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Orthotropic plates are used in advanced structures where directional stiffness is critical.
Under nonlinear thermal loading their bending behaviour becomes complex and demands
advanced modelling techniques. The primary goal of this study is to formulate and
validate a numerical approach for evaluating the thermally induced cylindrical bending
of orthotropic plate under nonlinear temperature distribution. The study investigates the
influence of nonlinear thermal loading on the cylindrical bending behaviour of the
orthotropic plate. The applied thermal profile comprises a base temperature field, a linear
gradient across plate’s thickness and an additional nonlinear or complex variation along
the same dimension. Such a composite temperature distribution is essential for capturing
the realistic thermal response of orthotropic laminated structures subjected to cylindrical
bending. To analyse the resulting thermal deformations a higher order trigonometric plate
theory is employed under both linear and nonlinear thermal conditions. For comparative
evaluation, a parabolic plate theory is also utilized, specifically to assess the accuracy and
performance of the trigonometric model when exposed to nonlinear or complex thermal
gradients. The mathematical model is derived using energy principles and solved
analytically via Navier’s type series expansion. A simulation tool is developed in
FORTRAN to analyse the thermal stresses and deflections under nonlinear thermal
loadings. Simulation results demonstrate that a nonlinear thermal load intensify the
results of axial and transverse displacements. The developed analytical framework
effectively captures the nonlinear thermal effects in orthotropic plate undergoing
cylindrical bending.

1. INTRODUCTION

structures, offering excellent precision while maintaining
computational efficiency number of through a reduced number

The cylindrical bending idealization treats a laminated plate
as infinitely long in one direction and simply supported along
its edges, enabling a clean separation of variables for studying
flexure under mechanical or thermal fields. Modern plate and
elasticity theories have significantly sharpened our
understanding of how composite laminates respond in such
one-dimensional bending states, especially when the
temperature field is nonuniform and the coupling is nonlinear.
Building on earlier nth-order and higher-order formulations
applied to orthotropic laminates and sandwich constructions
[1-3], as well as exact three-dimensional and discrete-layer
solutions that exposed the limits of classical plate theory
(CPT) [4, 5], subsequent work has spanned dynamic behavior,
piezoelectric coupling, and refined shear/normal-deformation
kinematics in cylindrical bending [6-18].

In the last few years, several trends stand out. First, a
notable advancement in the field is the refinement of semi-
analytical and isogeometric scaled boundary finite element
methods. These techniques have proven highly effective for
analyzing cylindrical bending in thick, layered composite
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of degrees of freedom [19-25]. Second, realistic service
conditions—moisture diffusion, temperature gradients, and
elastic foundations—are now embedded directly in
cylindrical-panel ~models; for example, quasi-static
hygrothermal bending of laminated cylindrical panels has been
analyzed with fully coupled field equations [20]. Third,
thermal boundary complexities are being resolved explicitly:
laminated plates with arbitrary edge restraints subjected to
non-uniform temperature fields admit efficient analytical—
numerical solutions that are immediately useful for validation
and benchmarking [21]. Fourth, data-assisted and energy-
variational solvers are being used to capture geometric
nonlinearity in laminated plates with high fidelity, pointing to
robust surrogates for demanding bending cases [22]. Fifth,
coupled thermo-mechanical analyses for advanced
constituents—such as graphene-reinforced functionally
graded plates—now quantify post-buckling and large-
deflection responses under prescribed temperature fields,
informing design under severe environments [23-28]. The
study of material orthotropy and length to thickness ratio on
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transverse displacement of sandwich beam was studied and
presented by Kulkarni [29] using parabolic shear deformation
theory (PSDT).

Against this backdrop, the analysis of an orthotropic plate
strip under a nonlinear through-thickness temperature profile
in cylindrical bending remains comparatively under-reported.
The present study addresses that gap by quantifying how a
nonlinear thermal field modifies the stress resultants and
interlaminar stress distributions of an orthotropic plate
subjected to cylindrical bending.

2. METHODOLOGY

The following Figure 1 illustrates an orthotropic plate strip
with its coordinate system. The strip extends significantly in
the y direction, while its length in the x direction is limited and
denoted by “a”. The z axis points downward through the

thickness of the plate strip.

y

/

b a

»  xu

§

zZ, W
Figure 1. A coordinate system of an orthotropic plate strip

In structural mechanics, higher order theories play a vital
role in the analysis of plates that experience a significant shear
effect under nonlinear thermal load. In present case higher
order trigonometric and Parabolic plate theories are used to
understand the effect of nonlinear thermal load on orthotropic
plate in cylindrical bending. The displacement field of
trigonometric plate theory is represented by the following Egs.
(1) and (2). Trigonometric and parabolic plate theories
describe how plates deform due to shear forces. These are
known as shear deformation theories. From this point forward,
these theories are referred to as Trigonometric Shear
Deformation Theory (TSDT) and PSD.

u(x,z)=-z ow(x) + L sin 22 o(x) (1
Vs h
w(x) = w(x) )

In the referenced expression (1) and (2), the variable u
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denotes displacement along the axial (x axis), whereas w
represents displacement in transverse direction (z axis). The
function @ in Eq. (1) is unknown rotation to be determined.
The strains are evaluated with reference to elasticity theory as
given by following Eq. (3).
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The relationship between stress and strain for an orthotropic
plate strip is represented by below Eq. (4).

o, | _ Q]] 0 ¢ —aT
sz - 0 QSS }/zx

The reduced stiffness coefficients are represented by Q; ;in
Eq. (4) are defined in Eq. (5).
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In the above Eq. (5), the parameters are defined as follows:

E represents the modulus of elasticity, u denotes Poisson’s

ratio, G is the shear modulus, a, indicates the coefficient of

thermal expansion along the x axis and 7 corresponds to the

change in temperature. Furthermore, Eq. (6) describes the

temperature distribution within the system, where the

temperature at any specific location is a function of both the

horizontal coordinate (x) and the vertical coordinate (z),
expressed as 7 (x, z).

w(z)= h sin 7~
T

(6)

T(x, z>=T](x)+§Tz<x)+ T, (x)

The above Eq. (6) characterizes how temperature varies
along the depth of the beam structure. This thermal profile is
influenced by three disctinct thermal loads, denoted as
T,, T, and T5. Among these the component T, contrubutes to a
linearly varying temperature field, reflecting a uniform
thermal gradient across the beam’s thickness. In contrast, the

influence of T3 introduces a nonlinear variation
mathematically described by the function (1/)(2) = %sin %),

where, / is the total depth of the beam and z is vertical
coordinate. This sinusoidal term captures the oscillatory nature
of the temperature distribution induced by T3, offering a more
complex thermal behaviour compared to the linear case. In this
analysis, the thermal load applied follows a sinusoidal pattern.

2.1 Equations of motion

The equations of motion are derived using the principle of
virtual work, which asserts that for a system subjected to
infinitesimal virtual displacements, the external work
performed must be exactly balanced by the internal work
generated by the system’s internal forces. This principle forms
the foundation of the variational approach, a powerful
technique for formulating the governing differential equations
of structural behaviour. Once these equations are established,
Navier’s method employed to compute the resulting
displacements and stress fields under thermal loadings. By



applying this principle to an orthotropic plate strip, one can
derive the corresponding governing equations or equation of
motion that describe its mechanical behaviour. The following
Eq. (7) represents an application of the virtual work principle
to an orthotropic plate in cylindrical bending.

h
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To solve the above Eq. (7), the method of integration by
parts is employed, which facilitates the transformation of the
variational expression into a more tractable form. This
mathematical technique allows the redistribution of
derivatives between functions ultimately leading to the
derivation of the systems’ governing equations. As a result of
this process, the fundamental equations of motion are obtained
and these are represented by the following Egs. (8) and (9).
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2.2 Material properties

The material properties used in the analysis are given in Eq.
(10) below.

E
21 225,G, =G, =0.5E,, u, =o.25,%:3 (10)

2 1

The moderate modular ratio and low ratio of thermal
expansion coefficients is considered for analysis. £; and E>
represent Young’s modulus in fibre (1) and transverse (2)
directions are shown in Figure 2. A ratio of 25 indicates the
material is highly stiff along the fibre axis compared to the
transverse direction. This is typically a fibre reinforced
composite where fibres dominate stiffeness in one direction.
Such anisotropy is very crucial in applications demanding
directional strength, like aerospace panels.
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Figure 2. Orientation of fibre and transverse directions
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The shear modulus is denoted by G2 and Gz in the planes
involving the fibre direction. Setting these shear moduli to half
of E, indicates moderate resistance to shear deformation
especially in the directions involving the weaker transverse

axis. This balance helps to ensure the material can tolerate
torsional load without being over rigid. This helps to prevent
cracking under complex stresses. The value of Poisson’s ratio
indicates that when the material is stretched along fibre
direction, it contracts 25% as much in the transverse direction.
The symbols @; and a, indicate how much a material
streaches with heat along and across the fibre directions,
respectively. A ratio of coefficient of thermal expansion of 3
implies that the material expands 3 times more in transverse
direction (2) than along the fibre direction (1) or axis when
heated. The low coefficient of thermal expansion minimizes
warping in the structural member.

2.3 Navier’s solution

The Navier’s solution technique is an analytical approach
used to solve problems in elasticity and plate theory. It is
especially useful in thermal stress analysis where temperature
stresses are induced under simply supported boundary
conditions. This method is very effective in scenarios which
involves temperature variations, where uneven heating leads
to internal stresses and structural distortion. By expressing
displacement and stress components as series expansions,
Navier’s technique simplifies the complex equations
governing plate deformation under thermal influence. The
solution fulfills the conditions as given in the below Eq. (11).

w=0,M, =0,N, =0,M’ =0 (11

In the above equation, the term w is the transverse
displacement which is zero; this implies the simply supported
boundary conditions. The term M, is bending moment in x
direction has a value of zero, indicating that no resistance to
bending since simply supported edge. The term N, is in-plane
normal force in x direction and has the value zero. This
indicates no axial force along x direction at the boundary. This
is important in thermal stress analysis where expansion or
contraction may occur.

The unknowns given below are represented in trigonometric
form which satisfy the exact boundary conditions. Thermal
load expansion is expressed using a single sine term from the
Fourier series, as illustrated below in the Egs. (12) to (16).

w(x) = Zwm sin 2 (12)
p(x) = lewm cos ™ (13)
T (x) = ;T sin (14)
T,(x)= Zsz sin (15)
T,(x) = ZT sin - (16)

m=1

The first harmonic of a Fourier sine series or first mode of
sinusoidal thermal distribution is represented by Ty, = Ty, =
Tsm =Ty =T, = T3, m = 1. This implies that only the first



term in the series is active representing a single sinusoidal
wave across the thickness in one direction.

Substitution of the solution into the equations of motion
results into a set of algebraic equations. This can be
represented by following Eq. (17).

[K1{s} =1{/} (17)
The symmetric stiffness is represented by [K]. The

coefficients of the stiffness matrix [K] are as given in the
following Eq. (18).

4 4 3_3
p=%Z p=Z
|:K11 K12 — a a (18)
K21 Kzz m3”3 m2ﬂ2
D Db

The {6} in Eq. (17) is given by the following Eq. (19).

O ={w,. 0.} (19)

The force vector is denoted by {f} in the above Eq. (17).
The elements of the thermal load vector {f} are given below
Eq. (20).

2.2 2.2
m- 7w m- 7w
f Rl 2 T2m + R2 3 TSm
fl = a a (20)
? _RS n’;ﬂ- T’Zm _R6 n,laﬂ- T’}m

By solving this system of equation, it becomes possible to
determine the values represented by {6}, which in turn allows
for the calculation of stresses and resulting displacements
within the structure.

3. RESULTS AND DISCUSSION

Thermal deformation behaviour has been analysed using
four distinct plate theories: higher order trigonometric
(TSDT), PSDT first order shear deformation (FSDT) and CPT.
These models are applied to orthotropic plate undergoing
cylindrical bending under linear and nonlinear thermal loading
conditions. The calculations are performed for aspect ratios of
4 and 10. The aspect ratio (a/h) is denoted by S in the result
tables. To ensure consistency and clarity all stress and
displacement outcomes are presented in the normalized form
in Egs. (21)-(24).
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The transverse shear stresses are critical under nonlinear
thermal loading. To capture the exact thermal behaviour of
these stresses, equation of equilibrium is used and given as
below Eq. (25).

h
NI
zx _J- Zhi'dZ-FC
- =7 ox

(25)

In the above equation the constant of integration “C” is
calculated by using boundary conditions and upon substitution
in the Eq. (25), shear stress can be calculated. In the above Eq.
(25) the term (t,,) represents the shear force per unit area
acting along x axis on a surface normal to the z axis. The term
(0,) is normal stress in the x direction and varies due to

temperature gradients. The term ("aL;) in the above Eq. (25)

represents spatial derivative of normal stress which captures
how the normal stress changes along the length. Since these
stresses vary through the thickness under thermal loading,
integrating across the thickness of the plate from bottom (%4/2)
to top (-//2) captures the cumulative effect of these variations
across the total depth (%). Figure 3 illustrates the upper and
lower surfaces of the plate undergoing cylindrical bending.
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Figure 3. The cross section of plate in cylindrical bending

The integration constant accounts for boundary conditions
and ensure the solution satisfies equilibrium. The above Eq.
(25) says that to maintain equilibrium under thermal loading,
the transverse shear stress must balance the gradient of normal
stress through the thickness.

The results of thermal deformations in dimensionless form
under linear (L) and nonlinear (NL) thermal loadings are
presented in Tables 1 and 2 below. For linear (L) thermal load
T, =1and T, = T; = 0. In case of nonlinear (NL) thermal
load the thermal loads are Ty = 0andT, =T; =1. The
importance of Tables 1 and 2 is that both tables show how
temperature variations affect displacements and stresses under
linear and nonlinear thermal loads.

In linear thermal load case (L), all theories give identical
results of axial displacements for an aspect ratio 4 and 10. This
implies that axial displacement does not get affected under
linear thermal load. In case of nonlinear load (NL), higher
theories TSDT and PSDT predicts higher values of axial
displacements. Nonlinearity in thermal load increases axial
displacement. First order and classical do not provide results
under nonlinear thermal load. There is no significant variation
in the results of transverse displacement evaluated by all
theories for an aspect ratio 4 and 10 under linear thermal load
(L). However, nonlinear thermal loading (NL) greatly
amplifies transverse displacements for thick and thin
orthotropic plate under cylindrical bending. Aspect ratio has



negligible effect on axial displacements. The percentage
difference between the values of axial and transverse
displacements under linear and nonlinear thermal load is 55%
as shown in Table 1. The nonlinear thermal loading leads to
large temperature gradients through the thickness. These
gradients include higher thermal strains which ultimately
amplify the bending and stretching of the plate under
cylindrical bending. As temperature increases nonlinearity, the
material expands more aggressively this causes significant
deformation which linear model fails to capture. The 55% rise
in displacements is a direct result of this intensified thermal

expansion. In linear model, temperature is assumed to vary
mildly. But in reality, nonlinear profiles cause uneven stress
distribution leading to larger deflections. Higher order theories
like TSDT and PSDT include higher order terms in the
displacement field. These terms allow the model to account for
shear deformation and thickness wise variation in strain. Thus,
the higher order theories are essential to capture realistic stress
and displacement analysis in advanced materials. Whereas
FSDT and CPT do not show nonlinear results since they lack
necessary terms to capture these effects.

Table 1. Normalized displacements values for an orthotropic plate under cylindrical bending influenced by linear (L) and
nonlinear thermal (NL) loads with aspect ratios 4 and 10

Theory u w

S L NL % Difference L NL % Difference
TSDT 0.1592 0.2814 55.46 1.0132 1.7635 54.04
PSDT 4 0.1595 0.2828 55.76 1.0238 1.8126 55.61
FSDT 0.1592 - - 1.0132 - -

CPT 0.1592 - - 1.0132 - -
TSDT 0.1592 0.2822 55.73 1.0132 1.7918 55.55
PSDT 10 0.1594 0.2829 55.84 1.0200 1.8071 55.68
FSDT 0.1592 - - 1.0132 - -

CPT 0.1592 - - 1.0132 - -

Table 2. Normalized stress values for an orthotropic plate under cylindrical bending influenced by linear (L) and nonlinear
thermal (NL) loads with aspect ratios 4 and 10

Theory Gy TEE
S L NL L NL Remark

TSDT 0.0003 -1.6426 0.0000 -0.0859 Values are less than zero
PSDT 4 -0.0267 -1.7601 -0.0004 -0.0904 Values are less than zero
FSDT 0.0000 - 0.0000 - -
CPT 0.0000 - 0.0000 - -

TSDT 0.0001 -1.7053 0.0000 -0.0357 Values are less than zero
PSDT 10 -0.0171 -1.7463 -0.0001 -0.0361 Values are less than zero
FSDT 0.0000 - 0.0000 - -
CPT 0.0000 - 0.0000 - -

Axial Displacement under Linear and Nonlinear Thermal
load

0.4
03
0.2
0.1

-0.6 -0.4 -0.2 0.6

-0.1
-0.2
-0.3
-0.4

21

under nonlinear thermal load

-under linear thermal load

Figure 4. Variation of axial displacement () through the thickness (%) under linear and nonlinear thermal load for an aspect ratio

The results of normal stresses are very small under linear
thermal load (L) and nonlinear thermal load (NL).
Nonlinearity in thermal load does not affect normal stress

4
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significantly. The transverse shear stresses are affected
strongly than normal stresses by the influence of aspect ratio.
Slender plate in cylindrical bending experiences reduced shear



stresses under nonlinear thermal load (NL). The results of
transverse shear stresses appear to be highly sensitive to the
choice of theory. It is noted that nonlinear thermal effects
reduce shear stresses as the plate becomes thinner. Aspect ratio
plays an important role under nonlinear thermal load, where
slender plate relieves thermal shear stress more effectively.
Higher order theories (TSDT and PSDT) provide consistent
and realistic prediction of normal stresses and shear stresses.
The results evaluated by higher theories confirm that higher
order plate theories are essential for analysis under thermal
loadings.

The variation of these displacements and stresses are shown
in Figures 4-6. The variations of axial displacement, normal
stress and shear stress across the thickness (/) evaluated by
trigonometric shear deformation theory (TSDT) under linear

and nonlinear thermal loadings is shown in Figures 4-6
respectively. The higher values of axial displacement and
nonlinear variation of normal stress across thickness (%) is seen
under nonlinear thermal load and shown in Figures 4 and 5.
The transverse shear stresses evaluated by 3D equations of
equilibrium are zero at upper and lower surfaces of plate under
cylindrical bending. The nonlinear variation and realistic
curve of shear stresses is seen across the thickness (%) of plate
as shown in Figure 6. Table 2 shows negative stresses under
nonlinear thermal loading which indicates that nonlinear
thermal effects induce compressive type stresses in the plate
undergoing cylindrical bending. On the other hand, CPT and
FSDT yield zero stress prediction under same conditions. This
shows their limitations in capturing nonlinear response.

Normal Stress Under Linear and Nonlinear Thermal Load

2
1.5
1

-055\/

-1.5

2 !
=/h

_\Iognal Stress

Y

under nonlinear thermal load

under linear thermal load

Figure 5. Variation of normal stress (&, ) across the thickness (%) under linear and nonlinear thermal load for an aspect ratio 4

Transverse Shear Stress Under Linear and Nonlinear
Thermal load

0.1

Tren 1sverse Shear Stress

under nonlinear thermal load

0.4 0.6

under linear thermal load

Figure 6. Variation of transverse shear stress (T,,) across the thickness (%) under linear and nonlinear thermal load for an aspect
ratio 4

4. CONCLUSION

The study explores the thermal behaviour of an orthotropic
laminated plate subjected to cylindrical bending under both
linear and nonlinear thermal loading conditions, employing
trigonometric shear deformation theory. The finding revels a
pronounced increase in thermal displacements and stress
levels when the thermal load transitions from a linear to
nonlinear profile. This shift underscores the sensitivity of
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plate’s structural response to the nature of thermal input.

Furthermore, under nonlinear thermal loading the results
obtained using trigonometric shear deformation theory show
only a slight deviation from those predicted by PSTD. This
implies that both higher order theories are capable of capturing
the intricate thermal effects with reasonable accuracy.

In real world applications, thermal loads are seldom
uniform or linear. Nonlinear thermal loading reflects a more
realistic and complex distribution of heat across the structure



which significantly influences the mechanical response. By
incorporating these nonlinear effects, the analysis yields a
more precise prediction of plate’s behaviour.

Higher order theories, such as trigonometric and parabolic
models are better equipped to account for these complexities.
Their ability to represent the through thickness variation of
temperature and shear strains make them especially valuable
in evaluating the performance of laminated composite
structures under thermal stress. The comparative results
reinforce the importance of using advanced modelling
approaches when dealing with nonlinear thermal environment
as they provide deeper insights into the structural integrity and
reliability of such systems. A key limitation of this study is the
assumption of simply supported boundary conditions which
may not fully represent the complexity of real-world structural
constraints. One of key area for future studies is the integration
of coupled thermo-mechanical effects were both temperature
variation and mechanical forces acts on the laminates
undergoing cylindrical bending. Another important area for
future studies is the extension of this work and study of
optimization. This will improve overall structural efficiency.
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NOMENCLATURE
Ex normal strain
Vix shear strain
E modulus of elasticity
G shear modulus
i normalized axial displacement
w normalized transverse
Oy normalized normal stress
TLE normalized transverse shear stress obtained
by using equilibrium equation
[K] stiffness matrix
(Q;) reduced stiffness coefficient
{1 force vector
ﬂ ] modular ratio
E;
E; modulus of elasticity in fibre direction
E, modulus of elasticity in transverse direction
L linear thermal load
NL nonlinear thermal load
S aspect ratio (S = %)
h thickness of plate
a length of plate along x axis
b length of plate along y axis
Eq. (18) h3
D, = Qllﬁ' D, = Q11(0-0645h3)
Eq. (19) Dy = Q4,1(0.0506h%), D;; = Qs5(0.5 h)
Eq. (20) h? 2h?
R, = 12 (@xQ11), R, = ?(alel)
Eq. (21) 2h? h?
Rs = 3 (axQ11), R = 2 (axQ11)
Greek symbols
[ﬁ] ratio of coefficient of thermal expansion
241
a, coefficient of thermal expansion in
transverse direction
aq coefficient of thermal expansion in fiber
direction
(7 angle between fiber axis and reference axis
x. In present case 8 = 0. Hence, a; = a, and
az = (Xy
é variational operator
Uij Poisson’s ratio



	1. Introduction



