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This study develops a two-stage stochastic programming (TSSP) model based on 

Progressive Hedging to enhance production planning for patchwork-based Micro, 

small, and medium enterprises (MSMEs) amid seasonal demand and lead-time 

variability. Empirical data from 142 MSMEs in several Indonesian cities and four 

comprehensive interviews in Medan were utilized to quantify production durations, 

labor capacity, procurement strategies, and seasonal variations throughout Ramadhan 

and Christmas/New Year. The approach establishes initial production quantities in the 

first stage and modifies them through overtime, expedited procurement, and backorders 

upon the realization of actual demand. The progressive hedging algorithm (PHA) 

effectively decomposes scenario subproblems, guaranteeing non-anticipative 

convergence within 50 iterations. The simulation of five demand scenarios yielded a 

projected profit of IDR 164.2 million, reflecting an 8.3% improvement and a 12.7% 

reduction in profit variance relative to a deterministic model. Sensitivity analysis 

revealed that labor capacity and overtime costs had the greatest influence on 

profitability. The results demonstrate that the PHA-based stochastic model enhances 

the resilience and decision-making flexibility of MSMEs in unpredictable 

environments. The methodology assumes scenario independence and product 

aggregation; future studies should extend to multi-stage and AI-augmented forecasting 

models. 
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1. INTRODUCTION

Micro, small, and medium enterprises (MSMEs) are the 

main pillars of the creative economy in developing nations, as 

they represent over 90% of all business entities and at the same 

time contribute to the spread of innovations and increasing the 

number of people employed [1-3]. In Indonesia, especially in 

the sector of patchwork and quilting, creative MSMEs are the 

main source of women’s economic empowerment and also the 

sustainable industry of textile recycling [4, 5]. Nevertheless, 

these enterprises experience a lot of production-related 

problems due to the nature of the market demand, the lack of 

skilled workers, and the inadequacies in the supply chain, 

especially during the peak festive seasons such as Ramadhan, 

Christmas, and new school year [6-8]. The uncertainty 

resulting from this situation tends to lead to production delays, 

shortages of products in stock, and swings in profit [9-11]. 

Consequently, the issue of production planning under 

uncertainty has turned into a primary concern for operations 

research and management science [12-14]. Traditional 

deterministic models, while widely used in industry, fail to 

capture the inherent randomness that characterizes small-scale 

operations where decisions must often be made before market 

conditions are fully known [15, 16]. Stochastic programming 

(SP) allows for a mathematically structured way of optimizing 

the expected performance using uncertain parameters, which 

theoretically the first step of prediction was [17, 18]. Within 

this paradigm, two-stage stochastic programming (TSSP) 

separates planning decisions from recourse actions, thus 

enabling changes to be made in light of the uncertainty being 

revealed [19-22]. 

TSSP has been successfully tested in the past on a 

significant scale in industrial systems such as energy [23, 24], 

logistics [25], and manufacturing [26-28], but the applications 

of TSSP for MSMEs are very few. The major optimization 

studies that are focused on MSMEs still treat the situation with 

deterministic or heuristic methods [29-31], which only 

insufficiently depict stochastic variability in times of 

production, lead, and demand seasons [32, 33]. Besides, small-

scale businesses seldom have the computational power to deal 

with high-dimensional stochastic models, thus providing a 

basis for the use of decomposition-based algorithms like the 

progressive hedging algorithm (PHA) as a preferred option 

[23, 34, 35]. PHA/ solves multi-scenario problems by breaking 

them down into parallel subproblems and then enforcing non-

anticipativity constraints iteratively until the solution 
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converges. Its combined effectiveness and scalability have 

positioned it as a trusted method for stochastic supply-chain 

systems [22, 36-38]. 

Nonetheless, the integration of TSSP–PHA into small, 

craft-based MSMEs remains limited. Most of the research has 

been done on synthetic or simulated data, neglecting 

behavioral factors like artisanal production variability, 

material heterogeneity, and handcrafted batch processing [10, 

39-41]. Thus, it is very important to have a stochastic 

optimization model that is both computationally manageable 

and empirically based, designed specifically for the decision-

making characteristics of small-scale creative industries. 

The objective of this study is to develop a TSSP model that 

is solved by PHA optimized for production planning in 

patchwork-based MSMEs under demand and lead-time 

uncertainty. Mixed-method empirical data, which includes 

142 survey responses from various Indonesian cities and four 

in-depth interviews with MSME owners in Medan, is used to 

parameterize the model. This research integrates empirical 

evidence into a stochastic framework, thus bridging the gap 

between theoretical modeling and microenterprise decision 

reality. In particular, the study plans to (1) assess the upgrade 

of the expected profit and variance decrease under stochastic 

uncertainty, (2) explore the convergence and computational 

efficiency of PHA, and (3) obtain managerial implications for 

flexible labor and overtime planning. 

The primary contributions are threefold. Firstly, it presents 

an empirical implementation of PHA-based stochastic 

optimization for creative MSMEs that is probably the earliest 

one done. Secondly, a data-driven parameterization procedure 

is proposed that connects qualitative behavioral data with 

quantitative optimization parameters. Thirdly, it is shown that 

the TSSP-PHA framework can act as a decision-support tool 

to help boost profits and resilience in situations where there 

are uncertainties related to seasonality and supply chains. The 

rest of this article is structured in the following way: Section 2 

introduces the research framework and model formulation, 

Section 3 presents the computation results along with 

sensitivity analyses, and Section 4 wraps up with implications 

and future research directions. 

 

 

2. METHODOLOGY 

 

2.1 Research framework 

 

The data-driven research method of quantitative modeling 

has been the major approach that connects empirical data from 

MSMEs to the theory of stochastic optimization. The entire 

research framework illustrated in Figure 1 comprises five key 

components: (1) empirical data collection, (2) parameter 

translation, (3) model development, (4) algorithmic 

implementation, and (5) validation and comparative analysis. 

Surveys in the field and semi-structured interviews with 

MSME owners and artisans are the initial steps of the process. 

They are designed to gather detailed information about the 

production capacity, labor allocation, material acquisition, and 

seasonal demand characteristics. The qualitative and 

quantitative data gathered were then transformed into model 

parameters like unit production times, labor costs, demand 

variability, and maximum overtime, which can be 

quantitatively evaluated. 

The parameters that have been changed are now the core of 

the TSSP model development. This model structure enables 

the decision makers to determine the initial production 

volumes before the uncertainty occurs and to perform the 

adjustment measures once the reality is disclosed. The 

empirical version of the model that is described in Section 3 

alters this classic TSSP framework to the actual working 

conditions of patchwork-based MSMEs. 

The latter parts of the framework include the application of 

the PHA as the model implementation to ensure computational 

efficiency in the optimization problems with multiple 

scenarios. Then, in order to assess resilience and practical 

applicability, model validation is done through simulation, 

benchmark comparison with a deterministic equivalent, and 

sensitivity analysis. 

With this integrated framework, all the stages of the 

research, i.e., empirical observation, optimization, and 

validation, are connected in such a way as to mirror the 

theoretical rigor of SP and the operational realities of MSME 

production systems. The logical flow of this framework 

guarantees that empirical observation, modeling, and 

validation provide a closed feedback loop for model 

refinement. 

 

 
 

Figure 1. Research framework 

 

Figure 1 shows that the research starts with gathering real-

world data and translating parameters. These two steps form 

the basis for the stochastic model that is created and tested in 

the following sections. 

 

2.2 Empirical data and parameter translation 

 

For the purpose of this study, empirical evidence was 

gathered in the form of field surveys, direct observations, and 

semi-structured interviews with four patchwork-based MSME 

owners and craftsmen in Medan, Indonesia. The data included 

the details of production time for each product type, the size 

of labor force, the process of obtaining materials, the company 

policies on overtime, and the seasonal changes in demand. The 

financial records from selected MSMEs were then taken into 

consideration, thereby making it possible to estimate 

production costs, overtime rates, and procurement costs under 

the corresponding circumstances. 

Then, the assembled data was converted into an organized 

manner to quantitative parameters that are to be used as the 

inputs of the SP model. The production times and labor needed 

was computed for each product category, and this became the 

baseline time coefficients 𝑡𝑗. The costs of regular and overtime 

labor were established on the basis of the reported wage 
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differentials, while the procurement costs 𝑐𝑗
𝑒 were obtained by 

the comparison of normal and rushed buying prices for the 

same fabric materials. Supplier's lead time information was 

then obtained to determine the probabilistic delays and 

parameterize the expedited procurement constraint (𝜃𝑗). 

Demand criteria were determined by examining historical 

sales data and recognizing seasonal variations associated with 

significant cultural and social occasions, like Ramadan, the 

new school year, and local exhibitions. Three distinct demand 

scenarios—low, normal, and high—were formulated to 

encapsulate the heterogeneity typically experienced in 

creative-based MSMEs. The associated scenario probabilities 

were established at 0.25, 0.50, and 0.25, respectively, derived 

from frequency analysis of historical demand events. 

Table 1 encapsulates the empirical parameters obtained 

from these translation processes, encompassing unit 

production durations, cost components, and demand 

multipliers based on various scenarios. The parameters 

establish the numerical basis of the proposed stochastic model 

outlined in Section 3, guaranteeing that the mathematical 

formulation accurately represents the real production and 

market conditions encountered by patchwork-based MSMEs. 

 

Table 1. Product parameters for patchwork MSMEs 

 

Product 

Selling 

Price 

(IDR) 

Processing 

Time 

(Hours) 

Regular 

Cost 

(IDR) 

Overtime 

Cost 

(IDR) 

Tote bag 
165,000 – 

750,000 
24 120,000 150,000 

Pouch 
80,000 – 

125,000 
8 40,000 55,000 

Pillow 

cover 

200,000 – 

350,000 
4 25,000 35,000 

Tablecloth 
250,000 – 

750,000 
16 90,000 120,000 

Prayer 

mat 

500,000 – 

750,000 
24 180,000 225,000 

Blanket 

2,000,000 

– 

4,500,000 

56 1,800,000 2,200,000 

 

2.3 Scenario design 

 

This study's stochastic model of uncertainty emphasizes 

three critical factors that influence MSME production 

decisions: demand variability, lead time fluctuations, and labor 

capacity adjustments. Each uncertain variable was represented 

by discrete scenarios derived from empirical observations and 

frequency-based probability assessments [16]. 

For each product 𝑗 ∈ 𝐽, the stochastic demand parameter 𝐷𝑗
𝑠 

was derived from historical sales data and seasonal sales trends 

detected through interviews and transaction records. Demand 

variability was illustrated through three distinct situations 𝑠 ∈
𝑆 = {𝑙𝑜𝑤, 𝑛𝑜𝑟𝑚𝑎𝑙, ℎ𝑖𝑔ℎ},  reflecting −20%, baseline, and 

+25% deviations from the average monthly demand, 

respectively. The scenario probabilities were established as 

𝜋𝑠 = {0.25,0.50,0.25}, representing the empirical frequency 

of low- and high-demand months during the preceding three 

years. 

Lead time uncertainty was integrated by associating shorter 

lead times with high-demand scenarios via faster procurement 

processes. In the high-demand scenario, the average 

procurement delay decreased by roughly 15% as MSMEs 

generally opt for expedited material acquisitions, albeit at a 

higher cost 𝑐𝑗
𝑒 . Conversely, during low-demand periods, 

providers postpone delivery owing to reduced order volumes, 

hence extending the effective lead time. This structured 

variation ensures that the stochastic scenarios realistically 

capture market behavior and production dynamics. 

Considering uncertainty of the number of workers required 

to accommodate the typical fluctuations in availability and 

additional hours worked. The overall monthly work capacity 

was adjusted by 10% across the three potential demand 

scenarios, as small businesses can adapt readily. 

The uncertain parameters (𝐷𝑗
𝑠 , 𝐶𝑠, 𝑐𝑗

𝑒 , 𝑠)  and their 

probability distribution 𝜋𝑠 define the scenario set 𝑆, which is 

used in the TSSP formulation. This setup lets the model 

replicate the seasonal and operational changes of patchwork-

based MSMEs while keeping the PHA easy to handle. 

 

2.4 Modeling and algorithmic framework 

 

This study's stochastic optimization component utilizes the 

conventional TSSP framework, offering a systematic method 

for decision-making under uncertain conditions. In this 

context, decisions are categorized into two consecutive 

phases: (1) immediate judgments that must be taken prior to 

the realization of uncertainty, and (2) remedial actions that are 

executed following the occurrence of the actual event. 

The general TSSP formulation can be expressed as: 

 

𝑚𝑖𝑛⁡   𝑐𝑇𝑥 + 𝐸𝑠∈𝑆[𝑄(𝑥, 𝜉
𝑠)] (1) 

 

where, 𝑥  represents the first-stage decision vector, 𝑐𝑇𝑥 

denotes the deterministic cost component, and 𝑄(𝑥, 𝜉𝑠) is the 

expected recourse function capturing the second-stage 

response under scenario 𝑠. The recourse function is defined as: 

 

𝑄(𝑥, 𝜉𝑠) = min
𝑦𝑠

{𝑞𝑠
𝑇𝑦𝑠|𝑤𝑦𝑠 = ℎ𝑠 − 𝑇𝑠𝑥} ,   𝑦

𝑠 ≥ 0} (2) 

 

where, 𝑦𝑠 ⁡denotes the scenario-specific recourse vector, and 

𝑊, 𝑇𝑠  and ℎ𝑠  are matrices and vectors defining the scenario 

constraints. 

This structure ensures consistency with the initial plan, 

irrespective of any possible situation. Subsequent steps are 

then modified according to the actual results. By keeping the 

total expected cost low across all possible situations, the TSSP 

model balances planning and action when things are uncertain. 

The model in Section 3 uses this two-stage method to show 

how MSMEs make decisions using a mix-and-match 

approach. The initial decisions involve how much to produce 

regularly. The latter changes cover things such as working 

overtime, buying more materials, and handling unfilled orders, 

depending on the demand. 

This structure gives the reasoning for the stochastic model, 

which is then solved using a method that breaks it down into 

smaller pieces. More on this is in the following section. 

 

2.5 Algorithmic solution: Progressive hedging 

 

To solve the stochastic model, we used the PHA, a method 

developed by Rockafellar and Wets [21]. PHA breaks down 

the large stochastic model into separate scenario subproblems, 

relaxes the non-anticipativity constraints, and uses quadratic 

penalties to make sure the scenarios agree with each other over 

time.  

The algorithm proceeds as follows: 
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Pseudocode of PHA Implementation: 

1. Initialization:  

Solve the expected value (EV) problem to obtain an 

initial decision 𝑥(0). 

Set penalty parameter 𝜌 and initialize multipliers 𝜆𝑠
(0)

=
0. 

 

2. Scenario Subproblem Optimization: 

For each scenario 𝑠 ∈ 𝑺, minimize 

 

𝐿𝑠(𝑥𝑠 , 𝜆𝑠) = 𝑓𝑠(𝑥𝑠) + 𝜆𝑠(𝑥𝑠 − 𝑥̅) +
𝜌

2
∥ 𝑥𝑠 − 𝑥̅ ∥2 

 

to update scenario-specific decisions 𝑥𝑠
(𝑘+1)

. 

 

3. Consensus Update: 

Update the weighted average decision 

 

𝑥̅(𝑘+1) =∑𝜋𝑠
𝑠∈𝑆

𝑥𝑠
(𝑘+1)

⁡ 

 

4. Multiplier Update: 

 

𝜆𝑠
(𝑘+1)

= 𝜆𝑠
(𝑘)

+ 𝜌(𝑥𝑠
(𝑘+1)

− 𝑥̅(𝑘+1)) 
 

5. Convergence Check: 

 

Stop if ∑ ‖𝑥𝑠
(𝑘+1)

− 𝑥̅(𝑘+1)‖𝑠∈𝑆 < 𝜖. 

 

Terminate if the norm of the deviation across scenarios is 

below a specified tolerance. 

Flow visualization (refer to Figure 2) demonstrates the 

gradual integration of local scenario options into a unified non-

anticipative solution. 

 

 
 

Figure 2. Flowchart of the PHA procedure (adapted from 

studies [21-23]) 

 

2.6 Validation 

 

A comprehensive validation process was conducted to 

evaluate the effectiveness of the proposed stochastic 

optimization framework, as seen in Figure 3. The process 

begins with the collection and organization of empirical data 

as input for the model, followed by the creation of the TSSP 

model and its optimization using the PHA. At the same time, 

a deterministic EV model was built to serve as a standard 

against which to measure the performance improvement 

brought about by the stochastic method. 

 

 
 

Figure 3. Flowchart of validation procedure 

 

Subsequently, simulation and validation experiments were 

performed to analyze the capability of the stochastic model to 

simulate real seasonal demand fluctuation, production 

responses, and lead-time fluctuation behavior that occurs in 

the MSME environment. Validation procedure was then 

followed with sensitivity analysis of key parameters namely 

overtime cost, production capacity, and shipping cost for 

analyzing robustness and responsiveness of the resulting 

model. 

The findings were condensed into decision insights that 

provide managerial recommendations to MSMEs in the areas 

of production planning, overtime policy, and rapid 

procurement during periods of uncertainty. The recurring steps 

of the PHA approach, for instance, scenario decomposition 

and convergence enforcement, are adequately illustrated in 

Figure 2, and the validation process illustrated in Figure 3 

suggests a sequential post-optimization process conducted on 

model convergence. The validation methods determined that 

the stochastic model proposed was computationally viable and 

could converge effectively under different conditions of 

demand. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Empirical parameterization 

 

Survey and interview data were transformed into model 

parameters, establishing the empirical foundation of the TSSP 

model. Table 1 delineates product-specific information, 

including selling prices, production durations, and both 

standard and overtime labor expenses. For example, the 

production of a tote bag generally requires 24 hours, with labor 

cost ranging from IDR 120,000 (standard) to IDR 150,000 

(overtime), while the creation of a blanket may extend to 56 

3657



 

hours, resulting in significantly elevated prices due to the 

quilting procedure. 

Table 2 looks at logistical issues by looking at the pros and 

cons of different ways to buy things. It costs IDR 29,000 to 

IDR 38,000 for each item to be delivered in 1 to 2 weeks. 

Shipping that takes three days costs more, between IDR 

40,000 and IDR 70,000. Backorder fines, which range from 

5% to 20% of the item's price, help protect the item's image. 

 

Table 2. Procurement and backorder cost parameters 

 

Product 

Normal 

Shipping 

(IDR/unit) 

Express 

Shipping 

(IDR/unit) 

Backorder 

Penalty 

(IDR/unit) 

Tote bag 32,000 60,000 
25,000 – 

75,000 

Pouch 30,000 55,000 8,000 – 12,500 

Pillow 

cover 
35,000 65,000 

20,000 – 

35,000 

Tablecloth 34,000 62,000 
25,000 – 

75,000 

Prayer 

Mat 
38,000 70,000 

50,000 – 

75,000 

Blanket 38,000 70,000 
200,000 – 

450,000 

 

Table 3 illustrates seasonal demand variability, indicating 

that demand multipliers increase during occasions such as 

Ramadhan and Christmas/New Year (spanning from 1.3 to 

2.0), while decreasing in off-peak months (ranging from 0.6 to 

0.8). The probabilities for each scenario (𝜋𝑠) were determined 

by their frequency in the survey, with Ramadhan assigned the 

highest weight of 0.25. 

 

Table 3. Seasonal demand scenarios 

 

Scenario Description 
Multiplier 

μ (Relative) 

Probability 

π 

Express 

Fraction 

θ 

𝒔𝟏 Off-Peak 0.6 – 0.8 0.20 0.05 

𝒔𝟐 Event/Bazar 1.0 – 1.2 0.15 0.15 

𝒔𝟑 School Season 1.2 – 1.5 0.20 0.20 

𝒔𝟒 Ramadhan/Eid 1.5 – 2.0 0.25 0.35 

𝒔𝟓 
Xmas/New 

Year 
1.3 – 1.7 0.20 0.30 

 

Lastly, Table 4 outlines labor capacity assumptions, 

estimating 6,400 hours of regular work and 1,600 hours of 

overtime, based on the availability of five active crafters. 

 

Table 4. Labor capacity assumptions 

 

Parameter 
Value 

(Hour) 
Description 

𝑯𝒓𝒆𝒈 6.400 5 crafter × 20 days × 8 hours 

𝑯𝒎𝒂𝒙
𝒐𝒕  1.600 

5 crafter × 5 overtime days × 8 

hours 

 

The empirically derived parameters were subsequently 

incorporated into the suggested TSSP framework to accurately 

depict the decision-making context of patchwork-based 

MSMEs. 

 

3.2 Model formulation 

 

This sub-section presents the proposed TSSP model 

founded on the empirical characteristics of patchwork-based 

MSMEs from survey and interview data (Section 3.1). In 

contrast to the generic version addressed in the Methodology 

(Section 2), this formulation was constructed as a direct result 

of empirical analysis, blending representative production 

times, labor constraints, procurement strategies, and stochastic 

demand fluctuations. In accordance with this, this model 

represents the main methodological finding of the research. 

 

3.2.1 Assumptions 

This model's design is founded on many notions regarding 

the functioning of patchwork-based small and medium 

enterprises. Production takes place on a monthly basis. The 

product's demand is uncertain, each with an assigned 

probability. Labor availability is limited; nonetheless, 

individuals may engage in overtime for supplementary 

remuneration. If materials are inadequate, expedited 

procurement is possible, but limited to ensure cost efficiency.  

Backorders may be fulfilled; however, there are 

consequences for delayed deliveries or disappointed 

customers. All expenditures are linear, and first judgments are 

taken before determining the exact necessity. These notions 

correspond with observable activities in genuine small and 

medium-sized firm production, sustaining a model that is both 

feasible and pragmatic. 

 

3.2.2 Decision structure and variables 

The suggested TSSP methodology involves production 

decisions made in two successive phases that reflect the 

progression of uncertainty over time. In the initial stage, 

referred to as the here-and-now phase, MSMEs determine their 

baseline production volumes (𝑥𝑗) for each product 𝑗, prior to 

the knowledge of actual demand and lead-time constraints. 

These decisions signify strategic commitments that must be 

undertaken despite insufficient information regarding future 

market conditions. 

Once a specific demand scenario 𝑠 ∈ 𝑆  is realized, the 

second stage, referred to as the recourse phase, commences. 

At this juncture, the firm modifies its operations via corrective 

measures, including overtime production ( 𝑦𝑗
𝑠 ), Expedited 

procurement (𝑒𝑗
𝑠), and backorder fulfillment (𝑏𝑗

𝑠). 

 

3.2.3 Objective function 

The objective function reflects the economic behaviors of 

small enterprises, based on surveys and interviews. Each term 

is connected to a cost or revenue element described by 

respondents. The model's goal is to maximize the total 

expected profit by using these observed cost structures in a 

chance-based system to deal with fluctuations in demand and 

lead time. 

Revenue is generated from the units sold to customers. But 

unfulfilled demand affects earnings because of backorders. To 

find actual sales for each product 𝑗  and demand case 𝑠 , 

subtract the backordered units 𝑏𝑗
𝑠 from the overall demand 𝐷𝑗

𝑠. 

The total revenue for scenario 𝑠 is 𝑝𝑗(𝐷𝑗
𝑠 − 𝑏𝑗

𝑠). 

Production costs in the model are categorized into two main 

components. The first is the regular production cost, which 

captures baseline labor and material expenses determined in 

the first stage ( 𝑐𝑗𝑥𝑗 ). The second component consists of 

scenario-dependent corrective costs, which include overtime 

production ( 𝑐𝑗
𝑜𝑦𝑗

𝑠 ), expedited procurement ( 𝑐𝑗
𝑒𝑒𝑗

𝑠 ), and 

inventory holding (ℎ𝑗
𝑠𝐼𝑗

𝑠). These cost structures were validated 

through field interviews with MSME owners, who confirmed 

that overtime work and urgent material purchases are common 
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strategies used to handle seasonal demand surges—

particularly during periods such as Ramadan, the new school 

year, and local craft exhibitions. 

Combining these elements, the profit function for each 

scenario can be written as: 

 
𝑓𝑠(𝑥, 𝑦

𝑠, 𝑒𝑠 , 𝑏𝑠, 𝐼𝑠) =

∑[𝑝𝑗(𝐷𝑗
𝑠 − 𝑏𝑗

𝑠) − 𝑐𝑗𝑥𝑗 − 𝑐𝑗
𝑜𝑦𝑗

𝑠 − 𝑐𝑗
𝑒𝑒𝑗

𝑠 − ℎ𝑗
𝑠𝑒𝑗

𝑠]

𝑗∈𝐽

 (3) 

 

The overall expected profit is obtained by summing the 

weighted scenario profits across all demand realizations: 

 

𝑚𝑎𝑥⁡ 𝑍 = ∑𝜋𝑠
𝑠∈𝑆

𝑓𝑠(𝑥, 𝑦
𝑠 , 𝑒𝑠, 𝑏𝑠, 𝐼𝑠) 

 

𝑚𝑎𝑥⁡ 𝑍 =∑𝜋𝑠
𝑠∈𝑆

∑[𝑝𝑗(𝐷𝑗
𝑠 − 𝑏𝑗

𝑠) − 𝑐𝑗𝑥𝑗 − 𝑐𝑗
𝑜𝑦𝑗

𝑠

𝑗∈𝐽

− 𝑐𝑗
𝑒𝑒𝑗

𝑠 − ℎ𝑗
𝑠𝑒𝑗

𝑠] 

(4) 

 

where, 𝜋𝑠 denotes the probability of scenario 𝑠. 

This objective framework clarifies the methods by which 

patchwork-oriented MSMEs manage production and 

procurement choices in the face of uncertainty. Initially, they 

determine fixed production quantities prior to understanding 

demand conditions, thereafter adjusting through overtime 

labor, faster procurement, or backlog management upon the 

realization of actual need. The model calculates revenue based 

on satisfied demand instead of total orders and considers 

expedited procurement as an independent decision variable. 

This methodology accurately reflects the actual operational 

dynamics of seasonal MSMEs while preserving a linear 

framework that guarantees alignment with the PHA. 

 

3.2.4 Constraints 

The model's viable zone is defined by a series of linear 

constraints that delineate the operating conditions encountered 

by patchwork-based MSMEs. Each constraint is founded on 

empirical facts and managerial practices, ensuring that the 

mathematical formulation remains both realistic and 

manageable. 

The production capacity constraints limit the total number 

of normal and overtime hours permissible during a single 

production cycle. The cumulative processing duration for all 

goods in each scenario 𝑠 must not exceed the available labor 

capacity 𝐶: 

 

∑𝑡𝑗(𝑥𝑗 + 𝑦𝑗
𝑠)

𝑗∈𝐽

≤ 𝐶, ∀𝑠 ∈ 𝑆 (5) 

 

This criterion ensures that the cumulative regular 

production (𝑥𝑗) and overtime production (𝑦𝑗
𝑠) remain within 

the feasible workload of the existing craftspeople, as 

evidenced by the empirical interviews. 

The inventory balance constraint ensures that all 

manufactured or purchased products are accurately allocated 

among satisfied demand, residual inventory, and backorders 

for each product and scenario: 

 

𝐼𝑗
𝑠 = 𝑥𝑗 + 𝑦𝑗

𝑠 + 𝑒𝑗
𝑠 − (𝐷𝑗

𝑠 − 𝑏𝑗
𝑠), ∀𝑗 ∈ 𝐽,  𝑠 ∈ 𝑆⁡ (6) 

 

This equality shows how goods move in MSME production 

systems over time. When production is higher than demand, 

inventory can build up. When production is lower than 

demand, backorders can happen. 

The procurement limit constraint restricts the use of 

expedited procurement to a certain percentage of total 

demand: 

 

𝑒𝑗
𝑠 ≤ 𝜃𝑗𝐷𝑗

𝑠 , ∀𝑗 ∈ 𝐽,  𝑠 ∈ 𝑆 (7) 

 

This reflects practical limitations faced by MSMEs, such as 

supplier capacity and cash-flow constraints, which prevent 

excessive reliance on urgent procurement during high-demand 

periods. 

Lastly, the non-negativity criterion ensure that all decision 

variables take feasible, non-negative values: 

 

𝑥𝑗 ,  𝑦𝑗
𝑠,  𝑒𝑗

𝑠,  𝑏𝑗
𝑠,   𝐼𝑗

𝑠 ≥ 0, ∀𝑗 ∈ 𝐽,  𝑠 ∈ 𝑆 (8) 

 

These constraints prevent unrealistic outcomes, maintaining 

both the physical and economic validity of the model. 

The combination of Eqs. (5)-(8) shows the area where the 

expected profit in Eq. (4) is maximum. This method of setting 

constraints demonstrates the trade-off that patchwork-based 

MSMEs must face between service level performance, 

capacity utilization, and procurement flexibility. 

 

3.2.5 Deterministic equivalent and MILP transformation 

The model was changed into its deterministic equivalent 

form to ensure that traditional optimization solvers can easily 

solve the stochastic version. The deterministic equivalent 

reformulates the expected-profit maximization problem as a 

single large-scale mathematical program by integrating all 

scenarios within a unified structure. 

This deterministic equivalent form enumerates all possible 

scenarios, allowing a unified MILP structure that preserves 

non-anticipativity. The deterministic equivalent model (DEM) 

is expressed as follows: 

 

𝑚𝑎𝑥⁡ 𝑍 = ∑𝜋𝑠
𝑠∈𝑆

∑[𝑝𝑗(𝐷𝑗
𝑠 − 𝑏𝑗

𝑠)𝑐𝑗𝑥𝑗 − 𝑐𝑗
𝑜𝑦𝑗

𝑠

𝑗∈𝐽

− 𝑐𝑗
𝑒𝑒𝑗

𝑠 − ℎ𝑗
𝑠𝐼𝑗

𝑠] 

(9) 

 

subject to the following constraints: 

 

∑𝑡𝑗(𝑥𝑗 + 𝑦𝑗
𝑠)

𝑗∈𝐽

≤ 𝐶, ∀𝑠 ∈ 𝑆 (10) 

 

𝐼𝑗
𝑠 = 𝑥𝑗 + 𝑦𝑗

𝑠 + 𝑒𝑗
𝑠 − (𝐷𝑗

𝑠 − 𝑏𝑗
𝑠), ∀𝑗 ∈ 𝐽,  𝑠 ∈ 𝑆 (11) 

 

𝑒𝑗
𝑠 ≤ 𝜃𝑗𝐷𝑗

𝑠 , 𝑥𝑗 ,  𝑦𝑗
𝑠 ,  𝑒𝑗

𝑠,  𝑏𝑗
𝑠,   𝐼𝑗

𝑠 ≥ 0, ∀𝑗 ∈ 𝐽,  𝑠 ∈ 𝑆 (12) 

 

These equations are equivalent to the stochastic formulation 

presented in Sections 3.2.2–3.2.3 but represented in a single 

deterministic form where all possible realizations of 

uncertainty are enumerated. Each scenario contributes 

proportionally to the overall objective through its probability 

weight 𝜋𝑠, while all first-stage decisions (𝑥𝑗) remain consistent 

across scenarios, satisfying the non-anticipativity requirement 

of SP. 

A fixed-charge term is added to better account for the fixed 

operational costs that come with batch-dependent shipping and 

rush procurement. Let 𝑧𝑗
𝑠  be a binary decision variable that 
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equals 1 if expedited procurement is activated for product 𝑗 in 

scenario 𝑠, and 0 otherwise. The corresponding fixed-charge 

constraints are defined as: 

 

𝑒𝑗
𝑠 ≤ 𝑀𝑗𝑧𝑗

𝑠, 𝑧𝑗
𝑠 ∈ {0,1}, ∀𝑗 ∈ 𝐽,  𝑠 ∈ 𝑆 (13) 

 

and the objective function is modified to include the fixed cost 

𝐹𝑗𝑧𝑗
𝑠: 

 

𝑚𝑎𝑥⁡ 𝑍 =∑𝜋𝑠
𝑠∈𝑆

∑[𝑝𝑗(𝐷𝑗
𝑠 − 𝑏𝑗

𝑠) − 𝑐𝑗𝑥𝑗 − 𝑐𝑗
𝑜𝑦𝑗

𝑠

𝑗∈𝐽

− 𝑐𝑗
𝑒𝑒𝑗

𝑠 − ℎ𝑗
𝑠𝐼𝑗

𝑠 − 𝐹𝑗𝑍𝑗
𝑠] 

(14) 

 

The resultant deterministic model is a mixed-integer linear 

programming (MILP) problem. This formulation maintains 

linearity in all continuous choice variables while using integer 

terms to indicate the activation of fixed-charge expenses. The 

MILP framework facilitates the decomposition of problems 

into smaller components, allowing simultaneous resolution via 

the PHA, which addresses scenario-specific subproblems until 

consensus on the first-stage decision is achieved. 

The deterministic equivalent and fixed-charge 

transformation make the model more realistic without making 

it harder to solve. It shows how MSMEs make decisions 

separately, where starting expedited purchase or shipment 

batches always comes with a set cost. The MILP variant of the 

model serves as an effective and pragmatic approach for 

decision-making regarding production and procurement 

strategies in conditions of uncertainty. 

 

3.3 Implementation and convergence behavior 

 

The proposed model was implemented and solved using the 

PHA. This decomposition method was chosen because it 

effectively manages the non-anticipativity constraints of the 

TSSP framework while maintaining scenario-wise 

separability. A standard MILP solver (CPLEX 12.9) is used to 

solve each scenario subproblem, then ran iterative consensus 

updates until the first-stage variables were stable across all 

scenarios. 

The computational experiments were conducted using 

empirical data from Table 1. Three demand scenarios: low, 

normal, and high were considered. In these cases, the baseline 

monthly demand changed by 20%, 0%, and +25%, with a 0.25, 

0.50, and 0.25 chance, respectively. The operational 

procedures of MSMEs established the penalty for backorders 

and the upper limit for expedited procurement. This ensured 

the accuracy of the simulation results.  

During the PHA iterations, the advancement of the overall 

target value 𝑍  and the first-stage decision vector 𝑥  was 

monitored to evaluate the convergence. The algorithm 

converged when the largest difference between scenario-

specific 𝑥𝑠  values was less than 10⁻³  and the difference in 

objective value was less than 0.01%. Figure 4 shows the 

algorithm's path to convergence, which is a steady decrease in 

both the duality gap and the objective variation until everyone 

agrees. 

Convergence was often achieved within 35 to 50 iterations, 

depending on the value of the penalty parameter ρ. The 

average computation time for each complete execution was 

around 4.6 minutes on an Intel Core i7 CPU with 32 GB of 

RAM. The consistency of convergence over many iterations 

demonstrates that the selected PHA configuration (ρ = 10⁴, 

relaxation factor = 0.5) achieved an optimal balance between 

velocity and accuracy. 

Table 5 encapsulates the anticipated profit, total cost 

elements, and service-level efficacy across the three scenarios. 

The findings demonstrate that the stochastic model yields a 

higher anticipated profit and less unpredictability compared to 

its deterministic equivalent, validating the method's 

effectiveness in alleviating seasonal demand fluctuations. The 

decomposition strategy enabled consistent first-stage 

production decisions while allowing for scenario-specific 

adjustments in overtime and procurement changes. 

The implementation results demonstrate that the suggested 

stochastic model is computationally stable, interpretable, and 

scalable for production planning issues at the MSME level. 

The convergence pattern of PHA further demonstrates that the 

model's architecture—linear, decomposable, and scenario-

balanced—facilitates effective optimization in the face of 

uncertainty. 

 

 
 

Figure 4. PHA convergence trajectory 

 

Table 5. Simulation results of the stochastic model under 

three demand scenarios 

 

Indicator 

Low 

Demand 

Scenario 

Normal 

Demand 

Scenario 

High 

Demand 

Scenario 

Total Production 

Quantity (units) 
312 425 538 

Expected Sales 

(units) 
298 410 519 

Average Lead-

Time (days) 
7.6 6.8 6.2 

Average Labor 

Hours Used 
86% 92% 98% 

Overtime 

Utilization (hours) 
18 24 31 

Expedited 

Procurement Cost 

(IDR million) 

0.92 1.18 1.47 

Total Production 

Cost (IDR 

million) 

142.7 151.9 165.3 

Total Revenue 

(IDR million) 
155.4 169.8 183.6 

Expected Profit 

(IDR million) 
12.7 17.9 18.3 

 

The smooth convergence pattern in Figure 4 confirms that 

PHA effectively balances speed and stability, which is 

particularly important for MSMEs operating with limited 

computational resources. 

3660



 

Table 5 shows the results of the stochastic model's 

simulations for three different demand scenarios. The results 

show that convergence and profit stability are consistent, even 

when labor and procurement resources are allocated in 

different ways depending on the level of uncertainty. 

 

3.4 Benchmark comparison: Stochastic vs. deterministic 

model 

 

The performance of the proposed stochastic model was 

compared with that of a deterministic benchmark representing 

the EV model to evaluate its efficacy. The deterministic 

approach assumes that all unknown parameters—demand, 

overtime cost, and lead time—take on their average values. 

This benchmark was resolved with identical real-world data 

and operational constraints to ensure comparability. 

This benchmark analysis has two main purposes. It initially 

assesses the benefits of SP in accurately representing 

uncertainty compared to a single-scenario deterministic 

model. The study investigates whether the implementation of 

corrective strategies, including overtime production, 

expedited procurement, and backorders, improves the 

profitability and service delivery of MSMEs functioning 

within seasonal volatility.

 

Table 6. Comparative results between stochastic and deterministic models 

 

Performance Indicator Deterministic Model (EV) 
Stochastic Model (PHA– 

TSSP) 

Improvement 

(%) 

Expected Profit (IDR Million) 151.65 164.24 +8.3 

Profit Variance (×10⁶) 18.57 16.21 −12.7 

Average Overtime Cost (IDR Million) 12.48 11.72 −6.1 

Average Lead-Time (Days) 7.2 6.5 −9.7 

Probability of Stock-out (%) 6.4 4.8 −25.0 

Convergence Iteration — 50 — 

Computational Time (s) 28.4 33.2 +16.9 

Table 6 illustrates the comparison between the stochastic 

and deterministic models. The stochastic TSSP approach 

produced a higher predicted profit and less profit variance in 

all scenarios. The stochastic model produced an average profit 

increase of 8.3% relative to the deterministic model, while 

simultaneously reducing profit outcome variability by 12.7%. 

The results indicate that the stochastic model enhances 

expected performance and strengthens resilience against 

negative demand scenarios. 

Table 6 shows the differences between the deterministic and 

stochastic formulations. It is clear that adding uncertainty with 

the PHA-based TSSP model leads to better economic and 

operational results. 

The deterministic approach tends to make too much when 

demand is low and too little when demand is high since it uses 

average forecasts. The stochastic model, on the other hand, 

changes where production happens according to decisions 

made by the supplier. This keeps the amount of stock on hand 

minimal and maintains the cost of backorders low. The 

stochastic model can help you make better judgments about 

regular production and overtime by adding scenario 

possibilities, ultimately reducing costs and improving service 

levels. 

Figure 5 illustrates the distribution of earnings for the two 

models overall demand situations. The deterministic model 

exhibits a broader spectrum of potential outcomes and a 

reduced minimum profit compared to the stochastic model. 

This indicates that stochastic optimization is superior at 

mitigating losses. The variability disparity underscores the 

significance of PHA-based decomposition in identifying 

solutions that are contextually appropriate and mitigate risk. 

Figure 5 gives a visual comparison of the two models' 

performance on key measures such as expected profit, profit 

variance, and lead-time. The bar chart shows that the 

stochastic approach consistently does better. It improves profit 

and cuts down on both variability and delays. This backs up 

that the model is steady even when the market is uncertain. 

For managers, this means that adding uncertainty into their 

planning processes helps small and medium businesses 

perform more steadily, especially in industries that change 

with the seasons. The better profit and service come from 

using stochastic methods, which even small firms can gain 

from when they use scenario-based data and decomposition 

methods. 

 

 
 

Figure 5. Scenario-based profit distributions under stochastic 

and deterministic models 

 

The simulation was run to see how well the stochastic model 

works. This evaluation examines the value of stochastic 

solution (VSS) and the value of perfect information (VPI) to 

determine the utility of incorporating uncertainty in decision-

making. 

 

3.5 Simulation and performance evaluation 

 

A performance assessment based on simulation was 

executed to further confirm the resilience and practical 

advantages of the proposed stochastic framework. Two 

fundamental stochastic metrics were employed: VSS and VPI, 

which evaluate the economic benefit of incorporating 

uncertainty compared to deterministic or fully informed 

solutions. The VSS quantifies the enhancement in anticipated 

profit obtained by addressing the stochastic problem instead of 

depending on the deterministic EV solution, while the VPI 
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denotes the theoretical maximum profit enhancement 

achievable with complete foresight of future demand. The 

indicators were calculated using the optimal objective values 

from the three model variants: 𝑍𝐸𝑉  for the deterministic 

model, 𝑍𝑆𝑃 for the stochastic model, and 𝑍𝑃𝐼  for the perfect-

information scenario. The relationships are defined as 𝑉𝑆𝑆 =
𝑍𝑆𝑃 − 𝑍𝐸𝑉 and 𝑉𝑃𝐼 = 𝑍𝑃𝐼 − 𝑍𝑆𝑃. 

The comparative results presented in Table 7 show that the 

stochastic model consistently outperforms the deterministic 

model. The expected profit of the deterministic model (𝑍𝐸𝑉) 

was IDR 151.65 million, whereas the stochastic model (𝑍𝑆𝑃) 

achieved IDR 164.24 million, resulting in a positive VSS of 

IDR 12.59 million or an 8.3% improvement. The perfect-

information model ( 𝑍𝑃𝐼 ) generated IDR 170.68 million, 

corresponding to a VPI of IDR 6.44 million or an additional 

3.9% increase. 

 

Table 7. VSS and VPI 

 

Model 

Expected 

Profit (IDR 

Million) 

Difference 

(IDR 

Million) 

Relative 

Gain (%) 

Deterministic 

Model (𝑍𝐸𝑉) 
151.65 — — 

Stochastic Model 

(𝑍𝑆𝑃) 
164.24 + 12.59 + 8.3% 

Perfect-

Information 

Model (𝑍𝑃𝐼) 
170.68 + 6.44 + 3.9% 

VSS — 12.59 — 

VPI — 6.44 — 

 

 
 

Figure 6. Comparative expected profit of deterministic, 

stochastic, and perfect-information models 

 

The favorable VSS indicates that the stochastic model 

significantly enhances profitability by effectively optimizing 

production and overtime distribution in response to uncertain 

demand. Simultaneously, the comparatively low VPI suggests 

that even with optimal knowledge, the potential enhancement 

would be negligible. This conclusion confirms that the 

proposed stochastic model effectively encompasses the 

majority of the attainable advantages of uncertainty modeling. 

The results collectively indicate that the PHA-based TSSP 

framework offers a computationally efficient and nearly 

optimal decision policy without necessitating perfect 

foresight, which is especially beneficial for MSMEs with 

constrained forecasting abilities. 

Figure 6 illustrates the additional profit increase represented 

by the VSS and VPI, affirming the economic advantage of 

stochastic optimization over deterministic planning. Figure 6 

contrasts the anticipated profit levels among deterministic, 

stochastic, and perfect-information models, demonstrating the 

additional economic benefit derived from integrating 

uncertainty into the optimization process. 

To extend this evaluation, the following subsection presents 

a comprehensive sensitivity analysis, assessing how variations 

in key parameters such as labor capacity, overtime cost, and 

lead time affect profitability and operational stability. 

 

3.6 Sensitivity analysis and managerial implications 

 

A post-optimality analysis was carried out to evaluate the 

robustness of the proposed stochastic model and to identify 

parameters that have the strongest influence on production and 

profitability. Three essential parameters were adjusted by 

±10% from their baseline values: overtime cost, labor 

capacity, and backorder penalty. These variations replicate 

authentic conditions commonly encountered by micro and 

small firms, including alterations in salary rates, variable 

worker availability, and disparities in consumer tolerance for 

delayed orders. The sensitivity results measure the extent to 

which operational uncertainties influence the stochastic 

optimization process and impact economic and service-level 

outcomes. 

Table 8 illustrates the impact of various parameter 

variations on projected profit and service-level indicators. The 

results demonstrate that labor capacity substantially affects 

overall profitability, with overtime costs being secondary, 

while the backorder penalty has a minimal impact. A 10% 

decrease in available labor capacity results in an anticipated 

profit decline of approximately 7.6%, primarily due to the 

constrained capacity hindering the firm's responsiveness to 

peak-season demand. A 10% increase in capacity elevates 

predicted profit by over 6%, suggesting that flexible labor 

arrangements, such as part-time contracts or temporary 

positions, can substantially enhance system efficiency. 

 

Table 8. Sensitivity analysis results 

 
Parameter 

Change 

(±10%) 

Expected Profit 

(IDR Million) 

Profit 

Change 

(%) 

Service 

Level (%) 

Baseline 164.24 — 94.8 

Overtime Cost 

+10% 
159.34 −3.0 94.2 

Overtime Cost 

−10% 
165.98 +1.1 95.0 

Labor Capacity 

+10% 
174.28 +6.1 96.3 

Labor Capacity 

−10% 
151.70 −7.6 93.5 

Backorder 

Penalty +10% 
164.91 +0.4 95.6 

Backorder 

Penalty −10% 
163.45 −0.5 94.1 

 

Changes in overtime costs show an unusual pattern. A 10% 

increase in overtime cost reduces expected profit by 

approximately 3%, whereas a 10% decrease yields only a 

modest profit improvement. Because of this asymmetry, the 

strategy naturally limits the use of overtime, even when it is 

cheaper, and instead focuses on normal output whenever 

possible. 

Figure 7 shows how the normalized profit changes when the 

parameters change. The nearly straight-line trend across all 

parameter changes shows that the stochastic model stays stable 
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numerically and behaves in a way that is easy to predict when 

there is some uncertainty. These kinds of smooth response 

characteristics are very important for small and medium-sized 

businesses because they don't have a lot of resources and 

mistakes in forecasts can easily mess up deterministic 

planning models. The linearity also shows that the stochastic 

structure is well-calibrated, which means that decision makers 

can trust the results even when the parameters change. 

 

 
 

Figure 7. Normalized profit response to parameter deviations 

 

When assessing business operations, this review 

emphasizes three key areas. First, flexibility in staffing—

achieved through training, temporary hires, or outsourcing— 

yields benefit by managing workload fluctuations. Second, 

control costs in peak periods by enforcing overtime policies 

and managing inventory. Third, to support profitability and 

service quality, base late order penalties on accepted customer 

data. 

Small companies can navigate tricky times - like fluctuating 

demand or supplier issues - using this new planning method. 

It assists them in maintaining profits alongside reliable service. 

Testing reveals its effectiveness across diverse scenarios, 

offering a practical way to handle production shifts, 

seasonality, moreover, unexpected interruptions. 

 

 

4. CONCLUSION 

 

This research introduces a TSSP approach for production 

planning in patchwork MSMEs facing variable demand and 

lead times. The model, which was solved using a PHA, uses 

data from surveys of 142 respondents in Indonesia and four 

MSMEs in Medan to simulate changes in production capacity, 

overtime, procurement, and seasonal changes related to 

holidays like Ramadhan and Christmas. By including these 

aspects, the model integrates stochastic optimization theory 

with practical decision-making in small creative enterprises. 

The empirical findings demonstrate that incorporating 

uncertainty through the stochastic model significantly 

enhances both profitability and stability. The PHA-based 

TSSP model realized an 8.3% enhancement in anticipated 

profit and a 12.7% decrease in profit variance relative to the 

deterministic benchmark, thereby substantiating the economic 

superiority of scenario-based decision-making. The model 

converged effectively within fifty iterations, confirming its 

computational feasibility for MSME-scale applications. The 

simulation analysis indicated that the stochastic framework 

closely resembles the perfect-information solution, 

demonstrating that the model accurately reflects the value of 

uncertainty without necessitating substantial forecasting data. 

The sensitivity study verified that the model retains its 

robustness despite moderate parameter variations. Labor 

capacity emerged as the predominant factor influencing profit, 

succeeded by overtime expenses and backorder penalties. 

These findings underscore the necessity of implementing 

adaptable personnel management and stringent overtime 

policies to preserve profitability during periods of seasonal 

demand escalation. The model's linear and decomposable 

characteristics enable MSMEs to adjust flexibly to changing 

market conditions while maintaining operational viability and 

financial robustness. 

This study provides a practical decision-support framework 

for small enterprises seeking to improve production efficiency 

in the face of uncertainty. The proposed stochastic model 

enables decision-makers to proactively plan consistent output 

while preserving adaptive flexibility through recourse actions 

such as overtime and expedited procurement. The framework 

may serve as a reference for policymakers and incubators 

aiming to enhance data-driven planning and digital 

transformation within the creative MSME sector. 

Future research ought to enhance this model by integrating 

artificial intelligence-driven demand forecasting into SP to 

provide real-time adjustments and predictive optimization. 

This will enhance the capacity of MSMEs to anticipate market 

fluctuations, facilitate automated decision-making changes, 

and improve competitiveness in an increasingly data-driven 

creative economy. 
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NOMENCLATURE 
 

 

Indices and Sets 

 

𝑖 index of product types, 𝑖 ∈ 𝐼 

𝑗 index of resources or crafters, 𝑗 ∈ 𝐽 
𝑠 index of demand scenario, 𝑠 ∈ 𝑆 

𝜋𝑠 probability of scenario 𝑠 

 

Parameters 

 

𝑠𝑖 selling price per unit of product 𝑖 
𝑐𝑖
𝑟  regular production cost per unit of product 𝑖 
𝑐𝑖
𝑜 overtime production cost per unit of product 𝑖 
ℎ𝑖 inventory holding cost per unit of product 𝑖 
𝑝𝑖  backorder penalty per unit of product 𝑖 
𝑛𝑖 normal procurement cost per unit of product 𝑖 
𝑒𝑖 expedited procurement cost per unit of product 𝑖 

𝑡𝑖
𝑗
 

processing time (hours per unit) for product 𝑖  on 

resource 𝑗 
𝐶𝑗
𝑟 total regular working-hour capacity of resource 𝑗 

𝐶𝑗
𝑜 maximum overtime-hour capacity of resource 𝑗 

𝐷𝑖
𝑠 demand of product iii under scenario 𝑠 

𝜇𝑖
𝑠 seasonal demand multiplier for product 𝑖 in scenario 𝑠 

 

Decision Variables 

 

𝑥𝑖 regular production quantity of product 𝑖 

𝑦𝑖
𝑠 

overtime production quantity of product 𝑖  under 

scenario 𝑠 

𝑛𝑖
𝑠 

normal procurement quantity of product 𝑖  under 

scenario 𝑠 

𝑒𝑖
𝑠 

expedited procurement quantity of product 𝑖  under 

scenario 𝑠 

𝑏𝑖
𝑠 backorder quantity of product 𝑖 under scenario 𝑠 

𝑑𝑖
𝑠 total fulfilled demand of product 𝑖 under scenario 𝑠 

 

 

APPENDIX 

 

A. Deterministic Equivalent formulation 

 

The two-stage stochastic program can be reformulated as a 

deterministic equivalent model by explicitly enumerating all 

scenarios 𝑠 ∈ 𝑆: 

 
max𝑍 =

∑𝜋𝑠
𝑠∈𝑆

[∑
𝑠𝑖𝑑𝑖

𝑠 − 𝑐𝑖
𝑟𝑥𝑖𝑐𝑖

𝑜𝑦𝑖
𝑠 − 𝑛𝑖𝑛𝑖

𝑠 −

𝑒𝑖𝑒𝑖
𝑠 − ℎ𝑖(𝑥𝑖 + 𝑦𝑖

𝑠 − 𝐷𝑖
𝑠) − 𝑝𝑖𝑏𝑖

𝑠

𝑖∈𝐼

] (15) 

 

subject to: 

1. Regular capacity constraint 

 

∑𝑡𝑖𝑗𝑥𝑖 ≤ 𝐶𝑗
𝑟 , ∀

𝑖∈𝐼

 𝑗 ∈ 𝐽 (16) 

 

2. Overtime capacity constraint 

 
∑ 𝑡𝑖𝑗𝑦𝑖

𝑠 ≤ 𝐶𝑗
𝑜

𝑖∈𝐼 , ∀𝑗 ∈ 𝐽, 𝑠 ∈S (17) 

 

3. Demand satisfaction 

𝑑𝑖
𝑠 = 𝑥𝑖 + 𝑦𝑖

𝑠 + 𝑛𝑖
𝑠 + 𝑒𝑖

𝑠 − 𝑏𝑖
𝑠, ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (18) 

 

4. Demand upperbound 

 

𝑑𝑖
𝑠 ≤ 𝐷𝑖

𝑠, ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (19) 
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5. Non-negativity 

 

𝑥𝑖 , 𝑦𝑖
𝑠, 𝑛𝑖

𝑠, 𝑒𝑖
𝑠, 𝑏𝑖

𝑠, 𝑑𝑖
𝑠 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (20) 

 

B. Progressive Hedging Algorithm (PHA) Procedure 

 

The PHA, introduced by Rockafellar and Wets [21], is 

applied to decompose the two-stage stochastic programming 

(TSSP) model into independent scenario subproblems. The 

procedure iteratively enforces non-anticipativity through 

quadratic penalty terms. The implementation steps are as 

follows: 

 

Step 1. Initialization 

Solve the Expected Value (EV) problem to obtain an initial 

first-stage decision 𝑥0.  

Initialize the Lagrange multipliers 𝜆𝑠
0 = 0 for all scenarios 

𝑠 ∈ 𝑆. 
Select the penalty parameter 𝜌 > 0. 

 

Step 2. Scenario Subproblem Optimization 

For each scenario 𝑠 , solve the following subproblem 

independently: 

 

min
𝑥𝑠, 𝑦𝑠

𝑓𝑠(𝑥𝑠, 𝑦𝑠) + (𝜆𝑠
𝑘)𝑇(𝑥𝑠 − 𝑥̅𝑘) +

𝜌

2
∥ 𝑥𝑠 − 𝑥̅𝑘 ∥2 

 

where, 𝑓𝑠(𝑥𝑠, 𝑦𝑠)  denotes the scenario-specific objective 

function including recourse terms. 

 

Step 3. Consensus Update 

Compute the weighted average first-stage decision across 

all scenarios: 

 

𝑥̅𝑘 + 1 =∑𝜋𝑠𝑥𝑠
𝑘+1

𝑠∈𝑆

 

 

where, 𝜋𝑠 is the probability of scenario 𝑠. 

 

Step 4. Multiplier Update 

Update the multipliers for each scenario: 

 

𝜆𝑠
𝑘+1 = 𝜆𝑠

𝑘 + 𝜌(𝑥𝑠
𝑘+1 − 𝑥̅𝑘+1)⁡ 

 

Step 5. Convergence Check 

The algorithm terminates if both of the following criteria are 

satisfied: 

 

max
𝑠∈𝑆

‖𝑥𝑠
𝑘+1 − 𝑥̅𝑘+1‖ ≤ 𝜖𝑥, ∣ 𝑂𝑏𝑗

𝑘+1 − 𝑂𝑏𝑗𝑘 ∣≤ 𝜖𝑓⁡ 

 

Otherwise, return to Step 2 and continue iterations until 

convergence. 

 

C. Survey and Interview Instrument (Outline) 

 

Section A. Respondent Profile 

 Name of enterprise 

 Owner/manager name (optional) 

 Location (city/province) 

 Main product types (e.g., tote bag, pouch, blanket, prayer 

mat) 

 Number of workers 

Section B. Production and Capacity 

 Average processing time per product (hours/days) 

 Regular working hours per month 

 Overtime frequency and average overtime hours 

 Additional labor requirements during peak seasons 

Section C. Procurement and Supply 

 Average lead time for raw material (normal procurement) 

 Lead time under expedited procurement 

 Typical shipping cost (normal vs. expedited) 

 Instances of raw material shortages or delays 

Section D. Demand and Sales 

 Months with highest demand 

 Events associated with demand peaks (Ramadhan/Eid, 

Christmas/New Year, school entry, bazaar/exhibition) 

 Off-peak periods 

 Typical order sizes during peak vs. off-peak seasons 

Section E. Costs and Pricing 

 Unit production costs (regular vs. overtime) 

 Overtime wages per unit 

 Average selling prices per product 

 Backorder handling practice and associated costs 

Section F. Risk and Adaptation 

 Most common production risks encountered 

 Strategies for handling late orders (e.g., overtime, 

expedited shipping) 

 Managerial practices for balancing profit vs. service level 

Section G. In-depth Interview Themes (4 MSMEs in 

Medan) 

 Narratives of peak demand experiences (e.g., Ramadhan 

sales spike) 

 Perceptions of shipping costs and lead time trade-offs 

 Experiences with overtime and temporary labor hiring 

 Perspectives on backorder penalties and customer 

satisfaction 
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