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 Under the dual context of the “dual carbon” goals and the pursuit of high-quality tourism 

development, energy systems in tourist attractions face core challenges, including severe 

load fluctuations, mismatched energy grades, and difficulties in achieving low-carbon and 

high-efficiency coordination. To achieve a coordinated optimization of economic, 

environmental, and energy efficiency objectives, a systematic study was conducted. First, 

multi-scale system boundaries were defined, and the coupling characteristics among 

electrical, thermal, and cooling loads with visitor behavior, seasonal rhythms, and weather 

variations were analyzed from temporal and spatial dimensions. The hierarchical criteria 

for high- and low-grade energy demands were established, and an integrated energy system 

architecture featuring “renewable energy as the primary source and fossil energy as a 

backup” was designed. Second, based on the first and second laws of thermodynamics, 

detailed thermodynamic models of key components such as photovoltaic (PV) systems, 

wind turbines, and heat pumps were developed. Through the coupling of energy and 

material flows, a system-level steady-state and dynamic simulation model was constructed, 

enabling precise characterization of energy conversion processes and exergy losses. 

Finally, considering the multi-objective conflict, nonlinearity, and high dimensionality 

inherent in the optimization problem, an improved Non-dominated Sorting Genetic 

Algorithm III (NSGA-III) algorithm was proposed to construct a multi-objective 

optimization model with the goals of minimizing total operating cost and carbon emissions 

while maximizing system exergy efficiency. The optimal operational strategy was obtained 

under constraints such as energy balance and equipment operating limits. The main 

innovations of this study include (a) establishing a “spatiotemporal coupling and energy-

grade stratification” framework for analyzing load characteristics in tourist attractions, (b) 

constructing a full-chain thermodynamic model incorporating exergy efficiency, and (c) 

proposing an improved NSGA-III algorithm adapted to the multi-variable coupling 

characteristics of tourist attractions. The results demonstrate that the proposed model and 

algorithm significantly enhance the overall performance of tourist attraction energy 

systems, providing theoretical and technical support for the planning, design, and 

operational optimization of integrated energy systems in such environments. This research 

holds substantial engineering application value for promoting the green and low-carbon 

transformation of the tourism industry. 
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1. INTRODUCTION 

 

Driven by the global “dual carbon” goals [1, 2] and the 

pursuit of high-quality tourism development [3, 4], tourist 

attractions—characterized as high-energy-consuming, multi-

sectoral composite service systems—have reached a critical 

juncture in transforming their energy consumption structures 

and enhancing energy efficiency, both of which are essential 

for sustainable development [5]. In recent years, the tourism 

industry in China has continued to expand, resulting in a rigid 

increase in energy demand within tourist attractions [6]. 

However, traditional energy systems generally suffer from 

issues such as a single energy supply structure, delayed load 

response, and mismatched energy grades [7, 8]. During peak 

tourist seasons, heavy reliance on fossil fuels to meet high 

loads has led to surges in carbon emissions, whereas in off-

peak periods, low-load operation has caused difficulties in the 

utilization of renewable energy. Moreover, the direct use of 

high-grade electrical energy to meet low-grade thermal and 

cooling demands has resulted in severe exergy losses. These 

contradictions not only increase the operational costs of tourist 

attractions but also impede their transition toward green and 

low-carbon development [9]. At the same time, energy loads 

in tourist attractions exhibit pronounced spatiotemporal 

nonuniformity, as they are strongly influenced by visitor 

activity patterns, seasonal variations, and weather conditions 
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[10]. When combined with the stochastic output 

characteristics of renewable energy sources such as PV and 

wind power, the operational complexity of the energy system 

is further intensified, posing significant challenges to 

conventional planning and optimization methodologies [11]. 

Extensive research has been conducted domestically and 

internationally to address the optimization of integrated energy 

systems. Regarding load characteristic analysis, most existing 

studies have focused on scenarios such as industrial parks and 

urban communities [12-14], emphasizing macroscopic 

statistical descriptions of load features. However, insufficient 

attention has been paid to the unique operational 

characteristics of tourist attractions, which exhibit intense 

fluctuations in service-oriented loads and the coexistence of 

multi-grade energy demands. Fine-grained analyses that 

elucidate the coupling mechanisms between thermal/cooling 

loads and visitor behavior remain lacking. In terms of 

thermodynamic modeling, many studies have relied solely on 

the first law of thermodynamics to construct energy balance 

models [15-17], neglecting the quantification of exergy losses 

arising from differences in energy grades. Consequently, such 

models fail to accurately reflect the intrinsic nature of system 

energy efficiency. Regarding optimization algorithms, 

traditional multi-objective optimization methods [18-26] often 

suffer from imbalanced convergence and distribution when 

addressing high-dimensional objectives. Furthermore, these 

algorithms have not been adapted to accommodate the coupled 

characteristics of discrete on/off variables and continuous 

output variables that are prevalent in tourist attractions, 

thereby limiting the engineering feasibility of their 

optimization results. Overall, existing research has yet to 

establish a comprehensive technical framework tailored to the 

operational characteristics of tourist attractions that integrates 

thermodynamic fundamentals with advanced optimization 

algorithms. As a result, current approaches remain insufficient 

to meet the practical demands of achieving low-carbon, high-

efficiency, and economically coordinated optimization in 

tourist attraction energy systems. 

To address the aforementioned research gap, a systematic 

study was conducted on the integrated energy systems of 

tourist attractions, following the core logical framework of 

characteristic analysis–thermodynamic modeling–multi-

objective optimization. First, multi-scale system boundaries 

were defined, and the fluctuation patterns of electrical, 

thermal, and cooling loads were analyzed from spatiotemporal 

dimensions. High- and low-grade energy demands were 

distinguished to establish a foundation for subsequent 

modeling and optimization. Second, based on the first and 

second laws of thermodynamics, a refined model of key 

components—such as PV panels, wind turbines, and heat 

pumps—was developed. By coupling energy and material 

flows, a system-level steady-state and dynamic simulation 

model was constructed, enabling precise depiction of energy 

conversion processes and exergy losses. Finally, considering 

the multi-objective conflict, nonlinearity, and high 

dimensionality inherent in the optimization problem of tourist 

attractions, an improved NSGA-III algorithm was selected and 

modified. A three-dimensional objective function 

encompassing economic, environmental, and energy-

efficiency objectives was formulated, and global optimization 

of system operation strategies was achieved under constraints 

such as energy balance and equipment operating limits. 

The innovations of this study are reflected in three main 

aspects: (a) A spatiotemporal coupling and energy-grade 

stratification framework for load characteristic analysis in 

tourist attractions was proposed, quantifying the coupling 

mechanisms among visitor behavior, seasonal rhythms, and 

energy demand, while establishing energy-grade matching 

criteria for various service types. (b) A full-chain 

thermodynamic model incorporating exergy efficiency was 

constructed, overcoming the limitations of conventional 

energy balance models and achieving a dual characterization 

of both the quantity and quality of energy. (c) A load-coupling-

based population initialization and hierarchical constraint-

handling strategy was introduced to improve the NSGA-III 

algorithm, enabling adaptation to the multi-variable coupling 

characteristics of tourist attractions and enhancing 

convergence and engineering feasibility in high-dimensional 

optimization problems. 

The research outcomes are expected to provide theoretical 

and technical support for the planning, design, and operational 

optimization of integrated energy systems in tourist 

attractions. These results possess significant engineering 

application value in promoting the transformation of energy 

consumption structures, reducing carbon emissions, and 

improving operational efficiency within tourist attractions. 

The structure of the study is as follows: Section 2 presents the 

characteristic analysis and thermodynamic modeling of the 

tourist attraction energy system; Section 3 constructs the 

multi-objective optimization model and applies the improved 

algorithm for solution; the subsequent sections validate the 

effectiveness of the proposed model and algorithm through 

case studies and provide optimization strategies and 

recommendations. 

 

 

2. CHARACTERISTIC ANALYSIS OF ENERGY 

SYSTEMS IN TOURIST ATTRACTIONS 

 

2.1 Definition of system boundaries 

 

The scientific definition of system boundaries serves as a 

prerequisite for the thermodynamic modeling and energy 

efficiency optimization of energy systems in tourist 

attractions. The core objective lies in clarifying the physical 

scope, functional boundaries, and temporal dimensions of the 

study to prevent modeling distortion or deviation of 

optimization objectives from actual operational requirements 

caused by ambiguous boundaries. From the physical boundary 

perspective, the research scope can be divided into three 

hierarchical levels according to the management structure, 

spatial distribution, and energy flow characteristics of the 

tourist attraction: the overall attraction boundary, the 

functional cluster boundary, and the equipment unit boundary. 

The overall attraction boundary is defined based on the 

administrative or natural geographical limits of the attraction. 

It encompasses all energy-consuming units and energy-

supplying facilities within the area and is suitable for overall 

energy planning and macro-level energy efficiency 

assessment. The functional cluster boundary focuses on 

subsystems with relatively independent energy consumption 

characteristics, such as independent resort zones, hotel 

clusters, and core scenic areas. Within this boundary, the 

input–output relationships of energy flows are more explicit, 

facilitating subsystem-level modeling and localized 

optimization. The equipment unit boundary centers on 

individual energy-supply or energy-use devices, supporting 

detailed thermodynamic characterization and optimization of 
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operating parameters at the equipment level. 

The functional boundary focuses on the essential structure 

and interactions of energy flows. It is necessary to identify the 

types of energy involved, the energy conversion processes, 

and the relationships among energy flows while excluding 

auxiliary systems that are not directly connected to the core 

energy network. This approach ensures that modeling 

complexity remains manageable. The temporal boundary must 

correspond to the fluctuation cycles of the attraction’s energy 

load. Typically, an annual timescale is adopted to capture 

variations across peak and off-peak seasons, while a daily 

interval is used as the smallest standard time unit to reflect 

diurnal load fluctuations. For scenarios exhibiting strong 

short-term volatility, the time resolution can be further refined 

to the hourly or even minute level to ensure that the model 

accurately captures the operational characteristics of the 

energy system across multiple temporal scales. 

During boundary definition, adherence to the principles of 

completeness, independence, and operability is required. 

Completeness demands that the boundaries include the entire 

energy chain—from energy supply and distribution to 

consumption—to ensure comprehensive energy balance 

analysis. Independence requires that the interactions between 

the system and its external environment be quantifiable, thus 

minimizing the influence of uncontrollable factors on 

modeling precision. Operability ensures that boundary 

demarcation aligns with the technical feasibility of data 

acquisition and model computation, maintaining an 

appropriate balance between research depth and practical 

engineering applicability. 

 

2.2 Load characteristic analysis 

 

The core characteristics of energy loads in tourist attractions 

are defined by their service-oriented, open, and seasonal 

operational attributes, which collectively lead to pronounced 

spatiotemporal nonuniformity. Moreover, different energy-use 

types exhibit distinct patterns of load fluctuation and energy-

grade demand, which serve as fundamental references for the 

architectural design and thermodynamic optimization of 

integrated energy systems in tourist attractions. 

From the temporal dimension, load fluctuations display a 

multi-scale superposition feature, primarily driven by four 

factors: seasonal variation, diurnal rhythm, holiday effects, 

and weather disturbances. At the seasonal scale, alternating 

peak and off-peak tourist seasons induce significant annual 

periodic fluctuations in energy demand. During peak seasons, 

the number of visitors typically reaches three to five times that 

of the off-season, leading to synchronous increases in air-

conditioning cooling loads, heating loads, hotel hot water 

demand, and power consumption from recreational facilities. 

The peak cooling load in the summer high season can reach 

four to six times that of the off-season, while the peak heating 

load in the winter season is approximately 2.5 to 3 times 

higher. In contrast, off-season periods are characterized by a 

sharp decline in visitor numbers, with energy consumption 

dominated by essential operational loads. The overall load 

intensity during these periods is only one-fifth to one-third of 

that observed in peak seasons. At the diurnal scale, load 

fluctuations are strongly coupled with the rhythm of visitor 

activities. Daytime hours correspond to the load peak period, 

encompassing high-frequency energy-use scenarios such as 

amusement facility operation, restaurant services, and scenic 

transportation. During this period, electrical, cooling, and 

thermal loads rise concurrently. Nighttime loads are primarily 

associated with hotel accommodation energy use, with 

intensity reduced to one-third to one-half of the daytime peak, 

reaching the lowest levels between 1:00 a.m. and 4:00 a.m. 

The holiday effect and sudden surges in visitor flow further 

intensify short-term load volatility. During extended holidays 

such as the National Day and Spring Festival, the daily peak 

load can reach two to three times that of regular working days, 

with significantly prolonged peak durations. Extreme weather 

conditions also alter load characteristics by influencing visitor 

behavior and energy demand. For instance, under high-

temperature conditions, air-conditioning cooling loads 

increase by approximately 30%–50% compared with normal 

weather, whereas heavy rainfall causes a sharp decline in 

outdoor amusement facility loads and a slight rise in indoor 

restaurant and retail facility loads. 

Corresponding to the multi-scale temporal fluctuations, the 

spatial nonuniformity of load distribution originates from 

differences in energy-use attributes across functional zones 

within the tourist attraction. The hotel cluster area constitutes 

the primary energy consumption unit, accounting for 

approximately 40%–60% of the total heating load and 30%–

45% of the cooling load, with relatively stable load intensity. 

The amusement facility area is dominated by power loads, 

representing 20%–30% of the total electrical load, and exhibits 

significant short-term fluctuations. The transportation system 

load is mainly concentrated along primary traffic corridors 

where electric vehicle charging stations are distributed, 

showing a “point-distributed, time-concentrated” pattern; 

during peak hours, charging loads account for 15%–25% of 

the total electrical demand. In contrast, public and landscape 

lighting loads are distributed along roads, plazas, and scenic 

corridors, exhibiting a “linear–planar combined” spatial 

pattern, with load peaks occurring exclusively at night. In 

addition, the coupling between different regional loads is 

relatively weak. For example, the peak heating load in the 

hotel area and the peak electrical load in the amusement area 

occur at different times. This temporal offset creates favorable 

conditions for multi-energy complementarity and peak load 

shifting. 

 

2.3 Analysis of energy-grade demand analysis 

 

According to the second law of thermodynamics, the energy 

demand in tourist attractions can be categorized into high- and 

low-grade energy demands, distinguished based on the 

minimum driving energy grade required by the energy-

consuming equipment. The difference between these two 

categories directly determines the selection of the energy 

supply system and the pathway for cascade utilization of 

energy. 

High-grade energy is primarily represented by electricity, 

whose exergy value approaches 100%. It is mainly utilized to 

meet demands involving mechanical drive, precision control, 

and high-quality lighting. Typical application scenarios 

include electric motor drives for amusement facilities, power 

supply for electric vehicle charging stations, operation of 

elevators and ventilation equipment, precision air-

conditioning control in hotels and office areas, and Light 

Emitting Diode (LED) lighting systems. The defining 

characteristics of such high-grade energy demands are their 

requirement for high energy conversion efficiency, rapid 

response, and irreplaceability by low-grade energy without 

incurring significant exergy losses. High-grade energy 
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demand in tourist attractions accounts for approximately 45%–

60% of total energy consumption, with fluctuations strongly 

correlated to the intensity of visitor activities. During peak 

tourist seasons, the maximum demand can reach three to four 

times that observed in the off-season. 

Low-grade energy primarily includes medium- and low-

temperature thermal energy as well as medium- and high-

temperature cooling energy, both characterized by relatively 

low exergy values. These forms of energy are mainly 

consumed to meet comfort-oriented energy demands. The 

domestic hot water load represents the most significant low-

grade thermal load, with a stable temperature requirement 

ranging between 45℃ and 55℃. This demand is concentrated 

in hotel guestrooms, restaurant kitchens, and public bathing 

facilities, with peak loads occurring synchronously with guest 

washing and dining periods. The space heating load, typically 

within a temperature range of 20℃ to 26℃, is concentrated in 

the winter peak season and is strongly influenced by the 

geographical location of the tourist attraction. In northern 

regions, the heating period generally lasts 3–6 months, with a 

load intensity of 80–120 W/m², whereas in southern regions, 

heating demand occurs only during short cold spells. The air-

conditioning cooling load, with a temperature range of 7℃ to 

12℃, constitutes the core load during the summer peak 

season. Its load intensity ranges between 100–150 W/m² and 

is jointly influenced by outdoor temperature, solar radiation, 

and visitor density. Low-grade energy demand accounts for 

approximately 40%–55% of the total energy consumption. Its 

fluctuation is primarily driven by seasonal variation, climatic 

conditions, and accommodation occupancy rates, with a 

relatively smoother temporal distribution compared to high-

grade energy demand. 

It is noteworthy that a significant issue of energy-grade 

mismatch exists in tourist attractions. A considerable portion 

of low-grade energy demands continues to rely on the direct 

supply of high-grade electrical energy, resulting in reduced 

overall energy utilization efficiency. Simultaneously, the 

temporal mismatch between the generation characteristics of 

distributed renewable high-grade electricity and the actual 

load profiles further exacerbates energy waste. Therefore, the 

explicit identification and classification of energy-grade 

demands constitute a critical prerequisite for achieving 

cascade energy utilization and enhancing the exergy efficiency 

of integrated energy systems in tourist attractions. 

 

2.4 Design of the energy system architecture 

 

Based on the spatiotemporal nonuniformity and 

differentiated energy-grade characteristics of energy loads in 

tourist attractions, the architectural design of integrated energy 

systems should adhere to the principles of multi-energy 

complementarity, cascade utilization, flexible regulation, and 

low-carbon efficiency. A full-chain coordinated system 

encompassing the energy supply side, distribution side, 

consumption side, and energy storage side should be 

established to effectively address load fluctuations, enhance 

renewable energy utilization, and reduce system exergy losses. 

Figure 1 illustrates the schematic architecture of the 

integrated energy system for tourist attractions. On the energy 

supply side, a configuration pattern of “renewable energy as 

the primary source, fossil energy as the backup, and multi-

energy synergistic complementarity” is adopted. The core 

objective is to optimize the capacity ratios and operational 

strategies of different supply units according to the attraction’s 

resource endowment and load characteristics. The supply units 

of the renewable energy supply serve as the central 

components. PV systems are prioritized for installation on 

hotel rooftops, parking canopies, and the roofs of scenic 

buildings, thereby utilizing idle spaces through distributed 

access modes to meet nearby energy demands and reduce 

transmission losses. Wind power systems are suitable for 

attractions with abundant wind resources, with site selection 

requiring careful consideration of ecological protection 

constraints. The ground-source heat pump system, leveraging 

the stable temperature of soil or groundwater, functions as the 

core supply unit for low-grade cooling and heating loads. It 

can meet approximately 60%–80% of the total heating and air-

conditioning cooling demand, with a coefficient of 

performance (COP) ranging between 3 and 6, significantly 

higher than that of conventional systems. 

In addition, the solar thermal collector system operates 

synergistically with the ground-source heat pump, primarily 

serving domestic hot water needs and capable of covering 

approximately 50%–70% of the total hot water load. The fossil 

energy supply subsystem acts as a backup and reliability 

assurance mechanism. Gas-fired boilers are operated during 

winter heating peaks, extreme low-temperature events, or 

periods of renewable energy shortage to supplement thermal 

demand gaps. Diesel generators are reserved exclusively for 

emergency scenarios such as grid failures, ensuring the 

reliability of power supply to critical energy-consuming units. 

The grid-interactive unit provides essential flexibility 

regulation for the system. It compensates for renewable energy 

shortfalls and facilitates the export of surplus electricity 

generated by distributed sources within the attraction. Through 

time-of-use electricity pricing mechanisms, the unit guides the 

system toward optimal operation while reducing overall 

operating costs. 

The energy consumption side architecture is designed with 

the core principle of “zonal division, energy-grade 

differentiation, and demand-oriented supply,” optimizing the 

configuration of energy-use equipment and supply modes 

according to the specific characteristics of each functional 

area. For the hotel cluster, which represents the primary energy 

consumption zone, a configuration of “central air-conditioning 

system + domestic hot water circulation system + distributed 

lighting system” is adopted. The central air-conditioning 

system operates synergistically with the ground-source heat 

pump and solar thermal collector system. The domestic hot 

water system employs a dual-backup configuration of “solar 

thermal collector + electric auxiliary heating.” The lighting 

system utilizes LED energy-saving fixtures equipped with 

intelligent sensing control modules. In the amusement facility 

area, where power load dominates, a configuration of 

“dedicated charging piles + electric drive systems” is 

implemented. The layout and charging strategy of charging 

piles are optimized according to operational schedules and 

power demand profiles. Independent PV power systems are 

deployed for outdoor amusement facilities to supply lighting 

and emergency power, thereby reducing dependence on the 

central grid. The transportation system of the tourist attraction 

is primarily composed of electric shuttle vehicles, supported 

by a distributed charging network. The layout is efficiently 

integrated with main transport corridors, visitor transfer hubs, 

and hotel entrances. A “slow-charging-dominant, fast-

charging-supplementary” model is applied to accommodate 

diverse charging requirements under different operational 

scenarios. For public service areas, such as restaurants and 
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shopping centers, decentralized air-conditioning and local 

ventilation systems are adopted, with operational parameters 

dynamically adjusted in response to real-time occupant 

density. Public and landscape lighting systems are equipped 

with intelligent control systems that automatically regulate 

brightness and operating schedules according to natural light 

intensity and visitor flow, effectively reducing unnecessary 

energy consumption. 

 

 
 

Figure 1. Schematic architecture of the integrated energy system for tourist attractions 

 

The energy storage side constitutes a key subsystem for 

mitigating spatiotemporal load imbalances, employing a 

multi-dimensional configuration of electrical, thermal, and 

cooling energy storage. The electrical energy storage units are 

sized based on the installed capacities of PV and wind power 

systems as well as the peak-to-valley load difference. These 

units primarily serve to smooth renewable generation 

fluctuations, perform peak shaving and valley filling, and 

provide emergency backup power. The thermal energy storage 

system operates in coordination with solar thermal collectors 

and ground-source heat pumps, storing excess thermal energy 

during low-demand periods and releasing it during hot water 

demand peaks. The cooling energy storage system produces 

and stores ice using off-peak electricity at night, supplying 

cooling during daytime air-conditioning peaks, thereby 

reducing grid pressure and operational costs. The energy 

transmission and distribution side is designed with the goals of 

“short distance, low loss, and high reliability.” The layout of 

pipelines and electrical lines is optimized. Cooling and heating 

pipelines are constructed with high-performance insulation 

materials, and routing is planned to minimize transmission 

distances. Electrical distribution lines are predominantly 

installed underground to preserve the scenic integrity of the 

attraction while optimizing cable cross-sections to reduce 

transmission losses. The transmission and distribution system 

is equipped with intelligent monitoring and control modules 

for real-time supervision of pipeline pressure, temperature, 

current, and voltage. Faults or leaks can thus be promptly 

detected, ensuring safe and efficient system operation. 

 

 

3. THERMODYNAMIC MODELING OF THE ENERGY 

SYSTEM IN TOURIST ATTRACTIONS 

 

Based on the preceding analysis of the physical boundaries, 

load characteristics, and system architecture of energy systems 

in tourist attractions, the thermodynamic modeling was 

established on the fundamental principles of the law of energy 

conservation and the law of entropy increase. A hierarchical 

modeling framework was adopted, combining component-

level refined modeling with system-level coupled modeling, to 

construct a mathematical model capable of accurately 

representing the mechanisms of energy conversion, transfer, 

and dissipation within the system. The developed model is 

required to comprehensively account for the spatiotemporal 

fluctuations of energy loads, the stochastic nature of renewable 

energy outputs, and the multi-energy complementary 

characteristics of the system. This provides a robust 

quantitative analytical tool for energy efficiency optimization 

and operational strategy formulation in subsequent research 

and practical applications. Several key assumptions were 

established during the modeling process: (a) The effect of 

pressure loss in the transmission and distribution network on 

energy grade is neglected, and only temperature-induced 

exergy losses are considered. (b) All components are assumed 

to operate under quasi-steady-state conditions, where dynamic 

responses are simplified as steady-state superpositions within 

each time step. (c) During the charging and discharging 

processes of energy storage devices, parameters such as 

temperature and pressure are assumed to be uniformly 

distributed, thereby avoiding the additional complexity caused 

by local thermodynamic nonequilibrium. 

 

3.1 Component-level thermodynamic model 

 

The component-level model serves as the foundation of the 

entire system model. It was established for the key equipment 

within the tourist attraction energy system—including PV 

modules, wind turbines, heat pumps, energy storage units, and 

boilers—to quantify the relationships between their input–

1738



 

output characteristics and critical operating parameters. 

Moreover, exergy analysis indicators were incorporated to 

evaluate and quantify energy utilization efficiency, ensuring 

the thermodynamic consistency of the overall modeling 

framework. 

 

3.1.1 PV system model 

The core function of the PV system is to convert solar 

irradiance into electrical energy, with its output characteristics 

primarily influenced by solar radiation intensity, ambient 

temperature, and the aging condition of the PV modules. 

Based on the law of energy conservation, the output power 

model of the PV system can be expressed as: 

 

( )
( )

( )( )1pv stc c stc pv

stc

G t
P t P k T t T

G
 =   + −  

 (1) 

 

The temperature model of the PV cell is given by: 

 

( ) ( ) ( )
20

800
c a

NOCT
T t T t G t

−
= +   (2) 

 

where, Ppv(t) denotes the PV output power at time t (kW); Pstc 

represents the rated output power under standard test 

conditions (STC) (kW); G(t) is the total solar irradiance at time 

t (W/m²); Gstc is the standard irradiance under STC, equal to 

1000 W/m²; Tc(t) denotes the PV cell temperature (℃); Ta(t) 

represents the ambient temperature (℃); Tstc is the standard 

cell temperature, set at 25℃; k is the power temperature 

coefficient, equal to −0.0045/℃; ηpv denotes the combined 

efficiency of the inverter and electrical wiring, typically 

ranging between 0.92 and 0.96; and NOCT is the nominal 

operating cell temperature, ranging from 45℃ to 48℃. 

 

3.1.2 Wind power generation system model 

In tourist attractions, small-scale distributed wind turbines 

are predominantly employed, and their output power exhibits 

a nonlinear dependence on wind speed. To accurately describe 

this relationship, the power characteristic model was 

developed based on the law of energy conservation, 

incorporating the operational constraints of cut-in, rated, and 

cut-out wind speeds. The output power of the wind turbine can 

be expressed as: 

 

( )

( ) ( )

( ) ( )

( )

3

0,  or 

1
,

2

,

ci co

wt p wt ci r

rated r co

v t v v t v

P t Av t C v v t v

P v v t v

 

 



=  

  

 (3) 

 

where, Pwt(t) denotes the wind turbine output power at time t 

(kW); v(t) represents the wind speed at hub height (m/s); vci is 

the cut-in wind speed, typically between 3–4 m/s; vco is the cut-

out wind speed, typically 25 m/s; vr is the rated wind speed, 

generally between 12–15 m/s; ρ represents the air density, 

equal to 1.225 kg/m³; A denotes the swept area of the wind 

turbine rotor (m²); Cp is the power coefficient, typically 

ranging from 0.35 to 0.45; ηwt represents the generator 

efficiency, within 0.90–0.95; and Prated denotes the rated 

power output of the turbine (kW). 

 

3.1.3 Heat pump system model 

The heat pump system serves as the core component for 

supplying low-grade heating and cooling loads in tourist 

attractions. Its performance is directly influenced by the 

evaporation temperature and condensation temperature. Based 

on the first law of thermodynamics, the performance model 

under heating and cooling conditions was formulated below. 

The heating COP is expressed as: 

 

( )
( )

( ) ( )
cond

h carnot

cond evap

T t
COP t

T t T t
= 

−
 (4) 

 

The cooling COP is expressed as: 

 

( )
( )

( ) ( )
evap

c carnot

cond evap

T t
COP t

T t T t
= 

−
 (5) 

 

The power balance relationship of the heat pump system is 

given by: 

 

( )
( )

( )

( )

( )
heating cooling

hp

h c

Q t Q t
P t

COP t COP t
= =  (6) 

 

where, COPh(t) represents the heating COP; COPc(t) denotes 

the cooling COP; Tcond(t) and Tevap(t) are the condensation and 

evaporation temperatures, respectively (K); ηcarnot is the Carnot 

efficiency factor, typically ranging from 0.5 to 0.7; Php(t) 

denotes the input electrical power of the heat pump (kW); and 

Qheating(t) and Qcooling(t) represent the heating power and 

cooling power, respectively (kW). 

 

3.1.4 Energy storage system models 

The energy storage system in tourist attractions 

encompasses electrical, thermal, and cooling storage 

subsystems. Separate charge–discharge characteristic models 

were established for each, with emphasis placed on efficiency 

degradation, self-discharge, and state constraints. The 

electrical energy storage model was developed based on the 

law of energy conservation, describing the relationship 

between charging/discharging power and the state of charge 

(SOC), while incorporating charge–discharge efficiency and 

self-discharge rate corrections. The expression is formulated 

as: 

 

( )
( )

( )

max

dis

ch ch

bat dis

bat

P t
P t

dSOC t

dt E




−

=  
(7) 

 

The thermal energy storage model accounts for both latent 

and sensible heat storage in phase change materials, 

establishing the relationship between temperature and stored 

thermal energy under energy conservation principles: 

 

( ) ( ) ( )
max

tes ch dis

tes

bat

dSOC t Q t Q t

dt E


−
=   (8) 

 

The cooling energy storage model utilizes the latent heat of 

ice melting to store cold energy. Its mathematical formulation 

is analogous to that of the thermal energy storage model, with 

the principal difference lying in the exergy computation of 

cold energy and the phase change parameters. The phase 

change temperature was set at 0℃, and the latent heat of the 
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phase change was taken as 334 kJ/kg. The operational 

constraints corresponding to the aforementioned models are 

expressed as: 

 

( )
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
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 (9) 

 

where, SOC(t) denotes the state of charge, ranging from 0 to 

1; ηch and ηdis represent the charging and discharging 

efficiencies, respectively, typically within 0.92–0.98; Pch(t) 

and Pdis(t) denote the charging power and discharging power 

(kW); Emax
bat is the maximum capacity of the battery storage 

system (kWh); Emax
tes represents the maximum capacity of the 

thermal storage tank (kWh); ηtes denotes the thermal storage 

efficiency, generally ranging between 0.85 and 0.95; and δsd 

refers to the self-discharge rate (%/day). 

 

3.1.5 Gas boiler model 

The gas boiler functions as a backup heat source in tourist 

attractions, with its primary purpose being the conversion of 

the chemical energy of natural gas into thermal energy. Based 

on the first law of thermodynamics, the energy balance 

equation for the boiler system is established as follows: 

 

( ) ( )boiler boiler fuel fuelQ t m t LHV=    (10) 

 

The exergy efficiency of the boiler is calculated according 

to the following expression: 
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(11) 

 

where, Qboiler(t) denotes the boiler thermal output power (kW); 

ηboiler represents the boiler thermal efficiency, typically 

ranging from 0.85 to 0.95; 𝑚̇𝑓𝑢𝑒𝑙(t) is the mass flow rate of the 

fuel (kg/s); LHVfuel denotes the lower heating value of the fuel 

(kJ/kg); ηex,boiler represents the exergy efficiency of the boiler; 

Tsteam is the steam temperature (K); T0 denotes the ambient 

temperature (K); and exfuel represents the specific exergy of the 

fuel (kJ/kg). 

 

3.2 System-level coupling model 

 

At the system level, the aforementioned component models 

were coupled through energy flow, mass flow, and 

information flow, thereby forming a comprehensive 

thermodynamic model that encompasses the entire “energy 

supply–transmission and distribution–consumption–storage” 

chain. The system-level model is classified into steady-state 

and dynamic categories, corresponding respectively to the 

planning and design and operational optimization phases of 

the energy system in tourist attractions. 

(a) Steady-state model 

The system energy balance equations were formulated 

based on the law of energy conservation, with their primary 

objective being the matching between total energy supply and 

total energy demand, while ensuring that the operational 

constraints of all components are satisfied. Taking a typical 

day under steady operating conditions in a tourist attraction as 

an example, the system energy balance equations are 

expressed below. The electricity balance, thermal energy 

balance, cooling energy balance, and exergy balance 

equations, respectively, are expressed as follows: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

bat
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( ) ( ) ( ) ( ) ( ) ( )tes ces

c hp dis load ch lossCOP t P t Q t C t Q t C t + = + +  (14) 

 

in out destruction lossEx Ex Ex Ex= + +     (15) 

 

where, Pgrid(t) denotes the purchased power from the utility 

grid (kW); Pelec
load(t) represents the electrical load (kW); 

Hload(t) denotes the thermal load (kW); Cload(t) represents the 

cooling load (kW); Hloss(t) and Cloos(t) indicate the heat 

network loss and cooling network loss (kW), respectively; E·x 

represents the exergy flow rate (kW); and E·xdestruction denotes 

the exergy destruction rate (kW). The system energy 

performance indicators include energy utilization efficiency 

and exergy efficiency, defined as follows: 
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(b) Dynamic model 

To account for the intra-day fluctuations in load demand and 

the short-term variability of renewable energy output, a 

dynamic simulation model was developed using a time-step 

method. The core of this model lies in incorporating the 

dynamic response characteristics of components into the 

steady-state framework. For example, the dynamic 

temperature response model of PV modules, which is 

influenced by thermal inertia, can be expressed as T=T+(G·α-

U·(T-T))·Δt/(m·c), where α is the absorption coefficient of the 

PV module, U denotes the overall heat loss coefficient, m 

represents the mass of the PV module, and c is the specific heat 

capacity of the module. The dynamic model outputs include 

the time-dependent operational parameters of each 

component, the system-level energy performance indicators, 

and the interactive power. These simulations were typically 

implemented using professional platforms such as 

MATLAB/Simulink or TRNSYS. 

 

 

4. ENERGY EFFICIENCY OPTIMIZATION OF THE 

TOURIST ATTRACTION ENERGY SYSTEM 

 

4.1 Optimization problem and objective function 

 

The energy efficiency optimization of the integrated energy 
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system in tourist attractions fundamentally aims to achieve 

synergistic enhancement of system performance under a 

complex, multi-energy coupled environment, characterized by 

source–load randomness and multiple interacting constraints. 

This process is accomplished through the dynamic regulation 

of decision variables. The core of this optimization framework 

lies in constructing a comprehensive modeling system that 

integrates problem definition, variable representation, 

objective coupling, and constraint quantification. The 

optimization design presented in this section focuses on 

defining the essential elements of the problem, taking into 

account the operational characteristics of tourist attractions, 

such as significant fluctuations in service-oriented loads, a 

high proportion of renewable energy, and a strong demand for 

multi-energy complementarity. Within this framework, the 

optimization boundaries and decision variable dimensions 

were explicitly defined. A multi-objective function system 

was developed to encompass the key performance dimensions 

of economic efficiency, environmental sustainability, and 

energy performance. Moreover, the coupling mechanisms and 

trade-off logic among these objectives were systematically 

elaborated, providing a theoretical foundation for subsequent 

application of advanced optimization algorithms. 

 

4.1.1 Definition of the optimization problem and 

representation of decision variables 

The scientific definition of the optimization problem must 

be grounded in the precise alignment between system 

boundaries and operational scenarios. Based on the 

thermodynamic model developed in Section 2, the 

optimization boundary is defined to encompass the entire 

“energy supply–storage–transmission and distribution–

consumption” chain. The temporal scale extends across 

annual, daily, and hourly levels, while the spatial scale 

corresponds to the full spatial extent of the tourist attraction, 

covering functional subregions such as hotel clusters, 

recreational facilities, and public service areas. Representative 

operating scenarios were established for various typical 

conditions—peak-season weekdays, peak-season holidays, 

off-season weekdays, and extreme weather events—to ensure 

the general applicability of the model. 

The selection of decision variables must simultaneously 

satisfy the principles of control feasibility and state 

completeness, allowing for a comprehensive representation of 

both the operational states and regulatory actions within the 

system. These decision variables are categorized into 

continuous variables and binary variables according to their 

characteristics. The continuous variables include Pgrid(t), 

which is the purchased power from the grid at time t (kW); 

Psell(t), which is the power sold to the grid at time t (kW); 

Pboiler(t), which is the thermal output of the gas boiler (kW); 

Php,h(t), which is the heating power of the heat pump (kW); 

Php,c(t), which is the cooling power of the heat pump (kW); 

Pchbat(t), which is the charging power of the battery (kW); 

Pdisbat(t), which is the discharging power of the battery (kW); 

Qchtes(t), which is the charging thermal power of the thermal 

storage tank (kW); Qdistes(t), which is the discharging thermal 

power of the thermal storage tank (kW); SOCbat(t), which is 

the SOC of the battery (0–1); and SOCtes(t), which is the SOC 

of the thermal storage tank (0–1). The binary variables include 

uboiler(t), which is the on/off state of the gas boiler (0/1); uhp(t), 

which is the on/off state of the heat pump (0/1); uchbat(t), which 

is the charging state of the battery (0/1); and udisbat(t), which is 

the discharging state of the battery (0/1). 

All decision variables must conform to the principle of 

physical feasibility, ensuring that their values are consistent 

with equipment operational mechanisms, tourist attraction 

management rules, and external regulatory constraints. This 

principle establishes the foundation for the formulation of 

subsequent constraint conditions. 

 

4.1.2 Construction of the multi-objective function and 

coupling mechanism 

The core objective of optimizing the energy system of a 

tourist attraction is to achieve synergistic coordination among 

economic controllability, environmental sustainability, and 

energy efficiency enhancement. These three goals correspond 

respectively to the economic, environmental, and energy 

performance dimensions of the system. Due to their inherent 

coupling and trade-offs, a multi-objective optimization 

function must be established, wherein weighting coefficients 

are employed to quantify the relative priority of each 

objective, reflecting the operational orientation of the tourist 

attraction. 

(a) Economic objective: minimization of total operating 

cost 

Economic performance constitutes the fundamental 

constraint of system operation in tourist attractions. The total 

operating cost (C) includes the fuel consumption cost, grid 

interaction cost, equipment operation and maintenance 

(O&M) cost, and start-up/shutdown cost. This total cost must 

be accurately quantified based on the system composition and 

operational characteristics of the integrated energy system, as 

expressed by: 

 

1min grid fuel om sellF C C C R= + + −  (18) 

 

Each cost component must be formulated to reflect realistic 

operational conditions, with specific sub-models derived 

below. The grid purchasing cost, fuel consumption cost, O&M 

cost, and electricity selling revenue, respectively, can be 

expressed as follows: 
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(b) Environmental objective: minimization of carbon 

emissions 

In alignment with the national dual-carbon goals and the 

green development objectives of tourist attractions, the total 

carbon emissions (E) of the system primarily originate from 

fossil fuel combustion and electricity purchased from the grid. 

In contrast, renewable energy systems and energy storage units 

are assumed to operate with zero direct carbon emissions. 

Consequently, the optimization objective focuses on 

increasing the renewable energy utilization rate, reducing 

fossil fuel consumption, and minimizing dependence on high-
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carbon grid electricity. The carbon emission calculation model 

was formulated based on the Life Cycle Assessment (LCA) 

approach, considering only the operational phase emissions. 

The general expression of the model is formulated as follows: 

 

2min grid fuelF CE CE= +  (23) 

 

The specific expressions for each emission source are 

detailed below. The grid electricity emissions and fuel 

combustion emissions can be expressed as follows: 
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(c) Energy efficiency objective: maximization of system 

exergy efficiency 

Based on the second law of thermodynamics, exergy 

efficiency serves as a more accurate indicator of the quality-

based utilization efficiency of energy, overcoming the 

limitation of conventional energy efficiency measures that 

focus solely on quantity while neglecting energy grade 

matching. This metric is particularly suited to the multi-grade 

energy demand and multi-source energy supply coupling 

characteristics typical of tourist attraction energy systems. The 

total system exergy efficiency is defined as the ratio between 

the total useful exergy output on the demand side and the total 

exergy input on the supply side. The corresponding objective 

function is expressed as: 
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The detailed exergy efficiency calculation is given below. 

The exergy output and input can be expressed as follows: 
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( ) ( ) ( ) ( )in grid fuel renE t E t E t E t= + +  (28) 

 

All parameters are defined as follows: cbuy(t) and csell(t): 

time-of-use electricity purchase and selling prices 

(Yuan/kWh); cfuel: unit fuel cost (Yuan/kg or Yuan/m³); com,*: 

O&M coefficients of each device (Yuan/kWh); Δt: time 

interval (1 hour); egrid(t) and efuel: grid and fuel carbon emission 

factors (kg CO₂/kWh and kg CO₂/kg, respectively); 

Pmin/max
boiler and Pmin/max

hp: minimum/maximum output powers 

of the boiler and heat pump (kW); Emax
bat and Emax

tes: 

maximum capacities of the battery and thermal storage tank 

(kWh); ηbat
ch/dis: battery charge/discharge efficiency (0.92–

0.98); ηtes
ch/dis: thermal storage charge/discharge efficiency 

(0.85–0.95); Pelec
load(t): the electrical load curve, which 

includes hotel, lighting, and transportation loads; Hload(t): the 

thermal load curve, including hot water and heating loads; 

Cload(t): the cooling load curve, reflecting air-conditioning and 

refrigeration demands; and Pother(t): other electrical loads, such 

as those arising from entertainment facilities. 

 

 

5. MULTI-OBJECTIVE OPTIMIZATION AND 

SOLUTION IMPLEMENTATION 

 

The optimization problem constructed for the tourist 

attraction energy system exhibits pronounced characteristics 

of multi-objective conflict, nonlinearity, high dimensionality, 

and strong constraint coupling. Traditional linear optimization 

methods are inadequate for addressing the coupling of 

nonlinear and discrete variables, while low-dimensional multi-

objective algorithms struggle to balance convergence and 

distribution performance in high-dimensional scenarios. To 

overcome these limitations, NSGA-III was adopted as the core 

algorithm. This section systematically elaborates on the 

algorithm selection rationale, scenario-specific adaptation 

strategies, end-to-end solution implementation, and 

performance verification, thereby establishing a closed-loop 

framework integrating problem formulation, algorithmic 

logic, and solution realization. 

 

5.1 Algorithm selection: Adaptability analysis of NSGA-III 

 

The selection of the algorithm is guided by four principal 

criteria: objective dimensional adaptability, variable type 

compatibility, constraint-handling capability, and 

computational efficiency for engineering applications. 

Through a comparative analysis of mainstream multi-

objective intelligent optimization algorithms, NSGA-III was 

identified as uniquely suited to the optimization requirements 

of the tourist attraction energy system. Its adaptability is 

primarily reflected in three aspects. The first is the high-

dimensional objective balancing mechanism. NSGA-III 

introduces a reference-point-based approach that transforms a 

multi-objective conflict into an association optimization 

between solutions and a set of uniformly distributed reference 

points. This design effectively mitigates the core deficiency of 

NSGA-II, wherein excessive non-dominated solutions under 

three or more objectives lead to ineffective selection. The 

second is the compatibility with hybrid variable types. A 

hybrid encoding strategy combining real-coded representation 

for continuous variables and binary-coded representation for 

discrete variables was employed. This dual-variable encoding, 

coupled with targeted genetic operators, enables precise 

adaptation to the system’s dual control requirements—

continuous power regulation and discrete state switching. The 

third is the engineering constraint friendliness. NSGA-III 

incorporates a hierarchical constraint-handling mechanism, 

allowing direct correspondence to the system’s hard energy 

balance constraints and soft SOC constraints for real 

engineering scenarios. This approach prevents over-

constraining, which may lead to feasible domain shrinkage, as 

well as constraint relaxation, which could otherwise yield 

infeasible solutions. 

 

5.2 Adaptation and improvement of NSGA-III for tourist 

attraction scenarios 

 

To address the inherent limitations of the original NSGA-

III when applied to tourist attraction energy systems—namely, 

the low proportion of feasible solutions in the initial 

population, weak coupling between fitness evaluation and 
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optimization objectives, and constraint-handling operations 

that may induce convergence deviation—targeted adaptations 

were implemented across three dimensions: population 

initialization, fitness evaluation, and constraint handling. In 

terms of population initialization, instead of adopting 

conventional random initialization, a “typical scenario 

clustering + pre-constraint verification” strategy was 

developed. Historical load data from the tourist attraction were 

first clustered using the K-means algorithm, identifying three 

representative operating scenarios: peak, off-peak, and valley. 

For each scenario, key variable initial values were predefined 

based on scenario features and corresponding population 

proportions were allocated. Subsequently, all randomly 

generated individuals underwent pre-verification of device 

on/off status–output coupling constraints, and infeasible 

solutions were eliminated before the population was 

replenished to the preset scale. This approach significantly 

enhanced both the initial population quality and overall 

computational efficiency. 

In terms of fitness evaluation, to ensure seamless integration 

between the optimization objectives and the algorithmic 

evaluation process, a normalized multi-objective function was 

directly employed as the fitness function. The Analytic 

Hierarchy Process–Entropy Weight Method (AHP–EWM) 

was applied to determine the combined weights of each 

objective, simultaneously accommodating subjective 

operational preferences of the tourist attraction and objective 

data-driven information entropy corrections, thereby 

minimizing bias in weight determination. Furthermore, a clear 

correspondence was established between the fitness value and 

the comprehensive performance of each solution, providing 

explicit optimization direction during algorithmic iteration. To 

prevent the influence of weight fluctuations on the 

optimization results, sensitivity analysis was subsequently 

conducted to verify the robustness of the obtained solutions, 

ensuring the algorithm’s adaptability to variations in weight 

assignments. 

A hierarchical constraint-handling strategy combining 

“feasible-solution prioritization for hard constraints” and 

“dynamic penalty functions for soft constraints” was 

introduced. For hard constraints—including energy balance, 

device on/off–output coupling, and mutual exclusivity 

constraints—any violation automatically classifies the 

individual as a dominated solution, which is forcibly 

eliminated from the population. This ensures strict adherence 

to engineering feasibility. For soft constraints, such as SOC 

upper and lower limits, renewable energy utilization rate, and 

equipment output boundaries, dynamic penalty coefficients 

were designed. During early iterations, smaller penalty 

coefficients were used to encourage broader exploration of the 

feasible domain; as iterations progressed, penalty coefficients 

were gradually increased to drive convergence toward feasible 

regions. This mechanism prevented convergence stagnation 

due to excessive penalization while avoiding engineering 

infeasibility resulting from overly relaxed constraints. 

 

5.3 Full-process solution implementation and parameter 

calibration 

 

The full-process solution implementation follows the 

logical sequence of “data preprocessing – population 

initialization – genetic operations – non-dominated sorting – 

elite preservation – iteration termination.” Initially, equipment 

parameters, load profiles, meteorological data, and economic–

environmental parameters of the tourist attraction were 

imported. Data cleaning and normalization were conducted to 

ensure high-quality input for the solution. Following this, the 

improved population initialization strategy was applied to 

generate a hybrid-encoded initial population. Simulated binary 

crossover and single-point crossover were employed for 

continuous and discrete variables, respectively, while 

polynomial and bit-flip mutations were adopted to maintain 

population diversity during evolution. Subsequently, parent 

and offspring populations were merged, and a hierarchical 

non-dominated sorting procedure was executed. Elite 

preservation was achieved through reference point association 

and crowding distance calculation, ensuring both solution 

convergence and distribution uniformity. The iterative process 

terminated when either the maximum number of iterations was 

reached or the fluctuation of fitness values satisfied the 

precision criterion, at which point the Pareto-optimal solution 

set was output. 

Parameter calibration is a critical process for ensuring the 

performance of the algorithm. To this end, four core 

parameters—population size, crossover probability, mutation 

probability, and number of iterations—were optimized using 

an orthogonal experimental design. Multiple parameter 

combinations were tested, with convergence and distribution 

metrics (specifically, the spread metric, SP) adopted as 

evaluation criteria. Through comprehensive simulation-based 

testing, the optimal parameter combination was determined. 

Special attention was given to the interaction effects among 

parameters on the performance of the algorithm, ensuring that 

parameter combinations improve convergence efficiency 

without compromising the diversity or distribution quality of 

solutions. This establishes a highly efficient and stable 

computational foundation for the optimization of the tourist 

attraction energy system. 

 

 

6. EXPERIMENTAL RESULTS AND ANALYSIS 

 

To accurately quantify the spatiotemporal heterogeneity of 

electrical loads in the tourist attraction and to support 

subsequent energy system modeling and optimization, an 

hourly power composition analysis was conducted for typical 

days during both the peak and off-seasons. The results indicate 

that, as shown in Figure 2(a), the electrical load during the 

typical peak-season day exhibits a pronounced daytime high-

load pattern, with total power remaining above 80 kW between 

12:00 and 20:00. During this period, characteristic energy 

consumption units—including amusement facilities and 

electric vehicle charging stations—account for over 40% of 

the total load. This pattern demonstrates a strong correlation 

with the concentrated daytime activity rhythm of visitors. In 

contrast, as depicted in Figure 2(b), the overall load level 

during the typical off-season day declines significantly. The 

total power during the same high-demand period (12:00–

20:00) ranges between 60 and 80 kW, while the share of 

characteristic energy consumption units drops to below 30%. 

This reduction directly reflects the suppressed energy demand 

resulting from the substantial decrease in visitor volume. In 

summary, the electrical load of the tourist attraction displays 

distinct spatiotemporal non-uniformity characteristics, 

characterized by strong seasonal differentiation, pronounced 

day–night peak-to-valley variation, and temporal 

concentration of characteristic energy consumption activities. 

To accurately characterize the spatiotemporal coupling 
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characteristics between the electrical load and renewable 

energy output of the tourist attraction—thereby supporting 

source–load matching analysis and energy efficiency 

optimization strategies within the thermodynamic modeling 

framework—an hourly power analysis of the electrical load, 

distributed PV output, and distributed wind power generation 

was conducted for typical days during the peak and off-

seasons. The results indicate that, as shown in Figure 3(a), the 

electrical load during the typical peak-season day exhibits a 

pronounced daytime high-load pattern, with power remaining 

consistently above 80 kW between 12:00 and 20:00. The 

distributed PV output exceeds 60 kW between 8:00 and 16:00, 

partially overlapping with the load peak period. The 

distributed wind power output remains relatively stable, 

fluctuating between 20 and 40 kW. In contrast, during the 

typical off-season day shown in Figure 3(b), the overall load 

level decreases significantly, with power during the high-

demand period (12:00–20:00) ranging between 60 and 80 kW. 

The PV output peak declines to approximately 40 kW, and its 

active generation window becomes shorter. Simultaneously, 

the wind power output exhibits smaller fluctuations. In 

summary, the spatiotemporal coupling between electrical load 

and renewable energy output in the tourist attraction is 

characterized by the following pattern: during the peak season, 

both the load level and PV–load matching degree are high, 

while during the off-season, both the load demand and 

renewable generation remain at comparatively low levels. 

 

  
(a) Typical day in peak season (b) Typical day in the off-season 

 

Figure 2. Hourly power composition of electric load in the tourist attraction on typical days (peak season vs. off-season) 

 

  
(a) Typical day in peak season (b) Typical day in the off-season 

 

Figure 3. Hourly power variation of electric load and renewable energy output in the tourist attraction (peak season vs. off-

season) 

 

  
(a) Typical day in peak season (b) Typical day in the off-season 

 

Figure 4. Output curves of each unit in the integrated energy system of the tourist attraction on typical days (peak season vs. 

off-season) 

 

To quantitatively characterize the dynamic coupling 

relationships among the electrical load, renewable energy 

output, energy storage system, and backup power source 

within the integrated energy system of the tourist attraction—

and to support source–load matching analysis and the design 

of multi-unit coordination strategies for energy efficiency 
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optimization within the thermodynamic modeling 

framework—an hourly power analysis was conducted for 

typical days during both the peak and off-seasons. The 

analysis encompassed electric load, distributed PV output, 

distributed wind power output, energy storage system 

operation, and backup diesel generator output. The results 

indicate that, during the typical peak-season day shown in 

Figure 4(a), the electrical load exhibits a pronounced daytime 

peak, while the distributed PV output exceeds 60 kW between 

8:00 and 16:00, showing partial temporal coupling with the 

high-load period. The energy storage system operates in a 

charging mode during load troughs and discharges stored 

energy during high-demand periods, effectively achieving 

peak shaving and valley filling. The backup diesel generator is 

only marginally activated under short-duration conditions 

when PV output is insufficient and energy storage discharge is 

constrained. In contrast, as illustrated in Figure 4(b), during 

the typical off-season day, the overall electrical load level 

decreases markedly. The PV output peak contracts to 

approximately 40 kW, with a shorter active generation period, 

while the amplitude of charging and discharging in the energy 

storage system simultaneously diminishes. The diesel 

generator’s operational frequency and intensity also decline 

significantly. In summary, the output characteristics of each 

subsystem within the integrated energy system display distinct 

seasonal differentiation. During the peak season, the electrical 

load and PV generation exhibit strong coupling, accompanied 

by a high demand for energy storage regulation, whereas 

during the off-season, the outputs of all subsystems remain 

generally subdued, and the system regulation pressure is 

correspondingly lower. 

 

  
(a) Typical day in peak season (b) Typical day in the off-season 

 

Figure 5. Output curves of each unit in the grid-connected integrated energy system of the tourist attraction (peak season vs. off-

season) 

 

To accurately quantify the dynamic coupling characteristics 

among the electrical load, renewable energy output, energy 

storage system, backup power source, and grid power 

interaction within the grid-connected integrated energy system 

of the tourist attraction—and to support source–load–grid–

storage matching analysis and the design of multi-unit 

coordination strategies for energy efficiency optimization 

within the thermodynamic modeling framework—an hourly 

power analysis was performed for typical days during both the 

peak and off-seasons. This analysis encompassed the electrical 

load, distributed PV generation, distributed wind power 

output, energy storage operation, backup diesel generator 

performance, and grid interaction power.  

The results indicate that, during the typical peak-season day 

shown in Figure 5(a), the electrical load displays a pronounced 

daytime peak, with power continuously exceeding 80 kW 

between 12:00 and 20:00. The distributed PV generation 

provides more than 60 kW from 8:00 to 16:00, exhibiting 

partial temporal coupling with the high-load period. The 

energy storage system operates in charging mode during off-

peak hours and discharges during the high-load period, thereby 

achieving peak shaving and valley filling. The power 

exchange with the main grid shifts dynamically, acting as 

electricity import during PV shortages and electricity export 

when PV generation exceeds demand. The backup diesel 

generator is only activated under short-duration conditions 

when a sudden drop in PV output coincides with limited 

storage discharge capacity. As shown in Figure 5(b), during 

the typical off-season day, the overall electrical load level 

declines significantly, with the PV output peak contracting to 

approximately 40 kW and its duration shortened. 

Correspondingly, the charge–discharge amplitude of the 

energy storage system decreases, and both the frequency and 

magnitude of grid power interactions and diesel generator 

operation exhibit downward trends. In summary, the grid-

connected integrated energy system of the tourist attraction 

demonstrates clear seasonal differentiation in its operational 

characteristics. During the peak season, strong coupling 

between electrical load and PV generation necessitates 

intensive storage and grid regulation, while during the off-

season, all subsystems operate at relatively low levels, 

resulting in reduced system regulation pressure.  

To verify the accuracy of the thermodynamic component 

models and ensure the reliability of system-level modeling, a 

comparative analysis was performed between the model-

predicted and measured values for key components, including 

the PV system, ground source heat pump, and energy storage 

system. As shown in Table 1, the RMSE values for all 

component models remain below 2.35, and the relative errors 

are confined within 4.2%. Among them, the electrical energy 

storage system model demonstrates the highest prediction 

accuracy, with RMSE = 0.025 and a relative error of 2.5%. 

The distributed wind turbine model exhibits a slightly higher 

RMSE, primarily attributed to wind speed measurement 

uncertainties, yet still falls within engineeringly acceptable 

limits. These validation results confirm that the 

thermodynamic component models developed in this study 

can accurately capture the energy conversion and transfer 

characteristics of each device. 

To quantitatively evaluate the trade-offs among economic, 
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environmental, and energy-efficiency objectives within the 

multi-objective optimization framework and to provide a 

decision-making reference for the operation of the tourist 

attraction, three typical compromise solutions located along 

the Pareto frontier were analyzed in detail. As shown in Table 

2, an increase in economic cost from 1250 Yuan/day to 1520 

Yuan/day corresponds to a reduction in carbon emissions from 

480 kgCO₂/day to 360 kgCO₂/day, while the exergy efficiency 

improves from 68.2% to 76.8%. This trend demonstrates a 

negative correlation between cost and carbon emissions and a 

positive correlation between cost and exergy efficiency. 

Simultaneously, the share of PV output increases from 45% to 

60%, while both the average charge–discharge power of the 

energy storage system and the grid interaction power 

progressively decrease. These variations indicate that 

solutions with higher exergy efficiency achieve energy 

performance optimization primarily through enhanced 

renewable energy utilization and reduced dependence on 

energy storage and the main grid. Overall, the results confirm 

that the proposed multi-objective optimization model 

effectively balances the economic, environmental, and energy-

efficiency requirements of the tourist attraction’s integrated 

energy system, thereby providing differentiated decision-

making options for operators. 

 

Table 1. Validation results of thermodynamic component model accuracy 

 

Component Type 
Model Prediction Range 

(kW/kJ) 

Measured Range 

(kW/kJ) 

Root Mean Square 

Error (RMSE) 

Mean Absolute 

Error (MAE) 

Distributed PV system 0-65 0-62 2.35 1.87 

Ground source heat pump (heating) 0-50 0-48 1.92 1.55 

Electrical energy storage system 0-100 (SOC) 0-100 (SOC) 0.025 0.020 

Distributed wind turbine 0-40 0-38 1.68 1.32 

Gas boiler 0-80 (thermal power) 0-78 2.11 1.76 

 

Table 2. Performance indicators of typical compromise solutions in multi-objective optimization 

 

Compromise 

Solution ID 

Economic 

Cost 

(Yuan/day) 

Carbon 

Emissions 

(kgCO₂/day) 

Exergy 

Efficiency 

(%) 

PV 

Output 

Share 

(%) 

Energy Storage 

Charging/Discharging 

State (Average Power, 

kW) 

Grid Interaction 

Power (Average, 

kW; Positive for 

Import) 

Solution 1 1250 480 68.2 45 Charge -15 / discharge 20 120 

Solution 2 1380 420 72.5 52 Charge -10 / discharge 15 80 

Solution 3 1520 360 76.8 60 Charge -5 / discharge 10 40 

 

 

7. CONCLUSION 

 

This study focused on the integrated energy system of 

tourist attractions, following a logical framework of 

characteristic analysis–thermodynamic modeling–multi-

objective optimization. Through an analysis of the 

spatiotemporal coupling patterns between electrical loads, 

tourist behavior, and seasonal rhythms, it was identified that 

the energy demand of tourist attractions exhibits strong 

seasonal differentiation and temporal concentration of 

characteristic energy use. Based on the first and second laws 

of thermodynamics, refined models encompassing key 

components—such as PV generation, heat pumps, and energy 

storage systems—were established. Experimental validation 

confirmed that the RMSE values of all component models 

were below 2.35, with relative errors controlled within 4.2%, 

thereby achieving accurate characterization of system-level 

energy conversion and exergy loss. To address the multi-

objective conflict inherent in system operation, an improved 

NSGA-III algorithm was proposed and applied to construct a 

three-dimensional optimization model integrating economic 

cost, environmental performance, and energy efficiency. The 

resulting Pareto frontier solutions demonstrated dynamic 

trade-offs among cost, carbon emissions, and exergy 

efficiency, offering differentiated decision-making strategies 

for the energy management of tourist attractions. The 

theoretical significance of this study lies in the introduction of 

a “spatiotemporal coupling and quality grading” load analysis 

framework combined with a thermodynamic modeling 

approach incorporating exergy efficiency, which bridges an 

existing research gap in the fundamental characterization of 

energy system behavior and efficiency essence in tourist 

attractions. The engineering significance is reflected in the 

proposed improved optimization algorithm and the multi-

objective solution set, which provide practical technical 

support for the planning and operation of integrated energy 

systems in tourism facilities, thereby contributing to the green 

and low-carbon transition of the tourism industry. 

However, certain limitations remain. First, the model 

assumptions do not fully capture the dynamic and uncertain 

nature of real-world operations. Second, the data used were 

derived from a specific type of tourist attraction, and the 

general applicability to other tourism formats requires further 

validation. Future research can be extended in three directions: 

(a) Enhancement of model refinement, by integrating data-

driven dynamic efficiency models and uncertainty prediction 

methods to improve adaptability to real operational scenarios; 

(b) Advancement of optimization algorithms, through the 

incorporation of reinforcement learning to achieve real-time 

online optimization, enhancing system adaptability to source–

load fluctuations; and (c) Expansion of multi-energy flow 

coordination, by integrating the coupling of cooling, heating, 

and electrical loads and comprehensive demand response 

mechanisms into the optimization framework, to further 

exploit the energy efficiency improvement potential of 

integrated energy systems in tourist attractions. 
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