
Mixed-Integer Programming Model for Optimization of Production Scheduling and 

Distribution of Renewable Energy 

M. Safii1* , Husain2 , Ika Okta Kirana1

1 Informatika Department, STIKOM Tunas Bangsa, Pematangsiantar 21127, Indonesia 
2 Teknologi Informasi Department, Universitas Bumigora, Mataram 83127, Indonesia 

Corresponding Author Email: m.safii@amiktunasbangsa.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.121014 ABSTRACT 

Received: 3 July 2025 

Revised: 13 August 2025 

Accepted: 18 August 2025 

Available online: 31 October 2025 

The need for an efficient and sustainable energy system has become a major challenge 

in the energy transition in Indonesia, although the country has great potential in 

renewable energy. The utilization of these resources is not yet optimal due to the lack 

of cost-effective production and distribution planning that meets regional needs. This 

research designs a Mixed-Integer Programming (MIP) based optimization model to 

optimally allocate energy production from various renewable power plants. The model 

considers generation capacity, regional demand, and technical distribution constraints. 

Implementation is carried out using LINGO for the main calculations and Python for 

result validation, ensuring accuracy and efficiency of the algorithm. The results show a 

global optimal solution with minimum costs and an even distribution of energy at the 

highest efficiency generation, while high marginal cost generation is automatically 

eliminated.  
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1. INTRODUCTION

The global energy transition towards sustainable and low-

carbon energy sources has become a pressing strategic issue in 

the last decade [1]. Climate change, volatility in fossil fuel 

prices, and international pressures to reduce carbon emissions 

have prompted many countries, including Indonesia, to adopt 

and accelerate the integration of renewable energy into their 

national energy systems [2, 3]. Indonesia has significant and 

diverse renewable energy potential, such as solar power with 

potential exceeding 200 GW, widespread wind energy in the 

eastern regions, biomass from agricultural and forestry waste, 

as well as hydro and geothermal energy [4, 5]. Despite this 

potential, Indonesia still lacks an integrated, cost-efficient 

model for renewable energy production and distribution. The 

utilization of this potential is still far from optimal, primarily 

due to limitations in production planning, imbalances in 

distribution, and weak integrative infrastructure between 

regions [6]. 

Optimization of scheduling and distribution of renewable 

energy is crucial in ensuring the efficiency of energy systems, 

meeting load demands, and minimizing total system costs [7, 

8]. Optimization-based mathematical models such as Mixed-

Integer Programming (MIP) have been widely used to solve 

complex problems in energy system planning, especially for 

large-scale integration of renewable generation [9-11]. In the 

context of Indonesia, the application of MIP optimization 

models that consider the technical characteristics of generation 

and regional demand is still rarely found in the literature, 

thereby opening up research opportunities to make a tangible 

contribution to national energy policy.  

Previous studies have demonstrated the effectiveness of the 

MIP approach in the energy sector. For example, developing 

an MIP model for power system expansion planning considers 

the integration of renewable energy [12]. The research [13] 

applied the application of the linear programming method in 

the construction of a mathematical model of optimization 

distributed energy, that it is believed that distributed energy 

can be an effective solution to the problems of conventional 

energy operations. Meanwhile, the research [14] presented a 

linear programming approach to the optimization of residential 

energy systems shows that the scheduling strategy proposed in 

this paper can save 22.8% of the operating cost under the same 

conditions. In the evaluation of renewable energy efficiency, a 

new scenario is constructed, and the result is still ideal. 

Although various studies have shown the success of applying 

MIP in energy systems, most of this research still focuses on 

global or regional contexts outside Indonesia. Research that 

integrates renewable energy scheduling and distribution 

aspects simultaneously on a national scale in Indonesia is still 

limited [5, 15]. Moreover, most previous studies have not 

considered cross-validation between optimization software 

and Python-based programming to ensure the accuracy of the 

model results. Thus, there is a gap in the literature regarding 

the development of applicable and verified optimization 

models for Indonesia's complex and dispersed geographical 

context.  

This study develops an MIP-based optimization model for 

Indonesia’s renewable energy generation and distribution, 

considering plant capacity limits, regional demand, and cost 

efficiency. The model tested in LINGO and validated in 

Python, aims to minimize total costs while ensuring equitable 
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supply. The main contributions are:  

(1) a national-scale, multi-generator optimization model 

tailored to Indonesia’s geography;  

(2) dual-platform validation to enhance result reliability; 

(3) a practical framework to support the national renewable 

energy mix target of 23% by 2025 [16]. Furthermore, this 

quantitative approach is expected to serve as a reference for 

data-driven decision making by the government and energy 

stakeholders in formulating more efficient and sustainable 

electricity system planning policies. 

 

 

2. METHODOLOGY 

 

This study uses a quantitative approach with a MIP based 

mathematical optimization method to develop a production 

scheduling model and distribution of renewable energy in 

Indonesia. The research process is conducted systematically 

through three main stages: Initial Stage, Modeling, and Final 

Stage, as shown in Figure 1. 

 

 
 

Figure 1. Research flow 

 

The research methodology is structured into three main 

stages, namely the Initial Stage, the Modeling Process, and the 

Final Stage, as shown in Figure 1. Each stage is carried out 

systematically to produce a valid and reliable optimization 

model for production scheduling and distribution of renewable 

energy in Indonesia. 

 

2.1 Research design 

 

This research is a quantitative study with an experimental 

numerical design approach through optimization simulation 

[17, 18]. The main focus is on the development of a 

mathematical model to minimize the total cost of renewable 

energy systems while considering capacity constraints and 

demand in various regions of Indonesia [19]. The model is 

formulated using a linear programming approach with the 

possibility of expanding to MIP for binary distribution control 

(active/inactive) [20, 21]. 

 

2.2 Subject and object of research 

 

The subject of the research is the production and 

distribution system of renewable energy in Indonesia, which 

involves various types of power plants: Geothermal Power 

Plant (PLTP), Hydropower Plant (PLTA), Micro hydro Power 

Plant (PLTMH), Solar Power Plant (PLTS), Wind Power Plant 

(PLTB), and biomass-based or non-fossil thermal power 

plants (PLTU). The object of the research is a mathematical 

optimization model for scheduling the distribution of energy 

from the power plants to consumption areas based on cost 

efficiency [22, 23]. 

  

2.3 Data collection procedure 

 

Data collection was carried out through two main stages. 

First, a literature study and problem identification were 

conducted to obtain secondary data from various authoritative 

sources, including official reports from the Ministry of Energy 

and Mineral Resources (ESDM) [4] and PT PLN (Persero) 

[24]. The main parameters collected include:  

(1) maximum power plant capacity (in MWh) based on the 

type of plant (solar, wind, hydro, geothermal, biomass),  

(2) regional energy demand (in MWh) referring to the latest 

national electricity load projections,  

(3) production and distribution cost coefficients sourced 

from ESDM cost references, PLN operational data, and 

estimates from literature related to transmission lines and 

types of plants. Second, data compilation and pre-processing 

are carried out to ensure the compatibility of the optimization 

model input format. This process includes cleaning the data 

from missing or inconsistent values, standardizing units 

(MWh for energy and rupiah for costs), normalizing cost data 

to the same reference year, cross-verifying generation capacity 

from various sources, and compiling cost and distribution 

distance matrices between regions. The optimization model 

was first implemented and solved using LINGO software to 

obtain a basic optimal solution. The same formulation, 

parameters, and dataset were then replicated in Python using 

the equivalent MIP solver, PuLP. The validation process was 

carried out by comparing the objective function values (total 

costs) on both platforms, verifying the similarity of the 

decision variable values (energy allocation from each 

generator to each region), and conducting sensitivity tests to 

ensure the model's consistent responses to changes in input 

parameters. The validation of these two platforms ensures that 

the developed model has high robustness, repeatability, and 

computational accuracy. 
 

2.4 Modeling and simulation procedures 
 

The modeling steps in this research were carried out 

systematically as shown in Figure 1, namely: 

A. Identify the Problem 

The main problem in this study is how to optimally allocate 

the production and distribution of energy from various 

renewable generation sources to meet energy demands in 

various regions at minimum total cost. This issue is formulated 

into an MIP approach focused on a deterministic scenario 

based on historical data and system parameters [25, 26]. 

B. Model Construction 

The developed mathematical model consists of an objective 

function and several constraints that are expressed linearly 

[27]. The model can be formulated as follows: 
 

(1) Objective function: 

Minimization of total production and distribution costs of 

energy [28]: 
 

Min Z =  ∑ ∑(𝐶𝑖
𝑃

𝑗∈𝑊𝑖∈𝑃

+ 𝐶𝑖,𝑗
𝑑 )𝑥𝑖,𝑗 (1) 
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with 𝑥𝑖,𝑗 = the amount of energy distributed from power plant 

𝑖 to area 𝑗 (in MWh). 𝐶𝑖
𝑃 = production cost per unit of energy 

from the power plant 𝑖. 𝐶𝑖,𝑗
𝑑  = energy distribution cost from 

generator 𝑖 to area 𝑗. 

 

(2) Constraints of power plant capacity: 

 

∑ 𝑥𝑖,𝑗 ≤  𝐾𝑖 ,  ∀𝑖∈ 𝑃

𝑗∈𝑊

 (2) 

 

with 𝐾𝑖 being the maximum capacity of generator 𝑖. 
 

(3) Constraints of regional demand limitations: 

 

∑ 𝑥𝑖,𝑗 ≥ 𝐷𝑗 ,  ∀𝑗 ∈ 𝑊𝑖∈𝑃   (3) 

 

with 𝐷𝑗  being the energy demand of region 𝑗. 

(4) Constraints of binary distribution: 
 

𝑥𝑖,𝑗  ≤  𝑀. 𝑦𝑖,𝑗,  ∀𝑖,𝑗  (4) 

 

𝑦𝑖,𝑗 ∈ {0,1}, 𝑥𝑖,𝑗 ≥ 0  (5) 

 

The binary variable 𝑦𝑖,𝑗  represents the decision of energy 

distribution from generator 𝑖 to region 𝑗 where 𝑦𝑖,𝑗 = 1 if the 

distribution is active and 𝑦𝑖,𝑗 = 0 if it is not. The relationship 

between 𝑦𝑖,𝑗 d and the continuous variable 𝑥𝑖,𝑗 is governed by 

the constraint 𝑥𝑖,𝑗  ≤  𝑀. 𝑦𝑖,𝑗, where M is a large constant that 

limits the maximum distribution capacity. This MIP 

formulation combines discrete decisions (activation of 

distribution paths) and continuous decisions (volume of 

energy), allowing for the elimination of high-cost paths and 

efficient allocation of energy according to regional demand. 

 

2.5 Simulation and model optimization 

 

The model is implemented and optimized using LINGO 

software with linear programming methods. As a validation 

and comparison step, the same model is also rebuilt using 

Python with the Pulp library, in order to verify the accuracy of 

the objective values, the consistency of the constraints, and the 

stability of the solutions.  
 

2.6 Model validation 
 

Validation is carried out through a comparison between the 

results of LINGO and Python, including the objective function 

value (total cost), the energy distribution allocation pattern 

(𝑥𝑖,𝑗) and the slack and dual values of the capacity and demand 

constraints. This validation is important to ensure that the 

model is free from formulation errors and that the solver 

operates as expected in achieving the global optimal solution 

[29, 30]. 
 

2.7 Analysis and interpretation of results 

 

The optimization results show the allocation of energy from 

the power plants to the regions in an optimal manner, 

demonstrating that power plants with lower marginal costs are 

prioritized. Information from the slack values and shadow 

prices provides insights related to the utilization of power 

plants as well as the marginal value of energy for each region. 

These findings can be utilized as a basis for strategic decision-

making in national energy. 

 

 

3. RESULTS AND DISCUSSION 

 

The results of the optimization process carried out using a 

Linear Programming model for energy generation system 

planning. An analysis was conducted on the objective function 

value, decision variables, and interpretation of dual parameters 

such as reduced cost, slack/surplus, and dual price. The results 

were obtained from a computational process using LINGO 

software, which efficiently produced a global optimal solution 

while satisfying all model constraints. The objective function 

value reflects the minimum total cost of the system, while the 

distribution of decision variable values indicates the optimal 

allocation of energy generation from each source. Next, the 

dual results are used to evaluate the sensitivity and efficiency 

of each power plant's contribution to the total costs. The 

discussion in this section focuses on the interpretation of these 

results to support strategic decision-making in sustainable and 

economical energy management. The results of this model 

testing can be seen in Figure 2: 

 

 
 

Figure 2. Results of the LINGO model testing 

 

The results of the optimization model testing show that the 

global optimal solution has been successfully found with an 

objective function value of 63,534.39 × 1013 which represents 

the total minimum cost of the combination of energy 

production and distribution according to the linear 

programming model formulation. An infeasibility value of 

0.000000 indicates that all model constraints are satisfied 

without violation. The solution process was carried out 

efficiently, with a total solver iteration of 0 and a computation 

time of only 0.13 seconds. The model used is purely linear, 

with a total of 44 decision variables, no nonlinear variables, 

and no integer variables. The number of constraints in the 

model reaches 109, with a total of 171 non-zero coefficients, 

all of which are linear. This result confirms that the model has 

a simple mathematical structure but is capable of providing 

optimal solutions quickly, making it relevant for efficient 

planning of renewable energy production and distribution.  

 

3.1 Distribution decision 

 

The selection of generators in an optimal solution is greatly 

influenced by the structure of marginal costs. The model tends 

to choose generation units with low costs and high efficiency, 

while avoiding the use of units with high costs, even though 

those units are available in the system, as shown in Figure 3: 
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Figure 3. Distribution decision 

 

Based on the results of the linear programming model 

optimization in the Figure 3, the value of the variables 

represents the optimal production or distribution amount from 

each power plant to specific regions to achieve minimum total 

cost. The X_PLTP2_LAMPUNG plant produces 12,497.96 

units, while X_PLTP1_SUMUT and X_PLTA1_SUMUT 

have a value of zero, indicating that these plants are not used 

in the optimal solution. The high reduced costs at 

X_PLTP1_SUMUT (1.065072 × 10⁸) and 

X_PLTA1_SUMUT (2.450846 × 10⁸) indicate that the use of 

these units will significantly increase costs, so they are not 

selected in the optimal solution. Variables with a reduced cost 

value of zero indicate that the power plants directly contribute 

to achieving minimum costs or are at their optimal limit. 

 

3.2 Analysis of system constraints and sensitivity 

 

Identification of active and inactive constraints is important 

to determine further optimization strategies, such as relaxing 

capacity limits or strengthening generation components that 

have a significant contribution to overall system cost 

efficiency. This analysis can be seen in Figure 4. 

Based on Figure 4, the optimal value of the Objective 

Function is achieved at 63,534.39 × 10¹² with zero 

infeasibility, indicating that all constraints are satisfied 

without violations. This model consists of 44 variables and 

109 constraints, all of which are linear without any non-linear 

variables or constraints. The Dual Price column represents the 

change in the Objective Function value if one more unit of 

resource is added to that constraint. A positive value indicates 

that increasing the resource at that constraint will raise the 

Objective Function value (profit), while a negative value 

indicates that adding resources will actually decrease the 

objective value. Row 2 has a dual price of 1.033204 × 1011, 

which means that each additional unit of resource added to that 

constraint will increase the profit by that amount. Conversely, 

Row 45 with a dual price of 1.465178 × 1011 indicates that 

additional resources will decrease the objective value by that 

amount. Thus, the results of this dual analysis provide strategic 

guidance for optimizing production, distribution, or resource 

utilization policies more effectively. 

 

 

 
 

Figure 4. Analysis of constraints 

 

3.3 Implementation with Python 

 

The results of the energy distribution optimization model 

test conducted using Python show that an optimal solution has 

been achieved, as indicated by the model status being optimal. 

The objective function value obtained is 56405002169769.4, 

which represents the minimum total cost of energy distribution 
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to all analyzed areas. The energy distribution from various 

power plants to the demand areas is presented in Figure 5. 

 

 
 

Figure 5. Energy distribution 

 

Based on the image above, it can be explained that the 

energy distribution shows that several power plants provide a 

dominant contribution to meeting energy needs in certain 

areas. For example, PLTB 2 distributes a large amount of 

energy to South Sulawesi totaling 90,083.51 MWh, while 

PLTBio 5 and PLTBio 7 distribute energy of 50,546.92 MWh 

to South Sumatra and 23,227.57 MWh to Lampung, 

respectively. Renewable energy sources such as PLTS and 

PLTM/H also make significant contributions, such as PLTS 6 

to Gorontalo (8,472.30 MWh) and PLTM/H 9 to Southeast 

Sulawesi (6,268.80 MWh), as can be seen in Figure 6. 

The distribution carried out not only reflects cost efficiency 

but also demonstrates the optimization of utilizing local 

energy potential, by maximizing generation based on 

renewable natural resources. This result indicates that the 

optimization approach based on linear programming is capable 

of producing economically viable energy allocation scenarios 

and supports sustainable energy policies, with the total energy 

visible in Figure 7. 

Figure 7 presents a visualization of the total energy 

allocation (measured in MWh) distributed to each provincial 

region in Indonesia based on the results of the developed MIP 

model optimization. It shows that South Sulawesi received the 

highest energy allocation, nearing 92,000 MWh, followed by 

South Sumatra and North Sumatra with allocations of 

approximately 58,000 MWh and 42,000 MWh, respectively. 

Other regions such as Lampung, Riau, and the Riau Islands 

also received significant energy distributions, indicating that 

areas with high demand or those near low-cost power 

generation facilities tend to receive larger energy allocations. 

Conversely, regions such as North Sulawesi, NTB, and Aceh 

receive relatively small energy allocations. This distribution 

reflects the results of the objective function of cost 

minimization and operational constraints of the model, where 

the system tends to prioritize supply to regions that are 

economically and operationally more efficient. This is in line 

with the principles of optimizing renewable energy systems 

that consider both the demand side and distribution efficiency. 

 

 
 

Figure 6. Optimal energy distribution graph 
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Figure 7. Total energy allocation 

 

Table 1. Comparative table 

 
Comparative Aspects LINGO Results (1) Python Results (2) Analysis of Differences 

Total Energy 

Distribution Cost 
6.353439 × 1013 5.6405 × 1013 

Python results show cost efficiency due 

to more optimal supply sources. 

Energy Distribution 

Pattern 

The distribution of supply is more 

random, with some regions supplied 

from distant power plants. 

More centralized distribution, 

regions are supplied from the 

nearest power plant. 

This difference indicates an 

improvement in the strategy for utilizing 

local power generation capacity. 

Utilization of Power 

Plant Capacity 

Not fully optimized for low-cost 

generators 

Maximizing low-cost power 

generation 
Direct effect on reducing total costs. 

Relevance to the Target 

Budget 
Exceeding the target 

Closer to the target or below 

the target 

The second scenario is more suitable for 

practical implementation. 

 

3.4 Slack and dual price results 

 

The analysis results on slack and dual price from capacity 

and demand constraints in the optimization model show the 

differing contributions of each generator and region to the 

objective function value. In the generator capacity constraints, 

it was found that most generators are not operating at their 

maximum operational limits, as indicated by positive slack 

values and a dual price of zero. This indicates that the actual 

generation capacity is still below the allowed limit, so these 

constraints do not directly affect the total system cost value as 

can be seen in Appendix. 

It can be explained that several power plants have zero slack 

and negative dual prices, indicating that these power plants are 

operating at maximum capacity and are binding. For example, 

Geothermal Power Plant 2, Hydroelectric Power Plants 2 to 6, 

Hydroelectric Power Plant 12, Solar Power Plants 1 to 4, as 

well as Mini Hydro Power Plants 3 and 4 show significant 

negative dual price values, indicating that increasing the 

capacity of these plants could potentially reduce the total 

system costs substantially. In contrast, other plants like Bio 

Power Plant and Mini Hydro Power Plant mostly still have 

quite a large reserve capacity, as indicated by high positive 

slack. In the section of demand, all regions show a slack value 

of zero or close to zero with a positive dual price, which means 

that the entire energy demand in each region is optimally met 

and is active in the model (binding constraints). Regions with 

high dual prices such as South Sulawesi 

(Rp322,254,700/MWh), South Sumatra 

(Rp198,737,350/MWh), and Hydro Power Plant 12 in South 

Sulawesi (Rp315,690,250/MWh) indicate that increasing the 

supply to these regions can significantly reduce the total 

system costs. This finding emphasizes that the capacity 

expansion strategy for power generation needs to be directed 

towards plants and regions with high dual prices in order to 

achieve optimal cost efficiency. 

The results of the implementation carried out using LINGO 

for the main calculations and Python for validating the results 

to ensure the accuracy and efficiency of the algorithm can be 

seen in Table 1. 

 

 

4. CONCLUSIONS 

 

Based on the results of the MIP modeling obtained, this 

model is capable of determining the allocation of energy 

distribution from various types of power plants to each region 

in Indonesia. Python results show cost efficiency due to more 

optimal supply sources. The difference in results shows an 

improvement in the strategy for utilizing local power 

generation capacity. This optimization demonstrates the great 

potential of using MIP as a supporting tool for national energy 
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policies, especially in designing efficient and equitable energy 

distribution. Through proper allocation management, the 

government can reduce disparities in energy access between 

regions, maximize the utilization of existing power generation 

resources, and minimize overall operational costs. The 

strategic implications of this result are that the MIP approach 

can serve as a foundation for long-term energy planning, assist 

in the transition towards renewable energy systems, and 

strengthen regional energy equity in Indonesia. Although the 

results obtained are already optimal within the framework of 

the model used, there are several limitations that need to be 

acknowledged. The current model is deterministic with the 

assumption of static energy demand, thus not accounting for 

the dynamics of demand fluctuations, supply uncertainties, or 

system disturbances. Furthermore, energy delivery is assumed 

to occur without real-time constraints, and does not 

accommodate energy storage technologies such as batteries or 

pumped storage that could enhance the system's flexibility. 

For future research, it is recommended that the model be 

expanded to consider uncertainty modeling (for example, 

through a stochastic optimization approach), dynamic demand 

and supply scenarios, as well as the integration of energy 

storage technology. The use of this approach will not only 

improve the robustness of optimization results but also bring 

the model closer to real operational conditions in the field. 

Furthermore, the addition of real-time dispatch aspects and 

multi-objective optimization considering carbon emissions 

will make a significant contribution towards achieving 

Indonesia's decarbonization targets. 
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