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The need for an efficient and sustainable energy system has become a major challenge
in the energy transition in Indonesia, although the country has great potential in
renewable energy. The utilization of these resources is not yet optimal due to the lack
of cost-effective production and distribution planning that meets regional needs. This
research designs a Mixed-Integer Programming (MIP) based optimization model to
optimally allocate energy production from various renewable power plants. The model
considers generation capacity, regional demand, and technical distribution constraints.
Implementation is carried out using LINGO for the main calculations and Python for
result validation, ensuring accuracy and efficiency of the algorithm. The results show a
global optimal solution with minimum costs and an even distribution of energy at the
highest efficiency generation, while high marginal cost generation is automatically

eliminated.

1. INTRODUCTION

The global energy transition towards sustainable and low-
carbon energy sources has become a pressing strategic issue in
the last decade [1]. Climate change, volatility in fossil fuel
prices, and international pressures to reduce carbon emissions
have prompted many countries, including Indonesia, to adopt
and accelerate the integration of renewable energy into their
national energy systems [2, 3]. Indonesia has significant and
diverse renewable energy potential, such as solar power with
potential exceeding 200 GW, widespread wind energy in the
eastern regions, biomass from agricultural and forestry waste,
as well as hydro and geothermal energy [4, 5]. Despite this
potential, Indonesia still lacks an integrated, cost-efficient
model for renewable energy production and distribution. The
utilization of this potential is still far from optimal, primarily
due to limitations in production planning, imbalances in
distribution, and weak integrative infrastructure between
regions [6].

Optimization of scheduling and distribution of renewable
energy is crucial in ensuring the efficiency of energy systems,
meeting load demands, and minimizing total system costs [7,
8]. Optimization-based mathematical models such as Mixed-
Integer Programming (MIP) have been widely used to solve
complex problems in energy system planning, especially for
large-scale integration of renewable generation [9-11]. In the
context of Indonesia, the application of MIP optimization
models that consider the technical characteristics of generation
and regional demand is still rarely found in the literature,
thereby opening up research opportunities to make a tangible
contribution to national energy policy.

Previous studies have demonstrated the effectiveness of the
MIP approach in the energy sector. For example, developing
an MIP model for power system expansion planning considers
the integration of renewable energy [12]. The research [13]
applied the application of the linear programming method in
the construction of a mathematical model of optimization
distributed energy, that it is believed that distributed energy
can be an effective solution to the problems of conventional
energy operations. Meanwhile, the research [14] presented a
linear programming approach to the optimization of residential
energy systems shows that the scheduling strategy proposed in
this paper can save 22.8% of the operating cost under the same
conditions. In the evaluation of renewable energy efficiency, a
new scenario is constructed, and the result is still ideal.
Although various studies have shown the success of applying
MIP in energy systems, most of this research still focuses on
global or regional contexts outside Indonesia. Research that
integrates renewable energy scheduling and distribution
aspects simultaneously on a national scale in Indonesia is still
limited [5, 15]. Moreover, most previous studies have not
considered cross-validation between optimization software
and Python-based programming to ensure the accuracy of the
model results. Thus, there is a gap in the literature regarding
the development of applicable and verified optimization
models for Indonesia's complex and dispersed geographical
context.

This study develops an MIP-based optimization model for
Indonesia’s renewable energy generation and distribution,
considering plant capacity limits, regional demand, and cost
efficiency. The model tested in LINGO and validated in
Python, aims to minimize total costs while ensuring equitable
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supply. The main contributions are:

(1) a national-scale, multi-generator optimization model
tailored to Indonesia’s geography;

(2) dual-platform validation to enhance result reliability;

(3) a practical framework to support the national renewable
energy mix target of 23% by 2025 [16]. Furthermore, this
quantitative approach is expected to serve as a reference for
data-driven decision making by the government and energy
stakeholders in formulating more efficient and sustainable
electricity system planning policies.

2. METHODOLOGY

This study uses a quantitative approach with a MIP based
mathematical optimization method to develop a production
scheduling model and distribution of renewable energy in
Indonesia. The research process is conducted systematically
through three main stages: Initial Stage, Modeling, and Final
Stage, as shown in Figure 1.

Beginning Modeling Ending
Start
~» Find Problems
Find Problems Literature Review
l and Data Collection
Literature Review
and Data Collection Simulate Model
l l Conclusion
Pre-Processing f l
Data —rt Validation —~——
Finish

Figure 1. Research flow

The research methodology is structured into three main
stages, namely the Initial Stage, the Modeling Process, and the
Final Stage, as shown in Figure 1. Each stage is carried out
systematically to produce a valid and reliable optimization
model for production scheduling and distribution of renewable
energy in Indonesia.

2.1 Research design

This research is a quantitative study with an experimental
numerical design approach through optimization simulation
[17, 18]. The main focus is on the development of a
mathematical model to minimize the total cost of renewable
energy systems while considering capacity constraints and
demand in various regions of Indonesia [19]. The model is
formulated using a linear programming approach with the
possibility of expanding to MIP for binary distribution control
(active/inactive) [20, 21].

2.2 Subject and object of research

The subject of the research is the production and
distribution system of renewable energy in Indonesia, which
involves various types of power plants: Geothermal Power
Plant (PLTP), Hydropower Plant (PLTA), Micro hydro Power
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Plant (PLTMH), Solar Power Plant (PLTS), Wind Power Plant
(PLTB), and biomass-based or non-fossil thermal power
plants (PLTU). The object of the research is a mathematical
optimization model for scheduling the distribution of energy
from the power plants to consumption areas based on cost
efficiency [22, 23].

2.3 Data collection procedure

Data collection was carried out through two main stages.
First, a literature study and problem identification were
conducted to obtain secondary data from various authoritative
sources, including official reports from the Ministry of Energy
and Mineral Resources (ESDM) [4] and PT PLN (Persero)
[24]. The main parameters collected include:

(1) maximum power plant capacity (in MWh) based on the
type of plant (solar, wind, hydro, geothermal, biomass),

(2) regional energy demand (in MWh) referring to the latest
national electricity load projections,

(3) production and distribution cost coefficients sourced
from ESDM cost references, PLN operational data, and
estimates from literature related to transmission lines and
types of plants. Second, data compilation and pre-processing
are carried out to ensure the compatibility of the optimization
model input format. This process includes cleaning the data
from missing or inconsistent values, standardizing units
(MWh for energy and rupiah for costs), normalizing cost data
to the same reference year, cross-verifying generation capacity
from various sources, and compiling cost and distribution
distance matrices between regions. The optimization model
was first implemented and solved using LINGO software to
obtain a basic optimal solution. The same formulation,
parameters, and dataset were then replicated in Python using
the equivalent MIP solver, PuLP. The validation process was
carried out by comparing the objective function values (total
costs) on both platforms, verifying the similarity of the
decision variable values (energy allocation from each
generator to each region), and conducting sensitivity tests to
ensure the model's consistent responses to changes in input
parameters. The validation of these two platforms ensures that
the developed model has high robustness, repeatability, and
computational accuracy.

2.4 Modeling and simulation procedures

The modeling steps in this research were carried out
systematically as shown in Figure 1, namely:
A. Identify the Problem
The main problem in this study is how to optimally allocate
the production and distribution of energy from various
renewable generation sources to meet energy demands in
various regions at minimum total cost. This issue is formulated
into an MIP approach focused on a deterministic scenario
based on historical data and system parameters [25, 26].
B. Model Construction
The developed mathematical model consists of an objective
function and several constraints that are expressed linearly
[27]. The model can be formulated as follows:

(1) Objective function:
Minimization of total production and distribution costs of
energy [28]:

MinZ = ZZ(QP
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with x; ; = the amount of energy distributed from power plant
i to area j (in MWh). C/ = production cost per unit of energy
from the power plant i. Ci‘?j = energy distribution cost from
generator { to area j.

(2) Constraints of power plant capacity:

Z xl-,j < Kl', ViE P
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jEW
with K; being the maximum capacity of generator i.
(3) Constraints of regional demand limitations:
YiepXij = Dj, V;EW 3)
with D; being the energy demand of region j.
(4) Constraints of binary distribution:
Xpj < M.y Vi “4)
vi; €101}, x;=0 %)

The binary variable y; ; represents the decision of energy
distribution from generator i to region j where y; ; = 1 if the
distribution is active and y; ; = 0 if it is not. The relationship
between y; ; d and the continuous variable x; ; is governed by
the constraint x; ; < M.y; ;, where M is a large constant that
limits the maximum distribution capacity. This MIP
formulation combines discrete decisions (activation of
distribution paths) and continuous decisions (volume of
energy), allowing for the elimination of high-cost paths and
efficient allocation of energy according to regional demand.

2.5 Simulation and model optimization

The model is implemented and optimized using LINGO
software with linear programming methods. As a validation
and comparison step, the same model is also rebuilt using
Python with the Pulp library, in order to verify the accuracy of
the objective values, the consistency of the constraints, and the
stability of the solutions.

2.6 Model validation

Validation is carried out through a comparison between the
results of LINGO and Python, including the objective function
value (total cost), the energy distribution allocation pattern
(x;,;) and the slack and dual values of the capacity and demand
constraints. This validation is important to ensure that the
model is free from formulation errors and that the solver
operates as expected in achieving the global optimal solution
[29, 30].

2.7 Analysis and interpretation of results

The optimization results show the allocation of energy from
the power plants to the regions in an optimal manner,
demonstrating that power plants with lower marginal costs are
prioritized. Information from the slack values and shadow
prices provides insights related to the utilization of power
plants as well as the marginal value of energy for each region.
These findings can be utilized as a basis for strategic decision-
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making in national energy.

3. RESULTS AND DISCUSSION

The results of the optimization process carried out using a
Linear Programming model for energy generation system
planning. An analysis was conducted on the objective function
value, decision variables, and interpretation of dual parameters
such as reduced cost, slack/surplus, and dual price. The results
were obtained from a computational process using LINGO
software, which efficiently produced a global optimal solution
while satisfying all model constraints. The objective function
value reflects the minimum total cost of the system, while the
distribution of decision variable values indicates the optimal
allocation of energy generation from each source. Next, the
dual results are used to evaluate the sensitivity and efficiency
of each power plant's contribution to the total costs. The
discussion in this section focuses on the interpretation of these
results to support strategic decision-making in sustainable and
economical energy management. The results of this model
testing can be seen in Figure 2:

Global optimal solution found.
Cbjective wvalue:
Infeasibilities:

Total solver iterations:
Elapsed runtime seconds:

0.6353435%E+14
0.000000
0
0.13

Maodel Class: LP

Total variables:
Nonlinear wariables:
Integer variables:

Total constraints:
Nonlinear constraints:

Total nonzeros:
Nonlinear nonzeros:

Figure 2. Results of the LINGO model testing

The results of the optimization model testing show that the
global optimal solution has been successfully found with an
objective function value of 63,534.39 x 10'* which represents
the total minimum cost of the combination of energy
production and distribution according to the linear
programming model formulation. An infeasibility value of
0.000000 indicates that all model constraints are satisfied
without violation. The solution process was carried out
efficiently, with a total solver iteration of 0 and a computation
time of only 0.13 seconds. The model used is purely linear,
with a total of 44 decision variables, no nonlinear variables,
and no integer variables. The number of constraints in the
model reaches 109, with a total of 171 non-zero coefficients,
all of which are linear. This result confirms that the model has
a simple mathematical structure but is capable of providing
optimal solutions quickly, making it relevant for efficient
planning of renewable energy production and distribution.

3.1 Distribution decision

The selection of generators in an optimal solution is greatly
influenced by the structure of marginal costs. The model tends
to choose generation units with low costs and high efficiency,
while avoiding the use of units with high costs, even though
those units are available in the system, as shown in Figure 3:



Variable Value Reduced Cost

X _PLTP1_SUMUT 0.000000 0.1065072E+08
X PLTP2_LAMPUNG 12497.9%6 0.000000
X_PLTP3_JABAR 3835.960 0.000000

X_PLTP4_NTT 9237.280 0.00
X_PLTAl_SUMUT 0.2450846E+08
X_PLTA2_SUMBAR 1024.720 0.000000

X_PLTA3_RIAU 9830.770 0.000000
X_PLTA4_SUMSEL 6303.620 0.000000
X_PLTA5_BENGKULU 2396.300 0.000000
X_PLTA6_LAMPUNG 1181.090 0.000000
X_PLTA7_JRBAR 1635.930 0.000000
X_PLTAS_JATENG 5787.030 0.000000
X_PLTA9_KALBAR 3333.710 0.000000
X_PLTA10_SULUT 5550.070 0.000000
X_PLTAll_SULTENG 3718.990 0.000000
X_PLTA12_SULSEL 1856.200 0.000000
X_PLTA13_PAPUA 92.040 0.000000
X_PLTS1_KEPRI .640 0.000000
X_PLTS2_BABEL 0.500 0.000000
X_PLTS3_SUMSEL .040 0.000000
X_PLTS4_NTB 767.3400 0.000000
X_PLTS5_SULUT 10444.44 0.000000
X_PLTS6_GORONTALO 8583.150 0.000000
X_PLTMH1_ACEH 0.000000
X_PLTMH2_SUMUT 1787037.
X_PLTMH3_SUMBAR 1677.200 0.000000
X_PLTMH4_BENGKULU €58.6800 0.000000
X_PLTMHS_NTB 1043.640 0.000000
X_PLTMH6_NTT 2035.500 0
X_PLTMH7_KALBAR 1367.510 0.000000
X_PLTMH8_SULUT €93.1000 0.000000
X_PLTMHS_SULTENG 6379.650 0.000000
X_PLTMH10_SULBAR 2597.720 0.000000
X_PLTMH11 PAPUA_BARAT 1358.370 0.000000
X_PLTB1_BALI 3234.910 0.000000
X_PLTB2_SULSEL 92050.56 0.000000
X_PLTBIOL_SUMBAR 41911.42 0.000000
X_PLTBIO2_RIAU 32021.10 0.000000
X_PLTBIO3_KEPRI 28456.87 0.000000
X_PLTBIO4 BABEL 3589.350 0.000000
X_PLTBIOS_SUMSEL 58589.43 0.000000
X_PLTBIOG_BENGKULU 26996.52 0.000000
X_PLTBIO1_LAMPUNG 37017.47 0.000000
X_PLTBIOL KALBAR 1367.510 0.000000

Figure 3. Distribution decision

Based on the results of the linear programming model
optimization in the Figure 3, the value of the variables
represents the optimal production or distribution amount from
each power plant to specific regions to achieve minimum total
cost. The X PLTP2 LAMPUNG plant produces 12,497.96
units, while X PLTP1_SUMUT and X PLTA1 SUMUT
have a value of zero, indicating that these plants are not used
in the optimal solution. The high reduced costs at
X PLTP1_SUMUT (1.065072 X 10%) and
X PLTA1 SUMUT (2.450846 x 10®) indicate that the use of
these units will significantly increase costs, so they are not
selected in the optimal solution. Variables with a reduced cost
value of zero indicate that the power plants directly contribute
to achieving minimum costs or are at their optimal limit.

3.2 Analysis of system constraints and sensitivity

Identification of active and inactive constraints is important
to determine further optimization strategies, such as relaxing
capacity limits or strengthening generation components that
have a significant contribution to overall system cost
efficiency. This analysis can be seen in Figure 4.

Based on Figure 4, the optimal value of the Objective
Function is achieved at 63,534.39 x 102 with zero
infeasibility, indicating that all constraints are satisfied
without violations. This model consists of 44 variables and
109 constraints, all of which are linear without any non-linear
variables or constraints. The Dual Price column represents the
change in the Objective Function value if one more unit of
resource is added to that constraint. A positive value indicates
that increasing the resource at that constraint will raise the
Objective Function value (profit), while a negative value
indicates that adding resources will actually decrease the
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objective value. Row 2 has a dual price of 1.033204 x 10!},
which means that each additional unit of resource added to that
constraint will increase the profit by that amount. Conversely,
Row 45 with a dual price of 1.465178 x 10" indicates that
additional resources will decrease the objective value by that
amount. Thus, the results of this dual analysis provide strategic
guidance for optimizing production, distribution, or resource
utilization policies more effectively.

Row Slack or Surplus Dual Price
1. 0.6353439E+14 -1.000000
2 0.000000 0.1033204E+09
3 0.000000 0.000000
4 0.000000 0.000000
5 8237.680 0.000000
6 0.000000 0.1340876E+09
75 0.000000 0.6734189E+08
8 0.000000 0.000000
9 0.000000 0.8308120E+08
10 0.000000 0.1426885E+09
11 0.000000 6641474.
12 0.000000 0.000000
13 0.000000 0.000000
14 0.000000 0.1642357E+08
15 0.000000 0.000000
16 0.000000 0.3156903E+09
17 0.000000 0.000000
18 0.000000 0.7451053E+08
19 0.000000 5247837.
20 0.000000 0.1663976E+08
21 0.000000 942763.9
22 0.000000 0.000000
23 0.000000 0.000000
24 0.000000 0.000000
25 543.4500 0.000000
26 0.000000 0.1322988E+09
27 0.000000 0.8951217E+08
28 0.000000 0.000000
29 0.000000 0.2052015E+08
30 0.000000 6192803.
31 ©0.000000 0.3303461E+08
32 0.000000 4754217.
33 0.000000 0.000000
34 0.000000 0.000000
35 0.000000 0.000000
36 0.000000 0.000000
37 0.000000 0.000000
38 0.000000 0.000000
39 0.000000 0.000000
40 0.000000 0.000000
41 0.000000 0.000000
42 0.000000 0.000000
43 0.000000 0.000000
44 0.000000 6192803.
45 0.000000 -0.1465178E+09
46 0.000000 -0.1276521E+08
47 0.000000 -0.2849275E+08
48 0.000000 -0.1380086E+09
49 0.000000 -0.1021256E+09
50 0.000000 -0.2207139E+08
51 0.000000 -0.9184811E+08
52 0.000000 -0.1878183E+08
53 0.000000 -0.1150381E+08
54 0.000000 -0.3563217E+08
55 0.000000 -0.1258560E+08
56 0.000000 -0.3222547E+09
57 0.000000 -0.1967900E+08
58 0.000000 -0.8962288E+08
59 0.000000 -0.1244510E+08
60 0.000000 -3316404.
61 0.000000 -0.2893411E+08
62 0.000000 -4795431.
63 0.000000 -7831383.
64 0.000000 -4835546.
65 0.000000 -0.1362332E+08
66 0.000000 -0.1987374E+09
67 12497.96 0.000000
68 3835.960 0.000000
69 9237.280 0.000000
70 0.000000 0.000000

Figure 4. Analysis of constraints
3.3 Implementation with Python

The results of the energy distribution optimization model
test conducted using Python show that an optimal solution has
been achieved, as indicated by the model status being optimal.
The objective function value obtained is 56405002169769.4,
which represents the minimum total cost of energy distribution



to all analyzed areas. The energy distribution from various
power plants to the demand areas is presented in Figure 5.

Status: Optimal
yang didistribusikan:
Lampung: 12497.96
Sumatera Barat: 1024.72
Riau: 9830.77
Sumatera Selatan:
2396.30
1181.09
1525.08
5676.18
3608.14
1856.20

Jumlah energi
Dari PLTP 2 ke
Dari PLTA ke
Dari PLTA ke
Dari PLTA ke
PLTA ke
PLTA ke
PLTA ke Jawa Barat:
PLTA 8 ke Jawa Tengah:
PLTA 11 ke Sulawesi Tengah:
PLTA 12 ke Sulawesi Selatan:
PLTA 13 ke Papua: 4981.19
PLTS 1 ke Kepulauan Riau: 4465.64

PLTS 2 ke Kep.Bangka Belitung: 2120.50
PLTS 3 ke Sumatera Selatan: 1628.04
PLTS 4 ke NTB: 767.34

PLTS 6 ke Gorontalo: 8472.30
PLTM/H 1 ke Aceh: 1257.22
PLTM/H ke Sumatera Utara:
PLTM/H ke Sumatera Barat:
PLTM/H ke Bengkulu: 658.68
PLTM/H ke NTB: 165.45
PLTM/H ke NTT: 1924.65
PLTM/H ke Sulawesi Utara: 582.25
PLTM/H 9 ke Sulawesi Tenggara: 6268.80
PLTM/H 10 ke Sulawesi Barat: 2486.87
PLTM/H 11 ke Papua Barat: 1247.52
PLTE 1 ke Bali: 3124.06
PLTB 2 ke Sulawesi Selatan:
PLTBio 1 ke Sumatera Barat:
PLTBio ke Riau: 22079.48
PLTBio ke Kepulauan Riau: 23880.38
PLTBRio ke Kep.Bangka Belitung: 1358.00
PLTBio ke Sumatera Selatan: 50546.92
PLTBio ke Bengkulu: 23830.69
PLTBio ke Lampung: 23227.57
PLTBio ke Kalimantan Barat:

2

3

4 6303.62
Dari 5
Dari
Dari
Dari
Dari
Dari
Dari
Dari
Dari
Dari
Dari
Dari
Dari
Dari
Dari
Dari
Dari

Bengkulu:
Lampung:

2 432.60
3 1677.20
4

5
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Dari
Dari

@ 5

w0
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Dari
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Dari
Dari

90083
39098

.51
.65

2
3
4
5
6
7
8

1256.66

Total Biaya Minimum 56405002169769.4

Figure 5. Energy distribution

Based on the image above, it can be explained that the
energy distribution shows that several power plants provide a
dominant contribution to meeting energy needs in certain
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areas. For example, PLTB 2 distributes a large amount of
energy to South Sulawesi totaling 90,083.51 MWh, while
PLTBio 5 and PLTBio 7 distribute energy of 50,546.92 MWh
to South Sumatra and 23,227.57 MWh to Lampung,
respectively. Renewable energy sources such as PLTS and
PLTM/H also make significant contributions, such as PLTS 6
to Gorontalo (8,472.30 MWh) and PLTM/H 9 to Southeast
Sulawesi (6,268.80 MWh), as can be seen in Figure 6.

The distribution carried out not only reflects cost efficiency
but also demonstrates the optimization of utilizing local
energy potential, by maximizing generation based on
renewable natural resources. This result indicates that the
optimization approach based on linear programming is capable
of producing economically viable energy allocation scenarios
and supports sustainable energy policies, with the total energy
visible in Figure 7.

Figure 7 presents a visualization of the total energy
allocation (measured in MWh) distributed to each provincial
region in Indonesia based on the results of the developed MIP
model optimization. It shows that South Sulawesi received the
highest energy allocation, nearing 92,000 MWh, followed by
South Sumatra and North Sumatra with allocations of
approximately 58,000 MWh and 42,000 MWh, respectively.
Other regions such as Lampung, Riau, and the Riau Islands
also received significant energy distributions, indicating that
areas with high demand or those near low-cost power
generation facilities tend to receive larger energy allocations.
Conversely, regions such as North Sulawesi, NTB, and Aceh
receive relatively small energy allocations. This distribution
reflects the results of the objective function of cost
minimization and operational constraints of the model, where
the system tends to prioritize supply to regions that are
economically and operationally more efficient. This is in line
with the principles of optimizing renewable energy systems
that consider both the demand side and distribution efficiency.
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Figure 6. Optimal energy distribution graph
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Figure 7. Total energy allocation
Table 1. Comparative table
Comparative Aspects LINGO Results (1) Python Results (2) Analysis of Differences
.Tot.al Energy 6.353439 x 1013 56405 x 1013 Python results s.how cost efficiency due
Distribution Cost to more optimal supply sources.
C The distribution of supply is more =~ More centralized distribution, This difference indicates an
Energy Distribution . ;i . . . . . .
Pattern random, with some regions supplied  regions are supplied from the = improvement in the strategy for utilizing

from distant power plants.

Utilization of Power Not fully optimized for low-cost

n

Maximizing low-cost power

earest power plant. local power generation capacity.

Direct effect on reducing total costs.

Plant Capacity generators generation
Relevance to the Target . Closer to the target or below  The second scenario is more suitable for
Exceeding the target . .
Budget the target practical implementation.

3.4 Slack and dual price results

The analysis results on slack and dual price from capacity
and demand constraints in the optimization model show the
differing contributions of each generator and region to the
objective function value. In the generator capacity constraints,
it was found that most generators are not operating at their
maximum operational limits, as indicated by positive slack
values and a dual price of zero. This indicates that the actual
generation capacity is still below the allowed limit, so these
constraints do not directly affect the total system cost value as
can be seen in Appendix.

It can be explained that several power plants have zero slack
and negative dual prices, indicating that these power plants are
operating at maximum capacity and are binding. For example,
Geothermal Power Plant 2, Hydroelectric Power Plants 2 to 6,
Hydroelectric Power Plant 12, Solar Power Plants 1 to 4, as
well as Mini Hydro Power Plants 3 and 4 show significant
negative dual price values, indicating that increasing the
capacity of these plants could potentially reduce the total
system costs substantially. In contrast, other plants like Bio
Power Plant and Mini Hydro Power Plant mostly still have
quite a large reserve capacity, as indicated by high positive
slack. In the section of demand, all regions show a slack value
of zero or close to zero with a positive dual price, which means
that the entire energy demand in each region is optimally met
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and is active in the model (binding constraints). Regions with
high  dual prices such as  South  Sulawesi
(Rp322,254,700/MWh), South Sumatra
(Rp198,737,350/MWh), and Hydro Power Plant 12 in South
Sulawesi (Rp315,690,250/MWh) indicate that increasing the
supply to these regions can significantly reduce the total
system costs. This finding emphasizes that the capacity
expansion strategy for power generation needs to be directed
towards plants and regions with high dual prices in order to
achieve optimal cost efficiency.

The results of the implementation carried out using LINGO
for the main calculations and Python for validating the results
to ensure the accuracy and efficiency of the algorithm can be
seen in Table 1.

4. CONCLUSIONS

Based on the results of the MIP modeling obtained, this
model is capable of determining the allocation of energy
distribution from various types of power plants to each region
in Indonesia. Python results show cost efficiency due to more
optimal supply sources. The difference in results shows an
improvement in the strategy for utilizing local power
generation capacity. This optimization demonstrates the great
potential of using MIP as a supporting tool for national energy



policies, especially in designing efficient and equitable energy
distribution. Through proper allocation management, the
government can reduce disparities in energy access between
regions, maximize the utilization of existing power generation
resources, and minimize overall operational costs. The
strategic implications of this result are that the MIP approach
can serve as a foundation for long-term energy planning, assist
in the transition towards renewable energy systems, and
strengthen regional energy equity in Indonesia. Although the
results obtained are already optimal within the framework of
the model used, there are several limitations that need to be
acknowledged. The current model is deterministic with the
assumption of static energy demand, thus not accounting for
the dynamics of demand fluctuations, supply uncertainties, or
system disturbances. Furthermore, energy delivery is assumed
to occur without real-time constraints, and does not
accommodate energy storage technologies such as batteries or
pumped storage that could enhance the system's flexibility.
For future research, it is recommended that the model be
expanded to consider uncertainty modeling (for example,
through a stochastic optimization approach), dynamic demand
and supply scenarios, as well as the integration of energy
storage technology. The use of this approach will not only
improve the robustness of optimization results but also bring
the model closer to real operational conditions in the field.
Furthermore, the addition of real-time dispatch aspects and
multi-objective optimization considering carbon emissions
will make a significant contribution towards achieving
Indonesia's decarbonization targets.
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APPENDIX

A. Distribution of slack and dual price
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