Z I El' A International Information and

Engineering Technology Association

Mathematical Modelling of Engineering Problems
Vol. 12, No. 10, October, 2025, pp. 3361-3375

Journal homepage: http://iieta.org/journals/mmep

Enhanced Atrial Fibrosis Detection Using 2D Echocardiogram Images with an Advanced N

Deep Learning Framework and Weighted Multi-Feature Fusion

Check for
updates

Pilli Sudheer*®, Balasubramaniam Kirubagari'’2, Ayyavoo Annamalai Giri?

1 Department of Computer Science and Engineering, Annamalai University, Annamalainagar 608002, India
2Department of Computer Science and Engineering, Marri Laxman Reddy Institute of Technology and Management,

Telangana 500043, India

Corresponding Author Email: p.sudheer@cvr.ac.in

Copyright: ©2025 The authors. This article is published by IHETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.121003

ABSTRACT

Received: 16 July 2025

Revised: 18 September 2025
Accepted: 23 September 2025
Available online: 31 October 2025

Keywords:

atrial fibrosis detection, HDF-RBMO, hybrid
(2D, 3D) convolution based adaptive Trans-
MobileUNet++, region-based vision
transformer, CNNs

Atrial Fibrillation (AF) is a chronic condition characterized by structural variations
within the atria. Fibrosis, identified based on the formation of collagen within the
interstitial region of the heart is considered a result of arrhythmogenic structural
changes. Recently, the implementation of deep learning approaches in medical science
has become challenging because of their limited effectiveness in handling patterns or
structural changes. Moreover, they demand large quantities of diverse and large-scale
data for designing a robust detection framework. Considering the limited availability of
resources, it is crucial to develop an effective approach to perform early detection of
AF. Therefore, a deep learning-based AF detection framework is developed to track the
progression of the disease. The required 2D Echocardiogram (ECG) images are
collected from benchmark sources. Features including fuzzy entropy vectors, wavelet
packet energy vectors, and hierarchical theory vectors are extracted from 2D images
and concatenated to obtain Feature Set I. Next, the Region-based Vision Transformer
(R-ViT) is utilized to retrieve Feature Set Il from the input 2D images. Later, the deep
features are extracted by employing Convolutional Neural Networks (CNNs). The
weighted multi-feature fusion is performed using the suggested Hybrid Dark Forest and
Red-Billed Blue Magpie Optimizer (HDF-RBMO) to tune the optimal features. These
features from 2D ECG and the 3D ECG image series are input into the developed
Hybrid (2D, 3D) Convolution-based Trans-MobileUNet++ (HC-TMU) for detecting
AF. The proposed AF detection model may assist in analyzing high blood pressure and
other heart diseases. The results of the developed model are compared with a previously
developed detection model to ensure the presented approach’s effectiveness.

1. INTRODUCTION

approaches created favorable outcomes. Traditional machine
learning techniques depend upon classical approaches to

Atrial Fibrillation (AF) is considered one of the most
frequently occurring chronic arrhythmia that remains a
scientific issue that continues mysterious behavior even after
several investigations [1]. The reason that leads to AF has not
been identified, and suggesting an effective treatment plan is
exceedingly complex in these cases [2]. The main symptom
indicated the occurrence of AF which is the unusual
contraction within the upper atrium of the heart and the
Echocardiogram (ECG) signal denotes it by the reduction of
sinus P wave [3]. The recognition of AF across multiple ECGs
shows diverse quality and signal length. Ambiguity labels
originated from various kinds of arrhythmia pulses within
identical records, varying human anatomy, and issues in
separating ECG signal features.

As a consequence, the strategy selected for AF must be
capable of handling these scenarios while preserving system
efficiency [4]. The existing detection techniques based on the
computer technology introduced for enhancing the AF
detection performance in traditional machine learning

3361

perform feature extraction and selection that demand multiple
phases to accomplish the categorization procedure [5].
Utilizing deep learning techniques for AF detection is easy and
does not employ traditional hand-crafted engineering
techniques to attain significant features. Yet, it is hard to
determine a proper framework based on a deep learning
approach, as it demands for huge quality of data for processing
[6]. At present, only certain public datasets describing AF
symptoms are available, including normal data more than AF
problems or imbalanced information. Research concerning
imbalanced circumstances primarily focuses on offering better
classification outcomes for unique subclass [7].

However, classical machine learning methods for
classifying AF are frequently employed for decreasing overall
error rates instead of analyzing unique classes or unbalanced
information [8]. Moreover, the rapid growth of deep learning
approaches including Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs) Autoencoder
(AE), and Deep Neural Networks (DNNs) offers better
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efficiency in addressing the issues faced by the classical AF
detection techniques [9]. Among the other -classical
approaches, CNN exceeds traditional models in processing 2D
information including ECG image series. Yet, various
researchers revealed that the CNN models provide more
effective performance in processing ECG image series as 1D

data than the approaches based on RNN and DNN [10].

Moreover, a 1-dimensional CNN (1D-CNN) is effective in

processing long-term ECG information using a rapid and

reliable method, as well as analyzing morphological features
and gathering information [11]. Additionally, CNNs are
capable of producing specific characteristics regarding the

ECG signal series in order to recognize specific trends within

the convolutional space. As every patch within the model

experiences similar variations described by the convolution
space, the structure acquired from a particular location is
frequently identified by an alternate location, ensuring the

transformation of 1D convolution systems is uniform [12].

In contrast, 1D-CNNs are often applied to temporal
biomedical signals such as ECGs. However, since this study
focuses on 2D echocardiographic imaging, we primarily adopt
2D- and 3D-convolutional strategies tailored for spatial and
spatiotemporal cardiac structure analysis.

Building on these principles, we propose a novel deep
learning—based AF detection framework with the following
key contributions:

e Hybrid feature fusion for early AF detection: The

design an innovative framework that integrates CNN-
based spatial features, Region-based Vision Transformer
(R-ViT) contextual features, and handcrafted descriptors.
Weighted feature fusion ensures early and accurate AF
detection while enabling longitudinal monitoring of
disease progression.
Hybrid Dark Forest and Red-Billed Blue Magpie
Optimizer (HDF-RBMOQO) optimization for feature
selection: The HDF-RBMO combines the strengths of
differential forest algorithms (DFA) and RBMO
techniques. This hybrid optimizer selects the most
discriminative features and assigns adaptive weights
based on correlation and relief scores, enhancing fusion
quality and classification performance.

To develop the Hybrid Convolutional Trans-

MobileUNet++ (HC-TMU) architecture for

echocardiographic segmentation and classification: To

develop the HC-TMU, it integrates 2D convolutional
layers for static echocardiographic images and 3D
convolutional layers for echocardiographic sequences.

This architecture simultaneously segments cardiac

structures and performs AF classification, enabling a

comprehensive analysis of atrial remodeling.

To address these limitations, this study makes the following

key contributions:

® To develop a hybrid deep learning framework that

integrates CNNs, an R-ViT, and handcrafted
descriptors to capture both local and global
echocardiographic features.

® To propose a novel HDF-RBMO for multi-feature
fusion and feature selection, robust learning even with
limited and imbalanced datasets are ensured.

® To introduce an HC-TMU architecture for joint 2D and

3D echocardiographic analysis, superior accuracy and
dice score compared to state-of-the-art AF detection
methods are achieved.
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The outline of the designed deep learning-based AF
detection framework is described here. Recent investigations
executed to address the challenges of AF detection are
explained in the 2™ Section. The architectural view of the
developed AF detection model is described in the 3™ Section.
The detailed explanation based on feature extraction and
weight optimization along with the developed hybrid
optimization is presented in the 4" Section. The development
and implementation of the designed segmentation framework
are discussed in the 5" Section. At last, the result and
conclusion of the developed model are presented in the 6™ and
7t Sections.

2. LITERATURE REVIEW

Research on AF detection using artificial intelligence has
evolved from traditional machine learning toward deep
learning—based frameworks. Existing studies can broadly be
categorized into three groups: CNN-based approaches, RNN-
based approaches, and hybrid models [13].

(1). CNN-based models

CNNs have been widely applied to extract spatial or spectral
features from ECG and echocardiographic signals.

Pourbabaee et al. [1] proposed a deep convolutional neural
network (DCNN) for AF detection from ECG time-series
images, showing improvements over traditional classifiers.
Cao et al. [2] developed Multi-Scale Decomposition Enhanced
Residual CNNs (MSResNet) and FDResNets [14], combined
via transfer learning, to improve F1-score and accuracy.

Nurmaini et al. [3] integrated Discrete Wavelet Transform
(DWT) with 1D-CNNs for multiclass AF classification,
demonstrating better generalization and early diagnostic
capability. Chandra et al. [15] employed wavelet and Fourier
transforms to generate 2D spectrograms fed into a DCNN,
reporting enhanced AF detection reliability. Schwab et al. [7]
applied a CNN-based framework validated on external
datasets, demonstrating improved prediction of high-risk AF
cases compared to classical models. Although CNNs can
extract powerful features, they often require large balanced
datasets, are sensitive to noise, and may lack interpretability in
clinical contexts.

(2). RNN-based models

RNNs and their variants (e.g., LSTMs) are particularly
suited for sequential biomedical signals.

Faust et al. [4] applied LSTMs to heart rate signals for AF
detection, showing robustness to noisy and incomplete data.
Andersen et al. [6] combined CNN and RNN layers for end-
to-end AF classification from RR intervals, achieving strong
performance even on unseen datasets. RNNs are effective for
temporal dependencies but face challenges such as vanishing
gradients, high computational cost, and limited scalability to
large echocardiographic datasets [16].

(3). Hybrid models

Hybrid approaches combine CNNs with RNNs or other
optimization strategies to address data imbalance and enhance
generalization.

Petmezas et al. [5] proposed a CNN-LSTM model trained
with focal loss to mitigate data imbalance, achieving higher
sensitivity and specificity. While hybrids improve
classification, they often increase architectural complexity
[17], require fine-tuned hyperparameters, and lack efficient
segmentation pipelines for echocardiographic imaging [18].



2.1 Problem statement

Atrial fibrosis detection methods have several limitations,
including subjective interpretation, inability to detect early
stages of fibrosis, variability in image quality [19], high
computational cost, and inability to handle large datasets, etc.
It may also face overfitting and underfitting issues. The
features and challenges of existing atrial fibrosis detection
techniques are given in Table 1 and the traditional model's
experimental gap is given.

s In the existing techniques, high computational
requirements and long processing times [20] hinder real-
time diagnosis and clinical relevance. These issues can be
overcome by using an optimization algorithm that

minimizes computational requirements making the model
more accurate, efficient, and clinically applicable.
Existing atrial fibrosis detection methods [21] may suffer
from limited data quality, availability, and high
dimensionality. These problems can be overcome by
using feature extraction methods, which extract relevant
information from the data and reduce the data
dimensionality.

Existing atrial fibrosis diagnostic models may lack
transparency, making it challenging to understand
detection decisions. This problem can be overcome by
combining two or more other algorithms to solve the
identical issue, which improves computational efficiency
and accuracy [22].

Table 1. Designed HC-TMU-based segmented images

Original Image Ground Truth Image

UNet 3+ [24 Proposed HC-TMU




3. HYBRID META-HEURISTIC AIDED ATRIAL
FIBROSIS DETECTION USING ADVANCED DEEP
LEARNING NETWORK WITH WEIGHTED MULTI-
FEATURE FUSION

3.1 Developed atrial fibrosis detection network

Generally, AF develops slowly and does not show visible
signs until it reaches the final stage, which makes the detection
process hard. Classical imagining approaches including ECG
are not very effective in detecting AF in early fibrosis. In
recent days, various approaches based on artificial intelligence
have been employed to perform early detection of AF. Among
these approaches, deep learning techniques including CNN
have gained significant attention because of their capacity to
examine the clinical images with better accuracy and to offer
more exact outcomes in case of AF detection. Moreover, deep
learning models can process huge quality of information
effectively make them more applicable in the medical field,
and assist them to offer highly generalized and robust
outcomes. By considering these benefits, an advanced AF
detection model is designed by leveraging the deep learning
approaches. This model is developed by employing the 2D-
ECG images [25] accumulated from the standard database.
Following the data collection, the collected images are directly
offered to the feature extraction. During feature extraction,
three Feature Sets are extracted by employing certain
techniques. At first, the features based on fuzzy entropy
vectors [26], Hierarchical theory vectors, and Wavelet packet
energy vectors are extracted from the ECG images and

1. Fuzzy entropy vector
2. Wavelet packet
energy vectors

’

TTTTTT TN

concatenated together to attain the final Feature Set, i.e.,
Feature Set 1. Then, the second set of features is extracted
from the images by employing R-ViT, and the deep features
(third set of features) within the images are extracted via CNN.
Later, three features are chosen optimally from each Feature
Set by utilizing the hybrid tuning approach named as HDF-
RBMO strategy. Then, the optimally selected features from
each Feature Set are multiplied with their corresponding
weights, which are tuned by the same HDF-RBMO strategy to
attain the weighted features. Followed by weight optimization,
the resultant weighted features are concatenated together to
form the fused weighted feature for enhancing the relief score
and correlation coefficient on the segmentation performance.
Further, the obtained fused weighted feature [27] is then fed
into the developed HC-TMU model to perform AF
segmentation. The HC-TMU framework was constructed by
integrating a hybrid 2D and 3D convolution to the Trans-
MobileUNet++. Moreover, in the designed HC-TMU, the
input is fed into both 2D and 3D format, i.e., the fused
weighted feature is taken as 2D input and the collection of 2D
ECG image series is considered as 3D input. After further
processing, the segmented image is obtained from the Trans-
MobileUNet++. In addition, the AF detection outcome is
determined based on the resultant segmented images [28]. At
last, the performance of the developed technique is estimated
by analyzing the outcomes of the developed model with a few
classical models. The diagrammatic view of the developed
deep learning-based AF detection framework is given in
Figure 1.

1
Images .

Feature Extraction

Feature Set 2 Feature Set 3

3. Hierarchical theory ™~ _¢" Feature Set 1
vectors 7 R-ViT CNN
- l Developed
Optimal feature HDE-RBMO

selection and weight
optimization

!

Fused weighted
feature Improve Relief Score and
l Correlation Coefficient

Developed HC-TMU-aided AF Segmentation

Hybrid 2D-3D
convolution layer

Model

Trans-
MobileUnet++

l

AF Segmented
outcome

Figure 1. Developed deep learning-aided AF detection framework
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Figure 2. Sample images taken from the dataset

3.2 Atrial fibrosis Echocardiogram signal dataset for
model analysis

The implementation of this designed AF detection model is
executed by employing the 2D ECG images obtained from the
Echo Net-Dynamic dataset, which is available at
https://stanfordaimi.azurewebsites.net/datasets/834elcdl-
9217-4268-9daa-d359198b310a- access date: 07-11-2024. The
Echo Net-Dynamic dataset is a huge collection of ECG video
datasets that comprise nearly 10030 labeled ECG videos and
explanations from human experts based on the tracing,
measurements, and evaluation that is essential to offer a better
understanding of cardiac motion and chamber dimensions.
Among the 10030 records, 7523 are employed to train the
detection model and 2508 are taken as testing data. The
accumulated 2D ECG images are indicated as Cl;°¢. The
sample images taken from the Dataset are given in Figure 2.

4. FEATURE EXTRACTION AND WEIGHTED
FEATURE FUSION FOR ATRIAL FIBROSIS
DETECTION USING HDF-RBMO

4.1 Echocardiogram 2D image feature extraction

Feature extraction is the major phase in this designed
framework, the main intent behind this feature extraction is to
extract the significant features from the accumulated 2D ECG
images Cl3C that promote better detection outcomes. During
feature extraction, three sets of features are extracted from the
data. A detailed description of each Feature Set is given below.

Feature Set 1: The first set of features is attained by
concatenating three diverse features including fuzzy entropy
vector, wavelet packet energy vectors, and hierarchical theory
vectors are extracted from the given input data C1;°¢, and the
obtained vectors are combined to form the Feature Set 1.

Fuzzy entropy vector [29]: Fuzzy entropy (FE) is employed
to evaluate the time series data's irregularity and complexity
and the execution procedure of FE is discussed below.

Let us consider, a time series data Z = {z(i): 1 < i < B}, in
which time series data's length is denoted as B. Later, the mean
value z, (i) is evaluated via Eq. (1):

z,(i)=

n7lz(i+k)

k=0

(1

=R

Here, the embedding dimension is denoted as 7, and the n-
dimension vector Z*(i = 1,2, ..., B — n) is modified as in Eq.
):

Zi”:{z(i),z(i+],...,z(i+n—1))}—zo(i) 2)
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The fuzzy function u(sj;, b, ) is described in Eq. (3).

: (s5)
#(sibie) =exp| — == (3)

Here, the function of exponential is denoted as exp(-), and
the boundary gradient and width are signified as b and e.
Later, the degree of similarity Sj, among Z" and Z' is
described in Eq. (4):

Sk (b.e) ::u(sirll’b’e) “4)

Finally, the FE time series {z(i): 1 < i < B} is evaluated
via Eq. (5):

FE(Z,nbe)=lim(In®" (be)-In@™ (be)) (s

Here, the natural logarithm operation is represented as
In(-). If B is finite, then the FE time series FE(Z,n, b, e) is
represented as in Eq. (6):

FE(Z.,n,b,e,B)=In®"(b,e)-In®"*(b,e) (6)
The extracted fuzzy entropy vector is expressed as FEVt.
Wavelet packet energy vectors [30]: It is defined as the

energy in diverse frequency bands that are evaluated from the

wavelet packet decomposition outcome. The wavelet packet
decomposition energy is estimated by Eq. (7) and the overall

energy of the signal is derived by Eq. (8):

W ="z (t)dt )
2k

Wrg =2 W, ®)
i=1

Here, the energy within each sub-band is indicated as W;.
Further, the value of normalized energy that is equivalent to
each wavelet packet’s energy is defined by Eq. (9):

W,
Q=
I V\/Tol

)

Here, each sub-band’s probability distribution is expressed
as Q;. The extracted wavelet packet energy vectors are
represented as Wp3t.
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Figure 3. Echocardiogram 2D image feature extraction

Hierarchical theory vectors [31]: Hierarchical theory is
described as the procedure of arranging or expressing the
features within the given input in the hierarchical format.
During hierarchical feature extraction, it extracts multiple
features from the input to enhance the efficiency of the model
in employing global context data. During feature extraction,
each feature extracted from the image is represented in the
vector format that helps to monitor the connection among the
diverse features. Moreover, employing hierarchical theory in
feature extraction helps in determining complicated patterns or
connections within the features and accelerates the
performance of the model during segmentation. The extracted
hierarchical theory vectors are indicated as H f,;€.

Feature concatenation: In order to attain the final Feature
Set 1. The obtained fuzzy entropy vector FEY®, wavelet packet
energy vectors Wpst, and hierarchical theory vectors Hf;3¢
are concatenated together and are denoted as Fs15°™ and it is
expressed in Eq. (10):
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FE,' +WpS' + Hf 2 = Fs1o™ (10)

Here, the first Feature Set is indicated as Fs15°™.

Feature Set 2: The second Feature Set is obtained by
employing R-ViT as a tool to extract the features from the
input data CI5;¢¢. The R-ViT [32] is a variant of classical ViT
that comprises a regional-to-local attention module that helps
to understand both global and local characteristics from the
input data. The R-ViT model comprises two tokenization
procedures that transfer input data into local and regional
tokens, which assist in extracting significant features from the
image. Moreover, this tokenization procedure is considered a
convolution function with diverse path sizes. In R-ViT, the
path size of the local and regional tokens is 4 and 282
Moreover, by employing the regional-to-local attention
module the R-ViT processes both the tokens. Additionally,
down-sampling procedures were carried out to separate the
token’s spatial resolution. At last, the features are obtained by
taking an average value among the regional tokens. Similarly,



the fine-grained location data are also obtained from the local
token. The features extracted by employing R-ViT are
represented as Fs2R~ViT

Feature Set 3: The third set of features is extracted by
employing the CNN [33]. CNN is employed to extract the deep
features from the given input information. The key layers of
the CNN model that are responsible for feature extraction are
the convolution and max pooling layers. Each layer embedded
in the CNN model has its own tasks to perform.

Convolutional layer: This layer comprises filters and feature
maps. The filers within the layer are viewed as the neuron and
the outcome from the filter utilized by the prior level is
referred to as the feature maps.

Max pooling layer: The key function of this layer is to carry
out the down-sampling on the feature maps with an aim to
minimize the issues associated with overfitting. The deep
features extracted from the input images by utilizing CNN are
denoted as Fs3SVV,

The pictorial view to describe the feature extraction phase
is represented in Figure 3.

4.2 Proposed HDF-RBMO-based weighted feature fusion
process

Followed by feature extraction, weighted feature fusion is
the next phase that assists in enhancing detection performance
by optimizing weight along with feature fusion. At this phase,
the significant features from each extracted features set
Fs15°™ | Fs2B7VIT and Fs3SNN are chosen optimally by
utilizing the designed HDF-RBMO. During feature selection,
the feature OF1£°" from Feature Set 1 is selected from the

range [1,10], the feature OF 22V'T from Feature Set 2 is chosen
from the limit [11,20] and the feature OF 3¢"N from Feature
Set 3 is taken from the limit [21,30]. Additionally, the
optimized weights Wt,;?, Wt,"and Wt " that lie within the
range [0.01,0.99] are multiple with the corresponding feature,
which results in weighted Feature Sets as expressed in the
following equations:

vatfl :OFltCon* op (11)
WE,"? = OF 28V *Wi (12)
WA 3 = OF 3™ Wi (13)

Later, the resultant weighted Feature Sets are fused together
as shown in Eq. (14) and the final fused weighted feature
Fug®® is taken for further processing:

Fug®™ =Wt +Wt2 + Wt (14)

The key objective behind weighted feature fusion is to
increase the relief score as well as the correlation coefficient
and it is numerically derived in Eq. (15):

Obj,= argmin

1
{om,cw AT }( RF,_ +Cor,, ] (15)

WEP WEP WP

HDF-RBMO-Optimal Feature Selection and Weight Optimization

Feature Set 1
Fslgon OFltCon

Weight optimization
Optimal feature i~
T ™ W =OFL WP

—— " —————————

Feature concatenation

Feature Set 2 Optimal feature [ f2 R-VIT op —
Fs2p v || AV Il A W+ WE? + W = Fuf?
b u
Feature Set3 | | |, Optimal feature N :/
Fs3g"™ OFgeNN —> WF? =0F3™ Wt

Developed HDF-
RBMO

Improve Relief Score and
Correlation Coefficient

Figure 4. Developed HDF-RBMO-based weighted feature fusion process



Relief score RF;, is described as the method to evaluate the
features with multiple classes from the given input ECG
images and they are capable of evaluating how the features
within the images distinguish its instances among multiple
identical classes. Moreover, it determines the weight 7 of the
feature D, i.e., T[D] by employing Eq. (16):

T[D]=Q(Dys |S™)-Q(Dgs | F™) (16)

From the above equation, the livelihood of the diverse
values of the feature D on different instances is represented as
0, different values of the feature D are indicated as Dgg, the
closest instance from a different class is denoted as S™, and
the closest instance from a similar class is represented as F™.

Correlation coefficient Co7,,f is defined as the statistical
metrics that evaluate the robustness of the linear connection
among two variables as well as it is the normalized evaluation
of the covariance among the variables and their values lying
between the limit [-1,1] and it is numerically defined in Eq.

(17):

n» SG->s>G
(328 ~(Xs) }(n32e" (e

The total count of data points within the given data is » and
the summation of the product of S* and G value for every
data point is represented as ). SG . The diagrammatic
representation of HDF-RBMO-based weighted feature fusion
is provided in Figure 4.

Orcof =

(17)

4.3 Proposed HDF-RBMO

In this designed framework, a hybrid optimization approach
is developed by integrating the functions of classical DFA and
RBMO and named HDF-RBMO. The prime function of the
developed HDF-RBMO is to select the optimal features within
the extracted Feature Sets and to optimize the weight for
multiplying with optimal features to enhance the relief score
and correlation coefficient, which helps to improve the
detection performance. In this hybrid strategy, DFA [27] is
employed by considering its ability to manage huge-scale
optimization issues, which makes it more applicable in
complicated situations. Moreover, they offer better
performance in various tuning issues like multi-model sand
non-linear issues, which results in robust performance.
However, the DFA is highly complicated to execute and learn.
The efficiency of DFA is vulnerable to parameter
optimization, selecting the most significant parameter results
in suboptimal outcomes. Additionally, in certain cases, the
DFA faces difficulties in converging effectively for the
optimal outcome, particularly in dynamic surroundings that
also result in sub-optimal outcomes. Therefore, the RBMO
[24] strategy is integrated with the DFA to address these
shortcomings since they present effective performance in
complicated regions and avoid local minimum as well as offer
better convergence than other classical tuning approaches. In
this developed HDF-RBMO, a random value » within the
range [0,1] is upgraded according to the developed concept as
shown in Eq. (18).

Cr
(Wfit +My, + Bfit)

(18)
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In the above equation, the best, worst, mean, and current
fitness values are indicated as By;¢, Wy;e, Mg and Cryp. The
pseudocode of the proposed HDF-RBMO is presented in
Algorithm 1.

Algorithm 1: Implemented HDF-RBMO
Input: Extracted Feature Sets Fs1§°™ , Fs28~ViT |
Fs3SNN and initial weight.
Output: Optimal features OF1¢°" , OF2RVT | and
OF3XNN_ optimized weights Wt F, Wt, and Wt 7.
Initialize the parameters present iteration t, highest
iteration M-, and population count Ny,,,.
While (condition satisfied)
Fort =1 to My,
Fori = 1to Ny
Upgrade the random value r as shown
in Eq. (19)
Ifr>05
Update by employing DFA
else
Update by employing RBMO
end

end
end
Obtain the optimal solution
end

5. ATRIAL FIBROSIS DETECTION USING HYBRID
(2D, 3D) CONVOLUTION BASED TRANS-
MOBILEUNET++

5.1 Trans-MobileUNet++

Trans-MobileUNet++ is designed by integrating a
transformer encoder into the MobileUNet++. The
MobileUNet++ model implements the MobileNet on the
UNet++ model. It is an effective variant of classical DNN that
is introduced to execute the semantic segmentation procedure
by employing the skip connections within the network. In
addition, the UNet++ model holds a symmetric expanding
path that enables the model to perform accurate localization as
well as the contracting path to accumulate the context. The
skip pathways of the UNet++ hold various skip connections,
which are employed to boost the gradient flow within the
network. The outcome attained from the bottom and top layers
are combined to attain a final outcome as presented in Eq. (19).

Y, (zq’l’w),
Y ([zq’w], S (sq”’w’l)), w>0

w=0
ZQ:W _

(19)

Here, the feature map is represented as z%%, and the
convolution and activation function are indicated as V' (.) and
S(.) . Moreover, integrating the MobileNet and UNet++
enables the framework to process effectively in case of
minimum training data.

Furthermore, a transformer encoder is added to the
MobileUNet++. In the transformer encoder, the input data is
offered to the layer normalization that helps to normalize the
activation. Later, the normalized images are offered to the
multi-head self-attention layer. Following this, a residual
connection is utilized, which is connected to a layer



normalization and feed-forward block. Feed-forward block is
a combination of two linear layers, a Gaussian Error Linear
Unit (GELU) and a dropout layer. The size of the input images
is extended by the initial linear layer and later minimized by
another linear layer and the final outcome attained from the
transformer encoder is presented in the following equations.

O'=Linear (LT )eT"f (20)

Input data
D1

D2

D3

D4

Transformer encoder

—

Layer Normalization

Multi-Head Attention

—

Layer Normalization

Multi-Layer Perceptron

3

Conv + Inverted Residual

Conv Transpose

O" = Dropout (GELU (O')) e T"*' 1)

0'= Linear(O"eTMX‘”)eTM*f (22)

From the above equations, the result obtained from the
transformer encoder is indicated as O', the size and the
sequence count are expressed as f and M. The pictorial
representation of Trans-MobileUNet++ is offered in Figure 5.

Output data

Concat

—»> Inverted Residual

Conv Transpose + Inverted residual

Figure 5. Pictorial view of Trans-MobileUNet++

5.2 Introduced HC-TMU for atrial fibrosis detection

The designed HC-TMU model is employed to carry out the
segmentation procedure. This model utilized the fused
weighted feature Fug;°® and the collected 2D ECG image
series as the input data. The designed HC-TMU is a
combination of a hybrid 2D-3D convolution layer and Trans-
MobileUNet++. The hybrid convolutional layer is a
combination of two convolutional layers namely 2DCNN and
3DCNN. Here, the feature maps are created by concatenating
the outcome from both the 2DCNN and 3DCNN equivalently.
Additionally, a cross-domain transfer is established with the
help of a data interface procedure. Later, the cross-domain
concatenation function is employed to establish the unique 2D
and 3D features. Let us consider, the input offered to the
2DCNN and 3DCNN as y, and y; . Further, the output
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attained from both 2DCNN and 3DCNN are expressed as
t,(c) and t3(c), the hybrid convolutional layer’s data
interaction is denoted as W, and the convolution operations
performed on the 2DCNN and 3DCNN are indicated as 75 (c)
and r3(c). In addition, the cross-entropy loss function within
the hybrid convolutional layer is represented in the below
equations:

K(c.e) =G(e, 9(r,(c) +,(c))) (23)
(r,(0) +1,(c)) = C(t, (). ,(c)) (24)
t,(c) =M, ®Yy, (25)
L) =M; ®Y, (26)
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In these equations, the cross-entropy loss function is
denoted as G (+), and the actual label for c is represented as e.
Initially, the input data are offered in two different formats
namely 2D and 3D. Here, the fused weighted feature is taken
as the 2D data for processing and the collection of ECG image
series is considered as the 3D data. Followed by the
convolutional operation, the processed input is fed to the
Trans-MobileUNet++ to attain the segmented outcome. The
diagrammatic illustration of the developed HC-TMU-based
AF detection framework is offered in Figure 6.

6. RESULTS AND DISCUSSION
6.1 Simulation setup

The introduced AF detection framework was built and
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trained on the Python platform. The setup for this detection
framework was established by considering the population
counts as 10, the highest count of iteration as 50, and the
chromosome length as 33. Additionally, the performance
analysis was carried out by analyzing the outcome of the
designed mode with a set of classical optimization strategies
including Reptile Search Algorithm (RSA), Mud Ring
Algorithm (MRA), Dark Forest Algorithm (DFA) and RBMO
and the segmentation performance is analyzed with DCNN,
MSResNet, LSTM, and RNN.

6.2 Evaluation measures

The effectiveness of the designed AF detection framework
over diverse optimization strategies and segmentation
approaches is demonstrated based on the following measures.

(a) Accuracy of the approach is estimated by Eq. (27).
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(b) The dice coefficient of the model is evaluated using Eq.
(28).
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(c) Jaccard is determined by employing Eq. (29).
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(d) Sensitivity of the model is derived using Eq. (30).

o Q'
Sensitivity = m (30)
(e) Specificity is evaluated by Eq. (31).
e M7
Specificity = M1 OF (€29)

Here, the false positive, false negative, true positive, and
true negative are represented as QF, MF, QT, and MT. The

ground truth and segmented image are described as M tég and
Dij.

6.3 Designed HC-TMU-based segmented images

The segmented images obtained by the developed HC-TMU
model are presented in Table 2.

Table 2. Overall performance validation with classical technigques

Terms DCNN [1] MSResNet [2] LSTM [5] RNN [6] HC-TMU
Dice Coefficient

Median 0.8066764 0.8216339 0.8174575 0.8451191 0.9275383
Worst 0.7797717 0.7878065 0.7901691 0.8120909 0.8892463
Best 0.838269 0.8338267 0.8829492 0.8866828 0.943818
Mean 0.8041712 0.8134676 0.8244332 0.8447935 0.9226687

Jaccard

Median 0.6759927 0.6972831 0.691279 0.7317839 0.864961
Worst 0.6390375 0.6499016 0.6531236 0.6836305 0.8005792
Best 0.7215689 0.715011 0.7904289 0.7964331 0.893613
Mean 0.6728436 0.6859655 0.7020573 0.7320043 0.8570105

Accuracy

Median 0.8036957 0.816658 0.8187332 0.8472366 0.9242783
Worst 0.7724762 0.7945251 0.8025055 0.8234711 0.8907318
Best 0.8394775 0.8349457 0.8743744 0.8810425 0.9443207
Mean 0.804715 0.8134933 0.8244705 0.8458298 0.9227249

Peak Signal-to-Noise Ratio (PSNR)

Median 55.201737 55.498199 55.547641 56.291896 59.36967
Worst 54.560535 55.003217 55.175253 55.662645 57.745866
Best 56.075446 55.954535 57.140022 57.376885 60.673864
Mean 55.245987 55436212 55.720633 56.286607 59.353584

Mean Squared Error (MSE)

Median 0.1963043 0.183342 0.1812668 0.1527634 0.0757217
Worst 0.1605225 0.1650543 0.1256256 0.1189575 0.0556793
Best 0.2275238 0.2054749 0.1974945 0.1765289 0.1092682
Mean 0.195285 0.1865067 0.1755295 0.1541702 0.0772751

6.4 Detection performance estimation of the designed
model

The introduced HC-TMU's segmentation performance is
monitored by considering epoch count and the obtained graphs
are presented in Figure 7. This evaluation estimates how
effectively this designed segmentation model determines the
infected area with the given input data. This evaluation helps
to determine the quality of resources employed by the
segmentation models during the implementation phase. It is
necessary to analyze that the introduced framework has the
capacity to process the input data more effectively even in the
presence of unwanted noise or artifacts. Moreover, this
evaluation is performed with the standard framework to
monitor the performance in terms of accuracy, Jaccard, and
dice coefficient by varying the epoch count from 50-250.
From Figure 7(a), the accuracy of the introduced HC-TMU
framework is 14.45%, 11.76%, 9.19%, and 5.55% more
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advanced than DCNN, MSResNet, LSTM, and RNN, when
considering the epoch count as 50. Hence, the segmentation
efficiency of the introduced model is superior to other standard
frameworks.

6.5 Convergence analysis for the developed model

The convergence graph attained by the developed HDF-
RBMO model is shown in Figure 8. This evaluation is
essential for evaluating the convergence of the employed
tuning strategy throughout the iteration. From the given
convergence graph, the straight line describes that the best
fitness value identified by the tuning strategy is stable and
reveals that the optimization technique is stuck within the local
minimum. According to the obtained graph, the convergence
of the proposed HDF-RBMO model has the ability to offer
more advanced performance, when compared to the traditional
techniques.
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Figure 7. Detection performance evaluation of the proposed framework with traditional approaches with respect to (a) Accuracy,
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6.6 Overall detection performance validation with classical
models

The overall segmentation performance of the designed
model is presented in Table 3. The segmentation performance

is determined by considering the mean, best, median, and
worst values. By varying the statistical measures, a constant
threshold value is handled during the segmentation procedure.
Moreover, the developed model’s flexibility is improved
which is necessary for determining the most significant
features from the given input. From the Table, the dice
coefficient of the suggested framework, when analyzing the
mean performance is 14.73%, 13.42%, 11.91%, and 9.21%
more effective than other classical techniques such as DCNN,
MSResNet, LSTM, and RNN, and provided improved
performance throughout AF segmentation.

6.7 Statistical evaluation for the suggested framework

Statistical analysis is essential to identify the effectiveness
of the developed HDF-RBMO technique based on weighted
feature fusion. The statistical analysis of the designed
technique with standard approaches is given in Table 3. From
Table 3, the best performance of suggested HDF-RBMO is
20.58%, 23.40%, 22.09%, and 26.11% better than the
traditional techniques such as RSA, MRA, DFA, and RBMO.
Thus, the analysis outcome revealed that the effectiveness of
the designed optimization model is more effective than other
standard techniques.

Table 3. Statistical evaluation for the developed framework

Terms RSA MRA DFA RBMO HDF-RBMO
Worst 2.9343999 1.6979305 3.9218194 1.6634846 3.4747119
Best 1.21243 1.2571479 1.2358679 1.3031325 0.9628628
Mean 1.5119658 1.3736648 1.4749031 1.3117682 1.0772629
Standard deviation 0.4452767 0.1666598 0.5482389 0.0504273 0.385869
Median 1.21243 1.2582486 1.3844285 1.3031325 0.9628628
7. CONCLUSIONS REFERENCES

In this work, we proposed an innovative AF detection
framework that integrates deep learning with hybrid
optimization. The model combines HDF-RBMO for optimal
feature selection and weighting with the HC-TMU
segmentation architecture, achieving superior performance
compared to baseline models. Experimental results
demonstrated that HC-TMU attained a mean dice coefficient
0f 0.9226 and outperformed DCNN, MSResNet, LSTM, and
RNN by 12.48%, 13.09%, 7.99%, and 7.18%, respectively.
These results highlight the potential of the proposed method
for early and accurate AF detection. Despite these promising
outcomes, several limitations remain. First, the framework
risks modality confusion since ECG-derived features and
echo-inspired segmentation approaches are combined.
Second, the model has not yet undergone clinical validation,
limiting its immediate applicability in healthcare settings.
Third, the reliance on a single dataset (EchoNet-Dynamic)
may restrict generalizability across diverse patient
populations. Finally, the interpretability of the fused weighted
features remains limited, which may hinder clinical trust and
adoption. Future research will focus on addressing these
challenges by incorporating multimodal data sources (e.g.,
combining ECG with Echocardiogram sequences), exploring
real-time deployment in clinical workflows, and developing
explainable AI mechanisms to better interpret fibrosis-related
patterns. These enhancements could significantly improve the
reliability, clinical relevance, and translational impact of AF
detection models.
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