionless axial velocity 

for various grids (52×104, 72×144, 92×164, 100×200), Ar=2 

and Rayleigh number, Ra=75 

 

 

4. RESULTS AND DISCUSSION 

 

In this paper the natural convection between two coaxial 

cylinders has been studied numerically with a focus on the 

effect inclination angle on heat.  

 

 
 

Figure 3. Variation of the average Nusselt number versus 

Rayleigh number, γ=90°, λ=2 and Ar=2 

 

Figure 3 presents the effect of Rayleigh number on average 

Nusselt number. As an obvious result the heat transfer 

increases with increasing Ra.  

Figure 4 presents the temperature field and the flow 

structure for different Ra, γ=90° and Ar=2.  

For low Ra numbers, the isothermal lines are almost parallel 

to the vertical walls without any deformation, which indicates 

that the conductive transfer mode reigns. The deformation of 

it is isothermal appears clearly with the increase in the Ra 

number indicating the presence of the convective transfer 

mode. 

On Figure 5, distributions of dimensionless temperature 

along the space between the two cylinders are presented. The 

distributions are similar for the different chosen values of 

Rayleigh number. The minimum temperature is detected at the 

bottom of the cylinders while the maximum value of the 

temperature is obtained at the top of the cylinders for the high 

value of Ra in this illustration Ra=1250. The minimum and 

maximum values of the temperature increase with the growth 

of the Rayleigh number. 
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b) Ra=100 
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c) Ra=250 

 
d) Ra=300 

 
e) Ra=500 

 
f) Ra=750 

 
g) Ra=1000 

 
h) Ra=1250 

 

Figure 4. Isotherms (left) and Streamlines (right) for different value of Rayleigh number, γ=90° and Ar=2 
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Figure 5. Axial distribution of dimensionless temperature for 

various Rayleigh numbers, λ=2 and Ar =2 

 

As presented on Figure 6, the minimum and maximum 

value of the radial velocity increases with increasing Rayleigh 

number. For all studied case, the maximum value obtained in 

the first quarter of the radial evolution of the dimensionless 

velocity (R=0.2), while the minimum value is obtained in the 

third quarter of its radial evolution (R=0.8). 

Figure 7 presents the variation of average Nusselt number 

versus the inclination angle. The maximal heat transfer is 

obtained at an inclination angle of 90°. Thus inclination angle 

can be considered as an important parameter for heat transfer 

optimization. 

Figure 8 illustrates the flow structure and temperature field 

via the stream function and isotherms respectively. For γ=90° 

the cavity is vertical and differentially heated. The isotherms 

are quasi-parallel and the flow is mono-cellular showing that 

the heat transfer regime is purely conductive due to the 

relatively low Rayleigh number value (Ra=75). For γ=90° and 

γ = 45° the configuration is similar to the Rayleigh Bénard case. 

Isotherms become distorted and flow structure becomes bi-

cellular composed by tow counter-rotary cells having different 

sizes. 

Figure 9 presents the radial evolution of the dimensionless 

axial velocity for three different inclination angles 0°, 45°, 90°. 

For these three cases studied, the axial velocity takes the same 

pace. The maximum and minimum values of axial velocity are 

determined for an inclination of 45°. For the inclination angle 

90° the curve of the axial distribution of the temperature is 

located above that of inclination of 45° with a great distance. 

While the curve of the temperature distribution for an 

inclination of 0° is located below the two curves with a small 

difference compared to the second curve. Therefore, the 

maximum dimensionless temperature is obtained for an 

inclination angle of 90° (Figure 10). 

 

 

5. CONCLUSION 

 

A numerical investigation of the convective flow of water 

between two coaxial cylinders is made. The inner cylinder 

generates a constant heat source while the outer cylinder is 

cold; the lower and upper walls are adiabatic. 

The finite volume method with the SIMPLER and 

THOMAS algorithms are used to model the nonlinear 

algebraic equation system and obtain solution. 

From this study, the following conclusions are obtained: 

➢ For low Rayleigh numbers the conductive heat 

transfer is dominant; 

➢ The augmentation of the average Nusselt number 

with the increase in the Rayleigh number; 

➢ Decrease of the minimum value of the stream 

function with increasing Rayleigh number; 

➢ The inclination angle of 90° has the best heat transfer 

with a large value of average Nusselt number; 

The inclination angle of coaxial cylinders affects the 

thermal and dynamic field of flow. 

 

  
 

Figure 6. Radial distribution of dimensionless axial velocity 

for different Rayleigh numbers 

 

 
 

Figure 7. Average Nusselt number for various inclination 

angles, λ=2 and Ar =2 
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Figure 8. Isotherms (at left) & Streamlines (at right) for various inclination angles and Ra=75 

 

 
 

Figure 9. Radial distribution of dimensionless axial velocity 

for different inclination angles and Rayleigh number, Ra=75 

 

 
 

Figure 10. Axial distribution of dimensionless temperature 

for different inclination angles and a Rayleigh number, 

Ra=75 
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NOMENCLATURE 

Ar aspect ratio= L/D [-] 

D length [m]  

g gravitationnel acceleration, m/s2 

L enclosure height, m 

Nu local Nusselt number [-] 

avNu      average Nusselt number [-] 

Pr Prandtl number [-] 

Q heat flux, W/m2 

Ra Rayleigh number [-] 

R,Z radial and axial coordinates, respectively 

Ri, R0 inside and outside radii, m 

T temperature, K 

t dimensionless times [-] 

Δt dimensionless times increment [-] 

U,V  radial and axial dimensionless velocities, respectively 

[-] 
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Greek symbols 

 

α thermal diffusivity of the fluid, m2.s-1 

β thermal expansion coefficient of the fluid, K-1  

γ inclinaison angle, ° 

λ radius ratio [-] 

κ thermal conductivity, m2/s 

ρ density of the fluid, kg.m-3 

σ electrical conductivity, Ω-1.m-1 

υ kinematical viscosity of the fluid, m2.s-1 

Θ dimensionless temperature [-] 

Θ max maximal dimensionless temperature of the hot 

 cylinder [-] 

 Dimensionless stream function [-] 

 

Subscripts 

 

c conditions of cold cylinder  

R, Z radial and axial directions, respectively 
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