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Atrial Fibrillation (AF) is a chronic condition characterized by structural variations 

within the atria. Fibrosis, identified based on the formation of collagen within the 

interstitial region of the heart is considered a result of arrhythmogenic structural 

changes. Recently, the implementation of deep learning approaches in medical science 

has become challenging because of their limited effectiveness in handling patterns or 

structural changes. Moreover, they demand large quantities of diverse and large-scale 

data for designing a robust detection framework. Considering the limited availability of 

resources, it is crucial to develop an effective approach to perform early detection of 

AF. Therefore, a deep learning-based AF detection framework is developed to track the 

progression of the disease. The required 2D Echocardiogram (ECG) images are 

collected from benchmark sources. Features including fuzzy entropy vectors, wavelet 

packet energy vectors, and hierarchical theory vectors are extracted from 2D images 

and concatenated to obtain Feature Set I. Next, the Region-based Vision Transformer 

(R-ViT) is utilized to retrieve Feature Set II from the input 2D images. Later, the deep 

features are extracted by employing Convolutional Neural Networks (CNNs). The 

weighted multi-feature fusion is performed using the suggested Hybrid Dark Forest and 

Red-Billed Blue Magpie Optimizer (HDF-RBMO) to tune the optimal features. These 

features from 2D ECG and the 3D ECG image series are input into the developed 

Hybrid (2D, 3D) Convolution-based Trans-MobileUNet++ (HC-TMU) for detecting 

AF. The proposed AF detection model may assist in analyzing high blood pressure and 

other heart diseases. The results of the developed model are compared with a previously 

developed detection model to ensure the presented approach’s effectiveness. 
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1. INTRODUCTION

Atrial Fibrillation (AF) is considered one of the most 

frequently occurring chronic arrhythmia that remains a 

scientific issue that continues mysterious behavior even after 

several investigations [1]. The reason that leads to AF has not 

been identified, and suggesting an effective treatment plan is 

exceedingly complex in these cases [2]. The main symptom 

indicated the occurrence of AF which is the unusual 

contraction within the upper atrium of the heart and the 

Echocardiogram (ECG) signal denotes it by the reduction of 

sinus P wave [3]. The recognition of AF across multiple ECGs 

shows diverse quality and signal length. Ambiguity labels 

originated from various kinds of arrhythmia pulses within 

identical records, varying human anatomy, and issues in 

separating ECG signal features.  

As a consequence, the strategy selected for AF must be 

capable of handling these scenarios while preserving system 

efficiency [4]. The existing detection techniques based on the 

computer technology introduced for enhancing the AF 

detection performance in traditional machine learning 

approaches created favorable outcomes. Traditional machine 

learning techniques depend upon classical approaches to 

perform feature extraction and selection that demand multiple 

phases to accomplish the categorization procedure [5]. 

Utilizing deep learning techniques for AF detection is easy and 

does not employ traditional hand-crafted engineering 

techniques to attain significant features. Yet, it is hard to 

determine a proper framework based on a deep learning 

approach, as it demands for huge quality of data for processing 

[6]. At present, only certain public datasets describing AF 

symptoms are available, including normal data more than AF 

problems or imbalanced information. Research concerning 

imbalanced circumstances primarily focuses on offering better 

classification outcomes for unique subclass [7]. 

However, classical machine learning methods for 

classifying AF are frequently employed for decreasing overall 

error rates instead of analyzing unique classes or unbalanced 

information [8]. Moreover, the rapid growth of deep learning 

approaches including Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs) Autoencoder 

(AE), and Deep Neural Networks (DNNs) offers better 
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efficiency in addressing the issues faced by the classical AF 

detection techniques [9]. Among the other classical 

approaches, CNN exceeds traditional models in processing 2D 

information including ECG image series. Yet, various 

researchers revealed that the CNN models provide more 

effective performance in processing ECG image series as 1D 

data than the approaches based on RNN and DNN [10]. 

Moreover, a 1-dimensional CNN (1D-CNN) is effective in 

processing long-term ECG information using a rapid and 

reliable method, as well as analyzing morphological features 

and gathering information [11]. Additionally, CNNs are 

capable of producing specific characteristics regarding the 

ECG signal series in order to recognize specific trends within 

the convolutional space. As every patch within the model 

experiences similar variations described by the convolution 

space, the structure acquired from a particular location is 

frequently identified by an alternate location, ensuring the 

transformation of 1D convolution systems is uniform [12]. 

In contrast, 1D-CNNs are often applied to temporal 

biomedical signals such as ECGs. However, since this study 

focuses on 2D echocardiographic imaging, we primarily adopt 

2D- and 3D-convolutional strategies tailored for spatial and 

spatiotemporal cardiac structure analysis. 

Building on these principles, we propose a novel deep 

learning–based AF detection framework with the following 

key contributions: 

• Hybrid feature fusion for early AF detection: The 

design an innovative framework that integrates CNN-

based spatial features, Region-based Vision Transformer 

(R-ViT) contextual features, and handcrafted descriptors. 

Weighted feature fusion ensures early and accurate AF 

detection while enabling longitudinal monitoring of 

disease progression. 

• Hybrid Dark Forest and Red-Billed Blue Magpie 

Optimizer (HDF-RBMO) optimization for feature 

selection: The HDF-RBMO combines the strengths of 

differential forest algorithms (DFA) and RBMO 

techniques. This hybrid optimizer selects the most 

discriminative features and assigns adaptive weights 

based on correlation and relief scores, enhancing fusion 

quality and classification performance. 

• To develop the Hybrid Convolutional Trans-

MobileUNet++ (HC-TMU) architecture for 

echocardiographic segmentation and classification: To 

develop the HC-TMU, it integrates 2D convolutional 

layers for static echocardiographic images and 3D 

convolutional layers for echocardiographic sequences. 

This architecture simultaneously segments cardiac 

structures and performs AF classification, enabling a 

comprehensive analysis of atrial remodeling. 

To address these limitations, this study makes the following 

key contributions: 

⚫ To develop a hybrid deep learning framework that 

integrates CNNs, an R-ViT, and handcrafted 

descriptors to capture both local and global 

echocardiographic features. 

⚫ To propose a novel HDF-RBMO for multi-feature 

fusion and feature selection, robust learning even with 

limited and imbalanced datasets are ensured. 

⚫ To introduce an HC-TMU architecture for joint 2D and 

3D echocardiographic analysis, superior accuracy and 

dice score compared to state-of-the-art AF detection 

methods are achieved. 

The outline of the designed deep learning-based AF 

detection framework is described here. Recent investigations 

executed to address the challenges of AF detection are 

explained in the 2nd Section. The architectural view of the 

developed AF detection model is described in the 3rd Section. 

The detailed explanation based on feature extraction and 

weight optimization along with the developed hybrid 

optimization is presented in the 4th Section. The development 

and implementation of the designed segmentation framework 

are discussed in the 5th Section. At last, the result and 

conclusion of the developed model are presented in the 6th and 

7th Sections. 

 

 

2. LITERATURE REVIEW 

 

Research on AF detection using artificial intelligence has 

evolved from traditional machine learning toward deep 

learning–based frameworks. Existing studies can broadly be 

categorized into three groups: CNN-based approaches, RNN-

based approaches, and hybrid models [13]. 

(1). CNN-based models 

CNNs have been widely applied to extract spatial or spectral 

features from ECG and echocardiographic signals. 

Pourbabaee et al. [1] proposed a deep convolutional neural 

network (DCNN) for AF detection from ECG time-series 

images, showing improvements over traditional classifiers. 

Cao et al. [2] developed Multi-Scale Decomposition Enhanced 

Residual CNNs (MSResNet) and FDResNets [14], combined 

via transfer learning, to improve F1-score and accuracy. 

Nurmaini et al. [3] integrated Discrete Wavelet Transform 

(DWT) with 1D-CNNs for multiclass AF classification, 

demonstrating better generalization and early diagnostic 

capability. Chandra et al. [15] employed wavelet and Fourier 

transforms to generate 2D spectrograms fed into a DCNN, 

reporting enhanced AF detection reliability. Schwab et al. [7] 

applied a CNN-based framework validated on external 

datasets, demonstrating improved prediction of high-risk AF 

cases compared to classical models. Although CNNs can 

extract powerful features, they often require large balanced 

datasets, are sensitive to noise, and may lack interpretability in 

clinical contexts. 

(2). RNN-based models 

RNNs and their variants (e.g., LSTMs) are particularly 

suited for sequential biomedical signals. 

Faust et al. [4] applied LSTMs to heart rate signals for AF 

detection, showing robustness to noisy and incomplete data. 

Andersen et al. [6] combined CNN and RNN layers for end-

to-end AF classification from RR intervals, achieving strong 

performance even on unseen datasets. RNNs are effective for 

temporal dependencies but face challenges such as vanishing 

gradients, high computational cost, and limited scalability to 

large echocardiographic datasets [16]. 

(3). Hybrid models 

Hybrid approaches combine CNNs with RNNs or other 

optimization strategies to address data imbalance and enhance 

generalization. 

Petmezas et al. [5] proposed a CNN-LSTM model trained 

with focal loss to mitigate data imbalance, achieving higher 

sensitivity and specificity. While hybrids improve 

classification, they often increase architectural complexity 

[17], require fine-tuned hyperparameters, and lack efficient 

segmentation pipelines for echocardiographic imaging [18]. 
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2.1 Problem statement 

 

Atrial fibrosis detection methods have several limitations, 

including subjective interpretation, inability to detect early 

stages of fibrosis, variability in image quality [19], high 

computational cost, and inability to handle large datasets, etc. 

It may also face overfitting and underfitting issues. The 

features and challenges of existing atrial fibrosis detection 

techniques are given in Table 1 and the traditional model's 

experimental gap is given. 

❖ In the existing techniques, high computational 

requirements and long processing times [20] hinder real-

time diagnosis and clinical relevance. These issues can be 

overcome by using an optimization algorithm that 

minimizes computational requirements making the model 

more accurate, efficient, and clinically applicable. 

❖ Existing atrial fibrosis detection methods [21] may suffer 

from limited data quality, availability, and high 

dimensionality. These problems can be overcome by 

using feature extraction methods, which extract relevant 

information from the data and reduce the data 

dimensionality. 

❖ Existing atrial fibrosis diagnostic models may lack 

transparency, making it challenging to understand 

detection decisions. This problem can be overcome by 

combining two or more other algorithms to solve the 

identical issue, which improves computational efficiency 

and accuracy [22]. 

 

Table 1. Designed HC-TMU-based segmented images 

 
Original Image Ground Truth Image UNet [23] UNet 3+ [24] Proposed HC-TMU 

     

     

     

     

     

3363



3. HYBRID META-HEURISTIC AIDED ATRIAL 

FIBROSIS DETECTION USING ADVANCED DEEP 

LEARNING NETWORK WITH WEIGHTED MULTI-

FEATURE FUSION 

 

3.1 Developed atrial fibrosis detection network 

 

Generally, AF develops slowly and does not show visible 

signs until it reaches the final stage, which makes the detection 

process hard. Classical imagining approaches including ECG 

are not very effective in detecting AF in early fibrosis. In 

recent days, various approaches based on artificial intelligence 

have been employed to perform early detection of AF. Among 

these approaches, deep learning techniques including CNN 

have gained significant attention because of their capacity to 

examine the clinical images with better accuracy and to offer 

more exact outcomes in case of AF detection. Moreover, deep 

learning models can process huge quality of information 

effectively make them more applicable in the medical field, 

and assist them to offer highly generalized and robust 

outcomes. By considering these benefits, an advanced AF 

detection model is designed by leveraging the deep learning 

approaches. This model is developed by employing the 2D-

ECG images [25] accumulated from the standard database. 

Following the data collection, the collected images are directly 

offered to the feature extraction. During feature extraction, 

three Feature Sets are extracted by employing certain 

techniques. At first, the features based on fuzzy entropy 

vectors [26], Hierarchical theory vectors, and Wavelet packet 

energy vectors are extracted from the ECG images and 

concatenated together to attain the final Feature Set, i.e., 

Feature Set 1. Then, the second set of features is extracted 

from the images by employing R-ViT, and the deep features 

(third set of features) within the images are extracted via CNN. 

Later, three features are chosen optimally from each Feature 

Set by utilizing the hybrid tuning approach named as HDF-

RBMO strategy. Then, the optimally selected features from 

each Feature Set are multiplied with their corresponding 

weights, which are tuned by the same HDF-RBMO strategy to 

attain the weighted features. Followed by weight optimization, 

the resultant weighted features are concatenated together to 

form the fused weighted feature for enhancing the relief score 

and correlation coefficient on the segmentation performance. 

Further, the obtained fused weighted feature [27] is then fed 

into the developed HC-TMU model to perform AF 

segmentation. The HC-TMU framework was constructed by 

integrating a hybrid 2D and 3D convolution to the Trans-

MobileUNet++. Moreover, in the designed HC-TMU, the 

input is fed into both 2D and 3D format, i.e., the fused 

weighted feature is taken as 2D input and the collection of 2D 

ECG image series is considered as 3D input. After further 

processing, the segmented image is obtained from the Trans-

MobileUNet++. In addition, the AF detection outcome is 

determined based on the resultant segmented images [28]. At 

last, the performance of the developed technique is estimated 

by analyzing the outcomes of the developed model with a few 

classical models. The diagrammatic view of the developed 

deep learning-based AF detection framework is given in 

Figure 1. 

 

 
 

Figure 1. Developed deep learning-aided AF detection framework 
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Figure 2. Sample images taken from the dataset 

 

3.2 Atrial fibrosis Echocardiogram signal dataset for 

model analysis 

 

The implementation of this designed AF detection model is 

executed by employing the 2D ECG images obtained from the 

Echo Net-Dynamic dataset, which is available at 

https://stanfordaimi.azurewebsites.net/datasets/834e1cd1-

92f7-4268-9daa-d359198b310a- access date: 07-11-2024. The 

Echo Net-Dynamic dataset is a huge collection of ECG video 

datasets that comprise nearly 10030 labeled ECG videos and 

explanations from human experts based on the tracing, 

measurements, and evaluation that is essential to offer a better 

understanding of cardiac motion and chamber dimensions. 

Among the 10030 records, 7523 are employed to train the 

detection model and 2508 are taken as testing data. The 

accumulated 2D ECG images are indicated as 𝐶𝑙𝑦
𝐸𝐶𝐺 . The 

sample images taken from the Dataset are given in Figure 2. 

 

 

4. FEATURE EXTRACTION AND WEIGHTED 

FEATURE FUSION FOR ATRIAL FIBROSIS 

DETECTION USING HDF-RBMO 

 

4.1 Echocardiogram 2D image feature extraction 

 

Feature extraction is the major phase in this designed 

framework, the main intent behind this feature extraction is to 

extract the significant features from the accumulated 2D ECG 

images 𝐶𝑙𝑦
𝐸𝐶𝐺  that promote better detection outcomes. During 

feature extraction, three sets of features are extracted from the 

data. A detailed description of each Feature Set is given below. 

Feature Set 1: The first set of features is attained by 

concatenating three diverse features including fuzzy entropy 

vector, wavelet packet energy vectors, and hierarchical theory 

vectors are extracted from the given input data 𝐶𝑙𝑦
𝐸𝐶𝐺, and the 

obtained vectors are combined to form the Feature Set 1.  

Fuzzy entropy vector [29]: Fuzzy entropy (FE) is employed 

to evaluate the time series data's irregularity and complexity 

and the execution procedure of FE is discussed below. 

Let us consider, a time series data 𝑍 = {𝑧(𝑖): 1 ≤ 𝑖 ≤ 𝐵}, in 

which time series data's length is denoted as B. Later, the mean 

value 𝑧0(𝑖) is evaluated via Eq. (1): 
 

( ) ( )
1

0

0

1 n

k

z i z i k
n

−

=

= +  (1) 

 

Here, the embedding dimension is denoted as n, and the n-

dimension vector 𝑍𝑖
𝑛(𝑖 = 1,2, … , 𝐵 − 𝑛) is modified as in Eq. 

(2): 

 

( ) ( )( )  ( )0, 1, , 1n

iZ z i z i z i n z i= + + − −  (2) 

The fuzzy function 𝜇(𝑠𝑖𝑘
𝑛 , 𝑏, 𝑒) is described in Eq. (3). 

 

( )
( )

, , exp

b
n

ikn

ik

s
s b e

e


 
 = −
 
 

 (3) 

 

Here, the function of exponential is denoted as 𝑒𝑥𝑝(⋅), and 

the boundary gradient and width are signified as 𝑏  and 𝑒 . 

Later, the degree of similarity 𝑆𝑖𝑘
𝑛  among 𝑍𝑖

𝑛  and 𝑍𝑗
𝑛  is 

described in Eq. (4): 

 

( ) ( ), , ,n n

ik ikS b e s b e=  (4) 

 

Finally, the FE time series {𝑧(𝑖): 1 ≤ 𝑖 ≤ 𝐵} is evaluated 

via Eq. (5): 

 

( ) ( ) ( )( )1, , , ln , ln ,lim
n n

B

FE Z n b e b e b e+

→

=  −   (5) 

 

Here, the natural logarithm operation is represented as 

𝑙𝑛(⋅). If B is finite, then the FE time series 𝐹𝐸(𝑍, 𝑛, 𝑏, 𝑒) is 

represented as in Eq. (6): 
 

( ) ( ) ( )1, , , , ln , ln ,n nFE Z n b e B b e b e+=  −   (6) 

 

The extracted fuzzy entropy vector is expressed as 𝐹𝐸𝑥
𝑉𝑡. 

Wavelet packet energy vectors [30]: It is defined as the 

energy in diverse frequency bands that are evaluated from the 

wavelet packet decomposition outcome. The wavelet packet 

decomposition energy is estimated by Eq. (7) and the overall 

energy of the signal is derived by Eq. (8): 
 

( )i

i kW z t dt
+

−
=   (7) 

 
2

1

k

Tol i

i

W W
=

=  (8) 

 

Here, the energy within each sub-band is indicated as 𝑊𝑖. 

Further, the value of normalized energy that is equivalent to 

each wavelet packet’s energy is defined by Eq. (9): 
 

i
l

Tol

W
Q

W
=  (9) 

 

Here, each sub-band’s probability distribution is expressed 

as 𝑄𝑙 . The extracted wavelet packet energy vectors are 

represented as 𝑊𝑝𝑣
𝑠𝑡. 
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Figure 3. Echocardiogram 2D image feature extraction 

 

Hierarchical theory vectors [31]: Hierarchical theory is 

described as the procedure of arranging or expressing the 

features within the given input in the hierarchical format. 

During hierarchical feature extraction, it extracts multiple 

features from the input to enhance the efficiency of the model 

in employing global context data. During feature extraction, 

each feature extracted from the image is represented in the 

vector format that helps to monitor the connection among the 

diverse features. Moreover, employing hierarchical theory in 

feature extraction helps in determining complicated patterns or 

connections within the features and accelerates the 

performance of the model during segmentation. The extracted 

hierarchical theory vectors are indicated as 𝐻𝑓𝑤
𝑠𝑐. 

Feature concatenation: In order to attain the final Feature 

Set 1. The obtained fuzzy entropy vector 𝐹𝐸𝑥
𝑉𝑡, wavelet packet 

energy vectors 𝑊𝑝𝑣
𝑠𝑡 , and hierarchical theory vectors 𝐻𝑓𝑤

𝑠𝑐 

are concatenated together and are denoted as 𝐹𝑠1𝑎
𝐶𝑜𝑛 and it is 

expressed in Eq. (10): 

 

1Vt st sc Con

x v w aFE Wp Hf Fs+ + =  (10) 

 

Here, the first Feature Set is indicated as 𝐹𝑠1𝑎
𝐶𝑜𝑛. 

Feature Set 2: The second Feature Set is obtained by 

employing R-ViT as a tool to extract the features from the 

input data 𝐶𝑙𝑦
𝐸𝐶𝐺 . The R-ViT [32] is a variant of classical ViT 

that comprises a regional-to-local attention module that helps 

to understand both global and local characteristics from the 

input data. The R-ViT model comprises two tokenization 

procedures that transfer input data into local and regional 

tokens, which assist in extracting significant features from the 

image. Moreover, this tokenization procedure is considered a 

convolution function with diverse path sizes. In R-ViT, the 

path size of the local and regional tokens is 42 and 282. 

Moreover, by employing the regional-to-local attention 

module the R-ViT processes both the tokens. Additionally, 

down-sampling procedures were carried out to separate the 

token’s spatial resolution. At last, the features are obtained by 

taking an average value among the regional tokens. Similarly, 
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the fine-grained location data are also obtained from the local 

token. The features extracted by employing R-ViT are 

represented as 𝐹𝑠2𝑏
𝑅−𝑉𝑖𝑇. 

Feature Set 3: The third set of features is extracted by 

employing the CNN [33]. CNN is employed to extract the deep 

features from the given input information. The key layers of 

the CNN model that are responsible for feature extraction are 

the convolution and max pooling layers. Each layer embedded 

in the CNN model has its own tasks to perform.  

Convolutional layer: This layer comprises filters and feature 

maps. The filers within the layer are viewed as the neuron and 

the outcome from the filter utilized by the prior level is 

referred to as the feature maps.  

Max pooling layer: The key function of this layer is to carry 

out the down-sampling on the feature maps with an aim to 

minimize the issues associated with overfitting. The deep 

features extracted from the input images by utilizing CNN are 

denoted as 𝐹𝑠3𝑐
𝐶𝑁𝑁. 

The pictorial view to describe the feature extraction phase 

is represented in Figure 3. 
 

4.2 Proposed HDF-RBMO-based weighted feature fusion 

process 

 

Followed by feature extraction, weighted feature fusion is 

the next phase that assists in enhancing detection performance 

by optimizing weight along with feature fusion. At this phase, 

the significant features from each extracted features set 

𝐹𝑠1𝑎
𝐶𝑜𝑛 , 𝐹𝑠2𝑏

𝑅−𝑉𝑖𝑇  and 𝐹𝑠3𝑐
𝐶𝑁𝑁  are chosen optimally by 

utilizing the designed HDF-RBMO. During feature selection, 

the feature 𝑂𝐹1𝑡
Con  from Feature Set 1 is selected from the 

range [1,10], the feature 𝑂𝐹2𝑢
R-ViT from Feature Set 2 is chosen 

from the limit [11,20] and the feature 𝑂𝐹3𝑟
CNN from Feature 

Set 3 is taken from the limit [21,30]. Additionally, the 

optimized weights 𝑊𝑡𝑡
𝑜𝑝

, 𝑊𝑡𝑢
𝑜𝑝

and 𝑊𝑡𝑟
𝑜𝑝

 that lie within the 

range [0.01,0.99] are multiple with the corresponding feature, 

which results in weighted Feature Sets as expressed in the 

following equations: 

 
1 1 *f Con op

t t tWf OF Wt=  (11) 

 
2 2 *f R ViT op

u u uWf OF Wt−=  (12) 

 
3 3 *f CNN op

r r rWf OF Wt=  (13) 

 

Later, the resultant weighted Feature Sets are fused together 

as shown in Eq. (14) and the final fused weighted feature 

𝐹𝑢𝑔
𝐹𝑒𝑎  is taken for further processing: 

 
1 2 3Fea f f f

g t u rFu Wt Wt Wt= + +  (14) 

 

The key objective behind weighted feature fusion is to 

increase the relief score as well as the correlation coefficient 

and it is numerically derived in Eq. (15): 
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Figure 4. Developed HDF-RBMO-based weighted feature fusion process 
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Relief score 𝑅𝐹𝑠𝑐 is described as the method to evaluate the 

features with multiple classes from the given input ECG 

images and they are capable of evaluating how the features 

within the images distinguish its instances among multiple 

identical classes. Moreover, it determines the weight T of the 

feature D, i.e., T[D] by employing Eq. (16): 
 

  ( ) ( )| |ni ni

SB SBT D Q D S Q D F= −  (16) 

 

From the above equation, the livelihood of the diverse 

values of the feature D on different instances is represented as 

Q, different values of the feature D are indicated as 𝐷𝑆𝐵, the 

closest instance from a different class is denoted as 𝑆𝑛𝑖, and 

the closest instance from a similar class is represented as 𝐹𝑛𝑖. 

Correlation coefficient 𝐶𝑜𝑟𝑐𝑜𝑓  is defined as the statistical 

metrics that evaluate the robustness of the linear connection 

among two variables as well as it is the normalized evaluation 

of the covariance among the variables and their values lying 

between the limit [-1,1] and it is numerically defined in Eq. 

(17): 
 

( )( ) ( )( )2 22 2
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   
 

(17) 

 

The total count of data points within the given data is n and 

the summation of the product of 𝑆𝑡ℎ and 𝐺𝑡ℎ value for every 

data point is represented as ∑ 𝑆𝐺 . The diagrammatic 

representation of HDF-RBMO-based weighted feature fusion 

is provided in Figure 4. 
 

4.3 Proposed HDF-RBMO 
 

In this designed framework, a hybrid optimization approach 

is developed by integrating the functions of classical DFA and 

RBMO and named HDF-RBMO. The prime function of the 

developed HDF-RBMO is to select the optimal features within 

the extracted Feature Sets and to optimize the weight for 

multiplying with optimal features to enhance the relief score 

and correlation coefficient, which helps to improve the 

detection performance. In this hybrid strategy, DFA [27] is 

employed by considering its ability to manage huge-scale 

optimization issues, which makes it more applicable in 

complicated situations. Moreover, they offer better 

performance in various tuning issues like multi-model sand 

non-linear issues, which results in robust performance. 

However, the DFA is highly complicated to execute and learn. 

The efficiency of DFA is vulnerable to parameter 

optimization, selecting the most significant parameter results 

in suboptimal outcomes. Additionally, in certain cases, the 

DFA faces difficulties in converging effectively for the 

optimal outcome, particularly in dynamic surroundings that 

also result in sub-optimal outcomes. Therefore, the RBMO 

[24] strategy is integrated with the DFA to address these 

shortcomings since they present effective performance in 

complicated regions and avoid local minimum as well as offer 

better convergence than other classical tuning approaches. In 

this developed HDF-RBMO, a random value r within the 

range [0,1] is upgraded according to the developed concept as 

shown in Eq. (18). 

 

( )
fit

fit fit fit

C
r

W M B
=

+ +
 (18) 

In the above equation, the best, worst, mean, and current 

fitness values are indicated as 𝐵𝑓𝑖𝑡 , 𝑊𝑓𝑖𝑡 , 𝑀𝑓𝑖𝑡  and 𝐶𝑓𝑖𝑡 . The 

pseudocode of the proposed HDF-RBMO is presented in 

Algorithm 1.  

 

Algorithm 1: Implemented HDF-RBMO 

Input: Extracted Feature Sets 𝐹𝑠1𝑎
𝐶𝑜𝑛 , 𝐹𝑠2𝑏

𝑅−𝑉𝑖𝑇 , 

𝐹𝑠3𝑐
𝐶𝑁𝑁, and initial weight. 

Output: Optimal features 𝑂𝐹1𝑡
Con , 𝑂𝐹2𝑢

R-ViT , and 

𝑂𝐹3𝑟
CNN, optimized weights 𝑊𝑡𝑡

𝑜𝑝
, 𝑊𝑡𝑢

𝑜𝑝
and 𝑊𝑡𝑟

𝑜𝑝
. 

Initialize the parameters present iteration 𝑡 , highest 

iteration 𝑀𝑖𝑡𝑟, and population count 𝑁𝑝𝑜𝑝. 

While (condition satisfied) 

 For 𝑡 = 1 to 𝑀𝑖𝑡𝑟  

  For 𝑖 = 1 to 𝑁𝑝𝑜𝑝 

   Upgrade the random value r as shown 

in Eq. (19) 

   If r > 0.5 

    Update by employing DFA 

   else 

    Update by employing RBMO 

   end 

  end 

 end 

 Obtain the optimal solution 

end 

 

 

5. ATRIAL FIBROSIS DETECTION USING HYBRID 

(2D, 3D) CONVOLUTION BASED TRANS-

MOBILEUNET++ 

 

5.1 Trans-MobileUNet++ 

– 

Trans-MobileUNet++ is designed by integrating a 

transformer encoder into the MobileUNet++. The 

MobileUNet++ model implements the MobileNet on the 

UNet++ model. It is an effective variant of classical DNN that 

is introduced to execute the semantic segmentation procedure 

by employing the skip connections within the network. In 

addition, the UNet++ model holds a symmetric expanding 

path that enables the model to perform accurate localization as 

well as the contracting path to accumulate the context. The 

skip pathways of the UNet++ hold various skip connections, 

which are employed to boost the gradient flow within the 

network. The outcome attained from the bottom and top layers 

are combined to attain a final outcome as presented in Eq. (19). 
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 (19) 

 

Here, the feature map is represented as 𝑧𝑞,𝑤 , and the 

convolution and activation function are indicated as 𝑉(. ) and 

𝑆(. ) . Moreover, integrating the MobileNet and UNet++ 

enables the framework to process effectively in case of 

minimum training data. 

Furthermore, a transformer encoder is added to the 

MobileUNet++. In the transformer encoder, the input data is 

offered to the layer normalization that helps to normalize the 

activation. Later, the normalized images are offered to the 

multi-head self-attention layer. Following this, a residual 

connection is utilized, which is connected to a layer 
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normalization and feed-forward block. Feed-forward block is 

a combination of two linear layers, a Gaussian Error Linear 

Unit (GELU) and a dropout layer. The size of the input images 

is extended by the initial linear layer and later minimized by 

another linear layer and the final outcome attained from the 

transformer encoder is presented in the following equations. 

 

( ) 4' M f M fO Linear L T T =    (20) 

 

( )( ) 4" ' M fO Dropout GELU O T =   (21) 

 

( )4' " M f M fO Linear O T T =    (22) 

 

From the above equations, the result obtained from the 

transformer encoder is indicated as 𝑂′ , the size and the 

sequence count are expressed as 𝑓  and 𝑀 . The pictorial 

representation of Trans-MobileUNet++ is offered in Figure 5. 

 

 
 

Figure 5. Pictorial view of Trans-MobileUNet++ 

 

5.2 Introduced HC-TMU for atrial fibrosis detection 

 

The designed HC-TMU model is employed to carry out the 

segmentation procedure. This model utilized the fused 

weighted feature 𝐹𝑢𝑔
𝐹𝑒𝑎  and the collected 2D ECG image 

series as the input data. The designed HC-TMU is a 

combination of a hybrid 2D-3D convolution layer and Trans-

MobileUNet++. The hybrid convolutional layer is a 

combination of two convolutional layers namely 2DCNN and 

3DCNN. Here, the feature maps are created by concatenating 

the outcome from both the 2DCNN and 3DCNN equivalently. 

Additionally, a cross-domain transfer is established with the 

help of a data interface procedure. Later, the cross-domain 

concatenation function is employed to establish the unique 2D 

and 3D features. Let us consider, the input offered to the 

2DCNN and 3DCNN as 𝑦2  and 𝑦3 . Further, the output 

attained from both 2DCNN and 3DCNN are expressed as 

𝑡2(𝑐)  and 𝑡3(𝑐) , the hybrid convolutional layer’s data 

interaction is denoted as 𝑊, and the convolution operations 

performed on the 2DCNN and 3DCNN are indicated as 𝑟2(𝑐) 

and 𝑟3(𝑐). In addition, the cross-entropy loss function within 

the hybrid convolutional layer is represented in the below 

equations: 

 

2 3( , ) ( , ( ( ) ( )))K c e G e g r c r c= +  (23) 

 

2 3 2 3( ( ) ( )) ( ( ), ( ))r c r c C t c t c+ =  (24) 

 

2 2 2( )t c y=   (25) 

 

3 3 3( )t c y=   (26) 
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Figure 6. Developed HC-TMU-based AF detection model 

 

In these equations, the cross-entropy loss function is 

denoted as 𝐺(⋅), and the actual label for c is represented as 𝑒. 

Initially, the input data are offered in two different formats 

namely 2D and 3D. Here, the fused weighted feature is taken 

as the 2D data for processing and the collection of ECG image 

series is considered as the 3D data. Followed by the 

convolutional operation, the processed input is fed to the 

Trans-MobileUNet++ to attain the segmented outcome. The 

diagrammatic illustration of the developed HC-TMU-based 

AF detection framework is offered in Figure 6. 

 

 

6. RESULTS AND DISCUSSION 
 

6.1 Simulation setup 
 

The introduced AF detection framework was built and 

trained on the Python platform. The setup for this detection 

framework was established by considering the population 

counts as 10, the highest count of iteration as 50, and the 

chromosome length as 33. Additionally, the performance 

analysis was carried out by analyzing the outcome of the 

designed mode with a set of classical optimization strategies 

including Reptile Search Algorithm (RSA), Mud Ring 

Algorithm (MRA), Dark Forest Algorithm (DFA) and RBMO 

and the segmentation performance is analyzed with DCNN, 

MSResNet, LSTM, and RNN. 

 

6.2 Evaluation measures 

 

The effectiveness of the designed AF detection framework 

over diverse optimization strategies and segmentation 

approaches is demonstrated based on the following measures.  

(a) Accuracy of the approach is estimated by Eq. (27).  
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T T
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+ + +
 (27) 

 

(b) The dice coefficient of the model is evaluated using Eq. 

(28).  

 

2

ig ig

c t

ig ig

c t
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 (28) 

 

(c) Jaccard is determined by employing Eq. (29).  

 
ig ig

c t
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(d) Sensitivity of the model is derived using Eq. (30).  

T

T F

Q
Sensitivity

Q M
=

+
 (30) 

 

(e) Specificity is evaluated by Eq. (31).  
 

T

T F

M
Specificity

M Q
=

+
 (31) 

 

Here, the false positive, false negative, true positive, and 

true negative are represented as 𝑄𝐹 , 𝑀𝐹 , 𝑄𝑇 , and 𝑀𝑇 . The 

ground truth and segmented image are described as 𝑀𝑡𝑐
𝑖𝑔

 and 

𝐷𝑖𝑡
𝑖𝑔

. 
 

6.3 Designed HC-TMU-based segmented images 
 

The segmented images obtained by the developed HC-TMU 

model are presented in Table 2. 

 

Table 2. Overall performance validation with classical techniques 

 
Terms DCNN [1] MSResNet [2] LSTM [5] RNN [6] HC-TMU 

Dice Coefficient 

Median 0.8066764 0.8216339 0.8174575 0.8451191 0.9275383 

Worst 0.7797717 0.7878065 0.7901691 0.8120909 0.8892463 

Best 0.838269 0.8338267 0.8829492 0.8866828 0.943818 

Mean 0.8041712 0.8134676 0.8244332 0.8447935 0.9226687 

Jaccard 

Median 0.6759927 0.6972831 0.691279 0.7317839 0.864961 

Worst 0.6390375 0.6499016 0.6531236 0.6836305 0.8005792 

Best 0.7215689 0.715011 0.7904289 0.7964331 0.893613 

Mean 0.6728436 0.6859655 0.7020573 0.7320043 0.8570105 

Accuracy 

Median 0.8036957 0.816658 0.8187332 0.8472366 0.9242783 

Worst 0.7724762 0.7945251 0.8025055 0.8234711 0.8907318 

Best 0.8394775 0.8349457 0.8743744 0.8810425 0.9443207 

Mean 0.804715 0.8134933 0.8244705 0.8458298 0.9227249 

Peak Signal-to-Noise Ratio (PSNR) 

Median 55.201737 55.498199 55.547641 56.291896 59.36967 

Worst 54.560535 55.003217 55.175253 55.662645 57.745866 

Best 56.075446 55.954535 57.140022 57.376885 60.673864 

Mean 55.245987 55.436212 55.720633 56.286607 59.353584 

Mean Squared Error (MSE) 

Median 0.1963043 0.183342 0.1812668 0.1527634 0.0757217 

Worst 0.1605225 0.1650543 0.1256256 0.1189575 0.0556793 

Best 0.2275238 0.2054749 0.1974945 0.1765289 0.1092682 

Mean 0.195285 0.1865067 0.1755295 0.1541702 0.0772751 

 

6.4 Detection performance estimation of the designed 

model 
 

The introduced HC-TMU's segmentation performance is 

monitored by considering epoch count and the obtained graphs 

are presented in Figure 7. This evaluation estimates how 

effectively this designed segmentation model determines the 

infected area with the given input data. This evaluation helps 

to determine the quality of resources employed by the 

segmentation models during the implementation phase. It is 

necessary to analyze that the introduced framework has the 

capacity to process the input data more effectively even in the 

presence of unwanted noise or artifacts. Moreover, this 

evaluation is performed with the standard framework to 

monitor the performance in terms of accuracy, Jaccard, and 

dice coefficient by varying the epoch count from 50–250. 

From Figure 7(a), the accuracy of the introduced HC-TMU 

framework is 14.45%, 11.76%, 9.19%, and 5.55% more 

advanced than DCNN, MSResNet, LSTM, and RNN, when 

considering the epoch count as 50. Hence, the segmentation 

efficiency of the introduced model is superior to other standard 

frameworks. 

 

6.5 Convergence analysis for the developed model  
 

The convergence graph attained by the developed HDF-

RBMO model is shown in Figure 8. This evaluation is 

essential for evaluating the convergence of the employed 

tuning strategy throughout the iteration. From the given 

convergence graph, the straight line describes that the best 

fitness value identified by the tuning strategy is stable and 

reveals that the optimization technique is stuck within the local 

minimum. According to the obtained graph, the convergence 

of the proposed HDF-RBMO model has the ability to offer 

more advanced performance, when compared to the traditional 

techniques. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

 

Figure 7. Detection performance evaluation of the proposed framework with traditional approaches with respect to (a) Accuracy, 

(b) Dice-coefficient, (c) Jaccaed, (d) MSE, (e) PSNR, (f) Sensitivity, (g) Specificity 
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Figure 8. Convergence analysis for the proposed framework 

 

6.6 Overall detection performance validation with classical 

models 

 

The overall segmentation performance of the designed 

model is presented in Table 3. The segmentation performance 

is determined by considering the mean, best, median, and 

worst values. By varying the statistical measures, a constant 

threshold value is handled during the segmentation procedure. 

Moreover, the developed model’s flexibility is improved 

which is necessary for determining the most significant 

features from the given input. From the Table, the dice 

coefficient of the suggested framework, when analyzing the 

mean performance is 14.73%, 13.42%, 11.91%, and 9.21% 

more effective than other classical techniques such as DCNN, 

MSResNet, LSTM, and RNN, and provided improved 

performance throughout AF segmentation. 

 

6.7 Statistical evaluation for the suggested framework  

 

Statistical analysis is essential to identify the effectiveness 

of the developed HDF-RBMO technique based on weighted 

feature fusion. The statistical analysis of the designed 

technique with standard approaches is given in Table 3. From 

Table 3, the best performance of suggested HDF-RBMO is 

20.58%, 23.40%, 22.09%, and 26.11% better than the 

traditional techniques such as RSA, MRA, DFA, and RBMO. 

Thus, the analysis outcome revealed that the effectiveness of 

the designed optimization model is more effective than other 

standard techniques. 

 

Table 3. Statistical evaluation for the developed framework 

 
Terms RSA MRA DFA RBMO HDF-RBMO 

Worst 2.9343999 1.6979305 3.9218194 1.6634846 3.4747119 

Best 1.21243 1.2571479 1.2358679 1.3031325 0.9628628 

Mean 1.5119658 1.3736648 1.4749031 1.3117682 1.0772629 

Standard deviation 0.4452767 0.1666598 0.5482389 0.0504273 0.385869 

Median 1.21243 1.2582486 1.3844285 1.3031325 0.9628628 

 

 

7. CONCLUSIONS 

 

In this work, we proposed an innovative AF detection 

framework that integrates deep learning with hybrid 

optimization. The model combines HDF-RBMO for optimal 

feature selection and weighting with the HC-TMU 

segmentation architecture, achieving superior performance 

compared to baseline models. Experimental results 

demonstrated that HC-TMU attained a mean dice coefficient 

of 0.9226 and outperformed DCNN, MSResNet, LSTM, and 

RNN by 12.48%, 13.09%, 7.99%, and 7.18%, respectively. 

These results highlight the potential of the proposed method 

for early and accurate AF detection. Despite these promising 

outcomes, several limitations remain. First, the framework 

risks modality confusion since ECG-derived features and 

echo-inspired segmentation approaches are combined. 

Second, the model has not yet undergone clinical validation, 

limiting its immediate applicability in healthcare settings. 

Third, the reliance on a single dataset (EchoNet-Dynamic) 

may restrict generalizability across diverse patient 

populations. Finally, the interpretability of the fused weighted 

features remains limited, which may hinder clinical trust and 

adoption. Future research will focus on addressing these 

challenges by incorporating multimodal data sources (e.g., 

combining ECG with Echocardiogram sequences), exploring 

real-time deployment in clinical workflows, and developing 

explainable AI mechanisms to better interpret fibrosis-related 

patterns. These enhancements could significantly improve the 

reliability, clinical relevance, and translational impact of AF 

detection models.  
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