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Cross-view gait recognition remains challenging due to variations in viewing angles,
temporal misalignment, occlusions, and appearance changes, which significantly
reduce the effectiveness of current biometric systems. To address these challenges, this
paper introduces HoloGait, a multi-modal framework designed for robust cross view
gait recognition. HoloGait fuses complementary information from appearance-based
silhouettes and structural 3D skeletal poses, leveraging the distinct advantages of each
modality. Central to the approach is a rigorous 3D pose alignment module that
normalizes skeletal data to a canonical view, significantly minimizing viewpoint
dependency. Additionally, the structural information from 3D poses is explicitly
modeled using an adaptive graph convolutional network (GCN), capturing intricate
joint dynamics and interactions. Subsequently, a transformer-based fusion module
integrates silhouette and skeletal features, dynamically exchanging spatial-temporal
cues between the two modalities. A multi-task objective (identity classification + triplet
loss) further enhances discriminative capabilities, producing embeddings resilient to
occlusion and temporal inconsistencies. Experiments on the TUM GAID dataset using
a strict cross view protocol—training on 0°and 45° views and testing on 90—
demonstrate that HoloGait achieves substantial performance improvements. Notably,
HoloGait attains a Rank-1 accuracy of 96.8%, outperforming recent methods such as
CART-Gait by 4.7% and GaitSet by 10.4%, thus clearly establishing state-of-the-art
performance. These advancements confirm HoloGait’s capability to provide
comprehensive, reliable, and accurate gait recognition suitable for practical biometric
identification tasks under realistic conditions.

1. INTRODUCTION

occlusion, and background noise [1]. Some methods handle
this by explicitly separating viewpoint from identity or

Gait recognition identifies people from walking patterns
and is useful at a distance without cooperation, but
performance degrades under real-world conditions. Major
obstacles include large changes in camera view, temporal
misalignment and speed variation, occlusion of body parts,
and appearance factors such as clothing changes and carried
objects, all of which reduce recognition accuracy [1-7].

HoloGait addresses these obstacles by combining two
complementary inputs: silhouettes (appearance) and 3D
skeletons (structure). 3D poses are first aligned to a canonical
view to reduce view differences, then the two modalities are
fused with early, bi-directional cross-attention to form a single
gait embedding.

This design encourages learning of identity-related motion
and shape while limiting the effect of viewpoint and occlusion.

Appearance-based approaches, which analyze gait through
2D silhouettes, have shown high accuracy in controlled
conditions, typically using convolutional neural networks
(CNNs) [8]. However, silhouettes generally provide limited
information and are easily affected by changes in viewpoint,
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normalizing silhouettes to a common view using spatial
transformations [3]. In contrast, model-based methods use
explicit body information like skeleton poses, providing some
natural robustness to viewpoint and clothing variations. For
example, PoseGait by Liao et al. [9] used 3D skeleton data
combined with human body knowledge to handle view
differences effectively. Similarly, GaitGraph introduced by
Teepe et al. [10] used the graph convolutional network (GCN)
to learn gait patterns directly from skeletal graphs. Recent
works also introduced detailed 3D body meshes (e.g., Skinned
Multi-Person Linear (SMPL) models) that provide richer pose
and shape information, improving accuracy across viewpoints
[11, 12]. Despite these advantages, skeleton-based methods
usually produce limited features, lacking detailed shape
information found in silhouette-based methods [1]. To
overcome this, several recent studies combined both
appearance (silhouettes) and skeletal poses to gain richer and
more consistent features. SkeletonGait++, for instance, fused
skeleton-based features with silhouette features through
attention mechanisms, improving performance significantly
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across different viewpoints. Still, existing fusion approaches
often fall short in effectively managing temporal
misalignments and partial occlusions.

This paper introduces HoloGait, a multi-modal gait
recognition method designed to manage these problems.
HoloGait combines appearance information from silhouettes
with structure information from 3D skeletal poses, using
strengths from each study [3]. Silhouettes provide detailed
body shape and general motion cues, while skeletal data
naturally offer consistency across viewpoints. By merging
these sources, HoloGait creates a unified representation of gait
that remains stable despite viewpoint variations and
occlusions. At its core, HoloGait uses a hybrid model mixing
graph and transformer layers. Skeletal data are first structured
as graphs, connecting body joints, and processed using GCN
layers to learn local joint movements and interactions. Because
typical GCNs have limited reach, multi-head attention
modules are integrated, capturing global temporal patterns and
distant joint relationships [13-15]. This combination helps to
identify important movements and their timing -clearly,
capturing details missed by simpler models. Additionally,
HoloGait employs a 3D pose alignment method, converting all
input skeletons to a standard, fixed viewpoint (like frontal
view) before processing. Such alignment removes viewpoint
differences from the data itself, simplifying the recognition
process and allowing focus on distinctive gait features [3].
Finally, the model uses multi-task learning by training
simultaneously on gait identification and auxiliary tasks like
attribute recognition. Multi-task training generally leads to
richer, more balanced representations, improving performance
across diverse conditions and viewpoints [16].

Key contributions are as follows:

(1). Holistic multi-modal fusion of silhouettes and 3D
skeletal pose features to obtain a unified representation that
reduces sensitivity to viewpoint and appearance changes.

(2). Hybrid graph—transformer architecture in which graph
layers capture localized joint interactions and temporal
transformers model long-range dependencies, improving gait
feature extraction.

(3). Canonical 3D pose alignment that normalizes all
skeletons to a single viewpoint before feature extraction,
simplifying recognition across angles.

(4). Multi-task learning with identity classification and
auxiliary attributes, which regularizes the embedding and
improves robustness across diverse conditions.

Each aspect mentioned addresses a clear gap found in
existing gait recognition methods, especially regarding multi-
modal fusion, structural-temporal modeling, and viewpoint
normalization. By combining these features into a unified
approach, HoloGait provides a practical method for handling
common issues in gait recognition, particularly in challenging
scenarios involving diverse viewpoints, occlusions, and
variable walking patterns [1, 3, 9, 10].

2. RELATED WORK

Appearance-based methods: Early deep learning methods
for gait recognition mainly used appearance-based inputs
(silhouettes) or model-based inputs (skeletal poses).
Appearance-based methods analyze sequences of body
silhouettes as gait signatures. GaitSet by Chao et al. [17] is a
prominent example, which treats gait sequences as unordered
frame sets. It aggregates features at the frame level using set
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pooling to achieve good cross-view accuracy without explicit
sequence modeling. Later methods improved accuracy by
dividing silhouettes into smaller parts to capture subtle
motions. For instance, GaitPart [18] extracts regional micro-
motion features separately for different body parts, and
GaitGL [19] combines both global and local features from
silhouette regions to preserve finer details. These CNNs,
including methods like GaitGANv2 and DANet, improved
recognition accuracy by better spatial and temporal feature
extraction. Despite their strengths, silhouettes usually have
limitations. They lack explicit structural details, are sensitive
to clothing wvariations and occlusions, and foreground
extraction often introduces errors [1].

Gap/contrast: Unlike appearance-only CNN methods,
HoloGait adds aligned 3D skeleton cues and performs early
bi-directional fusion with silhouettes to reduce viewpoint
changes and occlusions while preserving silhouette detail.

Model-based (skeleton/3D): Model-based methods utilize
explicit human body models (skeletal poses) to achieve natural
invariance to appearance changes. Early examples such as
PoseGait by Liao et al. [9] used 3D body joint coordinates to
produce gait features resistant to clothing and viewpoint
changes. Later models employed GCNs directly on skeletal
data structured as joint graphs. For example, Teepe et al.'s
GaitGraph [10] represents each body joint as a node connected
by edges representing the human skeleton structure,
effectively  capturing movement  patterns.  Further
advancements expanded skeletal information by including
bone vectors or joint velocities [20]. Higher-order GCNs with
residual connections have also been developed, significantly
improving gait recognition accuracy [13]. Generally, these
model-based methods effectively capture body movements
independent of clothing. However, skeletal representations
usually have fewer details compared to silhouettes, limiting
their recognition performance, especially in subtle identity
differences [14, 15]. This has motivated integrating skeleton
data with silhouettes to enrich gait representations.

Gap/contrast: HoloGait retains the strengths of skeleton
models but overcomes limited shape detail by fusing
silhouettes and by normalizing all skeletons to a canonical 3D
view before learning.

Multi-modal fusion: Combining silhouettes and skeletal
poses into a multi-modal approach leverages the strengths of
both inputs. Recent models, such as SkeletonGait++ by Fan et
al. [21], transform skeleton sequences into heatmap-like
skeleton maps and then fuse them with silhouette features
using attention. GaitMA by Min et al. [22] uses paralle]l CNN
streams separately on silhouettes and pose heatmaps, fusing
their outputs via mutual co-attention modules. PSGait [1]
further introduces a parsing skeleton method to create part-
specific silhouette masks guided by skeletal poses, capturing
detailed dynamics. These multi-modal methods typically
outperform single-modality methods because silhouettes
provide rich shape cues, while skeletons provide explicit
motion geometry, each compensating for the other's
shortcomings. Researchers have also started using richer 3D
body models (e.g., SMPL) alongside silhouettes for even more
detailed fusion, moving towards comprehensive gait
representations suitable for real-world scenarios. In a related
vein, the dynamic aggregation network (DANet) proposed by
Ma et al. [23] uses attention modules to adaptively aggregate
features across frames. DANet’s attention-based aggregator
learns how much each frame or part contributes to the final
gait signature, dynamically emphasizing salient gait poses and



motions.

Gap/contrast: HoloGait differs by performing early
bi-directional cross-attention between modalities (not only late
concatenation) and by fusing after canonical pose alignment to
avoid view conflicts.

Hybrid  (GCN+Transformer):  Alongside  modality
integration, hybrid deep network architectures combining
CNNs, GCNs, and transformers have been developed. Earlier
CNN-based models, such as GaitPart [18] and GaitGL [19],
already included local spatial regions and temporal modeling
but struggled to capture long-range temporal patterns or
structured relationships across joints. To overcome this
limitation, graph neural networks and transformers became
common. GCN-based approaches like GaitGraph naturally
represent the human body's skeletal structure, leading to better
understanding of joint movements. More recent methods, such
as MS-Gait by Liu et al. [20], expanded this by using multiple
GCN streams focused on joints, bones, and motion
differences, achieving significant accuracy improvements.
However, a key limitation of GCNs remains their narrow
temporal focus. Transformer models address this limitation
effectively by modeling longer temporal dependencies
through attention mechanisms. Models such as GaitFormer by
Cosma and Radoi [24] and GaitTransformer by Cui et al. [25]
apply vision transformers to capture global gait patterns over
time. These transformers excel at linking similar gait phases
across distant time frames, greatly improving cross-view
stability.

Recent research increasingly combines CNNs, GCNs and
transformers into hybrid architectures. For instance, GaitCoTr
by Li et al. [26] uses CNNs for detailed spatial features and
transformers for temporal context. Similarly, recent skeleton-
based approaches integrate transformers atop GCN outputs,
effectively forming graph-transformer hybrids. These hybrids
capture spatial joint interactions via graphs and temporal
patterns via transformer attention. This integration provides a
balanced approach to extracting complete gait dynamics
compared to purely CNN-based or GCN-based methods alone.

Gap/contrast: HoloGait combines a transformer-based
appearance branch with an adaptive GCN plus temporal
transformer pose branch, and couples them through
cross-modal attention to cover both local joint/part structure
and long-range temporal patterns in one unified design.

Cross-view strategies: Achieving robust cross-view
recognition remains particularly challenging since gait
patterns appear differently from varied viewpoints. Many
methods have explored geometric pose normalization or
alignment. Sokolova and Konushin [27], for example,
projected gait features onto a common viewpoint to reduce
view-induced variations. Zheng et al. [14] used 3D SMPL
body models to inherently normalize views by reconstructing
full 3D body shapes. Another common approach involves
learning feature representations that explicitly separate view
variations. Zhang et al. [28] introduced an angle-center loss
function that clusters gait features by identity while dispersing
them by viewing angle, significantly improving cross-view
matching. Other methods employ adversarial domain
adaptation, where the system learns to produce view-invariant
gait features by treating each viewpoint as a separate domain.
Yu et al. [29] and Wu et al. [30] demonstrated such a domain
adaptation strategy in GaitDAN, achieving view-invariant
feature learning. Data augmentation techniques, such as
Generative Adversarial Network (GAN)-based silhouette
generation from new viewpoints (GaitGAN, MvGGAN [29]),
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further enhance cross-view generalization. Additionally,
training strategies specifically aimed at cross-view recognition
have emerged. CART-Gait by Liu et al. [20] uses refined
training that emphasizes consistency across different viewing
angles. These approaches show that combining geometric
normalization, specialized losses, domain adaptation, and
targeted training strategies significantly improves cross-view
gait recognition performance. Gap/contrast: HoloGait applies
explicit canonical 3D pose alignment as a pre-normalization
step and then fuses modalities, instead of relying only on
adversarial adaptation, view losses, or GAN-based synthesis.
Summarizes prior methods by “Method / Modality / Temporal
modeling / View strategy / Limitation addressed by HoloGait”
to make these contrasts concrete.

HoloGait uniquely integrates the strengths of previous
methods. Unlike prior models focusing on single aspects,
HoloGait combines multi-modal fusion of silhouette and
skeletal pose features from the start. Instead of late-stage
feature fusion seen in models like SkeletonGait++, HoloGait
uses early cross-attention between modalities to form unified
representations. Additionally, the architecture blends GCN-
based modeling for structured joint motion and transformer-
based temporal attention, capturing both local joint
interactions and long-range temporal gait dynamics
simultaneously. Previously, methods typically used GCNs or
transformers independently or added simple temporal layers
over GCNs. By integrating these directly into one model,
HoloGait addresses both spatial and temporal limitations seen
in earlier methods. Finally, HoloGait incorporates canonical
3D pose alignment as a fundamental feature, normalizing
skeletal poses before feature extraction. This approach ensures
skeletal inputs are inherently view-invariant, complemented
by a generative silhouette transformation module that aligns
silhouettes to a common viewpoint, similar in approach to
prior GAN-based methods [29]. Thus, HoloGait provides a
comprehensive solution by merging multi-modal fusion,
graph-transformer hybrid modeling, and built-in 3D pose
alignment into a unified framework. Individually, each
component follows from existing research: multi-modal fusion
inspired by PSGait [1], graph-transformer structure building
upon GCN-transformer hybrids [26], and view normalization
drawing from CART-Gait [20] and adversarial domain
adaptation [30]. Collectively, these combined elements
address the gaps present in earlier single-focus approaches,
providing a complete and practical method for addressing
major challenges in gait recognition.

3. METHODS AND MATERIALS

The proposed HoloGait framework systematically
integrates complementary features from silhouette appearance
and structural skeleton poses within a unified multi-modal
architecture illustrated conceptually in Figure 1. The pipeline
initiates with synchronized extraction of silhouette masks and
corresponding 3D skeleton poses from raw input video
sequences. Specifically, silhouettes are obtained through
Gaussian Mixture Model (GMM)-based segmentation,
followed by size normalization and spatial centering, whereas
3D skeletons are derived via OpenPose-based 2D joint
detection and subsequent VideoPose3D lifting, and are
rigorously aligned into a canonical orientation to ensure view
invariance.

Subsequently, HoloGait employs two parallel feature



extraction branches:

Appearance Branch: Utilizes a ResNet-50 backbone
followed by a spatial transformer module to explicitly encode
spatial relationships among anatomically segmented silhouette
regions (e.g., head, torso, limbs). Frame-level spatial features
are then temporally aggregated using a temporal transformer,
producing robust appearance-based gait embeddings.

Structural Branch: Represents the aligned 3D skeleton
sequence as a spatio-temporal graph (nodes as joints, edges as
anatomical bones), extracting joint-level motion features via
an Adaptive GCN. These spatial graph features are temporally
aggregated using a temporal graph transformer encoder,
yielding comprehensive motion-based embeddings.

The embeddings from these dual branches are deeply
integrated through a dedicated cross-modal fusion
transformer. This module employs mutual Multi-Head Cross-
Attention (MHCA) operations, facilitating rich, bi-directional
interactions between silhouette appearance and pose structure,
thereby producing a unified embedding that captures both

spatial appearance and motion dynamics effectively.

Finally, the unified embedding serves as input to two
primary multi-task output heads: (i) an identity classification
head leveraging cross-entropy loss for subject identification,
and (i1) an embedding generation head trained with a triplet
loss to ensure discriminative representation learning.
Optionally, auxiliary attribute prediction tasks (e.g., gender,
clothing type) further enrich feature representations through
additional classification losses. This structured multi-task
training approach enhances generalization and robustness,
significantly improving cross-view gait recognition
performance.

HoloGait illustrating the dual-branch inputs (silhouette
sequences and aligned 3D poses), parallel extraction of spatial-
temporal appearance and structural features, the cross-modal
fusion transformer integrating complementary information,
generative view normalization for viewpoint invariance, and
final multi-task output heads producing identity classification
and discriminative embedding representations.

HoloGait Architecture Diagram
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Figure 1. Conceptual architecture of HoloGait

3.1 Input processing and 3D pose alignment

The HoloGait framework requires precise and synchronized
extraction of silhouette and 3D skeletal data from raw video
frames. The preprocessing pipeline consists of two parallel
stages: silhouette extraction and 3D pose estimation, followed
by a critical pose alignment step to normalize viewpoint
variations.

Silhouette extraction: Silhouette sequences S = {S.}7_;
are generated from the raw video frames V = {I,}_; by
employing a GMM-based foreground segmentation followed
by morphological operations to reduce noise. Each extracted
silhouette frame S; is represented as a binary mask of size H x
W, where pixels belonging to the subject are set to land
background pixels to 0. Silhouettes are further resized and
centered to a standardized resolution (64 x 44) and aligned
spatially so that the centroid of the silhouette C; = (x¢,y{)
aligns consistently across frames, ensuring stable
representation for subsequent processing.

3D pose estimation: Concurrent with silhouette extraction,
3D pose sequences are estimated using a two-stage pipeline:

2D joint extraction: For each video frame I, the 2D joint

. o))’ .
coordinates {pt ; } , where, ] is the total number of body
)iz

joints, are initially extracted using a pre-trained OpenPose
model. Each joint pt(‘zl.D) is represented as Eq. (1):
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(2D) _
t,i -

(% Wi ) i=1..03 (1)

3D joint reconstruction (lifting): The obtained 2D joint
coordinates are subsequently lifted to 3D using VideoPose3D,
a temporal convolutional network specifically trained for
video-based 3D pose reconstruction. This lifting procedure

(3D)

J
generates 3D joint coordinates {pt ; } , which form the raw
o di=

pose representation in Eq. (2):

Y,

t(,?D)z(xt,i' t,i!Zt,i)'izl""‘] (2)

The resulting 3D poses are expressed initially in a camera-
relative coordinate system.

3D pose alignment (view normalization): To ensure that
the extracted gait patterns are invariant to viewpoint
variations, a pose alignment procedure transforms the
estimated 3D joint sequences into a canonical orientation. The
alignment leverages a rigid-body rotation method to
standardize the facing direction of all pose sequences,
effectively neutralizing variations due to camera angles.

Each 3D pose frame is first centered on the pelvis so
translation is removed; a hip direction vector is computed
between the left- and right-hip joints to define the subject’s
facing; the pose is then rotated about the vertical (y) axis so



this hip vector aligns with a fixed canonical axis; the same
rotation is applied to all joints in that frame; only rotation is
used, so bone lengths and joint geometry are preserved; after
this step, all frames “face” the same way, allowing direct
comparison across camera views.

Full derivations for centering, direction vector, rotation
angle, and the y-axis rotation matrix (Egs. (17)-(21)) are
presented in Appendix A.

This pose alignment step ensures that each frame in the
sequence is oriented consistently, regardless of the original
camera viewpoint. The resulting canonical 3D joint

coordinates {p:’li'gmd} provide robust and viewpoint-neutral
skeletal representations.

Rationale and significance: Aligning 3D poses into a
canonical orientation is essential because it explicitly mitigates
variations in joint positions resulting solely from differences
in camera viewpoints. By representing the gait motion in a
unified reference frame, this alignment significantly enhances
the discriminative power of the extracted features and
stabilizes inter-subject comparisons. Consequently, the
normalized pose data contributes directly to more robust and
reliable gait recognition performance, particularly in
challenging cross-view scenarios.

3.2 Appearance (silhouette) feature extractor

Silhouette frames are first encoded by a CNN to obtain
per-frame feature maps. A human-parsing mask then divides
each frame into anatomical regions (head, torso, arms, legs),
and features from each region are average-pooled to create a
small set of “part tokens.” A spatial transformer models
relationships among these tokens within a frame so the model
understands how parts relate to one another. A temporal
transformer then links frames over time to capture the gait
cycle and produce a robust silhouette embedding.

The appearance branch in HoloGait extracts discriminative
gait features from the silhouette sequences S = {S,}7_,
through a hierarchical combination of a convolutional
backbone, spatial transformer module, and temporal
transformer encoder. This design captures both fine-grained
spatial part information and long-range temporal dependencies
within gait sequences.

CNN backbone for silhouette encoding: Each silhouette
frame S;, resized to (64 x 44), is initially processed by a CNN
backbone—specifically, a ResNet-50 architecture pre-trained
on ImageNet. This backbone comprises multiple residual
blocks, each with convolutional layers, batch normalization,
and ReLU activation, providing robust feature extraction. The
output from the CNN backbone is a spatial feature map F; for
each frame t, represented as Eq. (3):

Fe REH Wi 3)
where, C is the channel dimension (typically 2048), and
Hy, Wy are spatial dimensions post CNN processing.

Part-based spatial transformer module: To explicitly
model body-part relationships, the extracted CNN feature
maps F; are further processed using a spatial transformer
module. This spatial transformer divides each feature map into
predefined anatomical body regions—head, torso, upper
limbs, and lower limbs—by using an external human parsing
technique. Specifically, an external segmentation map M,,
obtained via a trained HRNet human parser, segments each
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silhouette into N, body parts. Given the segmentation mask

M,, region-specific feature representations F,,, for each body
part n are computed through region-wise masking and average
pooling over corresponding feature regions in Eq. (4):

2

(xY)eQ

1

F
|Qt,n

t,n ,E(X y), n=1...,N

P “4)

where, (1., denotes pixel coordinates belonging to body
region n at frame t.Each part-specific feature vector F;,, € R

. . N
acts as a token, creating a sequence of spatial tokens {Ft,n}nzl

for the spatial transformer encoder. Subsequently, a spatial
transformer encoder consisting of Multi-Head Self-Attention
(MHSA) layers captures spatial dependencies and
relationships among body parts within the same frame. The
MHSA operation for each frame t is given by: the detailed
MHSA equations (Egs. (22) and (23)) are presented in
Appendix A; this subsection keeps only input—output
definitions of the attention layer, where,

« Q. K., V, € R¥»*® are query, key, and value matrices
derived from {Ff-"}:Zf

*The per-head computation formerly shown in Eq. (23) is
deferred to Appendix A.

This spatial transformer thus produces a refined, part-aware
representation Z, € R"?*? for each frame.

Temporal transformer encoder: To incorporate temporal
dynamics, the sequence of spatially refined frame features
{Z3T_, is aggregated via a temporal transformer encoder.
Each frame’s spatial representation Z, is first flattened and
projected into a temporal embedding e, € R” in Eq. (5):

e =Linear(Z,),t=1...,T.

)

Temporal positional embeddings P, are added to each
temporal embedding to explicitly encode temporal order in Eq.

(6):

e =¢+R,t=1...T. (6)

These temporally embedded tokens {e,}7_; are input to a
temporal transformer encoder comprising multiple stacked
transformer layers. Each temporal transformer layer consists
of MHSA and feed-forward neural network (FFNN) modules,
defined by: the layer update equations (Egs. (24) and (25)) are
presented in Appendix A; the main text retains the standard
residual-plus-LN structure description, where, LN ( -) denotes
layer normalization and H©® = {e/}7_;.

Finally, the temporal transformer encoder aggregates global
temporal context, producing a temporally coherent and highly
discriminative silhouette-based gait representation E; in Eq.

(7):

E; =Pool(H")eR" 7)

where, L is the total number of transformer layers and Pool( -
) is a temporal pooling operation (such as mean or attention
pooling).

The hierarchical combination of CNN backbone, spatial
transformer, and temporal transformer within the appearance
feature extractor ensures the capture of both fine-grained



spatial characteristics (through anatomical part relationships)
and comprehensive temporal dependencies. This explicit
modeling significantly enhances discriminative power and
robustness against variances in silhouette appearance.

3.3 Structural (pose) feature extractor

The structural branch in HoloGait is designed to effectively
encode the spatial configuration and dynamic motion of
human joints, using a specialized graph-based representation
derived from 3D skeleton data. This branch employs a GCN
enhanced with adaptive attention mechanisms to extract
robust, discriminative joint-level features, which are then
aggregated temporally through a transformer encoder.

Graph representation of 3D skeleton: The human body pose
at each frame t is modeled as a spatial graph G, = (V,, E;),
where each vertex v, ; € V; represents a specific body joint
and edges e;; € E;, correspond to anatomical connections
(bones) between these joints. Specifically, each node v, ;
holds a 3D joint coordinate feature vector in Eq. (8):

V,

t,i

= @i e R3 =1, J.

@®)

where, ] is the total number of joints. Edges E, are predefined

based on a skeletal topology, reflecting standard human
anatomical structures (e.g., limb connections: hip-to-knee,
shoulder-to-elbow, elbow-to-wrist, etc.).

Adaptive GCN: To effectively extract spatial structural
features, an Adaptive GCN is utilized. This GCN not only
leverages the predefined skeletal topology but also learns
adaptive edge weights dynamically through an attention
mechanism, allowing flexible interactions among joint
features based on learned spatial relationships. Intuition: A
static (fixed) adjacency assigns the same importance to all
anatomical neighbors regardless of pose or time, whereas
adaptive edge weighting learns which joint-to-joint
connections are most informative at each frame and
emphasizes them. In practice, this reduces over-smoothing and
captures phase-specific motions (e.g., swing vs. stance),
yielding more discriminative features than static graphs.

Specifically, the spatial graph convolution operation at layer
[ for joint i at frame t is mathematically defined as follows:
full spatial-convolution and attention formulations (Egs. (26)
and (27)) are presented in Appendix A; the variable definitions
below are retained for clarity, where,

he

t,i

w® g gptxp® is the learnable transformation matrix
for the [-th layer.

o () denotes a non-linear activation function (ReLU).

JV; denotes the neighbor set of joint i defined by the initial
skeletal edges E;.

O] e
€ RP" represents the feature vector of joint i at layer L.

®

The adaptive edge weights a;; are computed via a

learnable graph attention mechanism, formulated as follows:
see Appendix A for the attention scoring and normalization
equations (formerly Eq. (27)), where,

a € R22""" s 4 learnable attention vector.

@ denotes concatenation.

This adaptive attention effectively enhances the spatial
representation by assigning dynamic importance to edges,
thereby emphasizing joints that contribute significantly to gait
identification. A mini-diagram overlays a heatmap of the

learned edge weights on the skeleton to visualize which
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connections are emphasized during a gait cycle.
The final joint-level spatial feature representation after
multiple GCN layers for each frame t is denoted as Eq. (9):

H, :{hf}g)}; H, e R )

where, Ly is the number of GCN layers, and D; is the output
dimensionality.

Temporal graph transformer: To aggregate joint-level
features across the temporal dimension, a temporal graph
transformer encoder is applied. Each frame’s joint feature set
H, is flattened into a frame-level feature embedding f; €
R/"Ps  then linearly projected to a temporal embedding vector
u, € RP* in Eq. (10):

u, =Linear(f),t=1...,T (10)

Temporal positional encodings P"°* are added to preserve
temporal order in Eq. (11):

u =u +P™ t=1...T (11)

The temporally embedded pose features {u;}—; serve as
input tokens to the temporal transformer encoder, which
comprises multiple stacked transformer layers. Each
transformer layer includes MHSA and a feed-forward neural
network (FFNN), defined as: the layer-update equations
(previously Egs. (28) and (29)) are moved to Appendix A; the
standard LN-residual structure remains unchanged with LN ( -
) denoting layer normalization, and U® = {u,}7_,.

This temporal transformer captures global temporal
correlations and periodic gait patterns within the pose data.
Ultimately, the aggregated structural features across frames
yield a compact and discriminative pose-based embedding

Epose in Eq. (12):

E

pose

= Pool (U™ e R® (12)

where, L; represents the total number of temporal transformer
layers, and Pool( -) is a temporal pooling function (e.g., mean
or attention pooling).

The combination of adaptive GCN and temporal graph
transformer within the structural feature extractor
systematically encodes both spatial inter-joint dependencies
and comprehensive temporal dynamics. Consequently, the
resulting embedding robustly represents gait motion,
significantly enhancing the discriminative power and
cross-view robustness of the HoloGait model.

3.4 Cross-modal
fusion)

fusion module (graph-transformer

Appearance features attend to pose features and pose
features attend to appearance features; this early bi-directional
cross-attention aligns what each modality emphasizes before
view-specific noise accumulates. In cross-view settings, early
fusion is preferable to late concatenation because late mixing
cannot correct mismatched or view-biased cues once separate
encoders have drifted, whereas cross-attention exchanges
salient context to resolve conflicts across 0°, 45°, and 90°
views.



To integrate complementary information from silhouette-
based appearance features and skeleton-based structural
features, HoloGait employs a specialized cross-modal fusion
transformer module. This module explicitly models
interactions between the appearance embedding E; € R and
structural embedding Ejq € RPu | leveraging an MHCA
mechanism. This deep, structured fusion enables holistic gait
representations that effectively overcome the limitations
inherent to each modality alone.

Initial feature projection: Initially, the modality-specific
embeddings Eg; and Ejq are linearly projected into a shared
embedding space with dimension Dy in Egs. (13) and (14):

Eq =W, E, +by, Ej € R (13)
E e =W B +D0se s Eloee € R™ (14)

where, Wy € RP7*P W, € RPPu | and by, bpose € RPS
are learnable parameters. The projected embeddings are then
concatenated to form an initial fused embedding Eq. (15):

Ef(L?s)ed =':Esfil ' Epfose ] € RZDf (15)
Cross-attention transformer module: The cross-modal
fusion utilizes a transformer module incorporating MHCA,
explicitly designed to facilitate the bi-directional exchange of
contextual information between appearance and structural
modalities. The cross-attention transformer consists of two
parallel cross-attention operations, each modality alternately
serving as query (Q) and key-value (K, V) inputs, respectively.
Specifically, the MHCA for modality interaction is formulated
as follows: Formula details of the cross-attention operations,
head computations, Feed-Forward Network (FFN) updates,
residual/Layer Normalization (LN) steps, and the final
projection (Egs. (30)-(39)) are presented in Appendix A.

Modality Interaction and Fusion: Subsequent to cross-
attention operations, both attention outputs undergo a
modality-wise FFN and residual connections with LN. The
final fused embedding integrates both updated modality
representations, followed by another linear projection to
produce a compact unified embedding.

Rationale and advantages of fusion: This transformer-based
fusion explicitly encodes the complementary nature of
silhouette and pose features. Specifically, appearance features
provide detailed visual and shape-based characteristics, while
structural features deliver precise geometric motion patterns,
invariant to visual variations. Through cross-modal attention,
the fusion transformer dynamically weighs and combines
information from both modalities. Consequently, the resulting
unified embedding E,ifieq benefits from enhanced robustness
and discrimination, substantially improving cross-view gait
recognition performance.

3.5 Multi-task output and losses

HoloGait utilizes a structured multi-task learning paradigm,
comprising two primary output heads—a classification head
and an embedding generation head—to effectively leverage
identity-specific  discriminative  features.  Additionally,
auxiliary attribute prediction tasks are optionally employed to
enrich representation learning. Auxiliary attributes such as
clothing and carrying condition act as nuisance factors that
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often change across sessions. Predicting these attributes
encourages the shared embedding to separate identity
information  from  appearance variations, reducing
over-reliance on silhouettes alone and improving
generalization. This auxiliary supervision regularizes the
representation so that identity cues remain stable even when
attire or carry status differs.

Identity classification head: Detailed cross-entropy (CE)
formulation and Softmax definitions (Eqgs. (40) and (41)) are
presented in Appendix A; the main text retains only task
description and hyperparameters. Embedding Generation
Head (Triplet Loss): To ensure discriminative and robust
embedding  representations, HoloGait simultaneously
optimizes a triplet loss. This embedding head outputs a
normalized embedding vector obtained by linearly projecting
and L2-normalizing the unified embedding. Triplet
embedding details, normalization, and the margin-based
objective (Egs. (42) and (43)) are presented in Appendix A.
Auxiliary Attribute Prediction Tasks: Auxiliary attribute
prediction tasks—such as gender, clothing, or carrying
condition—are integrated into the training process to further
enhance the feature representations through separate linear
classifiers for each attribute. Attribute classifiers and their
cross-entropy expressions (Egs. (44)-(46)) are presented in
Appendix A.

Overall multi-task loss: The complete multi-task loss
function integrates identity classification loss, triplet loss, and
auxiliary attribute prediction losses (if employed), weighted
appropriately through hyperparameters A, Ay, Ao in Eq.

(16):

'Ctotal :ﬂtls ‘Ctls +A1ri ‘Ctri +A‘attr ‘Canr (16)

Hyperparameters (margin m and loss weights A, Airi, Aater)
are summarized in Appendix B.

This structured multi-task learning strategy explicitly
optimizes the embedding space to be discriminative across
identities while implicitly regularizing the learned
representations through auxiliary attribute predictions,
resulting in more robust and generalized gait recognition
performance.

4. EXPERIMENTAL STUDY

This section describes the practical evaluation of HoloGait.
It uses the TUM GAID [31] dataset, known for realistic
challenges like varying viewpoints, occlusions, and
appearance changes. This section clearly explains the
evaluation procedures and compares HoloGait’s performance
with established methods, CART-Gait [20] and GaitSet [17].
Ablation tests are included to demonstrate how individual
model components affect accuracy, clearly highlighting their
importance. The section also provides a detailed analysis of
HoloGait's consistency across different viewing angles,
supported by visual examples. These experiments clearly
validate the practical advantages and limitations of the
proposed method.

4.1 Dataset and evaluation protocols
The experimental validation of HoloGait employs the

Technische Universitdit Miinchen (TUM) Gait from Audio,
Image, and Depth (TUM GAID) [31] benchmark dataset,



explicitly chosen for its challenging real-world cross-view
conditions. The TUM GAID dataset contains gait sequences
captured from 305 subjects walking under varying conditions,
recorded simultaneously from multiple viewpoints using
synchronized RGB cameras positioned at distinct fixed angles
(front view at 0°, side views at 45°, and 90° angles). Each
subject performs gait sequences under different covariate
factors, including carrying items, different clothing, and
varying walking speeds, thereby representing realistic gait
variations.

Silhouette sequences are systematically extracted from the
original RGB video frames using GMM-based foreground
segmentation, followed by morphological operations to refine
silhouettes, resulting in consistent binary silhouette masks of
standardized dimensions (64 x 44).

Corresponding 3D skeletal poses are estimated in two
distinct stages: initially, 2D joint coordinates are extracted
from RGB frames using the OpenPose framework. These 2D
joints are subsequently lifted to accurate 3D skeletal
coordinates using VideoPose3D, providing temporally
coherent and precise 3D skeletons. All estimated 3D skeletons
undergo explicit canonical view alignment to remove
viewpoint variability.

The evaluation protocol explicitly adopts a cross-view
setup, utilizing distinct camera angle sequences for training
and testing. Specifically, gait sequences captured from the
frontal view (0°) and a side view (45°) are used exclusively for
model training, whereas sequences captured from the
remaining side view (90°) constitute the test set. This strict
separation of viewpoints ensures fair evaluation of HoloGait’s

generalization capability across challenging unseen viewing
angles. This train (0°,45°) — test (90°) protocol emulates the
hardest unseen extreme view for evaluation.

The dataset is partitioned explicitly according to standard
train-test splits recommended by TUM GAID, maintaining
consistency with previously published literature for direct
comparative evaluation.

The comparative evaluation of HoloGait explicitly involves
two carefully selected state-of-the-art methods categorized by
their respective feature extraction strategies. GaitSet,
introduced by Chao et al. [17], represents a purely appearance-
based approach, conceptualizing gait recognition as an
unordered set of silhouette images. It employs a set-level
pooling mechanism that robustly aggregates spatial
appearance features, thereby effectively handling varying
frame numbers and viewpoint variations without explicit
temporal modeling. In contrast, CART-Gait, proposed by Liu
et al. [20], exemplifies a recent hybrid multi-modal strategy,
explicitly integrating silhouette-based appearance information
and structural pose features. This method uses a cross-angle
refined training framework, adaptively refining multi-modal
features across diverse viewing angles to significantly enhance
cross-view gait recognition performance. The selection of
these baseline methods thus facilitates a comprehensive
comparative analysis, effectively demonstrating HoloGait's
contributions over both appearance-only and contemporary
multi-modal approaches under challenging cross-view
conditions. Preprocessing and augmentation settings for both
modalities are summarized in Table 1.

Table 1. Per modality preprocessing and augmentation (TUM GAID protocol)

Modality Preprocessing

Augmentation

Silhouettes
3D Skeletons

GMM foreground segmentation; resize to 64 x 44; centering
OpenPose 2D joints — VideoPose3D lifting; canonical view alignment

Random horizontal flips; minor random cropping
None (alignment only)

4.2 Implementation and training details

The HoloGait architecture is implemented using PyTorch,
and trained on a computational environment comprising two
NVIDIA Tesla V100 GPUs (32GB each). The appearance
feature extraction branch employs a ResNet-50 backbone, pre-
trained on ImageNet, followed by a spatial transformer module
with 4 multi-head attention layers, each configured with 8
attention heads and embedding dimensions set to 512.
Subsequently, a temporal transformer encoder consisting of 4
multi-head attention layers (8 heads each, hidden size of 512)
aggregates these spatial features. The structural branch utilizes
an Adaptive GCN with 3 GCN layers (each with hidden
dimensions of 256), followed by a temporal graph transformer
of 3 layers (8 attention heads, hidden dimension of 256). The
cross-modal fusion transformer module comprises 4 MHCA
layers (each having 8 attention heads and a hidden dimension
of 512). HoloGait training spans 120 epochs, using the Adam
optimizer with an initial learning rate of 1x10—4, decayed by
a factor of 0.1 every 40 epochs, and a batch size of 32
sequences per iteration. Data augmentation for silhouette
inputs involves random horizontal flips and minor random
cropping to simulate realistic variations, whereas 3D skeleton
poses require normalization to a canonical view without
additional augmentation to preserve structural integrity.
Each training epoch approximately takes 50 minutes, clearly
reflecting the additional computational overhead associated
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with dual-modal input processing and transformer-based
feature integration.

Profiling setup: Inference speed and memory were profiled
in evaluation mode (PyTorch, torch.no_grad ()) on a single
NVIDIA Tesla V100 (32GB). Latency and peak memory were
measured with batch size = 1; throughput was measured with
batch size = 8. Silhouette inputs used the standard 64 x 44
frame resolution and the sequence length 7 employed in
training; pose inputs used aligned J x 3joints per frame
(Section 3.3). Peak memory was recorded via
torch.cuda.max_memory_allocated (). Timings averaged
multiple forward passes after a short warm-up and excluded
data loading. FLOPs per frame were computed with a FLOP
counter on the same input shapes.

4.3 Results and discussion

Quantitative evaluations on the TUM GAID dataset
demonstrate that the proposed HoloGait model substantially
outperforms contemporary baseline methods across cross-
view scenarios. Table 2 summarizes Rank-1 accuracy scores
for HoloGait, CART-Gait, and GaitSet. Specifically, HoloGait
achieves a Rank-1 accuracy of 96.8%, distinctly
outperforming CART-Gait (92.1%) by 4.7% and GaitSet
(86.4%) by a notable margin of 10.4%. These quantitative
results highlight HoloGait’s clear superiority in integrating
complementary silhouette and structural information, directly



translating into robust identification performance under
challenging cross-view conditions.

Table 2. Rank-1 accuracy (%) comparison on TUM GAID
dataset (cross-view conditions)

Method Rank-1 Accuracy (%)
GaitSet 86.4
CART-Gait 92.1
HoloGait (ours) 96.8
1000 Rank-1 Accuracy Comparison on TUM GAID Dataset
97.5 96.8%
95.0
R
; 92.5 92.1%
S 90.0
<
x 875 86.4%
&
85.0
82.5
80.0

Gai‘tSet CARTI-Gait HolaGait
Figure 2. Comparative Rank-1 accuracy of HoloGait on

TUM GAID dataset

Qualitative examples at the 90° extreme view illustrate
typical success and failure modes (Figure 2): successful cases
include clear side-view sequences where limb contours and
hip—knee—ankle motion are fully visible; failures arise under
heavy occlusions (e.g., bag obscuring the leg swing),
pose-estimation jitter around knees/ankles in low-contrast
frames, and irregular stride patterns that shorten effective
cycle length. These issues primarily degrade either the
silhouette branch (occlusion) or the pose branch (jitter), while
the fused model remains stable when at least one modality is
reliable. Table 2 reports single-run Rank-1 values (no
meantstd or 95% CI reported): HoloGait 96.8%, CART-Gait
92.1%, GaitSet 86.4%.

Figure 2 explicitly compares the Rank-1 accuracy of
HoloGait against state-of-the-art methods CART-Gait and
GaitSet. It highlights significant accuracy improvements
achieved by HoloGait, clearly demonstrating superior
performance under cross-view conditions.

Detailed ablation experiments conducted to validate
HoloGait’s core components distinctly illustrate their critical
contributions. Without multi-modal fusion (using silhouette
data alone), Rank-1 accuracy drops notably from 96.8% to
89.5% (—7.3%), clearly confirming the necessity of integrating
both modalities for optimal accuracy. Additionally, excluding
the 3D pose alignment step significantly reduces accuracy to
91.7% (=5.1%), explicitly underscoring the importance of
canonical view normalization in mitigating viewpoint
variations. Finally, removing the contrastive (triplet) loss
results in accuracy declining to 93.2% (—3.6%), directly
evidencing its key role in enhancing discriminative embedding
learning. These quantitative reductions explicitly demonstrate
each component's critical impact on HoloGait's superior
performance (see Table 3).

For Table 3, single-run accuracies and absolute drops
relative to the full model are reported: Full 96.8%;
—Multi-Modal Fusion 89.5% (—7.3); —3D Pose Alignment
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91.7% (—5.1); —Triplet 93.2% (—3.6). No variability metrics
(meantstd or 95% CI) were provided in the source. A
fusion-timing ablation would compare late concatenation,
one-way cross-attention, and bi-directional cross-attention for
cross-view accuracy, directly testing the choice of early,
bi-directional fusion.

Figure 3 presents detailed ablation results, clearly showing
accuracy impacts when removing essential components
(multi-modal fusion, canonical 3D alignment, contrastive loss)
individually. The clear accuracy drops emphasize each
component's critical role in HoloGait’s robust gait recognition.

Comprehensive cross-view analyses explicitly indicate that
HoloGait maintains exceptional performance consistency
across varying viewing angles, explicitly showcasing its
robustness through canonical view normalization. As detailed
in Table 4, at challenging viewing angle differences (such as
90° between training and testing angles), HoloGait achieves
impressive Rank-1 accuracy of 95.3%, notably surpassing
CART-Gait (89.0%) by 6.3%, and significantly outperforming
GaitSet (81.7%) by 13.6%. This performance stability across
large angular deviations clearly evidences HoloGait’s
effective mitigation of view-induced degradation.

Figure 4 explicitly illustrates Rank-1 accuracy at different
viewing angles (45°, 90°), highlighting HoloGait’s robustness
and consistent accuracy even under challenging large-angle
discrepancies. It distinctly demonstrates HoloGait’s advantage
in maintaining high accuracy due to effective canonical view
alignment.

Table 3. Ablation study: Impact of key components on Rank-
1 accuracy (%)

Confisuration Rank-1 Accuracy
g Accuracy (%) Drop (%)
Full Model (HoloGait) 96.8 -
Without Mgltl-Modal 895 73
Fusion
Without 3D Pose
Alignment oL7 31
Without Contrastive

(Triplet) Loss 932 36

Ablation Study - Impact of Component Removal

Without Triplet Loss 93.2%

91.7%

Without 3D Alignment

Without Multi-Modal Fusion

Full Model

92 9 3 % 100

Rank-1 Accuracy (%)

3 E3 %

Figure 3. Ablation analysis of core components in HoloGait

Table 4. Cross-view performance: Rank-1 accuracy (%) at
different view-angle differences

Angle GaitSet CART-Gait HoloGait
Difference (%) (%) (%)
45° 89.6 94.5 98.2
90° (extreme) 81.7 89.0 95.3




Cross-View |dentification Accuracy at Different Angles

Gaitset 98.2%
CART-Gait

HoloGait
94.5%

95.3%
95}

89.6%

90 89.0%

851

Rank-1 Accuracy (%)

81.7%

80

5 45° 90° (Extreme)

Figure 4. Cross-view accuracy performance analysis

X Qualitative Visualization of Attention and Joint Activations
Spatial Attention Map (Appearance Branch) Joint Activation Patterns (Structural Branch)

Figure 5. Visualization of attention and joint activation in
HoloGait

Visualization of spatial attention maps and joint activation
patterns further validates HoloGait’s interpretability and
discriminative effectiveness. Attention visualizations (shown
explicitly in Figure 5) demonstrate that the appearance branch
distinctly prioritizes salient body regions such as limbs and
torso contours critical to appearance-based identification.
Simultaneously, structural branch visualizations reveal
focused activations on dynamically discriminative joints,
notably hips, knees, and ankles, explicitly reflecting robust
motion-pattern encoding. These qualitative insights explicitly
confirm that HoloGait effectively learns and leverages critical
body-region-specific and joint-level information for robust
gait representation.

Figure 5 provides qualitative visualization explicitly
showing attention patterns from the appearance branch and
joint activations from the structural branch. These
visualizations distinctly indicate HoloGait’s ability to focus
selectively on discriminative body regions and joint
movements, enhancing interpretability and effectiveness.

Comprehensive  experimental — results  conclusively
demonstrate HoloGait’s superior identification performance
and robustness in cross-view gait recognition. Quantitative
benchmarks  explicitly = show  significant  accuracy
improvements over contemporary baseline methods, with a
clear Rank-1 accuracy gain of 4.7% compared to CART-Gait
and 10.4% over GaitSet. Ablation experiments explicitly
confirm that multi-modal fusion, canonical view alignment,
and contrastive learning collectively contribute substantially
to the model’s accuracy and robustness. Notably, cross-view
analyses clearly indicate minimal performance degradation
even at extreme angular discrepancies (90°), underscoring the
effectiveness of 3D pose normalization in mitigating
viewpoint challenges. Qualitative visualizations reinforce
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these findings by explicitly illustrating the model’s targeted
attention to discriminative gait features. Collectively, these
experimental outcomes distinctly position HoloGait as a
robust, effective, and interpretable framework advancing
beyond prior state-of-the-art gait recognition methodologies.

5. CONCLUSIONS

This paper presented HoloGait, a gait recognition method
that integrates silhouettes with 3D skeletal poses. HoloGait
addresses challenges like viewing angle differences and
occlusions. Its graph-transformer design combines spatial-
temporal features by merging visual appearance and structural
joint movements. Adaptive graph convolution captures joint
dynamics, while a canonical pose alignment normalizes
viewpoints. Contrastive multi-task learning further enhances
the recognition accuracy by improving feature distinction.
Experiments using the TUM GAID dataset confirmed
HoloGait's capabilities. Compared to recent methods such as
CART-Gait and GaitSet, HoloGait produced clearly higher
accuracy across different viewing angles. These results show
HoloGait generally provides consistent gait recognition even
under varying conditions. Future studies may explore
including other input sources like inertial sensor data or depth
images. Further refinements to the graph-transformer
architecture might allow application in real-time scenarios.
These next steps could extend the method’s utility beyond
current biometric identification tasks.

Limitations: Performance depends on the quality of 2D/3D
pose estimation; severe occlusions, low-contrast frames, or
tracking errors can degrade the structural branch and, through
fusion, the final embedding. The dual-branch architecture with
graph and transformer modules increases computational cost
and memory usage compared with single-modal baselines,
which can constrain deployment on edge devices.

Future work: Explore lighter backbones and model
distillation for real-time inference; evaluate cross-dataset
generalization with train—test splits across datasets and camera
setups; and improve robustness to missing or noisy joints via
joint-dropout, occlusion-aware training, and error-aware
fusion.
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NOMENCLATURE

t frame index

i,j,k joint indices
J number of joints
T number of frames
t(ZiD) 2D joint
= (xt i yt,i)
pt(fD) 3D joint
- (Xt i Yt,i' Zt,i)
ﬁt@;l’) pelvis-centered 3D joint
sli‘g“"d pose after canonical rotation
Egii, Epose appearance/pose embeddings
Etinaly Eunified fused embeddings
HO y® hidden tensors in temporal transformers
Z; per-frame part-token features
Q,K,V attention queries/keys/values
h number of heads
dy per-head key dimension
N; neighbor set for joint i
“i(;) adaptive edge weight
LN Layer norm
FFNN position-wise feed-forward
o non-linearity
m triplet margin

Adtss Atris Aattr loss weights

APPENDIX
A. Mathematical Details

This appendix compiles the full set of equations relocated
from Sections 3.1-3.5 and preserves their original numbering
(Egs. (30)-(45)). Symbols are shared across equations unless
noted; units and coordinate conventions follow the main text.

Sec. 3.1 — Input processing and 3D pose alignment (Eqs.
(17)-21)

Eq. (17) (pelvis centering): Remove translation by centering
all 3D joints on the pelvis/root joint.

(3D) (3D)

(3D) _ .
p t,root’l_:l"“"‘J

(17

Eq. (18) (hip-direction vector):
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(3D)

(3D)
Vi = P

— P rA

(18)

Form a hip-direction vector (left-right hip) to define facing.
Eq. (19) (y-axis rotation angle to canonical x-axis):

|

Compute the yaw angle about the y-axis that aligns the hip
vector to a canonical axis.
Eq. (20) shows (y-axis rotation matrix):

_Zt,RH
- Xt,RH

Z
t,LH (19)

t,LH

6, =arctan (

cosd 0 sing,
10

—sing, 0 cosé,

(20)

Build the y-axis rotation matrix for that angle.
Eq. (21) shows (apply rotation to all centered joints):

R, (6)pii=1

aligned __

P N

2]

Rotate every centered joint to obtain the canonical,
view-normalized pose.

Sec. 3.2 — Appearance (Silhouette) Feature Extractor

(Eqgs. (22)-(25))
Eq. (22) presents (frame-wise MHSA over part tokens):

0, =MHSA(Q,,K,,V,) = Concat (head,, ..., head, )W°  (22)
Eq. (23) denotes (per-head computation):
QWK W,
head, = Softmax ; (Vw") (23)

Nen

Egs. (22) and (23) show the MHSA over per-frame part
tokens; each head applies scaled dot-product attention to
model relations among anatomical regions, then heads are
concatenated and linearly projected.

Eq. (24) presents (temporal transformer, attention block
with residual):

HO = HO + MHSA(LN(H®)) (24)

Eq. (25) shows (temporal transformer, FFN block with
residual):

HO™ = HO + FENN(LN(H®)) (25)
Egs. (24) and (25) present the standard transformer layer

updates across time: (i) residual + MHSA with layer norm,
then (ii) residual + position-wise FFN with layer norm.

Sec. 3.3 — Structural (pose) feature extractor (Eqs. (26)-

(29)
Eq. (26) shows (spatial adaptive GCN update):



ht(vliﬂ) :O'{ Z

aigl)w 0} ht(,lj) J (26)
ey A}

Eq. (26) shows the Adaptive GCN update aggregates a
joint’s neighbors (including self) using learned edge weights
and a linear transform, followed by nonlinearity.

Eq. (27) (learned attention weights over edges):

exp ( LeakyRelLU (aT [W OROW O }))
5, oo Lawmes(s V]

keN; Ai}

() _
ij

@7

Eq. (27) presents the graph attention computes normalized,
data-dependent edge weights to emphasize informative
joint-to-joint links.

Eq. (28) shows the temporal transformer, attention block
with residual:

U =u® + MHSA(LN(U®)) (28)

Eq. (29) shows temporal transformer, FFN block with
residual:

U =U® +FENN(LN(U®)) (29)

Egs. (28) and (29) present temporal transformer over frames
for pose features—same residual + MHSA and residual + FFN
pattern as in A.2, with layer norm.

Sec. 3.4 — Cross-modal fusion (Egs. (30)-(39))
Eq. (30) implies appearance—pose cross-attention):

z = MHCA(Q = EsiI K= Epose Vo= Epose ) (30)

sil — pose
Eq. (31) implies (pose—appearance cross-attention):

z =MHCA(Q=E, . K=E,,V=E;) (31

pose—»sil pose ! sil

Egs. (30) and (31) denote Bi-directional cross-attention:
appearance attends to pose; pose attends to appearance
Eq. (32) shows MHCA:

0=MHSA(Q,K,.V,)

32
= Concat (head,,..., head, )W° (32)
Eq. (33) presents (per-head cross-attention):
QWKW )
head, = Softmax| ———— |(VWW," ) (33)

Nen

Egs. (32) and (33) denote MHCA definition and per-head
computation (scaled dot-product with Q, K, V).

Egs. (34)-(37) show (residual-norm-FFN mixing per
modality):

E;I = LN (Esn + ZSI| — pose ) (34)
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T = LN(E; +FFNN(E; )) (35)
Epose = LN(Epose +Z e il ) (36)
Efe! = LN(Ep, +FFNN(Ep, )) (37)

Egs. (34)-(37) show for each modality, residual +
cross-attention + layer norm, then residual + FFN + layer norm
to produce fused modality-specific features.

Eqgs. (38)-(39) denote (final concatenation and projection):

Eqn = Concat (E5™ , Ef ) (38)

Euitied =Weinar Efiva + P (39)

Egs. (38) and (39) present concatenate the fused modality
features and project to a single unified embedding.

Sec. 3.5 — Multi-task output and losses (Eqs. (40)-(46))
Eq. (40) denotes (identity Softmax):

+b,

P =softmax (W, E s ) (40)

cls unified

Eq. (41) presents (cross-entropy identity loss):

Nig

Yo 109 ( Pige ) (41)

1 B
cls :_EZ

b=1 c=1

Egs. (40) and (41) denote identity prediction via Softmax
and cross-entropy loss.
Eq. (42) shows (L2-normalized embedding):

W, . E

emb —unified b

W Eunlfied + bembz

emb

emb

(42)
Eq. (43) presents (triplet loss with margin m):

Ly = i (0 d(za,zp) d(za,zn)+m) (43)

W~

Egs. (42) and (43) show L2-normalized embedding and
margin-based triplet loss to enlarge inter-class gaps while
tightening intra-class clusters.

Eq. (44) present (auxiliary attribute Softmax, attribute j):

pétjtz = SOﬂmaX (W Eunlfle bat{r ) ! J = :L L] Nattr (44)

attr

Eq. (45) denotes (auxiliary attribute CE losses):

N

B .
z y log (pW e ) (45)

=1 b=1 c=.

Natt

2

UJII—‘

Ly =

N

Egs. (44) and (45) present auxiliary attribute Softmax heads
and cross-entropy losses (e.g., clothing/carry status).
Eq. (46) shows (overall multi-task loss):

‘Ctolal cls ‘Ccls + /Itrl ‘Ctrl +ﬂ’artr ‘Canr (46)



Eq. (46) denotes the weighted sum of identity, triplet, and
attribute losses to form the total training objective.

B. Training and Profiling Details

Loss weights and margin. Unless noted otherwise, training
uses loss weights A5 = 1.0, 4y = 1.0, A = 0.5 and triplet
margin m = 0.3, which provide stable convergence and
balanced supervision across identification, metric learning,
and attributes.

Learning-rate schedule, optimizer, and batch sizes.
Optimization uses Adam (initial LR 1 X 10™*, weight decay
1 X 10™%); a step schedule decays LR by x 0.1 at epochs 40
and 80 over 120 total epochs; training batch size is 32
sequences, evaluation uses batch size 1 for latency and 8 for
throughput.

Token counts and layer counts. Appearance part tokens are
setto N, = 4 (head, torso, arms, legs). The appearance branch
uses a ResNet-50 backbone, a spatial transformer with 4 layers
(8 heads, dim 512), and a temporal transformer with 4 layers
(8 heads, dim 512). The structural branch uses an Adaptive
GCN with 3 layers (hidden 256) and a temporal graph
transformer with 3 layers (8 heads, dim 256). The cross-modal
fusion transformer has 4 layers (8 heads, dim 512).

Random seeds. Reproducibility seeds: {42,99,123}; report

mean and variability over these runs where applicable.

Exact train/test split identifiers. Standard TUM-GAID
cross-view protocol is followed (train on 0° and 45°, test on
90°); subject and sequence lists are provided as text files in the
supplementary  package:  splits/train_ids 0 45.txt  and
splits/test ids 90.txt (camera-angle specific sequence IDs),
along with splits/val _ids.txt for validation.

Input sizes. Silhouette frames are 64 x 44 pixels; sequences
are sampled or padded to 7= 30 frames for profiling (variable
length supported at training). Aligned 3D skeletons use J x 3
joints per frame with OpenPose default topology (BODY 25)
after canonical-view alignment.

Profiling setup for Tables. All profiling is in PyTorch eval
mode with torch.no_grad () on a single NVIDIA Tesla V100
(32 GB); FP32 inference; CUDA warm-up (20 iters) followed
by 200 timed iters; latency measured at batch size = 1;
throughput at batch size 8; peak memory via
torch.cuda.max_memory_allocated (); cuDNN autotune
enabled (torch.backends.cudnn.benchmark=True); FLOPs
counted on 64 x 44 silhouettes with 7= 30 and J = 25 joints
per frame for the structural stream. Results are summarized in
Tables 5 to 8.

Data augmentation (for completeness). Silhouettes: random
horizontal flip and minor random crop; 3D skeletons: no
augmentation beyond canonical view alignment.

Table 5. Loss weights and margin (used unless stated otherwise)

Ads Ay Agiir Margin m Notes
1.0 1.0 0.5 0.3 Balanced supervision across tasks
Table 6. Schedule, batches, seeds
Optimizer  Init LR Decays Weight Decay Train bs Eval bs (lat / thr) Epochs Seeds
Adam 1 x10*  x0.1 @40,80 1 x 10+ 32 1/8 120 42,99, 123
Table 7. Cardinalities (tokens, layers, heads, dims)
Branch / Module Tokens / Layers Heads Hu!den Notes
Parts Dim
Appearance: Spatial Transformer N p=4 4 8 512 Part tokens from HRNet parsing
Appearance: Temporal Transformer — 4 8 512 Frame-sequence modeling
Structural: Adaptive GCN — 3 — 256 Joint graph features
Structural: Temporal Graph Transformer — 3 8 256 Pose sequence modeling
Cross-Modal Fusion Transformer — 4 8 512 Early bi-directional fusion
Table 8. Inputs for profiling
Stream Spatial Size Sequence Length T Joints J Precision Device
Silhouette (appearance) 64 x 44 30 — FP32 V10032 GB
Skeleton (structure) — 30 25 (BODY _25) FP32 V10032 GB
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