wZ

¥ I L1 A International Iafermarion sad
Engineering Technology Asseclation

International Journal of Heat and Technology
Vol. 43, No. 5, October, 2025, pp. 1644-1656

Journal homepage: http://iieta.org/journals/ijht

Comparing Thermocapillary Bubble Migration in Normal and Zero Gravity in Small-Scale ]
Containers Sneck o
Yousuf Alhendal™, Mohammad Alhamli

Mechanical Power and Refrigeration Department (MPR), College of Technological Studies (CTS), Public Authority for
Applied Education and Training (PAAET), Kuwait 70030, Kuwait

Corresponding Author Email: ya.alhendal@paaet.edu.kw

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijht.430503

ABSTRACT

Received: 20 August 2025
Revised: 12 October 2025
Accepted: 19 October 2025
Available online: 31 October 2025

Keywords:
bubble  migration, gravitational  force,
convective  capillary, Marangoni  flow,

thermocapillary, two-phase, VOF method

Thermocapillary migration under gravity and zero-gravity conditions was simulated using
the Volume of Fluid (VOF) method in ANSYS Fluent software. The migration of a
nitrogen bubble in a container filled with liquid ethanol was investigated numerically.
Three distinct conditions were used to study the bubble migration in a compact container:
gravity, thermocapillary, or both. According to the findings, buoyancy controls bubble
migration in larger containers, while thermocapillary forces govern motion only at small
scales (below 10 mm), showing an inverse dependence on container dimension. In
thermocapillary flow, the bubble maintained its spherical shape as it traveled. In the
buoyancy force, the spherical bubble shape became oblate. The bubble in the combination
of thermocapillary and buoyancy forces, in contrast to the other two scenarios, shifted from
a spherical to an oblate shape as the container's size expanded. It subsequently ruptures
before it reaches the heated surface. The significance of this study lies in its estimation of
the Marangoni force's emergence, the gravitational force's effect disappearing, and the
neglect of its calculations at extremely small measurements. It also helps build high-quality

engineering equipment on a small scale.

1. INTRODUCTION

Understanding the dynamics of bubbles and droplets is
crucial. It can assist in developing new equipment to either
mitigate or control the effects of these bubbles in several
industrial processes and even in space devices. Under the
influence of gravity, bubbles can change shape and even break
apart, complicating their movement and sometimes harming
equipment [1, 2]. Therefore, controlling these bubbles can
enhance various engineering applications, such as welding on
Earth and heat/mass transfer operations in space [3, 4].

At first, bubble migration was investigated by Young et al.
[5], who observed that the bubbles were moving to the warmer
side when a temperature gradient was applied because of
surface tension variation. This occurrence is known as
thermocapillary / Marangoni. Hardy [6] also studied bubble
motion under Marangoni and buoyancy forces. They presented
the required temperature gradients to balance the two forces
depending on the bubble diameter. Bratukhin et al. [7]
investigated Marangoni migration in normal gravity, with
different techniques. Time, heat, and mass diffusion, as well
as surfactant absorption characterizing the Marangoni
convection, were analyzed. In fact, with the presence of
gravity on Earth, natural convection occurs rapidly, which
overpowers the Marangoni force [8]. Generally, in order to
notice the Marangoni effect clearly, micro or zero gravity
environments are used [9-13]. Wozniak et al. [14] described
the temperature field surrounding a moving bubble in a
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reduced gravity environment. Some discrepancies were
observed between numerical and experimental results due to
some assumptions considered in the numerical study, as well
as optical disturbances in the experiment.

Most of the studies were experimental. However,
measurements are sometimes difficult to realize and very
expensive, which pushed researchers to model and simulate
the phenomenon as well as compare both numerical and
experimental data to each other. Brackbill et al. [15] suggested
a method to model surface tension based on the interface
curvature, which simplifies the calculations. Thus, many
researchers adopted it to construct their numerical model [16-
18]. Moreover, the VOF method was found to be very reliable
to describe two fluid flows, as shown in references [19-22].
Many numerical studies investigating one bubble migration as
well as several bubbles were produced [23-25]. Mostly, when
one bubble is migrating from cold to hot regions, it travels
along a vertical path. However, it can have complex behavior,
especially when it is subjected to other forces such as rotation
[26-28] or vibration [29-32]. Those different trajectories have
a direct impact on the arrival time of the bubble to the top; it
is either delayed or advanced.

Another interesting parameter that affects bubble migration
is the container’s shape. Most of the articles were produced on
cylindrical containers [33-35], unlike Balla et al. [36], who
investigated a square channel container. Similar to the shape,
the dimension of the container plays a crucial role. Both the
distance that the bubble will travel and the sides of the
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container will definitely impact the bubble’s velocity and
shape [37]. Therefore, this study examines and contrasts the
motion and behavior of bubbles in small containers before
progressively expanding their size in three scenarios: with the
buoyancy force on its own, with the Marangoni effect, and
with the Marangoni effect by itself. We concentrate on the
level at which the buoyancy effect becomes apparent, which is
noticeable and important, and the Marangoni effect starts to
progressively disappear.

2. INITIAL CONDITIONS AND ASSUMPTIONS

Under gravity and in zero-gravity environment, the
movement of a nitrogen bubble in an ethanol container is
investigated (Figure 1). The container is heated from the top
by Thot= 325 K, while the bottom is maintained at Tcoia= 300
K. The sidewalls are thermally isolated. The velocity is
considered null on the walls. The bubble moves at a slow
speed, and the flow remains laminar. Ethanol is an
incompressible and Newtonian fluid; its thermophysical
properties are considered to be unchanged except surface
tension, o, which depends on temperature. Prior to releasing
the bubble, the steady-state temperature distribution is
established at first in the container, and then it is considered as
the initial condition for studying the unsteady motion of the
bubble.
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Figure 1. Geometry of the calculated field for
thermocapillary migration

3. NUMERICAL MODEL
The YGB model is based on Young et al. [5] linear model:

do dT
2 |d_T Tbla

= (1)
Vres Qu+3u)(2A+ 1)

u, 1', A and A" represent the dynamic viscosity and thermal
conductivity, respectively, of the two phases (fluid and
bubble).

Thermal Reynolds and Marangoni numbers are expressed
as:

2
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L, V-
Mat = —baT = Rer-Pr

€)

Vr is the determined velocity from balancing tangential
stresses at the free surface and is utilized to scale the velocity
of migration (m/s) in Egs. (2) and (3):

“4)

with Prandtl number defined as:

v
Pr=—
o

)
a: thermal diffusivity and v: kinematic viscosity:

Vv =

U
P) (6)
with p, the density of the continuous phase fluid, and 7y, is the
bubble’s radius, which is d/2, with d the bubble’s diameter.

do/dT or o denotes the rate of change of interfacial
tension, while dT/dx signifies the temperature gradient
applied to the continuous phase fluid.

The governing continuum conservation equations for two-
phase flow were solved using Ansys-Fluent software, and the
volume of fluid (VOF) method was used to track the liquid/gas
interface. The geometric reconstruction scheme, based on the
piece-wise linear interface calculation (PLIC) method of
Youngs [38] in Ansys-Fluent, was chosen for the current
investigation. Geo-reconstruction is utilized to give more
accuracy for free surface definition [19]. The movement of
bubble-liquid interface is tracked depending on the gas bubble
volume fraction distribution, i.e., a;, in a computational cell,
where the value of a; is 0 for the liquid phase and 1 for the
bubble phase. Therefore, a gas-liquid interface exists in the
cell where a; lies between 0 and 1.

The momentum equation, expressed below, is solved for all
the phases existing in the domain:

a . .
% (pV) + V. (pvV)

- - = 7
=-Vp+V.[u(Vv+ViD)]+F )
+pg
where, ¥ is treated as the mass-averaged variable:
agpeVe + ayp v
3= 6PcV¢ LPLVL )

o

When the zero environment is considered, § becomes null.

F represents surface tension force per unit volume. It is
P— . P —

composed of normal force, Fy, and tangential one, Fr .

Continuum surface force (CSF) model is used to compute it
for the cells containing bubble-liquid interface [15]:

B pknl
Fy=o—— )
3 (pr + pg)

where, o is the coefficient of surface tension.



oc=0y+0ar(Ty—T) (10)

For the tangential surface tension force, it is defined as:

Fr = —0;V,T (11)

0, represents the surface tension at a reference temperature
Ty, T is the temperature of the liquid, 71 is the surface normal
estimated from the volume fraction gradient, and k is the local
surface curvature, defined as follows:

1A .
k = —(VA) = W[ﬁvm - (VDn)] (12)

The interface tracking between bubble and liquid is
achieved by the continuity equation solution for bubble
volume fraction:

a -
a(acpc) + V- (agpeve) =0 (13)

This equation is indirectly determined for the host fluid;
instead, the volume fraction of the liquid is calculated as
follows:

aG +«a L = 1 (14)
with a; and a;, volume fractions of the bubble and host-fluid,

in that order. The density and viscosity of each cell at the
interface are determined using the following expressions:

(15)
(16)

p=agps + (1 —ag)p,
p=ague+ (1 —ag)y,

Under gravity force alone, F is assumed null. In that case,
the velocity will be calculated from (7) in addition to
continuity equation, expressed as:

V(p?) =0
FT (pv)

(17

For the only gravity case, the Peclet number is defined as:

1V,
=29 _ Re. Pr
va

(18)

Pe

With V,, the flow velocity takes into account only gravity.
The equation of energy is also solved for all phases:

d ,
&(pE) + V. [V(PE) + p)] = V. (kerfVT) (19)

where, specific heat depends on the considered phase.
Temperature, density p, and effective thermal conductivity
kess, are shared by the phases.

VOF model treats energy (E) and temperature (T) as mass-
averaged variables:

_ Yg=1%PqEq

E
n
q=1%qPq

(20)

GAMBIT was used to generate the finite-volume mesh
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before integrating it into Ansys-Fluent. The computations
were conducted using a pressure-based, segregated, implicit
solver. Pressure—velocity coupling was achieved using the
pressure-implicit with splitting of operators (PISO), which
applies two corrections for neighboring points and skewness.
The pressure-staggering option (PRESTO) scheme was also
used for pressure interpolation. Conservation equations were
discretized using a second-order upwind differencing scheme.
The time step used to obtain convergence is 1072s.

4. GRID SIZE DEPENDENCY

A nitrogen bubble was positioned at the center and 2xd from
the bottom surface in liquid ethanol medium. In previous
works [17, 21], thermocapillary model was already examined
and validated properly with Thompson et al. [9]. As shown in
Figure 2, the results are in good agreement with only minor
discrepancies attributed to measurement and numerical errors.
The accuracy of the simulation was attained by testing five
grid meshes. Grid independence, mesh sizes, time steps, and
extending the geometry to 3D were all checked to assure
convergence. In this study, a grid consisting of 324,000 nodes,
corresponding to 576 cells per bubble diameter, was
considered for all simulations, owing to its accuracy in results
while minimizing computing time and memory usage.

wegfens Present CFD results

---A--- Thompson et al. (1980)
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Figure 2. Present results validation with study [9]

5. THE PHENOMENON
BUBBLE DYNAMICS

OF THERMOCAPILLARY

For a container of 60mm diameter and 120mm height, when
a temperature gradient is applied to a bubble N, (d = 8§ mm)
inside ethanol in zero gravity, this bubble moves in a vertical
translation from the bottom (cold wall) to the top (hot wall).
This result was already found by many researchers both
experimentally and numerically [5, 9, 17, 29]. To investigate
the behavior of thermocapillary bubble flow in zero gravity
under a linear temperature distribution between the upper and
lower walls, five different temperature differences were
examined. Temperature changes of 2.5 K were made to the
container’s top, which ranged from 317.5 K to 325 K, while
the container’s bottom remained at 300 K. Obviously, for the
higher Tho, the bubble has already reached the top, while it is
still in almost the middle of the container for the weakest Thot.
For all the cases, the isotherms behind the bubble are disturbed.
Whenever the bubble is moving, a small recirculation of
ethanol is created, which makes the temperature change in the
medium. In fact, when Tho increases, the bubble velocity



augments. Therefore, for a higher temperature gradient in the
container, the bubble reaches the top rapidly, as indicated by
the decreasing bubble arrival time (Figure 3). The Marangoni
problem or thermocapillary migration problem are terms used
to describe this kind of phenomenon.
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Figure 3. Bubble arrival time depending on T

6. RESULTS AND DISCUSSION

This section investigates the impact of thermocapillary
forces on bubble migration by varying container heights (h)
and bubble radius (rp) under three distinct conditions: normal
gravity, normal gravity with thermocapillary effects, and zero
gravity with thermocapillary effects. These conditions
correspond to the following flow patterns: buoyancy-driven
flow, combined buoyancy and thermocapillary flow, and
thermocapillary-driven flow, as illustrated in Figure 4.
Bubbles with a radius smaller than or equal to 0.24 mm exhibit
no movement in cylinders less than 10mm in height under
buoyancy-driven flow. Conversely, for the same cylinder
height, in the presence of thermocapillary forces—whether
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gravity is applied or not—these bubbles consistently migrate
toward the heated surface within the cylinder. The constant
Mar, regardless of the presence or absence of gravity, suggests
that the flow in these cases is dominated by thermocapillary
effects alone. As 1, increases to 0.32 mm and h increases to
10mm, the bubble begins to migrate under all three flow
conditions. However, under the combined buoyancy and
thermocapillary flow, the migration pattern reveals noticeable
deformation. As 1, and h increase further, this deformation
becomes more pronounced in the presence of gravity and even
more significant when both forces are acting together. In
contrast, in the absence of gravity (thermocapillary flow),
aside from slight elongation as the bubble migrates toward the
heated surface, no deformation is observed. The interaction
between gravity and thermocapillary forces significantly alters
the bubble’s shape. However, the effect of gravity alone on
bubble deformation becomes more evident in larger bubbles.
Due to their weight, these bubbles tend to flatten, as previously
demonstrated by Cohen et al. [39] for large bubbles. For the
three observed flow patterns, the bubble generally moves in a
vertical trajectory. However, when h > 20 mm in buoyancy-
driven flow, the bubble's trajectory starts to incline slightly
away from the center of the container, which is not observed
in the other flow patterns. At h =45 mm, small bubbles begin
to detach from the main bubble in the coupled buoyancy and
thermocapillary flow scenario. This detachment becomes
more pronounced with increasing h, eventually hindering the
bubble's motion. By h = 90 mm, this interference leads to a
significant reduction in flow, culminating in a complete
cessation of motion at h = 120 mm. This behavior can be
attributed to the opposing nature of gravitational and
thermocapillary forces in these specific scenarios, where the
buoyancy force starts to appear gradually from about h = 45
mm. In contrast, at smaller dimensions, these forces tend to
work synergistically, enhancing bubble migration. Therefore,
the selection of container dimensions plays a critical role in
bubble migration dynamics when gravity is a factor,
particularly at high Mar values.

Thermocapillary (Marangoni effect)

cylinder size 1.25 x 2.5 mm,
.= 0.08 mm, Mar=51.5
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cylinder size 2.5 x 5 mm, cylinder size 2.5 x 5 mm, cylinder size 2.5 x 5 mm,
1, = 0.16 mm (No movement) r,=0.16 mm, Mar=102.9 rp=0.16 mm, Mar=102.9
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cylinder size 5 x 10 mm, cylinder size 5 x 10 mm, cylinder size 5x10 mm,
r,=0.32mm 1,=0.32mm, Ma1=205.9 1,=0.32mm, Ma1=205.9
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Figure 4. Bubble dynamics under thermocapillary force for different cylinder geometric dimensions with and without gravity

For fixed bubble radius (1

0.48 mm) and surface
temperatures maintained at 300 K (cold) and 325 K (hot),
Figure 5 presents a comparison of bubble arrival times at the
cylinder top under gravity, with and without thermocapillary
effects. At h = 10 mm, the Marangoni effect dominates,

enabling efficient bubble migration at such small scales. At h
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= 15 mm, buoyant forces begin to influence the motion,
particularly in the cylinder’s lower section. By h = 20 mm,
buoyant forces clearly dominate, facilitating faster bubble
migration. The relative contribution of thermocapillary forces
diminishes as the container height increases.
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Bubble arrival time for different cylinder geometric dimensions under thermocapillary force with and without gravity

presence

In Figure 6, variations in bubble diameter and container
dimensions further clarify the interaction between
thermocapillary and gravitational forces. In some instances,
these forces do not combine effectively, resulting in the
absence of their joint influence under specific conditions. For
cylinder heights of h = 10 mm and h = 20 mm, the bubble’s
diameter has minimal impact on the dominant force driving its
motion; instead, the height of the cylinder is the critical factor.
The Marangoni effect is particularly pronounced in the
presence of gravity, significantly reducing bubble arrival time
at the cylinder’s top for h = 10 mm. Beyond h = 20 mm,
buoyant forces take precedence, accelerating bubble migration
independently of thermocapillary effects.

Across all studied cylinder heights, thermocapillary forces
alone consistently result in slower bubble migration compared
to cases where buoyant forces are involved. In smaller
cylinders, the interplay between buoyant and thermocapillary
forces optimizes bubble travel time, emphasizing their
synergistic contribution. However, in larger cylinders,
buoyant forces alone emerge as the dominant mechanism,
ensuring faster bubble motion.

These findings demonstrate the crucial role of container
dimensions and force interactions in bubble migration
dynamics. For small-scale systems, understanding and
leveraging the interplay between thermocapillary and buoyant
forces can enhance bubble control and efficiency. In larger
systems, where buoyancy dominates, simplified models
focusing on gravitational effects may suffice for predicting
bubble behavior.

The results of this study have direct implications for several
engineering and scientific applications. In microgravity
environments, such as spacecraft thermal-control systems and
propellant management units, buoyancy is negligible;
therefore, thermocapillary forces can serve as an effective
driving mechanism for bubble transport and removal. The
present simulations show that for containers up to 10 mm in
height and ry, < 0.24 mm, bubbles remain stationary under
gravity alone but migrate fully under thermocapillary forces.
This finding suggests that even modest temperature gradients
(AT =25 K) can ensure continuous bubble removal and stable
operation in compact heat-transfer devices in space.

In terrestrial small-scale systems, including microreactors
and compact condensers, the dominance of thermocapillary

1653

forces below 10 mm and the transition to buoyancy at 20 mm
provide a practical design guideline. To promote stable bubble
transport, vertical distances should be kept below 10 mm or
subdivided into short heated segments where thermocapillary
motion assists buoyant rise. Conversely, in taller devices
where buoyancy dominates, simpler gravity-based flow
management can be applied.

For chemical and biomedical applications, these results
highlight how the interplay between thermocapillary and
gravitational forces affects both the arrival time and the shape
of migrating bubbles. In chemical reactors or separation
columns, combined thermocapillary and buoyant effects can
enhance phase separation efficiency, while in biomedical
microchannels, thermocapillary control could guide
microbubbles for targeted drug delivery or localized heating
without the excessive deformation observed under gravity-
dominated conditions.

The model assumes an incompressible Newtonian liquid
with constant properties and a linear dependence of surface
tension on temperature. This approximation is appropriate for
the small-scale cylinders studied here (height < 120 mm) and
the modest temperature difference (AT 25 K), where
property variations are minimal. A nonlinear ot relation or
temperature-dependent viscosity could slightly alter the
predicted bubble velocity but would not change the identified
dominance of thermocapillary forces at h < 10 mm or
buoyancy at h > 20 mm. Future work may include these
refinements and limited experimental verification to confirm
the robustness of the present findings.

The present study targets small cylindrical containers
(height < 10 mm - 120 mm) with a hot top (325 K), cold
bottom (300 K), and adiabatic sidewalls. The liquid was
treated as incompressible and Newtonian, with constant
thermophysical properties, while surface tension varied
linearly with temperature. This simplification is widely used
for narrow temperature ranges (AT =25 K) and small domains,
and it isolates the thermocapillary mechanism effectively. We
note, however, that if or becomes nonlinear or temperature-
dependent viscosity is considered, the quantitative magnitude
of bubble velocity could change slightly, though the observed
dominance trends (10 mm to 20 mm transition and
deformation sequence) are expected to remain valid. Future
numerical studies may examine nonlinear or or temperature-



dependent viscosity to confirm sensitivity, and experimental
validation under microgravity or confined conditions would
help verify these trends.

7. CONCLUSION

A 3D model was created in Ansys-Fluent to investigate the
effect of thermocapillary forces on the migration of a nitrogen
bubble in small-scale containers under both normal and
zero-gravity environments. The numerical model was
validated by demonstrating strong agreement between the
results obtained and those found in the literature. The findings
demonstrate that:

e Thermocapillary forces can occur and have a significant
impact when Earth's gravity is present, rather than being
restricted to space and environments with no gravity.

In the absence of gravity, the temperature gradient is the
primary factor influencing the speed of bubble migration.
Thermocapillary forces combined with gravity generally
improve bubble movement in small-scale containers < 10
mm in height, whereas for scales>20 mm, gravity
becomes the primary factor determining how quickly
bubbles migrate.

Under thermocapillary-only conditions, the bubble retains
a near-spherical shape with slight elongation as it
approaches the hot wall. Under gravity alone, the bubble
becomes oblate, and the degree of flattening increases
with Iy and h With combined
gravity and thermocapillary, flattening intensifies as size
increases; small bubbles detach around h = 45 mm ,
motion weakens by h =90 mm, and cease near h =
120mm. In buoyancy-driven flow, the trajectory tilts
slightly off-center once h > 20 mm. These behaviors
delineate the geometric ranges where thermocapillary
forcing can be used to preserve shape and guide motion
versus ranges where buoyancy dominates deformation
and can impede migration.

At a fixed bubble radius r, = 0.48 mm , adding
thermocapillary forces shortens the arrival time at h =
10 mm, compared with gravity alone; the benefit
weakens at h = 15 mm. By h = 20 mm, gravity clearly
yields the shortest arrival time, and adding
thermocapillary effects does not further reduce it. Across
all heights studied, thermocapillary-only motion is slower
than cases where buoyancy is present. Moreover, for h =
10 and 20 mm, the container height, not bubble diameter,
controls which mechanism sets the arrival time (diameter
changes have minimal impact on the dominant
mechanism). In cylinder height’s < 10 mm, bubbles that
are immobile under buoyancy alone at small sizes, 1}, <
0.24 mm, do migrate when thermocapillary forces act.

The scale-dependent thresholds identified here also provide
practical guidance for system design. In microgravity or
confined geometries (h < 10 mm), thermocapillary forces can
be used to accelerate bubble removal and stabilize two-phase
heat-transfer processes. For larger configurations (h >20 mm),
buoyancy becomes the controlling mechanism, and device
layouts should prioritize vertical alignment and venting paths
for buoyant migration. These findings translate directly into
improved performance and reliability for microgravity heat-
transfer systems, chemical processing units, and biomedical
microdevices.
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NOMENCLATURE

CFD
VOF
PLIC

computational fluid dynamics
volume of fluid
piece-wise linear interface calculation



YGB
CSF

div

PISO
PRESTO

d
3D

T

>R T m

young, Goldstein, and block model

continuum surface force
du

divergence (V- u = T g—; + Z—VZV)
Pressure-Implicit with Splitting of Operators
Pressure-Staggering Option

diameter, m

three dimensions

radius, m

thermal velocity, ms™!

energy, joule

gravitational acceleration, m.s?

Heat transfer coefficient, w.m>. k!
thermal conductivity, w.m"!. k!

local surface curvature

Prandtl number, dimensionless

Peclet number, dimensionless

surface normal

differential

thermal Reynolds number, dimensionless

thermal Marangoni number, dimensionless

source term
temperature, K
reference temperature, K
time, s
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B < * <

m

Greek symbols

aw>E Qo

Q
5]

Subscripts

oo Qx4

f

velocity vector, (uy, uz, us)
x coordinate, m
y coordinate, m
millimeter, mm

density, kg/m?

thermal diffusivity, m?.s™!

dynamic viscosity, kg-m™!.s’!

thermal conductivity, W-m™-.K"!

rate of change

surface tension, N. m™!

surface tension at a reference temperature

bubble, m

Temperature, K

local distance, m

gas

reference

effective thermal conductivity





