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 Thermocapillary migration under gravity and zero-gravity conditions was simulated using 

the Volume of Fluid (VOF) method in ANSYS Fluent software. The migration of a 

nitrogen bubble in a container filled with liquid ethanol was investigated numerically. 

Three distinct conditions were used to study the bubble migration in a compact container: 

gravity, thermocapillary, or both. According to the findings, buoyancy controls bubble 

migration in larger containers, while thermocapillary forces govern motion only at small 

scales (below 10 mm), showing an inverse dependence on container dimension.  In 

thermocapillary flow, the bubble maintained its spherical shape as it traveled. In the 

buoyancy force, the spherical bubble shape became oblate. The bubble in the combination 

of thermocapillary and buoyancy forces, in contrast to the other two scenarios, shifted from 

a spherical to an oblate shape as the container's size expanded. It subsequently ruptures 

before it reaches the heated surface. The significance of this study lies in its estimation of 

the Marangoni force's emergence, the gravitational force's effect disappearing, and the 

neglect of its calculations at extremely small measurements. It also helps build high-quality 

engineering equipment on a small scale. 
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1. INTRODUCTION 

 

Understanding the dynamics of bubbles and droplets is 

crucial. It can assist in developing new equipment to either 

mitigate or control the effects of these bubbles in several 

industrial processes and even in space devices. Under the 

influence of gravity, bubbles can change shape and even break 

apart, complicating their movement and sometimes harming 

equipment [1, 2]. Therefore, controlling these bubbles can 

enhance various engineering applications, such as welding on 

Earth and heat/mass transfer operations in space [3, 4]. 

At first, bubble migration was investigated by Young et al. 

[5], who observed that the bubbles were moving to the warmer 

side when a temperature gradient was applied because of 

surface tension variation. This occurrence is known as 

thermocapillary / Marangoni. Hardy [6] also studied bubble 

motion under Marangoni and buoyancy forces. They presented 

the required temperature gradients to balance the two forces 

depending on the bubble diameter. Bratukhin et al. [7] 

investigated Marangoni migration in normal gravity, with 

different techniques. Time, heat, and mass diffusion, as well 

as surfactant absorption characterizing the Marangoni 

convection, were analyzed. In fact, with the presence of 

gravity on Earth, natural convection occurs rapidly, which 

overpowers the Marangoni force [8]. Generally, in order to 

notice the Marangoni effect clearly, micro or zero gravity 

environments are used [9-13]. Wozniak et al. [14] described 

the temperature field surrounding a moving bubble in a 

reduced gravity environment. Some discrepancies were 

observed between numerical and experimental results due to 

some assumptions considered in the numerical study, as well 

as optical disturbances in the experiment. 

Most of the studies were experimental. However, 

measurements are sometimes difficult to realize and very 

expensive, which pushed researchers to model and simulate 

the phenomenon as well as compare both numerical and 

experimental data to each other. Brackbill et al. [15] suggested 

a method to model surface tension based on the interface 

curvature, which simplifies the calculations. Thus, many 

researchers adopted it to construct their numerical model [16-

18]. Moreover, the VOF method was found to be very reliable 

to describe two fluid flows, as shown in references [19-22]. 

Many numerical studies investigating one bubble migration as 

well as several bubbles were produced [23-25]. Mostly, when 

one bubble is migrating from cold to hot regions, it travels 

along a vertical path. However, it can have complex behavior, 

especially when it is subjected to other forces such as rotation 

[26-28] or vibration [29-32]. Those different trajectories have 

a direct impact on the arrival time of the bubble to the top; it 

is either delayed or advanced. 

Another interesting parameter that affects bubble migration 

is the container’s shape. Most of the articles were produced on 

cylindrical containers [33-35], unlike Balla et al. [36], who 

investigated a square channel container. Similar to the shape, 

the dimension of the container plays a crucial role. Both the 

distance that the bubble will travel and the sides of the 
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container will definitely impact the bubble’s velocity and 

shape [37]. Therefore, this study examines and contrasts the 

motion and behavior of bubbles in small containers before 

progressively expanding their size in three scenarios: with the 

buoyancy force on its own, with the Marangoni effect, and 

with the Marangoni effect by itself. We concentrate on the 

level at which the buoyancy effect becomes apparent, which is 

noticeable and important, and the Marangoni effect starts to 

progressively disappear. 

 

 

2. INITIAL CONDITIONS AND ASSUMPTIONS 

 

Under gravity and in zero-gravity environment, the 

movement of a nitrogen bubble in an ethanol container is 

investigated (Figure 1). The container is heated from the top 

by Thot = 325 K, while the bottom is maintained at Tcold = 300 

K. The sidewalls are thermally isolated. The velocity is 

considered null on the walls. The bubble moves at a slow 

speed, and the flow remains laminar. Ethanol is an 

incompressible and Newtonian fluid; its thermophysical 

properties are considered to be unchanged except surface 

tension, σ, which depends on temperature. Prior to releasing 

the bubble, the steady-state temperature distribution is 

established at first in the container, and then it is considered as 

the initial condition for studying the unsteady motion of the 

bubble. 

 

 
 

Figure 1. Geometry of the calculated field for 

thermocapillary migration 

 

 

3. NUMERICAL MODEL 

 

The YGB model is based on Young et al. [5] linear model: 

 

𝑉𝑌𝐺𝐵 =
2 |

𝑑𝜎
𝑑𝑇

| 𝑟𝑏𝜆
𝑑𝑇
𝑑𝑥

(2𝜇 + 3𝜇′)(2𝜆 + 𝜆′)
 (1) 

 

𝜇, 𝜇′, λ and 𝜆′ represent the dynamic viscosity and thermal 

conductivity, respectively, of the two phases (fluid and 

bubble). 

Thermal Reynolds and Marangoni numbers are expressed 

as: 

 

𝑅𝑒𝑇 =
𝑟𝑏𝑉𝑇

𝜈
 (2) 

MaT =
rbVT

α
= ReT ⸳ Pr (3) 

 

𝑉𝑇  is the determined velocity from balancing tangential 

stresses at the free surface and is utilized to scale the velocity 

of migration (m/s) in Eqs. (2) and (3): 

 

𝑉𝑇 =

𝑑𝜎
𝑑𝑇

.
𝑑𝑇
𝑑𝑥

. 𝑟𝑏

𝜇
 (4) 

 

with Prandtl number defined as: 

 

Pr =
ν

α
 (5) 

 

𝛼: thermal diffusivity and ν: kinematic viscosity: 

 

𝜈 =
𝜇

𝜌
 (6) 

 

with 𝜌, the density of the continuous phase fluid, and 𝑟𝑏 is the 

bubble’s radius, which is d/2, with d the bubble’s diameter. 

𝑑𝜎/𝑑𝑇 or 𝜎𝑇  denotes the rate of change of interfacial 

tension, while 𝑑𝑇/𝑑𝑥  signifies the temperature gradient 

applied to the continuous phase fluid. 

The governing continuum conservation equations for two-

phase flow were solved using Ansys-Fluent software, and the 

volume of fluid (VOF) method was used to track the liquid/gas 

interface. The geometric reconstruction scheme, based on the 

piece-wise linear interface calculation (PLIC) method of 

Youngs [38] in Ansys-Fluent, was chosen for the current 

investigation. Geo-reconstruction is utilized to give more 

accuracy for free surface definition [19]. The movement of 

bubble-liquid interface is tracked depending on the gas bubble 

volume fraction distribution, i.e., 𝛼𝐺, in a computational cell, 

where the value of 𝛼𝐺 is 0 for the liquid phase and 1 for the 

bubble phase. Therefore, a gas-liquid interface exists in the 

cell where 𝛼𝐺 lies between 0 and 1. 

The momentum equation, expressed below, is solved for all 

the phases existing in the domain: 

 
𝜕

𝜕𝑡
(𝜌𝜈) + 𝛻. (𝜌𝜈𝜈)

= −𝛻𝑝 + 𝛻. [𝜇(𝛻𝜈 + 𝛻𝜈𝑇)] + 𝐹⃗
+ 𝜌𝑔⃗ 

(7) 

 

where, 𝑣⃗ is treated as the mass-averaged variable: 

 

𝑣⃗ =
𝛼𝐺𝜌𝐺𝑣⃗𝐺 + 𝛼𝐿𝜌𝐿𝑣⃗𝐿

𝜌
 (8) 

 

When the zero environment is considered, 𝑔⃗ becomes null. 

𝐹⃗  represents surface tension force per unit volume. It is 

composed of normal force, 𝐹𝑁
⃗⃗ ⃗⃗ ⃗ , and tangential one,  𝐹𝑇

⃗⃗⃗⃗⃗ . 

Continuum surface force (CSF) model is used to compute it 

for the cells containing bubble-liquid interface [15]: 

 

𝐹𝑁
⃗⃗ ⃗⃗ ⃗ = 𝜎

𝜌𝑘𝑛⃗⃗

1
2

(𝜌𝐿 + 𝜌𝐺)
 (9) 

 

where, σ is the coefficient of surface tension. 
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𝜎 = 𝜎0 + 𝜎𝑇(𝑇0 − 𝑇) (10) 

 

For the tangential surface tension force, it is defined as: 

 

𝐹𝑇
⃗⃗⃗⃗⃗ = −𝜎𝑇∇𝑠𝑇 (11) 

 

𝜎0 represents the surface tension at a reference temperature 

𝑇0, 𝑇 is the temperature of the liquid, 𝑛⃗⃗ is the surface normal 

estimated from the volume fraction gradient, and 𝑘 is the local 

surface curvature, defined as follows: 

 

𝑘 = −(𝛻𝑛̂) =
1

|𝑛⃗⃗|
[

𝑛⃗⃗

|𝑛⃗⃗|
𝛻|𝑛⃗⃗| − (𝛻⸳𝑛⃗⃗)] (12) 

 

The interface tracking between bubble and liquid is 

achieved by the continuity equation solution for bubble 

volume fraction:  

 
𝜕

𝜕𝑡
(𝛼𝐺𝜌𝐺) + 𝛻 ⋅ (𝛼𝐺𝜌𝐺 𝑣⃗𝐺) = 0 (13) 

 

This equation is indirectly determined for the host fluid; 

instead, the volume fraction of the liquid is calculated as 

follows: 

 

𝛼𝐺 + 𝛼𝐿 = 1 (14) 

 

with 𝛼𝐺 and 𝛼𝐿, volume fractions of the bubble and host-fluid, 

in that order. The density and viscosity of each cell at the 

interface are determined using the following expressions: 

 

𝜌 = 𝛼𝐺𝜌𝐺 + (1 − 𝛼𝐺)𝜌𝐿 (15) 

 

𝜇 = 𝛼𝐺𝜇𝐺 + (1 − 𝛼𝐺)𝜇𝐿 (16) 

 

Under gravity force alone, 𝐹⃗ is assumed null. In that case, 

the velocity will be calculated from (7) in addition to 

continuity equation, expressed as: 

 
𝜕𝜌

𝜕𝑡
+ ∇(𝜌𝑣⃗) = 0 (17) 

 

For the only gravity case, the Peclet number is defined as: 

 

Pe =
𝑟𝑏𝑉𝑔

𝜈𝛼
= 𝑅𝑒.  𝑃𝑟 (18) 

 

With Vg, the flow velocity takes into account only gravity. 

The equation of energy is also solved for all phases: 

 
𝜕

𝜕𝑡
(𝜌𝐸) + 𝛻. [𝜈(𝜌𝐸) + 𝑝)] = 𝛻. (𝜅𝑒𝑓𝑓𝛻𝑇) (19) 

 

where, specific heat depends on the considered phase. 

Temperature, density 𝜌,  and effective thermal conductivity 

𝑘𝑒𝑓𝑓 , are shared by the phases. 

VOF model treats energy (𝐸) and temperature (𝑇) as mass-

averaged variables: 

 

𝐸 =
∑ 𝛼𝑞𝜌𝑞𝐸𝑞

𝑛
𝑞=1

∑ 𝛼𝑞𝜌𝑞
𝑛
𝑞=1

 (20) 

 

GAMBIT was used to generate the finite-volume mesh 

before integrating it into Ansys-Fluent. The computations 

were conducted using a pressure-based, segregated, implicit 

solver. Pressure–velocity coupling was achieved using the 

pressure-implicit with splitting of operators (PISO), which 

applies two corrections for neighboring points and skewness. 

The pressure-staggering option (PRESTO) scheme was also 

used for pressure interpolation. Conservation equations were 

discretized using a second-order upwind differencing scheme. 

The time step used to obtain convergence is 10−2 s. 

 

 

4. GRID SIZE DEPENDENCY 

 

A nitrogen bubble was positioned at the center and 2xd from 

the bottom surface in liquid ethanol medium. In previous 

works [17, 21], thermocapillary model was already examined 

and validated properly with Thompson et al. [9]. As shown in 

Figure 2, the results are in good agreement with only minor 

discrepancies attributed to measurement and numerical errors. 

The accuracy of the simulation was attained by testing five 

grid meshes. Grid independence, mesh sizes, time steps, and 

extending the geometry to 3D were all checked to assure 

convergence. In this study, a grid consisting of 324,000 nodes, 

corresponding to 576 cells per bubble diameter, was 

considered for all simulations, owing to its accuracy in results 

while minimizing computing time and memory usage. 

 

 
 

Figure 2. Present results validation with study [9] 

 

 

5. THE PHENOMENON OF THERMOCAPILLARY 

BUBBLE DYNAMICS 

 

For a container of 60mm diameter and 120mm height, when 

a temperature gradient is applied to a bubble N2 (d = 8 mm) 

inside ethanol in zero gravity, this bubble moves in a vertical 

translation from the bottom (cold wall) to the top (hot wall). 

This result was already found by many researchers both 

experimentally and numerically [5, 9, 17, 29]. To investigate 

the behavior of thermocapillary bubble flow in zero gravity 

under a linear temperature distribution between the upper and 

lower walls, five different temperature differences were 

examined. Temperature changes of 2.5 K were made to the 

container’s top, which ranged from 317.5 K to 325 K, while 

the container’s bottom remained at 300 K. Obviously, for the 

higher Thot, the bubble has already reached the top, while it is 

still in almost the middle of the container for the weakest Thot. 

For all the cases, the isotherms behind the bubble are disturbed. 

Whenever the bubble is moving, a small recirculation of 

ethanol is created, which makes the temperature change in the 

medium. In fact, when Thot increases, the bubble velocity 
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augments. Therefore, for a higher temperature gradient in the 

container, the bubble reaches the top rapidly, as indicated by 

the decreasing bubble arrival time (Figure 3). The Marangoni 

problem or thermocapillary migration problem are terms used 

to describe this kind of phenomenon. 

 

 
 

Figure 3. Bubble arrival time depending on Thot 

 

 

6. RESULTS AND DISCUSSION 

 

This section investigates the impact of thermocapillary 

forces on bubble migration by varying container heights (h) 

and bubble radius (rb) under three distinct conditions: normal 

gravity, normal gravity with thermocapillary effects, and zero 

gravity with thermocapillary effects. These conditions 

correspond to the following flow patterns: buoyancy-driven 

flow, combined buoyancy and thermocapillary flow, and 

thermocapillary-driven flow, as illustrated in Figure 4. 

Bubbles with a radius smaller than or equal to 0.24 mm exhibit 

no movement in cylinders less than 10mm in height under 

buoyancy-driven flow. Conversely, for the same cylinder 

height, in the presence of thermocapillary forces—whether 

gravity is applied or not—these bubbles consistently migrate 

toward the heated surface within the cylinder. The constant 

MaT, regardless of the presence or absence of gravity, suggests 

that the flow in these cases is dominated by thermocapillary 

effects alone. As rb increases to 0.32 mm and h increases to 

10mm, the bubble begins to migrate under all three flow 

conditions. However, under the combined buoyancy and 

thermocapillary flow, the migration pattern reveals noticeable 

deformation. As rb and h increase further, this deformation 

becomes more pronounced in the presence of gravity and even 

more significant when both forces are acting together. In 

contrast, in the absence of gravity (thermocapillary flow), 

aside from slight elongation as the bubble migrates toward the 

heated surface, no deformation is observed. The interaction 

between gravity and thermocapillary forces significantly alters 

the bubble’s shape. However, the effect of gravity alone on 

bubble deformation becomes more evident in larger bubbles. 

Due to their weight, these bubbles tend to flatten, as previously 

demonstrated by Cohen et al. [39] for large bubbles. For the 

three observed flow patterns, the bubble generally moves in a 

vertical trajectory. However, when h > 20 mm in buoyancy-

driven flow, the bubble's trajectory starts to incline slightly 

away from the center of the container, which is not observed 

in the other flow patterns. At h = 45 mm, small bubbles begin 

to detach from the main bubble in the coupled buoyancy and 

thermocapillary flow scenario. This detachment becomes 

more pronounced with increasing h, eventually hindering the 

bubble's motion. By h = 90 mm, this interference leads to a 

significant reduction in flow, culminating in a complete 

cessation of motion at h = 120 mm. This behavior can be 

attributed to the opposing nature of gravitational and 

thermocapillary forces in these specific scenarios, where the 

buoyancy force starts to appear gradually from about h = 45 

mm.  In contrast, at smaller dimensions, these forces tend to 

work synergistically, enhancing bubble migration. Therefore, 

the selection of container dimensions plays a critical role in 

bubble migration dynamics when gravity is a factor, 

particularly at high MaT values. 

 

Normal Gravity (g=9.81m/s2) Normal Gravity & Thermocapillary Thermocapillary (Marangoni effect) 

   
   

cylinder size 1.25 × 2.5 mm, 

rb = 0.12 mm, No movement 

cylinder size 1.25 × 2.5 mm, 

rb = 0.08 mm, MaT = 51.5 

cylinder size 1.25 × 2.5 mm, 

rb = 0.08 mm, MaT = 51.5 
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cylinder size 2.5 × 5 mm, 

rb = 0.16 mm (No movement) 

cylinder size 2.5 × 5 mm, 

rb = 0.16 mm, MaT = 102.9 

cylinder size 2.5 × 5 mm, 

rb = 0.16 mm, MaT = 102.9 

   

   
   

cylinder size 3.75 × 7.5 mm, 

rb = 0.24 mm No movement 

cylinder size 3.75 × 7.5 mm, 

rb = 0.24 mm, MaT = 154.4 

cylinder size 3.75 × 7.5 mm, 

rb = 0.24 mm, MaT = 154.4 

   

   
   

cylinder size 5 × 10 mm, 

rb = 0.32mm 

cylinder size 5 × 10 mm, 

rb=0.32mm, MaT=205.9 

cylinder size 5×10 mm, 

rb=0.32mm, MaT=205.9 
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cylinder size 10 × 20 mm, 

rb = 0.64 mm 

cylinder size 10 × 20 mm, 

rb = 0.64 mm, MaT = 411.7 

cylinder size 10 × 20 mm, 

rb = 0.64 mm, MaT = 411.7 

   

   
   

cylinder size 15 × 30 mm, 

rb = 0.96 mm 

cylinder size 15 × 30 mm, 

rb = 0.96 mm, MaT = 617.6 

cylinder size 15 × 30 mm, 

rb = 0.96 mm, MaT = 617.6 

   

   
   

cylinder size 20 × 40 mm, 

rb = 1.28 mm 

cylinder size 20 × 40 mm, 

rb = 1.28 mm, MaT = 823.4 

cylinder size 20 × 40 mm, 

rb = 1.28 mm, MaT = 823.4 
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cylinder size 22.5 × 45 mm, 

rb = 1.44 mm 

cylinder size 22.5 × 45 mm, 

rb = 1.44 mm, MaT = 926.3 

cylinder size 22.5 × 45 mm, 

rb = 1.44 mm, MaT = 926.3 

   

   
   

cylinder size 25 × 50 mm, 

rb = 1.6 mm 

cylinder size 25 × 50 mm, 

rb = 1.6 mm, MaT = 1029.3 

cylinder size 25 × 50 mm, 

rb = 1.6 mm, MaT = 1029.3 

   

   
   

cylinder size 30 × 60 mm, 

rb = 1.92 mm 

cylinder size 30 × 60 mm, 

rb = 1.92 mm, MaT = 1235 

cylinder size 30 × 60 mm, 

rb = 1.92 mm, MaT = 1235 
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cylinder size 45 × 90 mm, 

rb = 2.88 mm 

cylinder size 45 × 90 mm, 

rb = 2.88 mm, MaT = 1852.7 

cylinder size 45 × 90 mm, 

rb = 2.88 mm, MaT = 1852.7 

   

 

 

 
   

cylinder size 60 × 120 mm, 

rb = 3.84 mm 
 

cylinder size 60 × 120 mm, 

rb = 3.84 mm, MaT = 2470 

 

Figure 4. Bubble dynamics under thermocapillary force for different cylinder geometric dimensions with and without gravity 

 

For fixed bubble radius (rb = 0.48 mm) and surface 

temperatures maintained at 300 K (cold) and 325 K (hot), 

Figure 5 presents a comparison of bubble arrival times at the 

cylinder top under gravity, with and without thermocapillary 

effects. At h = 10 mm, the Marangoni effect dominates, 

enabling efficient bubble migration at such small scales. At h 

= 15 mm, buoyant forces begin to influence the motion, 

particularly in the cylinder’s lower section. By h = 20 mm, 

buoyant forces clearly dominate, facilitating faster bubble 

migration. The relative contribution of thermocapillary forces 

diminishes as the container height increases. 

 

   
   

(a) h = 10 mm (b) h = 15 mm (c) h = 20 mm 

   

Figure 5. Bubble migration arrival time to the top in normal gravity with and without thermocapillary force for Bubble radius = 

0.48 mm 
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Cylinder height = 10 mm, Bubble radius = 0.32 mm 

  
Cylinder height = 20 mm, Bubble radius = 0.64 mm 

  
Cylinder height = 30 mm, Bubble radius = 0.96 mm 

  

Cylinder height = 60 mm, Bubble radius = 1.92 mm 
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Cylinder height = 120 mm, Bubble radius = 3.84 mm 

 

Figure 6. Bubble arrival time for different cylinder geometric dimensions under thermocapillary force with and without gravity 

presence 

 

In Figure 6, variations in bubble diameter and container 

dimensions further clarify the interaction between 

thermocapillary and gravitational forces. In some instances, 

these forces do not combine effectively, resulting in the 

absence of their joint influence under specific conditions. For 

cylinder heights of h = 10 mm and h = 20 mm, the bubble’s 

diameter has minimal impact on the dominant force driving its 

motion; instead, the height of the cylinder is the critical factor. 

The Marangoni effect is particularly pronounced in the 

presence of gravity, significantly reducing bubble arrival time 

at the cylinder’s top for h = 10 mm. Beyond h = 20 mm, 

buoyant forces take precedence, accelerating bubble migration 

independently of thermocapillary effects. 

Across all studied cylinder heights, thermocapillary forces 

alone consistently result in slower bubble migration compared 

to cases where buoyant forces are involved. In smaller 

cylinders, the interplay between buoyant and thermocapillary 

forces optimizes bubble travel time, emphasizing their 

synergistic contribution. However, in larger cylinders, 

buoyant forces alone emerge as the dominant mechanism, 

ensuring faster bubble motion. 

These findings demonstrate the crucial role of container 

dimensions and force interactions in bubble migration 

dynamics. For small-scale systems, understanding and 

leveraging the interplay between thermocapillary and buoyant 

forces can enhance bubble control and efficiency. In larger 

systems, where buoyancy dominates, simplified models 

focusing on gravitational effects may suffice for predicting 

bubble behavior. 

The results of this study have direct implications for several 

engineering and scientific applications. In microgravity 

environments, such as spacecraft thermal-control systems and 

propellant management units, buoyancy is negligible; 

therefore, thermocapillary forces can serve as an effective 

driving mechanism for bubble transport and removal. The 

present simulations show that for containers up to 10 mm in 

height and rb ≤ 0.24 mm, bubbles remain stationary under 

gravity alone but migrate fully under thermocapillary forces. 

This finding suggests that even modest temperature gradients 

(ΔT = 25 K) can ensure continuous bubble removal and stable 

operation in compact heat-transfer devices in space. 

In terrestrial small-scale systems, including microreactors 

and compact condensers, the dominance of thermocapillary 

forces below 10 mm and the transition to buoyancy at 20 mm 

provide a practical design guideline. To promote stable bubble 

transport, vertical distances should be kept below 10 mm or 

subdivided into short heated segments where thermocapillary 

motion assists buoyant rise. Conversely, in taller devices 

where buoyancy dominates, simpler gravity-based flow 

management can be applied. 

For chemical and biomedical applications, these results 

highlight how the interplay between thermocapillary and 

gravitational forces affects both the arrival time and the shape 

of migrating bubbles. In chemical reactors or separation 

columns, combined thermocapillary and buoyant effects can 

enhance phase separation efficiency, while in biomedical 

microchannels, thermocapillary control could guide 

microbubbles for targeted drug delivery or localized heating 

without the excessive deformation observed under gravity-

dominated conditions. 

The model assumes an incompressible Newtonian liquid 

with constant properties and a linear dependence of surface 

tension on temperature. This approximation is appropriate for 

the small-scale cylinders studied here (height < 120 mm) and 

the modest temperature difference (ΔT = 25 K), where 

property variations are minimal. A nonlinear σT relation or 

temperature-dependent viscosity could slightly alter the 

predicted bubble velocity but would not change the identified 

dominance of thermocapillary forces at h ≤ 10 mm or 

buoyancy at h ≥ 20 mm. Future work may include these 

refinements and limited experimental verification to confirm 

the robustness of the present findings. 

The present study targets small cylindrical containers 

(height < 10 mm - 120 mm) with a hot top (325 K), cold 

bottom (300 K), and adiabatic sidewalls. The liquid was 

treated as incompressible and Newtonian, with constant 

thermophysical properties, while surface tension varied 

linearly with temperature. This simplification is widely used 

for narrow temperature ranges (ΔT = 25 K) and small domains, 

and it isolates the thermocapillary mechanism effectively. We 

note, however, that if σT becomes nonlinear or temperature-

dependent viscosity is considered, the quantitative magnitude 

of bubble velocity could change slightly, though the observed 

dominance trends (10 mm to 20 mm transition and 

deformation sequence) are expected to remain valid. Future 

numerical studies may examine nonlinear σT or temperature-
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dependent viscosity to confirm sensitivity, and experimental 

validation under microgravity or confined conditions would 

help verify these trends. 

 

 

7. CONCLUSION 

 

A 3D model was created in Ansys-Fluent to investigate the 

effect of thermocapillary forces on the migration of a nitrogen 

bubble in small-scale containers under both normal and 

zero-gravity environments. The numerical model was 

validated by demonstrating strong agreement between the 

results obtained and those found in the literature. The findings 

demonstrate that: 

• Thermocapillary forces can occur and have a significant 

impact when Earth's gravity is present, rather than being 

restricted to space and environments with no gravity. 

• In the absence of gravity, the temperature gradient is the 

primary factor influencing the speed of bubble migration. 

• Thermocapillary forces combined with gravity generally 

improve bubble movement in small-scale containers ≤ 10 

mm in height, whereas for scales≥ 20 mm, gravity 

becomes the primary factor determining how quickly 

bubbles migrate. 

• Under thermocapillary-only conditions, the bubble retains 

a near-spherical shape with slight elongation as it 

approaches the hot wall. Under gravity alone, the bubble 

becomes oblate, and the degree of flattening increases 

with rb  and h . With combined 

gravity and thermocapillary, flattening intensifies as size 

increases; small bubbles detach around h = 45 mm , 

motion weakens by h = 90 mm , and cease near h =
120mm . In buoyancy-driven flow, the trajectory tilts 

slightly off-center once h > 20 mm . These behaviors 

delineate the geometric ranges where thermocapillary 

forcing can be used to preserve shape and guide motion 

versus ranges where buoyancy dominates deformation 

and can impede migration. 

• At a fixed bubble radius rb = 0.48 mm , adding 

thermocapillary forces shortens the arrival time at h =
10 mm,  compared with gravity alone; the benefit 

weakens at h = 15 mm. By h = 20 mm, gravity clearly 

yields the shortest arrival time, and adding 

thermocapillary effects does not further reduce it. Across 

all heights studied, thermocapillary-only motion is slower 

than cases where buoyancy is present. Moreover, for h =
10 and 20 mm, the container height, not bubble diameter, 

controls which mechanism sets the arrival time (diameter 

changes have minimal impact on the dominant 

mechanism). In cylinder height’s <  10 mm, bubbles that 

are immobile under buoyancy alone at small sizes, rb ≤
0.24 mm, do migrate when thermocapillary forces act. 

 

The scale-dependent thresholds identified here also provide 

practical guidance for system design. In microgravity or 

confined geometries (h ≤ 10 mm), thermocapillary forces can 

be used to accelerate bubble removal and stabilize two-phase 

heat-transfer processes. For larger configurations (h ≥ 20 mm), 

buoyancy becomes the controlling mechanism, and device 

layouts should prioritize vertical alignment and venting paths 

for buoyant migration. These findings translate directly into 

improved performance and reliability for microgravity heat-

transfer systems, chemical processing units, and biomedical 

microdevices. 
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NOMENCLATURE 

 

CFD computational fluid dynamics 

VOF volume of fluid 

PLIC piece-wise linear interface calculation 
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YGB young, Goldstein, and block model 

CSF continuum surface force 

div divergence (∇ ∙ 𝐮 =
∂u

∂x
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) 

PISO Pressure-Implicit with Splitting of Operators 

PRESTO Pressure-Staggering Option 

d diameter, m 

3D three dimensions 

r radius, m 

VT thermal velocity, ms-1 

E energy, joule 

g gravitational acceleration, m.s-2 

h Heat transfer coefficient, w.m-2. k-1 

k thermal conductivity, w.m-1. k-1 

k local surface curvature 

Pr Prandtl number, dimensionless 

Pe Peclet number, dimensionless 

𝑛⃗⃗ surface normal 

d differential 

ReT thermal Reynolds number, dimensionless 

MaT thermal Marangoni number, dimensionless 

s source term 

T temperature, K 

To reference temperature, K 

t time, s 

𝑣⃗ velocity vector, (u1, u2, u3) 

x x coordinate, m 

y y coordinate, m 

mm millimeter, mm 

Greek symbols 

ρ density, kg/m3 

 thermal diffusivity, m2⸳s-1 

µ dynamic viscosity, kg⸳m-1⸳s-1 

λ thermal conductivity, W⸳m-1⸳K-1 

∂ rate of change 

σ surface tension, N⸳ m-1 

σo surface tension at a reference temperature 

Subscripts 

b bubble, m 

T Temperature, K 

x local distance, m 

G gas 

o reference 

eff effective thermal conductivity 
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