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This study develops a two-stage stochastic programming (TSSP) model based on
Progressive Hedging to enhance production planning for patchwork-based Micro,
small, and medium enterprises (MSMEs) amid seasonal demand and lead-time
variability. Empirical data from 142 MSMEs in several Indonesian cities and four
comprehensive interviews in Medan were utilized to quantify production durations,
labor capacity, procurement strategies, and seasonal variations throughout Ramadhan
and Christmas/New Year. The approach establishes initial production quantities in the
first stage and modifies them through overtime, expedited procurement, and backorders
upon the realization of actual demand. The progressive hedging algorithm (PHA)
effectively decomposes scenario subproblems, guaranteeing non-anticipative
convergence within 50 iterations. The simulation of five demand scenarios yielded a
projected profit of IDR 164.2 million, reflecting an 8.3% improvement and a 12.7%
reduction in profit variance relative to a deterministic model. Sensitivity analysis
revealed that labor capacity and overtime costs had the greatest influence on
profitability. The results demonstrate that the PHA-based stochastic model enhances
the resilience and decision-making flexibility of MSMEs in unpredictable
environments. The methodology assumes scenario independence and product
aggregation; future studies should extend to multi-stage and Al-augmented forecasting

models.

1. INTRODUCTION

Micro, small, and medium enterprises (MSMEs) are the
main pillars of the creative economy in developing nations, as
they represent over 90% of all business entities and at the same
time contribute to the spread of innovations and increasing the
number of people employed [1-3]. In Indonesia, especially in
the sector of patchwork and quilting, creative MSMEs are the
main source of women’s economic empowerment and also the
sustainable industry of textile recycling [4, 5]. Nevertheless,
these enterprises experience a lot of production-related
problems due to the nature of the market demand, the lack of
skilled workers, and the inadequacies in the supply chain,
especially during the peak festive seasons such as Ramadhan,
Christmas, and new school year [6-8]. The uncertainty
resulting from this situation tends to lead to production delays,
shortages of products in stock, and swings in profit [9-11].

Consequently, the issue of production planning under
uncertainty has turned into a primary concern for operations
research and management science [12-14]. Traditional
deterministic models, while widely used in industry, fail to
capture the inherent randomness that characterizes small-scale
operations where decisions must often be made before market
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conditions are fully known [15, 16]. Stochastic programming
(SP) allows for a mathematically structured way of optimizing
the expected performance using uncertain parameters, which
theoretically the first step of prediction was [17, 18]. Within
this paradigm, two-stage stochastic programming (TSSP)
separates planning decisions from recourse actions, thus
enabling changes to be made in light of the uncertainty being
revealed [19-22].

TSSP has been successfully tested in the past on a
significant scale in industrial systems such as energy [23, 24],
logistics [25], and manufacturing [26-28], but the applications
of TSSP for MSMEs are very few. The major optimization
studies that are focused on MSME:s still treat the situation with
deterministic or heuristic methods [29-31], which only
insufficiently depict stochastic variability in times of
production, lead, and demand seasons [32, 33]. Besides, small-
scale businesses seldom have the computational power to deal
with high-dimensional stochastic models, thus providing a
basis for the use of decomposition-based algorithms like the
progressive hedging algorithm (PHA) as a preferred option
[23, 34, 35]. PHA/ solves multi-scenario problems by breaking
them down into parallel subproblems and then enforcing non-
anticipativity constraints iteratively until the solution
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converges. Its combined effectiveness and scalability have
positioned it as a trusted method for stochastic supply-chain
systems [22, 36-38].

Nonetheless, the integration of TSSP-PHA into small,
craft-based MSMEs remains limited. Most of the research has
been done on synthetic or simulated data, neglecting
behavioral factors like artisanal production variability,
material heterogeneity, and handcrafted batch processing [10,
39-41]. Thus, it is very important to have a stochastic
optimization model that is both computationally manageable
and empirically based, designed specifically for the decision-
making characteristics of small-scale creative industries.

The objective of this study is to develop a TSSP model that
is solved by PHA optimized for production planning in
patchwork-based MSMEs under demand and lead-time
uncertainty. Mixed-method empirical data, which includes
142 survey responses from various Indonesian cities and four
in-depth interviews with MSME owners in Medan, is used to
parameterize the model. This research integrates empirical
evidence into a stochastic framework, thus bridging the gap
between theoretical modeling and microenterprise decision
reality. In particular, the study plans to (1) assess the upgrade
of the expected profit and variance decrease under stochastic
uncertainty, (2) explore the convergence and computational
efficiency of PHA, and (3) obtain managerial implications for
flexible labor and overtime planning.

The primary contributions are threefold. Firstly, it presents
an empirical implementation of PHA-based stochastic
optimization for creative MSMEs that is probably the earliest
one done. Secondly, a data-driven parameterization procedure
is proposed that connects qualitative behavioral data with
quantitative optimization parameters. Thirdly, it is shown that
the TSSP-PHA framework can act as a decision-support tool
to help boost profits and resilience in situations where there
are uncertainties related to seasonality and supply chains. The
rest of this article is structured in the following way: Section 2
introduces the research framework and model formulation,
Section 3 presents the computation results along with
sensitivity analyses, and Section 4 wraps up with implications
and future research directions.

2. METHODOLOGY
2.1 Research framework

The data-driven research method of quantitative modeling
has been the major approach that connects empirical data from
MSME:s to the theory of stochastic optimization. The entire
research framework illustrated in Figure 1 comprises five key
components: (1) empirical data collection, (2) parameter
translation, (3) model development, (4) algorithmic
implementation, and (5) validation and comparative analysis.

Surveys in the field and semi-structured interviews with
MSME owners and artisans are the initial steps of the process.
They are designed to gather detailed information about the
production capacity, labor allocation, material acquisition, and
seasonal demand characteristics. The qualitative and
quantitative data gathered were then transformed into model
parameters like unit production times, labor costs, demand
variability, and maximum overtime, which can be
quantitatively evaluated.

The parameters that have been changed are now the core of
the TSSP model development. This model structure enables
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the decision makers to determine the initial production
volumes before the uncertainty occurs and to perform the
adjustment measures once the reality is disclosed. The
empirical version of the model that is described in Section 3
alters this classic TSSP framework to the actual working
conditions of patchwork-based MSMEs.

The latter parts of the framework include the application of
the PHA as the model implementation to ensure computational
efficiency in the optimization problems with multiple
scenarios. Then, in order to assess resilience and practical
applicability, model validation is done through simulation,
benchmark comparison with a deterministic equivalent, and
sensitivity analysis.

With this integrated framework, all the stages of the
research, i.e., empirical observation, optimization, and
validation, are connected in such a way as to mirror the
theoretical rigor of SP and the operational realities of MSME
production systems. The logical flow of this framework
guarantees that empirical observation, modeling, and
validation provide a closed feedback loop for model
refinement.

Empirical Data
Collection

1

Parameter
Translation

v

Model Development
(TSSP Framework)

I

Algorithmic
Implementation (PHA)

.

Validation and
Comparative Analysis

Figure 1. Research framework

Figure 1 shows that the research starts with gathering real-
world data and translating parameters. These two steps form
the basis for the stochastic model that is created and tested in
the following sections.

2.2 Empirical data and parameter translation

For the purpose of this study, empirical evidence was
gathered in the form of field surveys, direct observations, and
semi-structured interviews with four patchwork-based MSME
owners and craftsmen in Medan, Indonesia. The data included
the details of production time for each product type, the size
of labor force, the process of obtaining materials, the company
policies on overtime, and the seasonal changes in demand. The
financial records from selected MSMEs were then taken into
consideration, thereby making it possible to estimate
production costs, overtime rates, and procurement costs under
the corresponding circumstances.

Then, the assembled data was converted into an organized
manner to quantitative parameters that are to be used as the
inputs of the SP model. The production times and labor needed
was computed for each product category, and this became the
baseline time coefficients t;. The costs of regular and overtime
labor were established on the basis of the reported wage



differentials, while the procurement costs ¢/ were obtained by
the comparison of normal and rushed buying prices for the
same fabric materials. Supplier's lead time information was
then obtained to determine the probabilistic delays and
parameterize the expedited procurement constraint (6;).

Demand criteria were determined by examining historical
sales data and recognizing seasonal variations associated with
significant cultural and social occasions, like Ramadan, the
new school year, and local exhibitions. Three distinct demand
scenarios—low, normal, and high—were formulated to
encapsulate the heterogeneity typically experienced in
creative-based MSMEs. The associated scenario probabilities
were established at 0.25, 0.50, and 0.25, respectively, derived
from frequency analysis of historical demand events.

Table 1 encapsulates the empirical parameters obtained
from these translation processes, encompassing unit
production durations, cost components, and demand
multipliers based on various scenarios. The parameters
establish the numerical basis of the proposed stochastic model
outlined in Section 3, guaranteeing that the mathematical
formulation accurately represents the real production and
market conditions encountered by patchwork-based MSMEs.

Table 1. Product parameters for patchwork MSMEs

Selling Processing  Regular  Overtime
Product Price Time Cost Cost
(IDR) (Hours) (IDR) (IDR)
165,000 —
Tote bag 750,000 24 120,000 150,000
80,000 —
Pouch 125.000 8 40,000 55,000
Pillow 200,000 —
cover 350,000 4 25,000 35,000
250,000 —
Tablecloth 750,000 16 90,000 120,000
Prayer 500,000 —
. 750,000 24 180,000 225,000
2,000,000
Blanket - 56 1,800,000 2,200,000
4,500,000

2.3 Scenario design

This study's stochastic model of uncertainty emphasizes
three critical factors that influence MSME production
decisions: demand variability, lead time fluctuations, and labor
capacity adjustments. Each uncertain variable was represented
by discrete scenarios derived from empirical observations and
frequency-based probability assessments [16].

For each product j € J, the stochastic demand parameter Djs
was derived from historical sales data and seasonal sales trends
detected through interviews and transaction records. Demand
variability was illustrated through three distinct situations s €
S = {low,normal, high}, reflecting —20%, baseline, and
+25% deviations from the average monthly demand,
respectively. The scenario probabilities were established as
n, = {0.25,0.50,0.25}, representing the empirical frequency
of low- and high-demand months during the preceding three
years.

Lead time uncertainty was integrated by associating shorter
lead times with high-demand scenarios via faster procurement
processes. In the high-demand scenario, the average
procurement delay decreased by roughly 15% as MSMEs
generally opt for expedited material acquisitions, albeit at a
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higher cost ¢/ . Conversely, during low-demand periods,
providers postpone delivery owing to reduced order volumes,
hence extending the effective lead time. This structured
variation ensures that the stochastic scenarios realistically
capture market behavior and production dynamics.

Considering uncertainty of the number of workers required
to accommodate the typical fluctuations in availability and
additional hours worked. The overall monthly work capacity
was adjusted by 10% across the three potential demand
scenarios, as small businesses can adapt readily.

The wuncertain parameters (D7, Cs, cf, s) and their
probability distribution g define the scenario set S, which is
used in the TSSP formulation. This setup lets the model
replicate the seasonal and operational changes of patchwork-
based MSMEs while keeping the PHA easy to handle.

2.4 Modeling and algorithmic framework

This study's stochastic optimization component utilizes the
conventional TSSP framework, offering a systematic method
for decision-making under uncertain conditions. In this
context, decisions are categorized into two consecutive
phases: (1) immediate judgments that must be taken prior to
the realization of uncertainty, and (2) remedial actions that are
executed following the occurrence of the actual event.

The general TSSP formulation can be expressed as:

min c’x + Eses[Q(x,§*)] (D
where, x represents the first-stage decision vector, cTx
denotes the deterministic cost component, and Q(x, £°) is the
expected recourse function capturing the second-stage
response under scenario S. The recourse function is defined as:

Q(x,§%) = min{gsy*lwy* = hs =T}, y* 20} ()

where, y° denotes the scenario-specific recourse vector, and
W, T, and h, are matrices and vectors defining the scenario
constraints.

This structure ensures consistency with the initial plan,
irrespective of any possible situation. Subsequent steps are
then modified according to the actual results. By keeping the
total expected cost low across all possible situations, the TSSP
model balances planning and action when things are uncertain.

The model in Section 3 uses this two-stage method to show
how MSMEs make decisions using a mix-and-match
approach. The initial decisions involve how much to produce
regularly. The latter changes cover things such as working
overtime, buying more materials, and handling unfilled orders,
depending on the demand.

This structure gives the reasoning for the stochastic model,
which is then solved using a method that breaks it down into
smaller pieces. More on this is in the following section.

2.5 Algorithmic solution: Progressive hedging

To solve the stochastic model, we used the PHA, a method
developed by Rockafellar and Wets [21]. PHA breaks down
the large stochastic model into separate scenario subproblems,
relaxes the non-anticipativity constraints, and uses quadratic
penalties to make sure the scenarios agree with each other over
time.

The algorithm proceeds as follows:



Pseudocode of PHA Implementation:
1. Initialization:

Solve the expected value (EV) problem to obtain an
initial decision x(®.

Set penalty parameter p and initialize multipliers /120) =
0.

2. Scenario Subproblem Optimization:
For each scenario s € §, minimize

_ p _
Lg(x5, As) = fs(xs) + As(xs — %) + E Il xs —x 12

. . L k+1
to update scenario-specific decisions xs( ),

3. Consensus Update:
Update the weighted average decision

Fl+1) = z 7, x*HD
SES

4. Multiplier Update:
A§k+1) _ Agk) N p(xs(k+1) _ gty

5. Convergence Check:

(k+1)

Stop if Tees|lxg 7 — x* V|| <e.

Terminate if the norm of the deviation across scenarios is
below a specified tolerance.

Flow visualization (refer to Figure 2) demonstrates the
gradual integration of local scenario options into a unified non-
anticipative solution.

Initialization
* Solve the Expected Value) problem
e Set penalty parameter initialize
multipliers
l

Scenario Subproblem Optimization
« Minimize each scenario subproblem
:

Consensus Update
« Compute weighted averagce cision

I

Multiplier Update
* Update multipliers

l

Convergence Check
Stop if solutions meet the corvrgence—
criteria

le— —

o e s e e e S S i il

.

Figure 2. Flowchart of the PHA procedure (adapted from
studies [21-23])

2.6 Validation

A comprehensive validation process was conducted to
evaluate the effectiveness of the proposed stochastic
optimization framework, as seen in Figure 3. The process
begins with the collection and organization of empirical data
as input for the model, followed by the creation of the TSSP
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model and its optimization using the PHA. At the same time,
a deterministic EV model was built to serve as a standard
against which to measure the performance improvement
brought about by the stochastic method.

Model Input

Two Stage Stochastic
Model

!

PHA Optimization
(EV Model)

l

Deterministic
Benchmark

v
l Simulation & Validation ]

l

‘ Sensitivity Analysis ‘

A4
‘ Decision Insight

Figure 3. Flowchart of validation procedure

Subsequently, simulation and validation experiments were
performed to analyze the capability of the stochastic model to
simulate real seasonal demand fluctuation, production
responses, and lead-time fluctuation behavior that occurs in
the MSME environment. Validation procedure was then
followed with sensitivity analysis of key parameters namely
overtime cost, production capacity, and shipping cost for
analyzing robustness and responsiveness of the resulting
model.

The findings were condensed into decision insights that
provide managerial recommendations to MSMEs in the areas
of production planning, overtime policy, and rapid
procurement during periods of uncertainty. The recurring steps
of the PHA approach, for instance, scenario decomposition
and convergence enforcement, are adequately illustrated in
Figure 2, and the validation process illustrated in Figure 3
suggests a sequential post-optimization process conducted on
model convergence. The validation methods determined that
the stochastic model proposed was computationally viable and
could converge effectively under different conditions of
demand.

3. RESULTS AND DISCUSSION
3.1 Empirical parameterization

Survey and interview data were transformed into model
parameters, establishing the empirical foundation of the TSSP
model. Table 1 delineates product-specific information,
including selling prices, production durations, and both
standard and overtime labor expenses. For example, the
production of a tote bag generally requires 24 hours, with labor
cost ranging from IDR 120,000 (standard) to IDR 150,000
(overtime), while the creation of a blanket may extend to 56



hours, resulting in significantly elevated prices due to the
quilting procedure.

Table 2 looks at logistical issues by looking at the pros and
cons of different ways to buy things. It costs IDR 29,000 to
IDR 38,000 for each item to be delivered in 1 to 2 weeks.
Shipping that takes three days costs more, between IDR
40,000 and IDR 70,000. Backorder fines, which range from
5% to 20% of the item's price, help protect the item's image.

Table 2. Procurement and backorder cost parameters

Normal Express Backorder
Product Shipping Shipping Penalty
(IDR/unit) (IDR/unit) (IDR/unit)
Tote ba, 32,000 60,000 25,000
& . ’ 75,000
Pouch 30,000 55,000 8,000 — 12,500
Pillow 20,000 —
cover 35,000 65,000 35,000
25,000 —
Tablecloth 34,000 62,000 75.000
Prayer 50,000 —
Mat 38,000 70,000 75,000
200,000 —
Blanket 38,000 70,000 450,000

Table 3 illustrates seasonal demand variability, indicating
that demand multipliers increase during occasions such as
Ramadhan and Christmas/New Year (spanning from 1.3 to
2.0), while decreasing in off-peak months (ranging from 0.6 to
0.8). The probabilities for each scenario (1) were determined
by their frequency in the survey, with Ramadhan assigned the
highest weight of 0.25.

Table 3. Seasonal demand scenarios

- - Express
Scenario Description Mllltlpl‘l er  Probability Fraction
p (Relative) n 0
S1 Off-Peak 0.6-0.8 0.20 0.05
S, Event/Bazar 1.0-1.2 0.15 0.15
S3 School Season 12-15 0.20 0.20
A Ramadhan/Eid 1.5-2.0 0.25 0.35
S5 Xmas/New 13-17 0.20 0.30
Year

Lastly, Table 4 outlines labor capacity assumptions,
estimating 6,400 hours of regular work and 1,600 hours of
overtime, based on the availability of five active crafters.

Table 4. Labor capacity assumptions

Value ..
Parameter (Hour) Description
H™9 6.400 5 crafter x 20 days x 8 hours
Ht 1.600 5 crafter x 5 overtime days x 8

hours

The empirically derived parameters were subsequently
incorporated into the suggested TSSP framework to accurately
depict the decision-making context of patchwork-based
MSMEs.

3.2 Model formulation

This sub-section presents the proposed TSSP model
founded on the empirical characteristics of patchwork-based
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MSMEs from survey and interview data (Section 3.1). In
contrast to the generic version addressed in the Methodology
(Section 2), this formulation was constructed as a direct result
of empirical analysis, blending representative production
times, labor constraints, procurement strategies, and stochastic
demand fluctuations. In accordance with this, this model
represents the main methodological finding of the research.

3.2.1 Assumptions

This model's design is founded on many notions regarding
the functioning of patchwork-based small and medium
enterprises. Production takes place on a monthly basis. The
product's demand is uncertain, each with an assigned
probability. Labor availability is limited; nonetheless,
individuals may engage in overtime for supplementary
remuneration. If materials are inadequate, expedited
procurement is possible, but limited to ensure cost efficiency.

Backorders may be fulfilled; however, there are
consequences for delayed deliveries or disappointed
customers. All expenditures are linear, and first judgments are
taken before determining the exact necessity. These notions
correspond with observable activities in genuine small and
medium-sized firm production, sustaining a model that is both
feasible and pragmatic.

3.2.2 Decision structure and variables

The suggested TSSP methodology involves production
decisions made in two successive phases that reflect the
progression of uncertainty over time. In the initial stage,
referred to as the here-and-now phase, MSMEs determine their
baseline production volumes (x;) for each product j, prior to
the knowledge of actual demand and lead-time constraints.
These decisions signify strategic commitments that must be
undertaken despite insufficient information regarding future
market conditions.

Once a specific demand scenario s € S is realized, the
second stage, referred to as the recourse phase, commences.
At this juncture, the firm modifies its operations via corrective
measures, including overtime production (y; ), Expedited
procurement (e;’), and backorder fulfillment (b;’).

3.2.3 Objective function

The objective function reflects the economic behaviors of
small enterprises, based on surveys and interviews. Each term
is connected to a cost or revenue element described by
respondents. The model's goal is to maximize the total
expected profit by using these observed cost structures in a
chance-based system to deal with fluctuations in demand and
lead time.

Revenue is generated from the units sold to customers. But
unfulfilled demand affects earnings because of backorders. To
find actual sales for each product j and demand case s,
subtract the backordered units b}’ from the overall demand D;'.
The total revenue for scenario s is p;(D;’ — b;).

Production costs in the model are categorized into two main
components. The first is the regular production cost, which
captures baseline labor and material expenses determined in
the first stage (c¢;x;). The second component consists of
scenario-dependent corrective costs, which include overtime
production ( ¢/y; ), expedited procurement (c/e; ), and
inventory holding (h;I7). These cost structures were validated
through field interviews with MSME owners, who confirmed
that overtime work and urgent material purchases are common



strategies used to handle seasonal demand surges—
particularly during periods such as Ramadan, the new school
year, and local craft exhibitions.

Combining these elements, the profit function for each
scenario can be written as:

fsCo, y®,e5,b%,1%) =

Z[pj (Djs - bjs) —Gx; — ¢y —cfef - h)‘seis]
J€J

3)

The overall expected profit is obtained by summing the
weighted scenario profits across all demand realizations:

max Z = Znsfs(x,ys,es,bs,ls)

SES

SES JE€J

—cfe’s
G ¢

“4)

- hf ejs]

where, ¢ denotes the probability of scenario s.

This objective framework clarifies the methods by which
patchwork-oriented MSMEs manage production and
procurement choices in the face of uncertainty. Initially, they
determine fixed production quantities prior to understanding
demand conditions, thereafter adjusting through overtime
labor, faster procurement, or backlog management upon the
realization of actual need. The model calculates revenue based
on satisfied demand instead of total orders and considers
expedited procurement as an independent decision variable.
This methodology accurately reflects the actual operational
dynamics of seasonal MSMEs while preserving a linear
framework that guarantees alignment with the PHA.

3.2.4 Constraints

The model's viable zone is defined by a series of linear
constraints that delineate the operating conditions encountered
by patchwork-based MSMEs. Each constraint is founded on
empirical facts and managerial practices, ensuring that the
mathematical formulation remains both realistic and
manageable.

The production capacity constraints limit the total number
of normal and overtime hours permissible during a single
production cycle. The cumulative processing duration for all
goods in each scenario s must not exceed the available labor
capacity C:

Z ti(xj+y))<CvVs€S
i€l

)

This criterion ensures that the cumulative regular
production (x;) and overtime production (y;') remain within
the feasible workload of the existing craftspeople, as
evidenced by the empirical interviews.

The inventory balance constraint ensures that all
manufactured or purchased products are accurately allocated
among satisfied demand, residual inventory, and backorders
for each product and scenario:

1].5 =x; +y].5 + e]-s - (Djs — bjs),Vj €J,s€ES (6)

This equality shows how goods move in MSME production
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systems over time. When production is higher than demand,
inventory can build up. When production is lower than
demand, backorders can happen.

The procurement limit constraint restricts the use of
expedited procurement to a certain percentage of total
demand:

e <

0;D?

DSV EJ, SES

(7

This reflects practical limitations faced by MSMEs, such as
supplier capacity and cash-flow constraints, which prevent
excessive reliance on urgent procurement during high-demand
periods.

Lastly, the non-negativity criterion ensure that all decision
variables take feasible, non-negative values:

xj, yi, e, b, [} =20,VjE], SES (8)

These constraints prevent unrealistic outcomes, maintaining
both the physical and economic validity of the model.

The combination of Egs. (5)-(8) shows the area where the
expected profit in Eq. (4) is maximum. This method of setting
constraints demonstrates the trade-off that patchwork-based
MSMEs must face between service level performance,
capacity utilization, and procurement flexibility.

3.2.5 Deterministic equivalent and MILP transformation

The model was changed into its deterministic equivalent
form to ensure that traditional optimization solvers can easily
solve the stochastic version. The deterministic equivalent
reformulates the expected-profit maximization problem as a
single large-scale mathematical program by integrating all
scenarios within a unified structure.

This deterministic equivalent form enumerates all possible
scenarios, allowing a unified MILP structure that preserves
non-anticipativity. The deterministic equivalent model (DEM)
is expressed as follows:

max 2 = Z s Z[pf (D = b})ex; = ¢fj

ses  je 9
- cfef — 17|
subject to the following constraints:
Z tj(Xj +y]-5) < C,VS €S (10)
JjeJ
F=xi+yi+e —(Df —b’),VjEJ], SES (11)
e <0,D7,x;,y;, ¢, b, ;] 20,Vj€],sES (12)

These equations are equivalent to the stochastic formulation
presented in Sections 3.2.2—3.2.3 but represented in a single
deterministic form where all possible realizations of
uncertainty are enumerated. Each scenario contributes
proportionally to the overall objective through its probability
weight g, while all first-stage decisions (x;) remain consistent
across scenarios, satisfying the non-anticipativity requirement
of SP.

A fixed-charge term is added to better account for the fixed
operational costs that come with batch-dependent shipping and
rush procurement. Let z7 be a binary decision variable that



equals 1 if expedited procurement is activated for product j in
scenario s, and 0 otherwise. The corresponding fixed-charge
constraints are defined as:

e < M;zi,z; €{0,1},Vj €], sES (13)

and the objective function is modified to include the fixed cost
F;z?:
J4j

SES JE€J

—cfe’s
G ¢

(14)
- h}”is - FJ'Z}'S]

The resultant deterministic model is a mixed-integer linear
programming (MILP) problem. This formulation maintains
linearity in all continuous choice variables while using integer
terms to indicate the activation of fixed-charge expenses. The
MILP framework facilitates the decomposition of problems
into smaller components, allowing simultaneous resolution via
the PHA, which addresses scenario-specific subproblems until
consensus on the first-stage decision is achieved.

The  deterministic  equivalent and  fixed-charge
transformation make the model more realistic without making
it harder to solve. It shows how MSMEs make decisions
separately, where starting expedited purchase or shipment
batches always comes with a set cost. The MILP variant of the
model serves as an effective and pragmatic approach for
decision-making regarding production and procurement
strategies in conditions of uncertainty.

3.3 Implementation and convergence behavior

The proposed model was implemented and solved using the
PHA. This decomposition method was chosen because it
effectively manages the non-anticipativity constraints of the
TSSP  framework while maintaining scenario-wise
separability. A standard MILP solver (CPLEX 12.9) is used to
solve each scenario subproblem, then ran iterative consensus
updates until the first-stage variables were stable across all
scenarios.

The computational experiments were conducted using
empirical data from Table 1. Three demand scenarios: low,
normal, and high were considered. In these cases, the baseline
monthly demand changed by 20%, 0%, and +25%, with a 0.25,
0.50, and 0.25 chance, respectively. The operational
procedures of MSMEs established the penalty for backorders
and the upper limit for expedited procurement. This ensured
the accuracy of the simulation results.

During the PHA iterations, the advancement of the overall
target value Z and the first-stage decision vector x was
monitored to evaluate the convergence. The algorithm
converged when the largest difference between scenario-
specific x5 values was less than 1073 and the difference in
objective value was less than 0.01%. Figure 4 shows the
algorithm's path to convergence, which is a steady decrease in
both the duality gap and the objective variation until everyone
agrees.

Convergence was often achieved within 35 to 50 iterations,
depending on the value of the penalty parameter p. The
average computation time for each complete execution was
around 4.6 minutes on an Intel Core i7 CPU with 32 GB of
RAM. The consistency of convergence over many iterations
demonstrates that the selected PHA configuration (p = 104,
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relaxation factor = 0.5) achieved an optimal balance between
velocity and accuracy.

Table 5 encapsulates the anticipated profit, total cost
elements, and service-level efficacy across the three scenarios.
The findings demonstrate that the stochastic model yields a
higher anticipated profit and less unpredictability compared to
its deterministic equivalent, validating the method's
effectiveness in alleviating seasonal demand fluctuations. The
decomposition strategy enabled consistent first-stage
production decisions while allowing for scenario-specific
adjustments in overtime and procurement changes.

The implementation results demonstrate that the suggested
stochastic model is computationally stable, interpretable, and
scalable for production planning issues at the MSME level.
The convergence pattern of PHA further demonstrates that the
model's architecture—linear, decomposable, and scenario-
balanced—facilitates effective optimization in the face of
uncertainty.

0.175

0.150 ¢t

Objective Gap

20 30 40
Iteration

10 50
Figure 4. PHA convergence trajectory

Table 5. Simulation results of the stochastic model under
three demand scenarios

Low Normal High
Indicator Demand Demand Demand
Scenario Scenario Scenario
Total Production
Quantity (units) 312 425 538
Expecte.d Sales 208 410 519
(units)
Average Lead-
Time (days) 7.6 6.8 6.2
Average Labor N o N
Hours Used 86% 92% 98%
Overtime
Utilization (hours) 18 24 3
Expedited
Procurement Cost 0.92 1.18 1.47
(IDR million)
Total Production
Cost (IDR 142.7 151.9 165.3
million)
Total Revenue
(IDR million) 155.4 169.8 183.6
Expected Profit 12.7 17.9 183

(IDR million)

The smooth convergence pattern in Figure 4 confirms that
PHA effectively balances speed and stability, which is
particularly important for MSMEs operating with limited
computational resources.



Table 5 shows the results of the stochastic model's
simulations for three different demand scenarios. The results
show that convergence and profit stability are consistent, even
when labor and procurement resources are allocated in
different ways depending on the level of uncertainty.

3.4 Benchmark comparison: Stochastic vs. deterministic
model

The performance of the proposed stochastic model was
compared with that of a deterministic benchmark representing
the EV model to evaluate its efficacy. The deterministic

approach assumes that all unknown parameters—demand,
overtime cost, and lead time—take on their average values.
This benchmark was resolved with identical real-world data
and operational constraints to ensure comparability.

This benchmark analysis has two main purposes. It initially
assesses the benefits of SP in accurately representing
uncertainty compared to a single-scenario deterministic
model. The study investigates whether the implementation of
corrective  strategies, including overtime production,
expedited procurement, and backorders, improves the
profitability and service delivery of MSMEs functioning
within seasonal volatility.

Table 6. Comparative results between stochastic and deterministic models

Performance Indicator Deterministic Model (EV) Stochastlrcrls\’é(;)(;el (PHA- Impr((:;;e)ment
Expected Profit (IDR Million) 151.65 164.24 +8.3
Profit Variance (x10°) 18.57 16.21 -12.7
Average Overtime Cost (IDR Million) 12.48 11.72 —6.1
Average Lead-Time (Days) 7.2 6.5 -9.7
Probability of Stock-out (%) 6.4 4.8 -25.0
Convergence Iteration — 50 —
Computational Time (s) 28.4 33.2 +16.9

Table 6 illustrates the comparison between the stochastic
and deterministic models. The stochastic TSSP approach
produced a higher predicted profit and less profit variance in
all scenarios. The stochastic model produced an average profit
increase of 8.3% relative to the deterministic model, while
simultaneously reducing profit outcome variability by 12.7%.
The results indicate that the stochastic model enhances
expected performance and strengthens resilience against
negative demand scenarios.

Table 6 shows the differences between the deterministic and
stochastic formulations. It is clear that adding uncertainty with
the PHA-based TSSP model leads to better economic and
operational results.

The deterministic approach tends to make too much when
demand is low and too little when demand is high since it uses
average forecasts. The stochastic model, on the other hand,
changes where production happens according to decisions
made by the supplier. This keeps the amount of stock on hand
minimal and maintains the cost of backorders low. The
stochastic model can help you make better judgments about
regular production and overtime by adding scenario
possibilities, ultimately reducing costs and improving service
levels.

Figure 5 illustrates the distribution of earnings for the two
models overall demand situations. The deterministic model
exhibits a broader spectrum of potential outcomes and a
reduced minimum profit compared to the stochastic model.
This indicates that stochastic optimization is superior at
mitigating losses. The variability disparity underscores the
significance of PHA-based decomposition in identifying
solutions that are contextually appropriate and mitigate risk.

Figure 5 gives a visual comparison of the two models'
performance on key measures such as expected profit, profit
variance, and lead-time. The bar chart shows that the
stochastic approach consistently does better. It improves profit
and cuts down on both variability and delays. This backs up
that the model is steady even when the market is uncertain.

For managers, this means that adding uncertainty into their
planning processes helps small and medium businesses
perform more steadily, especially in industries that change
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with the seasons. The better profit and service come from
using stochastic methods, which even small firms can gain
from when they use scenario-based data and decomposition
methods.

[ Deterministic (EV)

1607 Il Stochastic (PHA-TSSP)

140
120
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60
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40

20

Expected Profit Profit Variance Lead Time
Figure 5. Scenario-based profit distributions under stochastic

and deterministic models

The simulation was run to see how well the stochastic model
works. This evaluation examines the value of stochastic
solution (VSS) and the value of perfect information (VPI) to
determine the utility of incorporating uncertainty in decision-
making.

3.5 Simulation and performance evaluation

A performance assessment based on simulation was
executed to further confirm the resilience and practical
advantages of the proposed stochastic framework. Two
fundamental stochastic metrics were employed: VSS and VPI,
which evaluate the economic benefit of incorporating
uncertainty compared to deterministic or fully informed
solutions. The VSS quantifies the enhancement in anticipated
profit obtained by addressing the stochastic problem instead of
depending on the deterministic EV solution, while the VPI



denotes the theoretical maximum profit enhancement
achievable with complete foresight of future demand. The
indicators were calculated using the optimal objective values
from the three model variants: Zg, for the deterministic
model, Zgp for the stochastic model, and Zp; for the perfect-
information scenario. The relationships are defined as VSS =
Zsp — Zgy and VPI = Zp; — Zsp.

The comparative results presented in Table 7 show that the
stochastic model consistently outperforms the deterministic
model. The expected profit of the deterministic model (Zgy)
was IDR 151.65 million, whereas the stochastic model (Zgp)
achieved IDR 164.24 million, resulting in a positive VSS of
IDR 12.59 million or an 8.3% improvement. The perfect-
information model (Zp;) generated IDR 170.68 million,
corresponding to a VPI of IDR 6.44 million or an additional
3.9% increase.

Table 7. VSS and VPI
Expected Difference Relative
Model Profit (IDR (IDR Gain (%)
Million) Million) °
Deterministic
Model (Zyy) 151.65 — —
Stochastic Model 164.24 +12.59 +8.3%
(Zsp)
Perfect-
Information 170.68 +6.44 +3.9%
Model (ZPI)
VSS — 12.59 —
VPI — 6.44 —
160
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Figure 6. Comparative expected profit of deterministic,

stochastic, and perfect-information models

The favorable VSS indicates that the stochastic model
significantly enhances profitability by effectively optimizing
production and overtime distribution in response to uncertain
demand. Simultaneously, the comparatively low VPI suggests
that even with optimal knowledge, the potential enhancement
would be negligible. This conclusion confirms that the
proposed stochastic model effectively encompasses the
majority of the attainable advantages of uncertainty modeling.
The results collectively indicate that the PHA-based TSSP
framework offers a computationally efficient and nearly
optimal decision policy without necessitating perfect
foresight, which is especially beneficial for MSMEs with
constrained forecasting abilities.

Figure 6 illustrates the additional profit increase represented
by the VSS and VPI, affirming the economic advantage of
stochastic optimization over deterministic planning. Figure 6
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contrasts the anticipated profit levels among deterministic,
stochastic, and perfect-information models, demonstrating the
additional economic benefit derived from integrating
uncertainty into the optimization process.

To extend this evaluation, the following subsection presents
a comprehensive sensitivity analysis, assessing how variations
in key parameters such as labor capacity, overtime cost, and
lead time affect profitability and operational stability.

3.6 Sensitivity analysis and managerial implications

A post-optimality analysis was carried out to evaluate the
robustness of the proposed stochastic model and to identify
parameters that have the strongest influence on production and
profitability. Three essential parameters were adjusted by
+10% from their baseline values: overtime cost, labor
capacity, and backorder penalty. These variations replicate
authentic conditions commonly encountered by micro and
small firms, including alterations in salary rates, variable
worker availability, and disparities in consumer tolerance for
delayed orders. The sensitivity results measure the extent to
which operational uncertainties influence the stochastic
optimization process and impact economic and service-level
outcomes.

Table 8 illustrates the impact of various parameter
variations on projected profit and service-level indicators. The
results demonstrate that labor capacity substantially affects
overall profitability, with overtime costs being secondary,
while the backorder penalty has a minimal impact. A 10%
decrease in available labor capacity results in an anticipated
profit decline of approximately 7.6%, primarily due to the
constrained capacity hindering the firm's responsiveness to
peak-season demand. A 10% increase in capacity elevates
predicted profit by over 6%, suggesting that flexible labor
arrangements, such as part-time contracts or temporary
positions, can substantially enhance system efficiency.

Table 8. Sensitivity analysis results

Pzgl?;:egteer Expected Profit Cl)l:;l?gte Service
s o
*10%) (IDR Million) (%) Level (%)
Baseline 164.24 — 94.8
Overtime Cost
+10% 159.34 -3.0 94.2
Overtime Cost
~10% 165.98 +1.1 95.0
Labor Capacity
+10% 174.28 +6.1 96.3
Labor Capacity 3
~10% 151.70 7.6 93.5
Backorder
Penalty +10% 164.91 +04 95.6
Backorder 163.45 —0.5 941

Penalty —10%

Changes in overtime costs show an unusual pattern. A 10%
increase in overtime cost reduces expected profit by
approximately 3%, whereas a 10% decrease yields only a
modest profit improvement. Because of this asymmetry, the
strategy naturally limits the use of overtime, even when it is
cheaper, and instead focuses on normal output whenever
possible.

Figure 7 shows how the normalized profit changes when the
parameters change. The nearly straight-line trend across all
parameter changes shows that the stochastic model stays stable



numerically and behaves in a way that is easy to predict when
there is some uncertainty. These kinds of smooth response
characteristics are very important for small and medium-sized
businesses because they don't have a lot of resources and
mistakes in forecasts can easily mess up deterministic
planning models. The linearity also shows that the stochastic
structure is well-calibrated, which means that decision makers
can trust the results even when the parameters change.
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Figure 7. Normalized profit response to parameter deviations

When assessing business operations, this review
emphasizes three key areas. First, flexibility in staffing—
achieved through training, temporary hires, or outsourcing—
yields benefit by managing workload fluctuations. Second,
control costs in peak periods by enforcing overtime policies
and managing inventory. Third, to support profitability and
service quality, base late order penalties on accepted customer
data.

Small companies can navigate tricky times - like fluctuating
demand or supplier issues - using this new planning method.
It assists them in maintaining profits alongside reliable service.
Testing reveals its effectiveness across diverse scenarios,
offering a practical way to handle production shifts,
seasonality, moreover, unexpected interruptions.

4. CONCLUSION

This research introduces a TSSP approach for production
planning in patchwork MSMEs facing variable demand and
lead times. The model, which was solved using a PHA, uses
data from surveys of 142 respondents in Indonesia and four
MSME:s in Medan to simulate changes in production capacity,
overtime, procurement, and seasonal changes related to
holidays like Ramadhan and Christmas. By including these
aspects, the model integrates stochastic optimization theory
with practical decision-making in small creative enterprises.

The empirical findings demonstrate that incorporating
uncertainty through the stochastic model significantly
enhances both profitability and stability. The PHA-based
TSSP model realized an 8.3% enhancement in anticipated
profit and a 12.7% decrease in profit variance relative to the
deterministic benchmark, thereby substantiating the economic
superiority of scenario-based decision-making. The model
converged effectively within fifty iterations, confirming its
computational feasibility for MSME-scale applications. The
simulation analysis indicated that the stochastic framework
closely resembles the perfect-information solution,
demonstrating that the model accurately reflects the value of
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uncertainty without necessitating substantial forecasting data.

The sensitivity study verified that the model retains its
robustness despite moderate parameter variations. Labor
capacity emerged as the predominant factor influencing profit,
succeeded by overtime expenses and backorder penalties.
These findings underscore the necessity of implementing
adaptable personnel management and stringent overtime
policies to preserve profitability during periods of seasonal
demand escalation. The model's linear and decomposable
characteristics enable MSMEs to adjust flexibly to changing
market conditions while maintaining operational viability and
financial robustness.

This study provides a practical decision-support framework
for small enterprises seeking to improve production efficiency
in the face of uncertainty. The proposed stochastic model
enables decision-makers to proactively plan consistent output
while preserving adaptive flexibility through recourse actions
such as overtime and expedited procurement. The framework
may serve as a reference for policymakers and incubators
aiming to enhance data-driven planning and digital
transformation within the creative MSME sector.

Future research ought to enhance this model by integrating
artificial intelligence-driven demand forecasting into SP to
provide real-time adjustments and predictive optimization.
This will enhance the capacity of MSMEs to anticipate market
fluctuations, facilitate automated decision-making changes,
and improve competitiveness in an increasingly data-driven
creative economy.
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NOMENCLATURE

Indices and Sets

i

index of product types, i € [
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j index of resources or crafters, j € J
S index of demand scenario, s € S
g probability of scenario s
Parameters
s;  selling price per unit of product i
¢/ regular production cost per unit of product i
¢/ overtime production cost per unit of product i
h;  inventory holding cost per unit of product i
p;  backorder penalty per unit of product i
n;  normal procurement cost per unit of product i
e; expedited procurement cost per unit of product i
j  processing time (hours per unit) for product i on
L resource j
Cj  total regular working-hour capacity of resource j
C?  maximum overtime-hour capacity of resource j
D}  demand of product iii under scenario s
u;  seasonal demand multiplier for product i in scenario s

Decision Variables

x; regular production quantity of product i
s overtime production quantity of product i under

Vi scenario s

ns normal procurement quantity of product i under
! scenario s

oS expedited procurement quantity of product i under
! scenario s

b{ backorder quantity of product i under scenario s

d; total fulfilled demand of product i under scenario s

APPENDIX

A. Deterministic Equivalent formulation

The two-stage stochastic program can be reformulated as a
deterministic equivalent model by explicitly enumerating all
scenarios s € S:

maxZ =

T st — cfxetyt —nmi = | )
° eie] — hi(x; +y7 — Df) —pib}

i€l

subject to:
1. Regular capacity constraint

i€l

2. Overtime capacity constraint

Yier tijyi < C,Vj €],5 €S (17)

3. Demand satisfaction

di =x;+y; +ni +e’ —bl,Viel,s€S (18)

4. Demand upperbound

di <D, Viel,seS (19)



5. Non-negativity

x,yi,ni,e’,bf,df =20,viel,seS (20)

B. Progressive Hedging Algorithm (PHA) Procedure

The PHA, introduced by Rockafellar and Wets [21], is
applied to decompose the two-stage stochastic programming
(TSSP) model into independent scenario subproblems. The
procedure iteratively enforces non-anticipativity through
quadratic penalty terms. The implementation steps are as
follows:

Step 1. Initialization

Solve the Expected Value (EV) problem to obtain an initial
first-stage decision x.

Initialize the Lagrange multipliers A2 = 0 for all scenarios
SES.

Select the penalty parameter p > 0.

Step 2. Scenario Subproblem Optimization

For each scenario s, solve the following subproblem
independently:

min £5(x%,%) + ()T (x; — £ + 2 Il x, — 25 12
x5, yS 2

where, f¥(x°,y®) denotes the scenario-specific objective
function including recourse terms.

Step 3. Consensus Update
Compute the weighted average first-stage decision across

all scenarios:
fk + 1 = Z

SES

n.sx;(+1

where, 1, is the probability of scenario s.

Step 4. Multiplier Update
Update the multipliers for each scenario:

AI;_H — /113( + p(x;c+1 _ fk+1)
Step 5. Convergence Check
The algorithm terminates if both of the following criteria are

satisfied:

max||x¥*t — ¥+ < €, | Obj**! — Obj* |< ¢
SES
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Otherwise, return to Step 2 and continue iterations until
convergence.

C. Survey and Interview Instrument (Outline)

Section A. Respondent Profile

* Name of enterprise

* Owner/manager name (optional)

* Location (city/province)

* Main product types (e.g., tote bag, pouch, blanket, prayer
mat)

* Number of workers
Section B. Production and Capacity

* Average processing time per product (hours/days)

* Regular working hours per month

* Overtime frequency and average overtime hours

* Additional labor requirements during peak seasons
Section C. Procurement and Supply

* Average lead time for raw material (normal procurement)

* Lead time under expedited procurement

* Typical shipping cost (normal vs. expedited)

* Instances of raw material shortages or delays
Section D. Demand and Sales

* Months with highest demand

* Events associated with demand peaks (Ramadhan/Eid,
Christmas/New Year, school entry, bazaar/exhibition)

* Off-peak periods

* Typical order sizes during peak vs. off-peak seasons
Section E. Costs and Pricing

* Unit production costs (regular vs. overtime)

* Overtime wages per unit

* Average selling prices per product

* Backorder handling practice and associated costs
Section F. Risk and Adaptation

* Most common production risks encountered

e Strategies for handling late orders (e.g., overtime,
expedited shipping)

* Managerial practices for balancing profit vs. service level
Section G. In-depth Interview Themes (4 MSMEs in
Medan)

* Narratives of peak demand experiences (e.g., Ramadhan
sales spike)

* Perceptions of shipping costs and lead time trade-offs

* Experiences with overtime and temporary labor hiring

* Perspectives on backorder penalties and customer
satisfaction





