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Cross-view gait recognition remains challenging due to variations in viewing angles, 

temporal misalignment, occlusions, and appearance changes, which significantly 

reduce the effectiveness of current biometric systems. To address these challenges, this 

paper introduces HoloGait, a multi-modal framework designed for robust cross view 

gait recognition. HoloGait fuses complementary information from appearance-based 

silhouettes and structural 3D skeletal poses, leveraging the distinct advantages of each 

modality. Central to the approach is a rigorous 3D pose alignment module that 

normalizes skeletal data to a canonical view, significantly minimizing viewpoint 

dependency. Additionally, the structural information from 3D poses is explicitly 

modeled using an adaptive graph convolutional network (GCN), capturing intricate 

joint dynamics and interactions. Subsequently, a transformer-based fusion module 

integrates silhouette and skeletal features, dynamically exchanging spatial-temporal 

cues between the two modalities. A multi-task objective (identity classification + triplet 

loss) further enhances discriminative capabilities, producing embeddings resilient to 

occlusion and temporal inconsistencies. Experiments on the TUM GAID dataset using 

a strict cross view protocol—training on 0° and 45° views and testing on 90°—

demonstrate that HoloGait achieves substantial performance improvements. Notably, 

HoloGait attains a Rank-1 accuracy of 96.8%, outperforming recent methods such as 

CART-Gait by 4.7% and GaitSet by 10.4%, thus clearly establishing state-of-the-art 

performance. These advancements confirm HoloGait’s capability to provide 

comprehensive, reliable, and accurate gait recognition suitable for practical biometric 

identification tasks under realistic conditions.  
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1. INTRODUCTION

Gait recognition identifies people from walking patterns 

and is useful at a distance without cooperation, but 

performance degrades under real-world conditions. Major 

obstacles include large changes in camera view, temporal 

misalignment and speed variation, occlusion of body parts, 

and appearance factors such as clothing changes and carried 

objects, all of which reduce recognition accuracy [1-7]. 

HoloGait addresses these obstacles by combining two 

complementary inputs: silhouettes (appearance) and 3D 

skeletons (structure). 3D poses are first aligned to a canonical 

view to reduce view differences, then the two modalities are 

fused with early, bi-directional cross-attention to form a single 

gait embedding. 

This design encourages learning of identity-related motion 

and shape while limiting the effect of viewpoint and occlusion. 

Appearance-based approaches, which analyze gait through 

2D silhouettes, have shown high accuracy in controlled 

conditions, typically using convolutional neural networks 

(CNNs) [8]. However, silhouettes generally provide limited 

information and are easily affected by changes in viewpoint, 

occlusion, and background noise [1]. Some methods handle 

this by explicitly separating viewpoint from identity or 

normalizing silhouettes to a common view using spatial 

transformations [3]. In contrast, model-based methods use 

explicit body information like skeleton poses, providing some 

natural robustness to viewpoint and clothing variations. For 

example, PoseGait by Liao et al. [9] used 3D skeleton data 

combined with human body knowledge to handle view 

differences effectively. Similarly, GaitGraph introduced by 

Teepe et al. [10] used the graph convolutional network (GCN) 

to learn gait patterns directly from skeletal graphs. Recent 

works also introduced detailed 3D body meshes (e.g., Skinned 

Multi-Person Linear (SMPL) models) that provide richer pose 

and shape information, improving accuracy across viewpoints 

[11, 12]. Despite these advantages, skeleton-based methods 

usually produce limited features, lacking detailed shape 

information found in silhouette-based methods [1]. To 

overcome this, several recent studies combined both 

appearance (silhouettes) and skeletal poses to gain richer and 

more consistent features. SkeletonGait++, for instance, fused 

skeleton-based features with silhouette features through 

attention mechanisms, improving performance significantly 
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across different viewpoints. Still, existing fusion approaches 

often fall short in effectively managing temporal 

misalignments and partial occlusions. 

This paper introduces HoloGait, a multi-modal gait 

recognition method designed to manage these problems. 

HoloGait combines appearance information from silhouettes 

with structure information from 3D skeletal poses, using 

strengths from each study [3]. Silhouettes provide detailed 

body shape and general motion cues, while skeletal data 

naturally offer consistency across viewpoints. By merging 

these sources, HoloGait creates a unified representation of gait 

that remains stable despite viewpoint variations and 

occlusions. At its core, HoloGait uses a hybrid model mixing 

graph and transformer layers. Skeletal data are first structured 

as graphs, connecting body joints, and processed using GCN 

layers to learn local joint movements and interactions. Because 

typical GCNs have limited reach, multi-head attention 

modules are integrated, capturing global temporal patterns and 

distant joint relationships [13-15]. This combination helps to 

identify important movements and their timing clearly, 

capturing details missed by simpler models. Additionally, 

HoloGait employs a 3D pose alignment method, converting all 

input skeletons to a standard, fixed viewpoint (like frontal 

view) before processing. Such alignment removes viewpoint 

differences from the data itself, simplifying the recognition 

process and allowing focus on distinctive gait features [3]. 

Finally, the model uses multi-task learning by training 

simultaneously on gait identification and auxiliary tasks like 

attribute recognition. Multi-task training generally leads to 

richer, more balanced representations, improving performance 

across diverse conditions and viewpoints [16]. 

Key contributions are as follows: 

(1). Holistic multi-modal fusion of silhouettes and 3D 

skeletal pose features to obtain a unified representation that 

reduces sensitivity to viewpoint and appearance changes. 

(2). Hybrid graph–transformer architecture in which graph 

layers capture localized joint interactions and temporal 

transformers model long-range dependencies, improving gait 

feature extraction. 

(3). Canonical 3D pose alignment that normalizes all 

skeletons to a single viewpoint before feature extraction, 

simplifying recognition across angles. 

(4). Multi-task learning with identity classification and 

auxiliary attributes, which regularizes the embedding and 

improves robustness across diverse conditions. 

Each aspect mentioned addresses a clear gap found in 

existing gait recognition methods, especially regarding multi-

modal fusion, structural-temporal modeling, and viewpoint 

normalization. By combining these features into a unified 

approach, HoloGait provides a practical method for handling 

common issues in gait recognition, particularly in challenging 

scenarios involving diverse viewpoints, occlusions, and 

variable walking patterns [1, 3, 9, 10]. 

 

 

2. RELATED WORK 

 

Appearance-based methods: Early deep learning methods 

for gait recognition mainly used appearance-based inputs 

(silhouettes) or model-based inputs (skeletal poses). 

Appearance-based methods analyze sequences of body 

silhouettes as gait signatures. GaitSet by Chao et al. [17] is a 

prominent example, which treats gait sequences as unordered 

frame sets. It aggregates features at the frame level using set 

pooling to achieve good cross-view accuracy without explicit 

sequence modeling. Later methods improved accuracy by 

dividing silhouettes into smaller parts to capture subtle 

motions. For instance, GaitPart [18] extracts regional micro-

motion features separately for different body parts, and 

GaitGL [19] combines both global and local features from 

silhouette regions to preserve finer details. These CNNs, 

including methods like GaitGANv2 and DANet, improved 

recognition accuracy by better spatial and temporal feature 

extraction. Despite their strengths, silhouettes usually have 

limitations. They lack explicit structural details, are sensitive 

to clothing variations and occlusions, and foreground 

extraction often introduces errors [1]. 

Gap/contrast: Unlike appearance-only CNN methods, 

HoloGait adds aligned 3D skeleton cues and performs early 

bi-directional fusion with silhouettes to reduce viewpoint 

changes and occlusions while preserving silhouette detail. 

Model-based (skeleton/3D): Model-based methods utilize 

explicit human body models (skeletal poses) to achieve natural 

invariance to appearance changes. Early examples such as 

PoseGait by Liao et al. [9] used 3D body joint coordinates to 

produce gait features resistant to clothing and viewpoint 

changes. Later models employed GCNs directly on skeletal 

data structured as joint graphs. For example, Teepe et al.'s 

GaitGraph [10] represents each body joint as a node connected 

by edges representing the human skeleton structure, 

effectively capturing movement patterns. Further 

advancements expanded skeletal information by including 

bone vectors or joint velocities [20]. Higher-order GCNs with 

residual connections have also been developed, significantly 

improving gait recognition accuracy [13]. Generally, these 

model-based methods effectively capture body movements 

independent of clothing. However, skeletal representations 

usually have fewer details compared to silhouettes, limiting 

their recognition performance, especially in subtle identity 

differences [14, 15]. This has motivated integrating skeleton 

data with silhouettes to enrich gait representations. 

Gap/contrast: HoloGait retains the strengths of skeleton 

models but overcomes limited shape detail by fusing 

silhouettes and by normalizing all skeletons to a canonical 3D 

view before learning. 

Multi-modal fusion: Combining silhouettes and skeletal 

poses into a multi-modal approach leverages the strengths of 

both inputs. Recent models, such as SkeletonGait++ by Fan et 

al. [21], transform skeleton sequences into heatmap-like 

skeleton maps and then fuse them with silhouette features 

using attention. GaitMA by Min et al. [22] uses parallel CNN 

streams separately on silhouettes and pose heatmaps, fusing 

their outputs via mutual co-attention modules. PSGait [1] 

further introduces a parsing skeleton method to create part-

specific silhouette masks guided by skeletal poses, capturing 

detailed dynamics. These multi-modal methods typically 

outperform single-modality methods because silhouettes 

provide rich shape cues, while skeletons provide explicit 

motion geometry, each compensating for the other's 

shortcomings. Researchers have also started using richer 3D 

body models (e.g., SMPL) alongside silhouettes for even more 

detailed fusion, moving towards comprehensive gait 

representations suitable for real-world scenarios. In a related 

vein, the dynamic aggregation network (DANet) proposed by 

Ma et al. [23] uses attention modules to adaptively aggregate 

features across frames. DANet’s attention-based aggregator 

learns how much each frame or part contributes to the final 

gait signature, dynamically emphasizing salient gait poses and 
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motions. 

Gap/contrast: HoloGait differs by performing early 

bi-directional cross-attention between modalities (not only late 

concatenation) and by fusing after canonical pose alignment to 

avoid view conflicts. 

Hybrid (GCN+Transformer): Alongside modality 

integration, hybrid deep network architectures combining 

CNNs, GCNs, and transformers have been developed. Earlier 

CNN-based models, such as GaitPart [18] and GaitGL [19], 

already included local spatial regions and temporal modeling 

but struggled to capture long-range temporal patterns or 

structured relationships across joints. To overcome this 

limitation, graph neural networks and transformers became 

common. GCN-based approaches like GaitGraph naturally 

represent the human body's skeletal structure, leading to better 

understanding of joint movements. More recent methods, such 

as MS-Gait by Liu et al. [20], expanded this by using multiple 

GCN streams focused on joints, bones, and motion 

differences, achieving significant accuracy improvements. 

However, a key limitation of GCNs remains their narrow 

temporal focus. Transformer models address this limitation 

effectively by modeling longer temporal dependencies 

through attention mechanisms. Models such as GaitFormer by 

Cosma and Radoi [24] and GaitTransformer by Cui et al. [25] 

apply vision transformers to capture global gait patterns over 

time. These transformers excel at linking similar gait phases 

across distant time frames, greatly improving cross-view 

stability. 

Recent research increasingly combines CNNs, GCNs and 

transformers into hybrid architectures. For instance, GaitCoTr 

by Li et al. [26] uses CNNs for detailed spatial features and 

transformers for temporal context. Similarly, recent skeleton-

based approaches integrate transformers atop GCN outputs, 

effectively forming graph-transformer hybrids. These hybrids 

capture spatial joint interactions via graphs and temporal 

patterns via transformer attention. This integration provides a 

balanced approach to extracting complete gait dynamics 

compared to purely CNN-based or GCN-based methods alone. 

Gap/contrast: HoloGait combines a transformer-based 

appearance branch with an adaptive GCN plus temporal 

transformer pose branch, and couples them through 

cross-modal attention to cover both local joint/part structure 

and long-range temporal patterns in one unified design. 

Cross-view strategies: Achieving robust cross-view 

recognition remains particularly challenging since gait 

patterns appear differently from varied viewpoints. Many 

methods have explored geometric pose normalization or 

alignment. Sokolova and Konushin [27], for example, 

projected gait features onto a common viewpoint to reduce 

view-induced variations. Zheng et al. [14] used 3D SMPL 

body models to inherently normalize views by reconstructing 

full 3D body shapes. Another common approach involves 

learning feature representations that explicitly separate view 

variations. Zhang et al. [28] introduced an angle-center loss 

function that clusters gait features by identity while dispersing 

them by viewing angle, significantly improving cross-view 

matching. Other methods employ adversarial domain 

adaptation, where the system learns to produce view-invariant 

gait features by treating each viewpoint as a separate domain. 

Yu et al. [29] and Wu et al. [30] demonstrated such a domain 

adaptation strategy in GaitDAN, achieving view-invariant 

feature learning. Data augmentation techniques, such as 

Generative Adversarial Network (GAN)-based silhouette 

generation from new viewpoints (GaitGAN, MvGGAN [29]), 

further enhance cross-view generalization. Additionally, 

training strategies specifically aimed at cross-view recognition 

have emerged. CART-Gait by Liu et al. [20] uses refined 

training that emphasizes consistency across different viewing 

angles. These approaches show that combining geometric 

normalization, specialized losses, domain adaptation, and 

targeted training strategies significantly improves cross-view 

gait recognition performance. Gap/contrast: HoloGait applies 

explicit canonical 3D pose alignment as a pre-normalization 

step and then fuses modalities, instead of relying only on 

adversarial adaptation, view losses, or GAN-based synthesis. 

Summarizes prior methods by “Method / Modality / Temporal 

modeling / View strategy / Limitation addressed by HoloGait” 

to make these contrasts concrete. 

HoloGait uniquely integrates the strengths of previous 

methods. Unlike prior models focusing on single aspects, 

HoloGait combines multi-modal fusion of silhouette and 

skeletal pose features from the start. Instead of late-stage 

feature fusion seen in models like SkeletonGait++, HoloGait 

uses early cross-attention between modalities to form unified 

representations. Additionally, the architecture blends GCN-

based modeling for structured joint motion and transformer-

based temporal attention, capturing both local joint 

interactions and long-range temporal gait dynamics 

simultaneously. Previously, methods typically used GCNs or 

transformers independently or added simple temporal layers 

over GCNs. By integrating these directly into one model, 

HoloGait addresses both spatial and temporal limitations seen 

in earlier methods. Finally, HoloGait incorporates canonical 

3D pose alignment as a fundamental feature, normalizing 

skeletal poses before feature extraction. This approach ensures 

skeletal inputs are inherently view-invariant, complemented 

by a generative silhouette transformation module that aligns 

silhouettes to a common viewpoint, similar in approach to 

prior GAN-based methods [29]. Thus, HoloGait provides a 

comprehensive solution by merging multi-modal fusion, 

graph-transformer hybrid modeling, and built-in 3D pose 

alignment into a unified framework. Individually, each 

component follows from existing research: multi-modal fusion 

inspired by PSGait [1], graph-transformer structure building 

upon GCN-transformer hybrids [26], and view normalization 

drawing from CART-Gait [20] and adversarial domain 

adaptation [30]. Collectively, these combined elements 

address the gaps present in earlier single-focus approaches, 

providing a complete and practical method for addressing 

major challenges in gait recognition. 

 

 

3. METHODS AND MATERIALS 

 

The proposed HoloGait framework systematically 

integrates complementary features from silhouette appearance 

and structural skeleton poses within a unified multi-modal 

architecture illustrated conceptually in Figure 1. The pipeline 

initiates with synchronized extraction of silhouette masks and 

corresponding 3D skeleton poses from raw input video 

sequences. Specifically, silhouettes are obtained through 

Gaussian Mixture Model (GMM)-based segmentation, 

followed by size normalization and spatial centering, whereas 

3D skeletons are derived via OpenPose-based 2D joint 

detection and subsequent VideoPose3D lifting, and are 

rigorously aligned into a canonical orientation to ensure view 

invariance. 

Subsequently, HoloGait employs two parallel feature 
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extraction branches: 

·Appearance Branch: Utilizes a ResNet-50 backbone 

followed by a spatial transformer module to explicitly encode 

spatial relationships among anatomically segmented silhouette 

regions (e.g., head, torso, limbs). Frame-level spatial features 

are then temporally aggregated using a temporal transformer, 

producing robust appearance-based gait embeddings. 

·Structural Branch: Represents the aligned 3D skeleton 

sequence as a spatio-temporal graph (nodes as joints, edges as 

anatomical bones), extracting joint-level motion features via 

an Adaptive GCN. These spatial graph features are temporally 

aggregated using a temporal graph transformer encoder, 

yielding comprehensive motion-based embeddings. 

The embeddings from these dual branches are deeply 

integrated through a dedicated cross-modal fusion 

transformer. This module employs mutual Multi-Head Cross-

Attention (MHCA) operations, facilitating rich, bi-directional 

interactions between silhouette appearance and pose structure, 

thereby producing a unified embedding that captures both 

spatial appearance and motion dynamics effectively. 

Finally, the unified embedding serves as input to two 

primary multi-task output heads: (i) an identity classification 

head leveraging cross-entropy loss for subject identification, 

and (ii) an embedding generation head trained with a triplet 

loss to ensure discriminative representation learning. 

Optionally, auxiliary attribute prediction tasks (e.g., gender, 

clothing type) further enrich feature representations through 

additional classification losses. This structured multi-task 

training approach enhances generalization and robustness, 

significantly improving cross-view gait recognition 

performance. 

HoloGait illustrating the dual-branch inputs (silhouette 

sequences and aligned 3D poses), parallel extraction of spatial-

temporal appearance and structural features, the cross-modal 

fusion transformer integrating complementary information, 

generative view normalization for viewpoint invariance, and 

final multi-task output heads producing identity classification 

and discriminative embedding representations. 

 

 
 

Figure 1. Conceptual architecture of HoloGait 
 

3.1 Input processing and 3D pose alignment 
 

The HoloGait framework requires precise and synchronized 

extraction of silhouette and 3D skeletal data from raw video 

frames. The preprocessing pipeline consists of two parallel 

stages: silhouette extraction and 3D pose estimation, followed 

by a critical pose alignment step to normalize viewpoint 

variations. 

Silhouette extraction: Silhouette sequences 𝑆 = {𝑆𝑡}𝑡=1
𝑇  

are generated from the raw video frames 𝑉 = {𝐼𝑡}𝑡=1
𝑇  by 

employing a GMM-based foreground segmentation followed 

by morphological operations to reduce noise. Each extracted 

silhouette frame 𝑆𝑡 is represented as a binary mask of size H × 

W, where pixels belonging to the subject are set to 1and 

background pixels to 0. Silhouettes are further resized and 

centered to a standardized resolution (64 × 44) and aligned 

spatially so that the centroid of the silhouette 𝐶𝑡 = (𝑥𝑡
𝑐 , 𝑦𝑡

𝑐) 

aligns consistently across frames, ensuring stable 

representation for subsequent processing. 

3D pose estimation: Concurrent with silhouette extraction, 

3D pose sequences are estimated using a two-stage pipeline: 

2D joint extraction: For each video frame 𝐼𝑡, the 2D joint 

coordinates {𝑝𝑡,𝑖
(2𝐷)

}
𝑖=1

𝐽

, where, 𝐽 is the total number of body 

joints, are initially extracted using a pre-trained OpenPose 

model. Each joint 𝑝𝑡,𝑖
(2𝐷)

 is represented as Eq. (1):  

( )(2 )

, , ,, , 1, ,D

t i t i t ip x y i J= =   (1) 

 

3D joint reconstruction (lifting): The obtained 2D joint 

coordinates are subsequently lifted to 3D using VideoPose3D, 

a temporal convolutional network specifically trained for 

video-based 3D pose reconstruction. This lifting procedure 

generates 3D joint coordinates {𝑝𝑡,𝑖
(3𝐷)

}
𝑖=1

𝐽

, which form the raw 

pose representation in Eq. (2):  

 

( )(3 )

, , , ,, , , 1, ,D

t i t i t i t ip X Y Z i J= =   (2) 

 

The resulting 3D poses are expressed initially in a camera-

relative coordinate system. 

3D pose alignment (view normalization): To ensure that 

the extracted gait patterns are invariant to viewpoint 

variations, a pose alignment procedure transforms the 

estimated 3D joint sequences into a canonical orientation. The 

alignment leverages a rigid-body rotation method to 

standardize the facing direction of all pose sequences, 

effectively neutralizing variations due to camera angles. 

Each 3D pose frame is first centered on the pelvis so 

translation is removed; a hip direction vector is computed 

between the left‑ and right‑hip joints to define the subject’s 

facing; the pose is then rotated about the vertical (y) axis so 
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this hip vector aligns with a fixed canonical axis; the same 

rotation is applied to all joints in that frame; only rotation is 

used, so bone lengths and joint geometry are preserved; after 

this step, all frames “face” the same way, allowing direct 

comparison across camera views. 

Full derivations for centering, direction vector, rotation 

angle, and the y‑axis rotation matrix (Eqs. (17)-(21)) are 

presented in Appendix A.  

This pose alignment step ensures that each frame in the 

sequence is oriented consistently, regardless of the original 

camera viewpoint. The resulting canonical 3D joint 

coordinates {𝑝𝑡,𝑖
aligned 

}  provide robust and viewpoint-neutral 

skeletal representations. 

Rationale and significance: Aligning 3D poses into a 

canonical orientation is essential because it explicitly mitigates 

variations in joint positions resulting solely from differences 

in camera viewpoints. By representing the gait motion in a 

unified reference frame, this alignment significantly enhances 

the discriminative power of the extracted features and 

stabilizes inter-subject comparisons. Consequently, the 

normalized pose data contributes directly to more robust and 

reliable gait recognition performance, particularly in 

challenging cross-view scenarios. 

 

3.2 Appearance (silhouette) feature extractor 

 

Silhouette frames are first encoded by a CNN to obtain 

per‑frame feature maps. A human‑parsing mask then divides 

each frame into anatomical regions (head, torso, arms, legs), 

and features from each region are average‑pooled to create a 

small set of “part tokens.” A spatial transformer models 

relationships among these tokens within a frame so the model 

understands how parts relate to one another. A temporal 

transformer then links frames over time to capture the gait 

cycle and produce a robust silhouette embedding. 

The appearance branch in HoloGait extracts discriminative 

gait features from the silhouette sequences 𝑆 = {𝑆𝑡}𝑡=1
𝑇  

through a hierarchical combination of a convolutional 

backbone, spatial transformer module, and temporal 

transformer encoder. This design captures both fine-grained 

spatial part information and long-range temporal dependencies 

within gait sequences. 

CNN backbone for silhouette encoding: Each silhouette 

frame 𝑆𝑡, resized to (64 × 44), is initially processed by a CNN 

backbone—specifically, a ResNet‑50 architecture pre-trained 

on ImageNet. This backbone comprises multiple residual 

blocks, each with convolutional layers, batch normalization, 

and ReLU activation, providing robust feature extraction. The 

output from the CNN backbone is a spatial feature map 𝐹𝑡 for 

each frame 𝑡, represented as Eq. (3):  

 
f fC H W

tF
 

  (3) 

 

where, 𝐶  is the channel dimension (typically 2048), and 

𝐻𝑓 , 𝑊𝑓 are spatial dimensions post CNN processing. 

Part-based spatial transformer module: To explicitly 

model body-part relationships, the extracted CNN feature 

maps 𝐹𝑡  are further processed using a spatial transformer 

module. This spatial transformer divides each feature map into 

predefined anatomical body regions—head, torso, upper 

limbs, and lower limbs—by using an external human parsing 

technique. Specifically, an external segmentation map 𝑀𝑡 , 

obtained via a trained HRNet human parser, segments each 

silhouette into 𝑁𝑝  body parts. Given the segmentation mask 

𝑀𝑡, region-specific feature representations 𝐹𝑡,𝑛 for each body 

part 𝑛 are computed through region-wise masking and average 

pooling over corresponding feature regions in Eq. (4):  

 

( )
,

,

( , ),

1
, , 1, ,

t n

t n t p

x yt n

F F x y n N


= = 


  (4) 

 

where, 𝛺𝑡,𝑛  denotes pixel coordinates belonging to body 

region 𝑛 at frame 𝑡.Each part-specific feature vector 𝐹𝑡,𝑛 ∈ ℝ𝐶  

acts as a token, creating a sequence of spatial tokens {𝐹𝑡,𝑛}
𝑛=1

𝑁𝑝
 

for the spatial transformer encoder. Subsequently, a spatial 

transformer encoder consisting of Multi-Head Self-Attention 

(MHSA) layers captures spatial dependencies and 

relationships among body parts within the same frame. The 

MHSA operation for each frame 𝑡 is given by: the detailed 

MHSA equations (Eqs. (22) and (23)) are presented in 

Appendix A; this subsection keeps only input–output 

definitions of the attention layer, where,  

• 𝑄𝑡 , 𝐾𝑡 , 𝑉𝑡 ∈ ℝ𝑁𝑝×𝑑  are query, key, and value matrices 

derived from {𝐹𝑡,𝑛}
𝑛=1

𝑁𝑝
, 

•The per‑head computation formerly shown in Eq. (23) is 

deferred to Appendix A.  

This spatial transformer thus produces a refined, part-aware 

representation 𝑍𝑡 ∈ ℝ𝑁𝑝×𝑑 for each frame. 

Temporal transformer encoder: To incorporate temporal 

dynamics, the sequence of spatially refined frame features 

{𝑍𝑡}𝑡=1
𝑇  is aggregated via a temporal transformer encoder. 

Each frame’s spatial representation 𝑍𝑡  is first flattened and 

projected into a temporal embedding 𝑒𝑡 ∈ ℝ𝐷 in Eq. (5):  

 

( )Linear , 1, , .t te Z t T= =   (5) 

 

Temporal positional embeddings 𝑃𝑡  are added to each 

temporal embedding to explicitly encode temporal order in Eq. 

(6):  

 

, 1, , .t t te e P t T = + =   (6) 

 

These temporally embedded tokens {𝑒𝑡
′ }𝑡=1

𝑇  are input to a 

temporal transformer encoder comprising multiple stacked 

transformer layers. Each temporal transformer layer consists 

of MHSA and feed-forward neural network (FFNN) modules, 

defined by: the layer update equations (Eqs. (24) and (25)) are 

presented in Appendix A; the main text retains the standard 

residual‑plus‑LN structure description, where, 𝐿𝑁( ⋅) denotes 

layer normalization and 𝐻(0) = {𝑒𝑡
′ }𝑡=1

𝑇 . 

Finally, the temporal transformer encoder aggregates global 

temporal context, producing a temporally coherent and highly 

discriminative silhouette-based gait representation 𝐸sil in Eq. 

(7):  

 

( )( )

sil Pool L DE H=   (7) 

 

where, 𝐿 is the total number of transformer layers and 𝑃𝑜𝑜𝑙( ⋅
) is a temporal pooling operation (such as mean or attention 

pooling). 

The hierarchical combination of CNN backbone, spatial 

transformer, and temporal transformer within the appearance 

feature extractor ensures the capture of both fine-grained 
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spatial characteristics (through anatomical part relationships) 

and comprehensive temporal dependencies. This explicit 

modeling significantly enhances discriminative power and 

robustness against variances in silhouette appearance. 

 

3.3 Structural (pose) feature extractor 

 

The structural branch in HoloGait is designed to effectively 

encode the spatial configuration and dynamic motion of 

human joints, using a specialized graph-based representation 

derived from 3D skeleton data. This branch employs a GCN 

enhanced with adaptive attention mechanisms to extract 

robust, discriminative joint-level features, which are then 

aggregated temporally through a transformer encoder. 

Graph representation of 3D skeleton: The human body pose 

at each frame 𝑡 is modeled as a spatial graph 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡), 

where each vertex 𝑣𝑡,𝑖 ∈ 𝑉𝑡  represents a specific body joint 

and edges 𝑒𝑖𝑗 ∈ 𝐸𝑡  correspond to anatomical connections 

(bones) between these joints. Specifically, each node 𝑣𝑡,𝑖 

holds a 3D joint coordinate feature vector in Eq. (8):  

 
(aligned) 3

, , , 1, , .t i t iv p i J=  =   (8) 

 

where, 𝐽 is the total number of joints. Edges 
tE  are predefined 

based on a skeletal topology, reflecting standard human 

anatomical structures (e.g., limb connections: hip‑to‑knee, 

shoulder‑to‑elbow, elbow‑to‑wrist, etc.). 

Adaptive GCN: To effectively extract spatial structural 

features, an Adaptive GCN is utilized. This GCN not only 

leverages the predefined skeletal topology but also learns 

adaptive edge weights dynamically through an attention 

mechanism, allowing flexible interactions among joint 

features based on learned spatial relationships. Intuition: A 

static (fixed) adjacency assigns the same importance to all 

anatomical neighbors regardless of pose or time, whereas 

adaptive edge weighting learns which joint‑to‑joint 

connections are most informative at each frame and 

emphasizes them. In practice, this reduces over‑smoothing and 

captures phase‑specific motions (e.g., swing vs. stance), 

yielding more discriminative features than static graphs. 

Specifically, the spatial graph convolution operation at layer 

𝑙 for joint 𝑖 at frame 𝑡 is mathematically defined as follows: 

full spatial‑convolution and attention formulations (Eqs. (26) 

and (27)) are presented in Appendix A; the variable definitions 

below are retained for clarity, where, 

ℎ𝑡,𝑖
(𝑙)

∈ ℝ𝐷(𝑙)
 represents the feature vector of joint 𝑖 at layer 𝑙.  

𝑊(𝑙) ∈ ℝ𝐷(𝑙+1)×𝐷(𝑙)
 is the learnable transformation matrix 

for the 𝑙-th layer.  

𝜎(⋅) denotes a non‑linear activation function (ReLU).  

𝒩𝑖  denotes the neighbor set of joint 𝑖 defined by the initial 

skeletal edges 𝐸𝑡.  

The adaptive edge weights 𝛼𝑖𝑗
(𝑙)

 are computed via a 

learnable graph attention mechanism, formulated as follows: 

see Appendix A for the attention scoring and normalization 

equations (formerly Eq. (27)), where, 

𝑎 ∈ ℝ2𝐷(𝑙+1)
 is a learnable attention vector.  

⊕ denotes concatenation.  

This adaptive attention effectively enhances the spatial 

representation by assigning dynamic importance to edges, 

thereby emphasizing joints that contribute significantly to gait 

identification. A mini‑diagram overlays a heatmap of the 

learned edge weights on the skeleton to visualize which 

connections are emphasized during a gait cycle. 

The final joint‑level spatial feature representation after 

multiple GCN layers for each frame 𝑡 is denoted as Eq. (9):  

 

( ) ,
1

,g s

J
L J D

t t i t
i

H h H 

=

=   (9) 

 

where, 𝐿𝑔 is the number of GCN layers, and 𝐷𝑠 is the output 

dimensionality. 

Temporal graph transformer: To aggregate joint‑level 

features across the temporal dimension, a temporal graph 

transformer encoder is applied. Each frame’s joint feature set 

𝐻𝑡  is flattened into a frame‑level feature embedding 𝑓𝑡 ∈

ℝ𝐽⋅𝐷𝑠, then linearly projected to a temporal embedding vector 

𝑢𝑡 ∈ ℝ𝐷𝑢  in Eq. (10):  

 

( )Linear , 1, ,t tu f t T= =   (10) 

 

Temporal positional encodings 𝑃𝑡
pose 

 are added to preserve 

temporal order in Eq. (11):  

 
pose , 1, ,t t tu u P t T = + =   (11) 

 

The temporally embedded pose features {𝑢𝑡
′ }𝑡=1

𝑇  serve as 

input tokens to the temporal transformer encoder, which 

comprises multiple stacked transformer layers. Each 

transformer layer includes MHSA and a feed‑forward neural 

network (FFNN), defined as: the layer‑update equations 

(previously Eqs. (28) and (29)) are moved to Appendix A; the 

standard LN‑residual structure remains unchanged with 𝐿𝑁( ⋅
) denoting layer normalization, and 𝑈(0) = {𝑢𝑡

′ }𝑡=1
𝑇 . 

This temporal transformer captures global temporal 

correlations and periodic gait patterns within the pose data. 

Ultimately, the aggregated structural features across frames 

yield a compact and discriminative pose‑based embedding 

𝐸pose in Eq. (12):  

 
( )( )pose Pool t u
L DE U=   (12) 

 

where, 𝐿𝑡 represents the total number of temporal transformer 

layers, and 𝑃𝑜𝑜𝑙( ⋅) is a temporal pooling function (e.g., mean 

or attention pooling). 

The combination of adaptive GCN and temporal graph 

transformer within the structural feature extractor 

systematically encodes both spatial inter‑joint dependencies 

and comprehensive temporal dynamics. Consequently, the 

resulting embedding robustly represents gait motion, 

significantly enhancing the discriminative power and 

cross‑view robustness of the HoloGait model. 
 

3.4 Cross-modal fusion module (graph-transformer 

fusion) 

 

Appearance features attend to pose features and pose 

features attend to appearance features; this early bi‑directional 

cross‑attention aligns what each modality emphasizes before 

view‑specific noise accumulates. In cross‑view settings, early 

fusion is preferable to late concatenation because late mixing 

cannot correct mismatched or view‑biased cues once separate 

encoders have drifted, whereas cross‑attention exchanges 

salient context to resolve conflicts across 0°, 45°, and 90° 

views. 
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To integrate complementary information from silhouette-

based appearance features and skeleton‑based structural 

features, HoloGait employs a specialized cross-modal fusion 

transformer module. This module explicitly models 

interactions between the appearance embedding 𝐸sil ∈ ℝ𝐷 and 

structural embedding 𝐸pose ∈ ℝ𝐷𝑢 , leveraging an MHCA 

mechanism. This deep, structured fusion enables holistic gait 

representations that effectively overcome the limitations 

inherent to each modality alone. 

Initial feature projection: Initially, the modality-specific 

embeddings 𝐸sil and 𝐸pose are linearly projected into a shared 

embedding space with dimension 𝐷𝑓 in Eqs. (13) and (14):  

 

sil sil sil sil sil, fDf fE W E b E= +   (13) 

 

pose pose pose pose pose, fDf fE W E b E= +   (14) 

 

where, 𝑊sil ∈ ℝ𝐷𝑓×𝐷 , 𝑊pose ∈ ℝ𝐷𝑓×𝐷𝑢 , and 𝑏sil, 𝑏pose ∈ ℝ𝐷𝑓  

are learnable parameters. The projected embeddings are then 

concatenated to form an initial fused embedding Eq. (15):  

 
2(0)

fused sil pose ; fDf fE E E =    (15) 

 

Cross-attention transformer module: The cross-modal 

fusion utilizes a transformer module incorporating MHCA, 

explicitly designed to facilitate the bi-directional exchange of 

contextual information between appearance and structural 

modalities. The cross-attention transformer consists of two 

parallel cross-attention operations, each modality alternately 

serving as query (𝑄) and key‑value (𝐾, 𝑉) inputs, respectively. 

Specifically, the MHCA for modality interaction is formulated 

as follows: Formula details of the cross‑attention operations, 

head computations, Feed-Forward Network (FFN) updates, 

residual/Layer Normalization (LN) steps, and the final 

projection (Eqs. (30)-(39)) are presented in Appendix A. 

Modality Interaction and Fusion: Subsequent to cross-

attention operations, both attention outputs undergo a 

modality-wise FFN and residual connections with LN. The 

final fused embedding integrates both updated modality 

representations, followed by another linear projection to 

produce a compact unified embedding. 

Rationale and advantages of fusion: This transformer-based 

fusion explicitly encodes the complementary nature of 

silhouette and pose features. Specifically, appearance features 

provide detailed visual and shape-based characteristics, while 

structural features deliver precise geometric motion patterns, 

invariant to visual variations. Through cross-modal attention, 

the fusion transformer dynamically weighs and combines 

information from both modalities. Consequently, the resulting 

unified embedding 𝐸unified benefits from enhanced robustness 

and discrimination, substantially improving cross-view gait 

recognition performance. 

 

3.5 Multi-task output and losses 

 

HoloGait utilizes a structured multi-task learning paradigm, 

comprising two primary output heads—a classification head 

and an embedding generation head—to effectively leverage 

identity‑specific discriminative features. Additionally, 

auxiliary attribute prediction tasks are optionally employed to 

enrich representation learning. Auxiliary attributes such as 

clothing and carrying condition act as nuisance factors that 

often change across sessions. Predicting these attributes 

encourages the shared embedding to separate identity 

information from appearance variations, reducing 

over‑reliance on silhouettes alone and improving 

generalization. This auxiliary supervision regularizes the 

representation so that identity cues remain stable even when 

attire or carry status differs. 

Identity classification head: Detailed cross‑entropy (CE) 

formulation and Softmax definitions (Eqs. (40) and (41)) are 

presented in Appendix A; the main text retains only task 

description and hyperparameters. Embedding Generation 

Head (Triplet Loss): To ensure discriminative and robust 

embedding representations, HoloGait simultaneously 

optimizes a triplet loss. This embedding head outputs a 

normalized embedding vector obtained by linearly projecting 

and L2‑normalizing the unified embedding. Triplet 

embedding details, normalization, and the margin‑based 

objective (Eqs. (42) and (43)) are presented in Appendix A. 

Auxiliary Attribute Prediction Tasks: Auxiliary attribute 

prediction tasks—such as gender, clothing, or carrying 

condition—are integrated into the training process to further 

enhance the feature representations through separate linear 

classifiers for each attribute. Attribute classifiers and their 

cross‑entropy expressions (Eqs. (44)-(46)) are presented in 

Appendix A. 

Overall multi‑task loss: The complete multi‑task loss 

function integrates identity classification loss, triplet loss, and 

auxiliary attribute prediction losses (if employed), weighted 

appropriately through hyperparameters 𝜆cls, 𝜆tri, 𝜆attr  in Eq. 

(16): 

 

total cls cls tri tri attr attr   = + +  (16) 

 

Hyperparameters (margin 𝑚 and loss weights 𝜆cls, 𝜆tri, 𝜆attr) 

are summarized in Appendix B. 

This structured multi‑task learning strategy explicitly 

optimizes the embedding space to be discriminative across 

identities while implicitly regularizing the learned 

representations through auxiliary attribute predictions, 

resulting in more robust and generalized gait recognition 

performance. 

 

 

4. EXPERIMENTAL STUDY 

 

This section describes the practical evaluation of HoloGait. 

It uses the TUM GAID [31] dataset, known for realistic 

challenges like varying viewpoints, occlusions, and 

appearance changes. This section clearly explains the 

evaluation procedures and compares HoloGait’s performance 

with established methods, CART-Gait [20] and GaitSet [17]. 

Ablation tests are included to demonstrate how individual 

model components affect accuracy, clearly highlighting their 

importance. The section also provides a detailed analysis of 

HoloGait's consistency across different viewing angles, 

supported by visual examples. These experiments clearly 

validate the practical advantages and limitations of the 

proposed method. 

 

4.1 Dataset and evaluation protocols 

 

The experimental validation of HoloGait employs the 

Technische Universität München (TUM) Gait from Audio, 

Image, and Depth (TUM GAID) [31] benchmark dataset, 
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explicitly chosen for its challenging real-world cross-view 

conditions. The TUM GAID dataset contains gait sequences 

captured from 305 subjects walking under varying conditions, 

recorded simultaneously from multiple viewpoints using 

synchronized RGB cameras positioned at distinct fixed angles 

(front view at 0°, side views at 45°, and 90° angles). Each 

subject performs gait sequences under different covariate 

factors, including carrying items, different clothing, and 

varying walking speeds, thereby representing realistic gait 

variations. 

Silhouette sequences are systematically extracted from the 

original RGB video frames using GMM-based foreground 

segmentation, followed by morphological operations to refine 

silhouettes, resulting in consistent binary silhouette masks of 

standardized dimensions (64 × 44). 

Corresponding 3D skeletal poses are estimated in two 

distinct stages: initially, 2D joint coordinates are extracted 

from RGB frames using the OpenPose framework. These 2D 

joints are subsequently lifted to accurate 3D skeletal 

coordinates using VideoPose3D, providing temporally 

coherent and precise 3D skeletons. All estimated 3D skeletons 

undergo explicit canonical view alignment to remove 

viewpoint variability. 

The evaluation protocol explicitly adopts a cross-view 

setup, utilizing distinct camera angle sequences for training 

and testing. Specifically, gait sequences captured from the 

frontal view (0°) and a side view (45°) are used exclusively for 

model training, whereas sequences captured from the 

remaining side view (90°) constitute the test set. This strict 

separation of viewpoints ensures fair evaluation of HoloGait’s 

generalization capability across challenging unseen viewing 

angles. This train (0°,45°) → test (90°) protocol emulates the 

hardest unseen extreme view for evaluation. 

The dataset is partitioned explicitly according to standard 

train-test splits recommended by TUM GAID, maintaining 

consistency with previously published literature for direct 

comparative evaluation. 

The comparative evaluation of HoloGait explicitly involves 

two carefully selected state-of-the-art methods categorized by 

their respective feature extraction strategies. GaitSet, 

introduced by Chao et al. [17], represents a purely appearance-

based approach, conceptualizing gait recognition as an 

unordered set of silhouette images. It employs a set-level 

pooling mechanism that robustly aggregates spatial 

appearance features, thereby effectively handling varying 

frame numbers and viewpoint variations without explicit 

temporal modeling. In contrast, CART-Gait, proposed by Liu 

et al. [20], exemplifies a recent hybrid multi-modal strategy, 

explicitly integrating silhouette-based appearance information 

and structural pose features. This method uses a cross-angle 

refined training framework, adaptively refining multi-modal 

features across diverse viewing angles to significantly enhance 

cross-view gait recognition performance. The selection of 

these baseline methods thus facilitates a comprehensive 

comparative analysis, effectively demonstrating HoloGait's 

contributions over both appearance-only and contemporary 

multi-modal approaches under challenging cross-view 

conditions. Preprocessing and augmentation settings for both 

modalities are summarized in Table 1. 

 

Table 1. Per modality preprocessing and augmentation (TUM GAID protocol) 

 
Modality Preprocessing Augmentation 

Silhouettes GMM foreground segmentation; resize to 64 × 44; centering Random horizontal flips; minor random cropping 

3D Skeletons OpenPose 2D joints → VideoPose3D lifting; canonical view alignment None (alignment only) 

 

4.2 Implementation and training details 

 

The HoloGait architecture is implemented using PyTorch, 

and trained on a computational environment comprising two 

NVIDIA Tesla V100 GPUs (32GB each). The appearance 

feature extraction branch employs a ResNet-50 backbone, pre-

trained on ImageNet, followed by a spatial transformer module 

with 4 multi-head attention layers, each configured with 8 

attention heads and embedding dimensions set to 512. 

Subsequently, a temporal transformer encoder consisting of 4 

multi-head attention layers (8 heads each, hidden size of 512) 

aggregates these spatial features. The structural branch utilizes 

an Adaptive GCN with 3 GCN layers (each with hidden 

dimensions of 256), followed by a temporal graph transformer 

of 3 layers (8 attention heads, hidden dimension of 256). The 

cross-modal fusion transformer module comprises 4 MHCA 

layers (each having 8 attention heads and a hidden dimension 

of 512). HoloGait training spans 120 epochs, using the Adam 

optimizer with an initial learning rate of 1×10−4, decayed by 

a factor of 0.1 every 40 epochs, and a batch size of 32 

sequences per iteration. Data augmentation for silhouette 

inputs involves random horizontal flips and minor random 

cropping to simulate realistic variations, whereas 3D skeleton 

poses require normalization to a canonical view without 

additional augmentation to preserve structural integrity. 

Each training epoch approximately takes 50 minutes, clearly 

reflecting the additional computational overhead associated 

with dual-modal input processing and transformer-based 

feature integration.  

Profiling setup: Inference speed and memory were profiled 

in evaluation mode (PyTorch, torch.no_grad ()) on a single 

NVIDIA Tesla V100 (32GB). Latency and peak memory were 

measured with batch size = 1; throughput was measured with 

batch size = 8. Silhouette inputs used the standard 64 × 44 

frame resolution and the sequence length T employed in 

training; pose inputs used aligned J × 3joints per frame 

(Section 3.3). Peak memory was recorded via 

torch.cuda.max_memory_allocated (). Timings averaged 

multiple forward passes after a short warm-up and excluded 

data loading. FLOPs per frame were computed with a FLOP 

counter on the same input shapes.  

 

4.3 Results and discussion 

 

Quantitative evaluations on the TUM GAID dataset 

demonstrate that the proposed HoloGait model substantially 

outperforms contemporary baseline methods across cross-

view scenarios. Table 2 summarizes Rank-1 accuracy scores 

for HoloGait, CART-Gait, and GaitSet. Specifically, HoloGait 

achieves a Rank-1 accuracy of 96.8%, distinctly 

outperforming CART-Gait (92.1%) by 4.7% and GaitSet 

(86.4%) by a notable margin of 10.4%. These quantitative 

results highlight HoloGait’s clear superiority in integrating 

complementary silhouette and structural information, directly 
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translating into robust identification performance under 

challenging cross-view conditions. 

 

Table 2. Rank-1 accuracy (%) comparison on TUM GAID 

dataset (cross-view conditions) 

 
Method Rank-1 Accuracy (%) 

GaitSet 86.4 

CART-Gait 92.1 

HoloGait (ours) 96.8 

 

 
 

Figure 2. Comparative Rank-1 accuracy of HoloGait on 

TUM GAID dataset 

 

Qualitative examples at the 90° extreme view illustrate 

typical success and failure modes (Figure 2): successful cases 

include clear side-view sequences where limb contours and 

hip–knee–ankle motion are fully visible; failures arise under 

heavy occlusions (e.g., bag obscuring the leg swing), 

pose-estimation jitter around knees/ankles in low-contrast 

frames, and irregular stride patterns that shorten effective 

cycle length. These issues primarily degrade either the 

silhouette branch (occlusion) or the pose branch (jitter), while 

the fused model remains stable when at least one modality is 

reliable. Table 2 reports single-run Rank-1 values (no 

mean±std or 95% CI reported): HoloGait 96.8%, CART-Gait 

92.1%, GaitSet 86.4%. 

Figure 2 explicitly compares the Rank-1 accuracy of 

HoloGait against state-of-the-art methods CART-Gait and 

GaitSet. It highlights significant accuracy improvements 

achieved by HoloGait, clearly demonstrating superior 

performance under cross-view conditions. 

Detailed ablation experiments conducted to validate 

HoloGait’s core components distinctly illustrate their critical 

contributions. Without multi-modal fusion (using silhouette 

data alone), Rank-1 accuracy drops notably from 96.8% to 

89.5% (−7.3%), clearly confirming the necessity of integrating 

both modalities for optimal accuracy. Additionally, excluding 

the 3D pose alignment step significantly reduces accuracy to 

91.7% (−5.1%), explicitly underscoring the importance of 

canonical view normalization in mitigating viewpoint 

variations. Finally, removing the contrastive (triplet) loss 

results in accuracy declining to 93.2% (−3.6%), directly 

evidencing its key role in enhancing discriminative embedding 

learning. These quantitative reductions explicitly demonstrate 

each component's critical impact on HoloGait's superior 

performance (see Table 3). 

For Table 3, single-run accuracies and absolute drops 

relative to the full model are reported: Full 96.8%; 

−Multi-Modal Fusion 89.5% (−7.3); −3D Pose Alignment 

91.7% (−5.1); −Triplet 93.2% (−3.6). No variability metrics 

(mean±std or 95% CI) were provided in the source. A 

fusion-timing ablation would compare late concatenation, 

one-way cross-attention, and bi-directional cross-attention for 

cross-view accuracy, directly testing the choice of early, 

bi-directional fusion. 

Figure 3 presents detailed ablation results, clearly showing 

accuracy impacts when removing essential components 

(multi-modal fusion, canonical 3D alignment, contrastive loss) 

individually. The clear accuracy drops emphasize each 

component's critical role in HoloGait’s robust gait recognition. 

Comprehensive cross-view analyses explicitly indicate that 

HoloGait maintains exceptional performance consistency 

across varying viewing angles, explicitly showcasing its 

robustness through canonical view normalization. As detailed 

in Table 4, at challenging viewing angle differences (such as 

90° between training and testing angles), HoloGait achieves 

impressive Rank-1 accuracy of 95.3%, notably surpassing 

CART-Gait (89.0%) by 6.3%, and significantly outperforming 

GaitSet (81.7%) by 13.6%. This performance stability across 

large angular deviations clearly evidences HoloGait’s 

effective mitigation of view-induced degradation. 

Figure 4 explicitly illustrates Rank-1 accuracy at different 

viewing angles (45°, 90°), highlighting HoloGait’s robustness 

and consistent accuracy even under challenging large-angle 

discrepancies. It distinctly demonstrates HoloGait’s advantage 

in maintaining high accuracy due to effective canonical view 

alignment. 

 

Table 3. Ablation study: Impact of key components on Rank-

1 accuracy (%) 

 

Configuration 
Rank-1 

Accuracy (%) 

Accuracy 

Drop (%) 

Full Model (HoloGait) 96.8 - 

Without Multi-Modal 

Fusion 
89.5 −7.3 

Without 3D Pose 

Alignment 
91.7 −5.1 

Without Contrastive 

(Triplet) Loss 
93.2 −3.6 

 

 
 

Figure 3. Ablation analysis of core components in HoloGait 

 

Table 4. Cross-view performance: Rank-1 accuracy (%) at 

different view-angle differences 

 
Angle 

Difference 

GaitSet 

(%) 

CART-Gait 

(%) 

HoloGait 

(%) 

45° 89.6 94.5 98.2 

90° (extreme) 81.7 89.0 95.3 
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Figure 4. Cross-view accuracy performance analysis 

 

 
 

Figure 5. Visualization of attention and joint activation in 

HoloGait 

 

Visualization of spatial attention maps and joint activation 

patterns further validates HoloGait’s interpretability and 

discriminative effectiveness. Attention visualizations (shown 

explicitly in Figure 5) demonstrate that the appearance branch 

distinctly prioritizes salient body regions such as limbs and 

torso contours critical to appearance-based identification. 

Simultaneously, structural branch visualizations reveal 

focused activations on dynamically discriminative joints, 

notably hips, knees, and ankles, explicitly reflecting robust 

motion-pattern encoding. These qualitative insights explicitly 

confirm that HoloGait effectively learns and leverages critical 

body-region-specific and joint-level information for robust 

gait representation. 

Figure 5 provides qualitative visualization explicitly 

showing attention patterns from the appearance branch and 

joint activations from the structural branch. These 

visualizations distinctly indicate HoloGait’s ability to focus 

selectively on discriminative body regions and joint 

movements, enhancing interpretability and effectiveness. 

Comprehensive experimental results conclusively 

demonstrate HoloGait’s superior identification performance 

and robustness in cross-view gait recognition. Quantitative 

benchmarks explicitly show significant accuracy 

improvements over contemporary baseline methods, with a 

clear Rank-1 accuracy gain of 4.7% compared to CART-Gait 

and 10.4% over GaitSet. Ablation experiments explicitly 

confirm that multi-modal fusion, canonical view alignment, 

and contrastive learning collectively contribute substantially 

to the model’s accuracy and robustness. Notably, cross-view 

analyses clearly indicate minimal performance degradation 

even at extreme angular discrepancies (90°), underscoring the 

effectiveness of 3D pose normalization in mitigating 

viewpoint challenges. Qualitative visualizations reinforce 

these findings by explicitly illustrating the model’s targeted 

attention to discriminative gait features. Collectively, these 

experimental outcomes distinctly position HoloGait as a 

robust, effective, and interpretable framework advancing 

beyond prior state-of-the-art gait recognition methodologies. 

 

 

5. CONCLUSIONS 

 

This paper presented HoloGait, a gait recognition method 

that integrates silhouettes with 3D skeletal poses. HoloGait 

addresses challenges like viewing angle differences and 

occlusions. Its graph-transformer design combines spatial-

temporal features by merging visual appearance and structural 

joint movements. Adaptive graph convolution captures joint 

dynamics, while a canonical pose alignment normalizes 

viewpoints. Contrastive multi-task learning further enhances 

the recognition accuracy by improving feature distinction. 

Experiments using the TUM GAID dataset confirmed 

HoloGait's capabilities. Compared to recent methods such as 

CART-Gait and GaitSet, HoloGait produced clearly higher 

accuracy across different viewing angles. These results show 

HoloGait generally provides consistent gait recognition even 

under varying conditions. Future studies may explore 

including other input sources like inertial sensor data or depth 

images. Further refinements to the graph-transformer 

architecture might allow application in real-time scenarios. 

These next steps could extend the method’s utility beyond 

current biometric identification tasks.  

Limitations: Performance depends on the quality of 2D/3D 

pose estimation; severe occlusions, low-contrast frames, or 

tracking errors can degrade the structural branch and, through 

fusion, the final embedding. The dual-branch architecture with 

graph and transformer modules increases computational cost 

and memory usage compared with single-modal baselines, 

which can constrain deployment on edge devices.  

Future work: Explore lighter backbones and model 

distillation for real-time inference; evaluate cross-dataset 

generalization with train–test splits across datasets and camera 

setups; and improve robustness to missing or noisy joints via 

joint-dropout, occlusion-aware training, and error-aware 

fusion. 

 

 

REFERENCES 

 

[1] Xu, H., Zhang, C., Wu, Z., Jiao, P., Wang, H. (2025). 

PSGait: Multimodal gait recognition using parsing 

skeleton. arXiv preprint arXiv:2503.12047. 

https://doi.org/10.48550/arXiv.2503.12047  

[2] Khaliluzzaman, M., Uddin, A., Deb, K., Hasan, M.J. 

(2023). Person recognition based on deep gait: A survey. 

Sensors, 23(10): 4875. 

https://doi.org/10.3390/s23104875 

[3] Wang, Z.Y., Liu, J., Chen, J., Chellappa, R. (2025). VM-

Gait: Multi-modal 3D representation based on virtual 

marker for gait recognition. In 2025 IEEE/CVF Winter 

Conference on Applications of Computer Vision 

(WACV), Tucson, AZ, USA, pp. 5326-5335. 

https://doi.org/10.1109/wacv61041.2025.00520 

[4] Shopon, M., Hsu, G.S.J., Gavrilova, M.L. (2022). 

Multiview gait recognition on unconstrained path using 

graph convolutional neural network. IEEE Access, 10: 

54572-54588. 

3394



 

https://doi.org/10.1109/access.2022.3176873 

[5] Zhu, H., Zheng, Z., Nevatia, R. (2023). Gait recognition 

using 3-d human body shape inference. In Proceedings 

of the IEEE/CVF Winter Conference on Applications of 

Computer Vision, pp. 909-918. 

https://doi.org/10.1109/wacv56688.2023.00097 

[6] BenAbdelkader, C., Cutler, R., Davis, L. (2002). View-

invariant estimation of height and stride for gait 

recognition. In International Workshop on Biometric 

Authentication, pp. 155-167. https://doi.org/10.1007/3-

540-47917-1_16 

[7] Zhou, Q., Wang, Z., Zou, H., Wu, G., Tian, F. 

LGDiffGait: Local and global difference learning for gait 

recognition with silhouettes. In the Twelfth International 

Conference on Learning Representations (ICLR 2024), 

Vienna, Austria. 

https://openreview.net/pdf?id=4ZhUKd05QM. 

[8] Yaprak, B., Gedikli, E. (2025). Enhancing part-based gait 

recognition via ensemble learning and feature fusion. 

Pattern Analysis and Applications, 28(2): 98. 

https://doi.org/10.1007/s10044-025-01478-x 

[9] Liao, R., Yu, S., An, W., Huang, Y. (2020). A model-

based gait recognition method with body pose and human 

prior knowledge. Pattern Recognition, 98: 107069. 

https://doi.org/10.1016/j.patcog.2019.107069 

[10] Teepe, T., Khan, A., Gilg, J., Herzog, F., Hörmann, S., 

Rigoll, G. (2021). Gaitgraph: Graph convolutional 

network for skeleton-based gait recognition. In 2021 

IEEE International Conference on Image Processing 

(ICIP), Anchorage, AK, USA, pp. 2314-2318. 

https://doi.org/10.1109/icip42928.2021.9506717 

[11] Li, X., Makihara, Y., Xu, C., Yagi, Y. (2021). End-to-end 

model-based gait recognition using synchronized multi-

view pose constraint. In 2021 IEEE/CVF International 

Conference on Computer Vision Workshops (ICCVW), 

Montreal, BC, Canada, pp. 4089-4098. 

https://doi.org/10.1109/iccvw54120.2021.00456 

[12] Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., 

Yagi, Y. (2018). Multi-view large population gait dataset 

and its performance evaluation for cross-view gait 

recognition. IPSJ Transactions on Computer Vision and 

Applications, 10(1): 4. https://doi.org/10.1186/s41074-

018-0039-6 

[13] Teepe, T., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G. 

(2022). Towards a deeper understanding of skeleton-

based gait recognition. In Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern 

Recognition, New Orleans, Louisiana, USA, pp. 1569-

1577. https://doi.org/10.1109/cvprw56347.2022.00163 

[14] Zheng, J., Liu, X., Wang, S., Wang, L., Yan, C., Liu, W. 

(2023). Parsing is all you need for accurate gait 

recognition in the wild. In Proceedings of the 31st ACM 

International Conference on Multimedia, Ottawa, ON, 

Canada, pp. 116-124. 

https://doi.org/10.1145/3581783.3612052 

[15] Fu, Y., Meng, S., Hou, S., Hu, X., Huang, Y. (2023). 

Gpgait: Generalized pose-based gait recognition. In 

Proceedings of the IEEE/CVF International Conference 

on Computer Vision, Paris, France, pp. 19595-19604. 

https://doi.org/10.1109/iccv51070.2023.01795 

[16] Cosma, A., Radoi, E. (2022). Learning gait 

representations with noisy multi-task learning. Sensors, 

22(18): 6803. https://doi.org/10.3390/s22186803 

[17] Chao, H., Wang, K., He, Y., Zhang, J., Feng, J. (2021). 

GaitSet: Cross-view gait recognition through utilizing 

gait as a deep set. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 44(7): 3467-3478. 

https://doi.org/10.1109/tpami.2021.3057879 

[18] Fan, C., Peng, Y., Cao, C., Liu, X., et al. (2020). Gaitpart: 

Temporal part-based model for gait recognition. In 

Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, Seattle, WA, USA, pp. 

14225-14233. 

https://doi.org/10.1109/CVPR42600.2020.01423 

[19] Lin, B., Zhang, S., Wang, M., Li, L., Yu, X. (2022). 

GaitGL: Learning discriminative global-local feature 

representations for gait recognition. arXiv preprint 

arXiv:2208.01380. 

https://doi.org/10.48550/arXiv.2208.01380 

[20] Liu, Y., Chen, J., Gao, Z., Li, S. (2024). CART-Gait: 

Cross angle refined training of cross-view gait 

recognition. In 2024 International Joint Conference on 

Neural Networks (IJCNN), Yokohama, Japan, pp. 1-8. 

https://doi.org/10.1109/ijcnn60899.2024.10650831 

[21] Fan, C., Ma, J., Jin, D., Shen, C., Yu, S. (2024). 

Skeletongait: Gait recognition using skeleton maps. In 

Proceedings of the AAAI Conference on Artificial 

Intelligence, Vancouver, Canada, pp. 1662-1669. 

https://doi.org/10.1609/aaai.v38i2.27933 

[22] Min, F., Guo, S., Fan, H., Dong, J. (2024). GaitMA: 

Pose-guided multi-modal feature fusion for gait 

recognition. In 2024 IEEE International Conference on 

Multimedia and Expo (ICME), Niagara Falls, ON, 

Canada, pp. 1-6. 

https://doi.org/10.1109/icme57554.2024.10688115 

[23] Ma, K., Fu, Y., Zheng, D., Cao, C., Hu, X., Huang, Y. 

(2023). Dynamic aggregated network for gait 

recognition. In Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern 

Recognition, Denver, CO, USA, pp. 22076-22085. 

https://doi.org/10.1109/cvpr52729.2023.02114 

[24] Cosma, A., Radoi, I.E. (2021). WildGait: Learning gait 

representations from raw surveillance streams. Sensors, 

21(24): 8387. https://doi.org/10.3390/s21248387 

[25] Cui, Y., Kang, Y. (2022). Gaittransformer: Multiple-

temporal-scale transformer for cross-view gait 

recognition. In 2022 IEEE International Conference on 

Multimedia and Expo (ICME), Taipei, Taiwan, pp. 1-6. 

https://doi.org/10.1109/icme52920.2022.9859928 

[26] Li, J., Zhang, Y., Shan, H., Zhang, J. (2023). Gaitcotr: 

Improved spatial-temporal representation for gait 

recognition with a hybrid convolution-Transformer 

framework. In ICASSP 2023-2023 IEEE International 

Conference on Acoustics, Speech and Signal Processing 

(ICASSP) Rhodes Island, Greece, pp. 1-5. 

https://doi.org/10.1109/ICASSP49357.2023.10096602 

[27] Sokolova, A., Konushin, A. (2019). View resistant gait 

recognition. In Proceedings of the 3rd International 

Conference on Video and Image Processing, Shanghai, 

China, pp. 7-12. 

https://doi.org/10.1145/3376067.3376083 

[28] Zhang, Y., Huang, Y., Yu, S., Wang, L. (2019). Cross-

view gait recognition by discriminative feature learning. 

IEEE Transactions on Image Processing, 29: 1001-1015. 

https://doi.org/10.1109/tip.2019.2926208 

[29] Yu, S., Chen, H., Garcia Reyes, E.B., Poh, N. (2017). 

GaitGAN: Invariant gait feature extraction using 

generative adversarial networks. In Proceedings of the 

3395



 

IEEE Conference on Computer Vision and Pattern 

Recognition Workshops, Honolulu, Hawaii, pp. 30-37. 

https://doi.org/10.1109/cvprw.2017.80 

[30] Wu, Z., Zhang, C., Xu, H., Jiao, P., Wang, H. (2025). 

DAGait: Generalized skeleton-guided data alignment for 

gait recognition. arXiv preprint arXiv:2503.18830. 

https://doi.org/10.48550/arXiv.2503.18830  

[31] Tiefenbacher, P., Bogischef, V., Merget, D., Rigoll, G. 

(2015). Subjective and objective evaluation of image 

inpainting quality. In 2015 IEEE International 

Conference on Image Processing (ICIP), Quebec City, 

QC, Canada, pp. 447-451. 

https://doi.org/10.1109/ICIP.2015.7350838 

 

 

NOMENCLATURE 

 

𝑡 frame index  

𝑖, 𝑗, 𝑘 joint indices 

𝐽 number of joints  

𝑇 number of frames  

𝑝𝑡,𝑖
(2𝐷)

= (𝑥𝑡,𝑖 , 𝑦𝑡,𝑖) 

2D joint  

𝑝𝑡,𝑖
(3𝐷)

= (𝑋𝑡,𝑖 , 𝑌𝑡,𝑖 , 𝑍𝑡,𝑖) 

3D joint  

𝑝̂𝑡,𝑖
(3𝐷)

 pelvis-centered 3D joint  

𝑝𝑡,𝑖
aligned

 pose after canonical rotation 

𝐸sil, 𝐸pose appearance/pose embeddings  

𝐸final, 𝐸unified fused embeddings 

𝐻(⋅), 𝑈(⋅) hidden tensors in temporal transformers  

𝑍𝑡 per-frame part-token features  

𝑄, 𝐾, 𝑉 attention queries/keys/values  

ℎ number of heads 

𝑑𝑘 per-head key dimension  

𝒩𝑖  neighbor set for joint 𝑖 

𝛼𝑖𝑗
(𝑙)

 adaptive edge weight  

LN Layer norm  

FFNN position-wise feed-forward  

𝜎 non-linearity  

𝑚 triplet margin  

𝜆cls, 𝜆tri, 𝜆attr loss weights 

 

 

APPENDIX  

 

A. Mathematical Details 

 

This appendix compiles the full set of equations relocated 

from Sections 3.1-3.5 and preserves their original numbering 

(Eqs. (30)-(45)). Symbols are shared across equations unless 

noted; units and coordinate conventions follow the main text. 

 

Sec. 3.1 — Input processing and 3D pose alignment (Eqs. 

(17)-(21)) 

Eq. (17) (pelvis centering): Remove translation by centering 

all 3D joints on the pelvis/root joint. 

 
(3 ) (3 ) (3 )

, , , root 
ˆ , 1, ,D D D

t i t i tp p p i J= − =   (17) 

 

Eq. (18) (hip-direction vector):  

 

(3 ) (3 )

, LH , RH 

D D

t t tv p p= −  (18) 

 

Form a hip-direction vector (left–right hip) to define facing. 

Eq. (19) (y-axis rotation angle to canonical x-axis): 

 

,LH ,RH

,LH ,RH

arctan
t t

t

t t

Z Z

X X


 −
=   − 

 (19) 

 

Compute the yaw angle about the y-axis that aligns the hip 

vector to a canonical axis. 

Eq. (20) shows (y-axis rotation matrix):  

 

( )

cos 0 sin

0 1 0

sin 0 cos

t t

y t

t t

R

 



 

 
 
 
 − 

 (20) 

 

Build the y-axis rotation matrix for that angle. 

Eq. (21) shows (apply rotation to all centered joints):  

 

( )aligned (3 )

, ,
ˆ 1, ,D

t i y t t ip R p i J= =   (21) 

 

Rotate every centered joint to obtain the canonical, 

view-normalized pose. 

 

Sec. 3.2 — Appearance (Silhouette) Feature Extractor 

(Eqs. (22)-(25)) 

Eq. (22) presents (frame-wise MHSA over part tokens):  

 

( ) ( )1
MHSA , , Concat head , ,head

O

t t t t h
O Q K V W= =   (22) 

 

Eq. (23) denotes (per-head computation):  

 

)
( )head Softmax

Q K

t i t i V

i t i

k

Q W K W
V W

d

 
 =
  
 

 (23) 

 

Eqs. (22) and (23) show the MHSA over per-frame part 

tokens; each head applies scaled dot-product attention to 

model relations among anatomical regions, then heads are 

concatenated and linearly projected. 

Eq. (24) presents (temporal transformer, attention block 

with residual):  

 

( )( )( 1) ( ) ( )MHSA LNl l lH H H+ = +  (24) 

 

Eq. (25) shows (temporal transformer, FFN block with 

residual):  

 

( )( )( 1) ( ) ( )FFNN LNl l lH H H+ = +  (25) 

 

Eqs. (24) and (25) present the standard transformer layer 

updates across time: (i) residual + MHSA with layer norm, 

then (ii) residual + position-wise FFN with layer norm. 
 

Sec. 3.3 — Structural (pose) feature extractor (Eqs. (26)-

(29)) 

Eq. (26) shows (spatial adaptive GCN update):  
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( 1) ( ) ( ) ( )

, ,

{ }i

l l l l

t i ij t j

j i

h W h +

 

 
=   

 
  (26) 

 

Eq. (26) shows the Adaptive GCN update aggregates a 

joint’s neighbors (including self) using learned edge weights 

and a linear transform, followed by nonlinearity. 

Eq. (27) (learned attention weights over edges):  

 

( )( )
( )( )

( ) ( ) ( ) ( )

, ,
( )

( ) ( ) ( ) ( )

, ,

{ }

exp LeakyReLU

exp  LeakyReLU
i

l l l l

t i t k
l

ij
l l l l

t i t k

k i

a W h W h

a W h W h


 

  
=

  
 

(27) 

 

Eq. (27) presents the graph attention computes normalized, 

data-dependent edge weights to emphasize informative 

joint-to-joint links. 

Eq. (28) shows the temporal transformer, attention block 

with residual:  

 

( )( )( 1) ( ) ( )MHSA LNl l lU U U+ = +  (28) 

 

Eq. (29) shows temporal transformer, FFN block with 

residual:  

 

( )( )( 1) ( ) ( )FFNN LNl l lU U U+ = +  (29) 

 

Eqs. (28) and (29) present temporal transformer over frames 

for pose features—same residual + MHSA and residual + FFN 

pattern as in A.2, with layer norm. 

 

Sec. 3.4 — Cross-modal fusion (Eqs. (30)-(39)) 

Eq. (30) implies appearance→pose cross-attention):  

 

( )sil  pose sil pose pose MHCA , ,Z Q E K E V E→ = = = =  (30) 

 

Eq. (31) implies (pose→appearance cross-attention):  

 

( )pose   pose sil silMHCA , ,silZ Q E K E V E→ = = = =  (31) 

 

Eqs. (30) and (31) denote Bi-directional cross-attention: 

appearance attends to pose; pose attends to appearance 

Eq. (32) shows MHCA:  

 

( )

( )1

MHSA , ,

Concat head , ,head

t t t

O

h

O Q K V

W

=

= 
 (32) 

 

Eq. (33) presents (per-head cross-attention):  

 

)
( )head Softmax

Q K

i i V

i i

k

QW KW
VW

d

 
 =
  
 

 (33) 

 

Eqs. (32) and (33) denote MHCA definition and per-head 

computation (scaled dot-product with Q, K, V). 

Eqs. (34)-(37) show (residual-norm-FFN mixing per 

modality):  

 

( )*

sil sil sil  pose LNE E Z →= +  (34) 

( )( )fused  * *

sil sil sil LN FFNNE E E= +  (35) 

 

( )*

pose pose pose  sil LNE E Z →= +  (36) 

 

( )( )fused * *

pose pose pose LN FFNNE E E= +  (37) 

 

Eqs. (34)-(37) show for each modality, residual + 

cross-attention + layer norm, then residual + FFN + layer norm 

to produce fused modality-specific features. 

Eqs. (38)-(39) denote (final concatenation and projection):  

 

( )fused fused 

final sil pose Concat ,E E E=  (38) 

 

unified final final final E W E b= +  (39) 

 

Eqs. (38) and (39) present concatenate the fused modality 

features and project to a single unified embedding. 

 

Sec. 3.5 — Multi-task output and losses (Eqs. (40)-(46)) 

Eq. (40) denotes (identity Softmax):  

 

( )id cls unified cls softmaxp W E b= +  (40) 

 

Eq. (41) presents (cross-entropy identity loss):  

 

( )
id

cls , id, ,

1 1

1
log

NB

b c b c

b c

y p
B = =

= −   (41) 

 

Eqs. (40) and (41) denote identity prediction via Softmax 

and cross-entropy loss. 

Eq. (42) shows (L2-normalized embedding):  

 

emb unified emb 

emb unified emb2 

W E +b
z

W E b
=

+
 (42) 

 

Eq. (43) presents (triplet loss with margin m):  

 

( ) ( )( )tri 

1

1
max 0, , ,

B

a p a n

b

d z z d z z m
B =

= − +  (43) 

 

Eqs. (42) and (43) show L2-normalized embedding and 

margin-based triplet loss to enlarge inter-class gaps while 

tightening intra-class clusters. 

Eq. (44) present (auxiliary attribute Softmax, attribute j):  
 

( )( ) ( ) ( )

attr attr unified attr attr Softmax , 1, ,j j jp W E b j N= + =   (44) 

 

Eq. (45) denotes (auxiliary attribute CE losses):  

 

( )
( )
atty attr 

( ) ( )

attr , attr , ,

1 1 1

1
log

j
NN B

j j

b c b c

j b c

y p
B = = =

=   (45) 

 

Eqs. (44) and (45) present auxiliary attribute Softmax heads 

and cross-entropy losses (e.g., clothing/carry status). 

Eq. (46) shows (overall multi-task loss):  

 

total cls tri attr cls tri attr  = + +  (46) 
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Eq. (46) denotes the weighted sum of identity, triplet, and 

attribute losses to form the total training objective. 

 

B. Training and Profiling Details 

Loss weights and margin. Unless noted otherwise, training 

uses loss weights 𝜆cls = 1.0, 𝜆tri = 1.0, 𝜆attr = 0.5 and triplet 

margin 𝑚 = 0.3 , which provide stable convergence and 

balanced supervision across identification, metric learning, 

and attributes.  

Learning-rate schedule, optimizer, and batch sizes. 

Optimization uses Adam (initial LR 1 × 10−4, weight decay 

1 × 10−4); a step schedule decays LR by × 0.1 at epochs 40 

and 80 over 120 total epochs; training batch size is 32 

sequences, evaluation uses batch size 1 for latency and 8 for 

throughput.  

Token counts and layer counts. Appearance part tokens are 

set to 𝑁𝑝 = 4 (head, torso, arms, legs). The appearance branch 

uses a ResNet-50 backbone, a spatial transformer with 4 layers 

(8 heads, dim 512), and a temporal transformer with 4 layers 

(8 heads, dim 512). The structural branch uses an Adaptive 

GCN with 3 layers (hidden 256) and a temporal graph 

transformer with 3 layers (8 heads, dim 256). The cross-modal 

fusion transformer has 4 layers (8 heads, dim 512).  

Random seeds. Reproducibility seeds: {42,99,123}; report 

mean and variability over these runs where applicable. 

Exact train/test split identifiers. Standard TUM-GAID 

cross-view protocol is followed (train on 0° and 45°, test on 

90°); subject and sequence lists are provided as text files in the 

supplementary package: splits/train_ids_0_45.txt and 

splits/test_ids_90.txt (camera-angle specific sequence IDs), 

along with splits/val_ids.txt for validation. 

Input sizes. Silhouette frames are 64 × 44 pixels; sequences 

are sampled or padded to T = 30 frames for profiling (variable 

length supported at training). Aligned 3D skeletons use J × 3 

joints per frame with OpenPose default topology (BODY_25) 

after canonical-view alignment.  

Profiling setup for Tables. All profiling is in PyTorch eval 

mode with torch.no_grad () on a single NVIDIA Tesla V100 

(32 GB); FP32 inference; CUDA warm-up (20 iters) followed 

by 200 timed iters; latency measured at batch size = 1; 

throughput at batch size = 8; peak memory via 

torch.cuda.max_memory_allocated (); cuDNN autotune 

enabled (torch.backends.cudnn.benchmark=True); FLOPs 

counted on 64 × 44 silhouettes with T = 30 and J = 25 joints 

per frame for the structural stream. Results are summarized in 

Tables 5 to 8.  

Data augmentation (for completeness). Silhouettes: random 

horizontal flip and minor random crop; 3D skeletons: no 

augmentation beyond canonical view alignment. 

 

Table 5. Loss weights and margin (used unless stated otherwise) 

 
𝝀cls 𝝀tri 𝝀attr Margin m Notes 

1.0 1.0 0.5 0.3 Balanced supervision across tasks 

 

Table 6. Schedule, batches, seeds 

 
Optimizer Init LR Decays Weight Decay Train bs Eval bs (lat / thr) Epochs Seeds 

Adam 1 × 10-4 × 0.1 @ 40, 80 1 × 10-4 32 1 / 8 120 42, 99, 123 

 

Table 7. Cardinalities (tokens, layers, heads, dims) 

 

Branch / Module 
Tokens / 

Parts 
Layers Heads 

Hidden 

Dim 
Notes 

Appearance: Spatial Transformer N_p = 4 4 8 512 Part tokens from HRNet parsing 

Appearance: Temporal Transformer — 4 8 512 Frame‑sequence modeling 

Structural: Adaptive GCN — 3 — 256 Joint graph features 

Structural: Temporal Graph Transformer — 3 8 256 Pose sequence modeling 

Cross‑Modal Fusion Transformer — 4 8 512 Early bi‑directional fusion 

 

Table 8. Inputs for profiling 

 
Stream Spatial Size Sequence Length T Joints J Precision Device 

Silhouette (appearance) 64 × 44 30 — FP32 V100 32 GB 

Skeleton (structure) — 30 25 (BODY_25) FP32 V100 32 GB 
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