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Orthotropic plates are used in advanced structures where directional stiffness is critical. 
Under nonlinear thermal loading their bending behaviour becomes complex and demands 
advanced modelling techniques. The primary goal of this study is to formulate and 
validate a numerical approach for evaluating the thermally induced cylindrical bending 
of orthotropic plate under nonlinear temperature distribution. The study investigates the 
influence of nonlinear thermal loading on the cylindrical bending behaviour of the 
orthotropic plate. The applied thermal profile comprises a base temperature field, a linear 
gradient across plate’s thickness and an additional nonlinear or complex variation along 
the same dimension. Such a composite temperature distribution is essential for capturing 
the realistic thermal response of orthotropic laminated structures subjected to cylindrical 
bending. To analyse the resulting thermal deformations a higher order trigonometric plate 
theory is employed under both linear and nonlinear thermal conditions. For comparative 
evaluation, a parabolic plate theory is also utilized, specifically to assess the accuracy and 
performance of the trigonometric model when exposed to nonlinear or complex thermal 
gradients. The mathematical model is derived using energy principles and solved 
analytically via Navier’s type series expansion. A simulation tool is developed in 
FORTRAN to analyse the thermal stresses and deflections under nonlinear thermal 
loadings. Simulation results demonstrate that a nonlinear thermal load intensify the 
results of axial and transverse displacements. The developed analytical framework 
effectively captures the nonlinear thermal effects in orthotropic plate undergoing 
cylindrical bending.  
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1. INTRODUCTION

The cylindrical bending idealization treats a laminated plate
as infinitely long in one direction and simply supported along 
its edges, enabling a clean separation of variables for studying 
flexure under mechanical or thermal fields. Modern plate and 
elasticity theories have significantly sharpened our 
understanding of how composite laminates respond in such 
one-dimensional bending states, especially when the 
temperature field is nonuniform and the coupling is nonlinear. 
Building on earlier nth-order and higher-order formulations 
applied to orthotropic laminates and sandwich constructions 
[1-3], as well as exact three-dimensional and discrete-layer 
solutions that exposed the limits of classical plate theory 
(CPT) [4, 5], subsequent work has spanned dynamic behavior, 
piezoelectric coupling, and refined shear/normal-deformation 
kinematics in cylindrical bending [6-18]. 

In the last few years, several trends stand out. First, a 
notable advancement in the field is the refinement of semi-
analytical and isogeometric scaled boundary finite element 
methods. These techniques have proven highly effective for 
analyzing cylindrical bending in thick, layered composite 

structures, offering excellent precision while maintaining 
computational efficiency number of through a reduced number 
of degrees of freedom [19-25]. Second, realistic service 
conditions—moisture diffusion, temperature gradients, and 
elastic foundations—are now embedded directly in 
cylindrical-panel models; for example, quasi-static 
hygrothermal bending of laminated cylindrical panels has been 
analyzed with fully coupled field equations [20]. Third, 
thermal boundary complexities are being resolved explicitly: 
laminated plates with arbitrary edge restraints subjected to 
non-uniform temperature fields admit efficient analytical–
numerical solutions that are immediately useful for validation 
and benchmarking [21]. Fourth, data-assisted and energy-
variational solvers are being used to capture geometric 
nonlinearity in laminated plates with high fidelity, pointing to 
robust surrogates for demanding bending cases [22]. Fifth, 
coupled thermo-mechanical analyses for advanced 
constituents—such as graphene-reinforced functionally 
graded plates—now quantify post-buckling and large-
deflection responses under prescribed temperature fields, 
informing design under severe environments [23-28]. The 
study of material orthotropy and length to thickness ratio on 
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transverse displacement of sandwich beam was studied and 
presented by Kulkarni [29] using parabolic shear deformation 
theory (PSDT). 

Against this backdrop, the analysis of an orthotropic plate 
strip under a nonlinear through-thickness temperature profile 
in cylindrical bending remains comparatively under-reported. 
The present study addresses that gap by quantifying how a 
nonlinear thermal field modifies the stress resultants and 
interlaminar stress distributions of an orthotropic plate 
subjected to cylindrical bending. 

2. METHODOLOGY

The following Figure 1 illustrates an orthotropic plate strip
with its coordinate system. The strip extends significantly in 
the y direction, while its length in the x direction is limited and 
denoted by “a”. The z axis points downward through the 
thickness of the plate strip. 

Figure 1. A coordinate system of an orthotropic plate strip 

In structural mechanics, higher order theories play a vital 
role in the analysis of plates that experience a significant shear 
effect under nonlinear thermal load. In present case higher 
order trigonometric and Parabolic plate theories are used to 
understand the effect of nonlinear thermal load on orthotropic 
plate in cylindrical bending. The displacement field of 
trigonometric plate theory is represented by the following Eqs. 
(1) and (2). Trigonometric and parabolic plate theories
describe how plates deform due to shear forces. These are
known as shear deformation theories. From this point forward,
these theories are referred to as Trigonometric Shear
Deformation Theory (TSDT) and PSD.
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In the referenced expression (1) and (2), the variable u 

denotes displacement along the axial (x axis), whereas w 
represents displacement in transverse direction (z axis). The 
function ∅ in Eq. (1) is unknown rotation to be determined. 
The strains are evaluated with reference to elasticity theory as 
given by following Eq. (3).  
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The relationship between stress and strain for an orthotropic 
plate strip is represented by below Eq. (4).  
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The reduced stiffness coefficients are represented by 𝑄𝑄�𝑖𝑖𝑖𝑖 in 
Eq. (4) are defined in Eq. (5). 

1
11 11 55 55 13

12 21

,
1

E
Q Q Q Q G

µ µ
= = = =

−
(5) 

In the above Eq. (5), the parameters are defined as follows: 
E represents the modulus of elasticity, 𝜇𝜇  denotes Poisson’s 
ratio, 𝐺𝐺 is the shear modulus, 𝛼𝛼𝑥𝑥 indicates the coefficient of 
thermal expansion along the x axis and T corresponds to the 
change in temperature. Furthermore, Eq. (6) describes the 
temperature distribution within the system, where the 
temperature at any specific location is a function of both the 
horizontal coordinate (x) and the vertical coordinate (z), 
expressed as T (x, z). 
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The above Eq. (6) characterizes how temperature varies 
along the depth of the beam structure. This thermal profile is 
influenced by three disctinct thermal loads, denoted as 
𝑇𝑇1,𝑇𝑇2 and 𝑇𝑇3. Among these the component 𝑇𝑇2 contrubutes to a 
linearly varying temperature field, reflecting a uniform 
thermal gradient across the beam’s thickness. In contrast, the 
influence of 𝑇𝑇3  introduces a nonlinear variation 
mathematically described by the function �𝜓𝜓(𝑧𝑧) = ℎ

𝜋𝜋
𝑠𝑠𝑠𝑠𝑠𝑠 𝜋𝜋𝜋𝜋

ℎ
�, 

where, h is the total depth of the beam and z is vertical 
coordinate. This sinusoidal term captures the oscillatory nature 
of the temperature distribution induced by 𝑇𝑇3, offering a more 
complex thermal behaviour compared to the linear case. In this 
analysis, the thermal load applied follows a sinusoidal pattern. 

2.1 Equations of motion 

The equations of motion are derived using the principle of 
virtual work, which asserts that for a system subjected to 
infinitesimal virtual displacements, the external work 
performed must be exactly balanced by the internal work 
generated by the system’s internal forces. This principle forms 
the foundation of the variational approach, a powerful 
technique for formulating the governing differential equations 
of structural behaviour. Once these equations are established, 
Navier’s method employed to compute the resulting 
displacements and stress fields under thermal loadings. By 
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applying this principle to an orthotropic plate strip, one can 
derive the corresponding governing equations or equation of 
motion that describe its mechanical behaviour. The following 
Eq. (7) represents an application of the virtual work principle 
to an orthotropic plate in cylindrical bending. 
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To solve the above Eq. (7), the method of integration by 
parts is employed, which facilitates the transformation of the 
variational expression into a more tractable form. This 
mathematical technique allows the redistribution of 
derivatives between functions ultimately leading to the 
derivation of the systems’ governing equations. As a result of 
this process, the fundamental equations of motion are obtained 
and these are represented by the following Eqs. (8) and (9). 
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2.2 Material properties 

The material properties used in the analysis are given in Eq. 
(10) below.
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The moderate modular ratio and low ratio of thermal 
expansion coefficients is considered for analysis. E1 and E2 
represent Young’s modulus in fibre (1) and transverse (2) 
directions are shown in Figure 2. A ratio of 25 indicates the 
material is highly stiff along the fibre axis compared to the 
transverse direction. This is typically a fibre reinforced 
composite where fibres dominate stiffeness in one direction. 
Such anisotropy is very crucial in applications demanding 
directional strength, like aerospace panels. 

Figure 2. Orientation of fibre and transverse directions 

The shear modulus is denoted by G12 and G13 in the planes 
involving the fibre direction. Setting these shear moduli to half 
of E2 indicates moderate resistance to shear deformation 
especially in the directions involving the weaker transverse 

axis. This balance helps to ensure the material can tolerate 
torsional load without being over rigid. This helps to prevent 
cracking under complex stresses. The value of Poisson’s ratio 
indicates that when the material is stretched along fibre 
direction, it contracts 25% as much in the transverse direction. 
The symbols 𝛼𝛼1  and 𝛼𝛼2  indicate how much a material 
streaches with heat along and across the fibre directions, 
respectively. A ratio of coefficient of thermal expansion of 3 
implies that the material expands 3 times more in transverse 
direction (2) than along the fibre direction (1) or axis when 
heated. The low coefficient of thermal expansion minimizes 
warping in the structural member. 

2.3 Navier’s solution 

The Navier’s solution technique is an analytical approach 
used to solve problems in elasticity and plate theory. It is 
especially useful in thermal stress analysis where temperature 
stresses are induced under simply supported boundary 
conditions. This method is very effective in scenarios which 
involves temperature variations, where uneven heating leads 
to internal stresses and structural distortion. By expressing 
displacement and stress components as series expansions, 
Navier’s technique simplifies the complex equations 
governing plate deformation under thermal influence. The 
solution fulfills the conditions as given in the below Eq. (11).  

0, 0, 0, 0s
x x xw M N M= = = =  (11) 

In the above equation, the term 𝑤𝑤  is the transverse 
displacement which is zero; this implies the simply supported 
boundary conditions. The term 𝑀𝑀𝑥𝑥  is bending moment in x 
direction has a value of zero, indicating that no resistance to 
bending since simply supported edge. The term 𝑁𝑁𝑥𝑥 is in-plane 
normal force in x direction and has the value zero. This 
indicates no axial force along x direction at the boundary. This 
is important in thermal stress analysis where expansion or 
contraction may occur. 

The unknowns given below are represented in trigonometric 
form which satisfy the exact boundary conditions. Thermal 
load expansion is expressed using a single sine term from the 
Fourier series, as illustrated below in the Eqs. (12) to (16). 
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The first harmonic of a Fourier sine series or first mode of 
sinusoidal thermal distribution is represented by 𝑇𝑇1𝑚𝑚 = 𝑇𝑇2𝑚𝑚 =
𝑇𝑇3𝑚𝑚 = 𝑇𝑇1 = 𝑇𝑇2 = 𝑇𝑇3, 𝑚𝑚 = 1. This implies that only the first 
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term in the series is active representing a single sinusoidal 
wave across the thickness in one direction. 

Substitution of the solution into the equations of motion 
results into a set of algebraic equations. This can be 
represented by following Eq. (17). 

[ ]{ } { }K fδ =  (17) 

The symmetric stiffness is represented by [K]. The 
coefficients of the stiffness matrix [K] are as given in the 
following Eq. (18). 
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The {𝛿𝛿} in Eq. (17) is given by the following Eq. (19). 

{ }{ } ,m mwδ ϕ=  (19) 

The force vector is denoted by {𝑓𝑓} in the above Eq. (17). 
The elements of the thermal load vector {𝑓𝑓} are given below 
Eq. (20). 
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 (20) 

By solving this system of equation, it becomes possible to 
determine the values represented by {𝛿𝛿}, which in turn allows 
for the calculation of stresses and resulting displacements 
within the structure. 

3. RESULTS AND DISCUSSION

Thermal deformation behaviour has been analysed using
four distinct plate theories: higher order trigonometric 
(TSDT), PSDT first order shear deformation (FSDT) and CPT. 
These models are applied to orthotropic plate undergoing 
cylindrical bending under linear and nonlinear thermal loading 
conditions. The calculations are performed for aspect ratios of 
4 and 10. The aspect ratio (a/h) is denoted by S in the result 
tables. To ensure consistency and clarity all stress and 
displacement outcomes are presented in the normalized form 
in Eqs. (21)-(24). 
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The transverse shear stresses are critical under nonlinear 
thermal loading. To capture the exact thermal behaviour of 
these stresses, equation of equilibrium is used and given as 
below Eq. (25).  
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In the above equation the constant of integration “C” is 
calculated by using boundary conditions and upon substitution 
in the Eq. (25), shear stress can be calculated. In the above Eq. 
(25) the term (𝜏𝜏𝑧𝑧𝑧𝑧) represents the shear force per unit area
acting along x axis on a surface normal to the z axis. The term
(𝜎𝜎𝑥𝑥)  is normal stress in the x direction and varies due to
temperature gradients. The term �𝜕𝜕σ𝑥𝑥

𝜕𝜕𝜕𝜕
� in the above Eq. (25) 

represents spatial derivative of normal stress which captures 
how the normal stress changes along the length. Since these 
stresses vary through the thickness under thermal loading, 
integrating across the thickness of the plate from bottom (h/2) 
to top (-h/2) captures the cumulative effect of these variations 
across the total depth (h). Figure 3 illustrates the upper and 
lower surfaces of the plate undergoing cylindrical bending. 

Figure 3. The cross section of plate in cylindrical bending 

The integration constant accounts for boundary conditions 
and ensure the solution satisfies equilibrium. The above Eq. 
(25) says that to maintain equilibrium under thermal loading,
the transverse shear stress must balance the gradient of normal
stress through the thickness.

The results of thermal deformations in dimensionless form 
under linear (L) and nonlinear (NL) thermal loadings are 
presented in Tables 1 and 2 below. For linear (L) thermal load 
𝑇𝑇2 = 1 and 𝑇𝑇1 = 𝑇𝑇3 = 0. In case of nonlinear (NL) thermal 
load the thermal loads are 𝑇𝑇1 = 0 and 𝑇𝑇2 = 𝑇𝑇3 = 1 . The 
importance of Tables 1 and 2 is that both tables show how 
temperature variations affect displacements and stresses under 
linear and nonlinear thermal loads.    

In linear thermal load case (L), all theories give identical 
results of axial displacements for an aspect ratio 4 and 10. This 
implies that axial displacement does not get affected under 
linear thermal load. In case of nonlinear load (NL), higher 
theories TSDT and PSDT predicts higher values of axial 
displacements. Nonlinearity in thermal load increases axial 
displacement. First order and classical do not provide results 
under nonlinear thermal load. There is no significant variation 
in the results of transverse displacement evaluated by all 
theories for an aspect ratio 4 and 10 under linear thermal load 
(L). However, nonlinear thermal loading (NL) greatly 
amplifies transverse displacements for thick and thin 
orthotropic plate under cylindrical bending. Aspect ratio has 
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negligible effect on axial displacements. The percentage 
difference between the values of axial and transverse 
displacements under linear and nonlinear thermal load is 55% 
as shown in Table 1. The nonlinear thermal loading leads to 
large temperature gradients through the thickness. These 
gradients include higher thermal strains which ultimately 
amplify the bending and stretching of the plate under 
cylindrical bending. As temperature increases nonlinearity, the 
material expands more aggressively this causes significant 
deformation which linear model fails to capture. The 55% rise 
in displacements is a direct result of this intensified thermal 

expansion. In linear model, temperature is assumed to vary 
mildly. But in reality, nonlinear profiles cause uneven stress 
distribution leading to larger deflections. Higher order theories 
like TSDT and PSDT include higher order terms in the 
displacement field. These terms allow the model to account for 
shear deformation and thickness wise variation in strain. Thus, 
the higher order theories are essential to capture realistic stress 
and displacement analysis in advanced materials. Whereas 
FSDT and CPT do not show nonlinear results since they lack 
necessary terms to capture these effects.  

Table 1. Normalized displacements values for an orthotropic plate under cylindrical bending influenced by linear (L) and 
nonlinear thermal (NL) loads with aspect ratios 4 and 10 

Theory 𝒖̄𝒖 𝒘̄𝒘 
S L NL % Difference L NL % Difference 

TSDT 

4 

0.1592 0.2814 55.46 1.0132 1.7635 54.04 
PSDT 0.1595 0.2828 55.76 1.0238 1.8126 55.61 
FSDT 0.1592 - - 1.0132 - - 
CPT 0.1592 - - 1.0132 - - 

TSDT 

10 

0.1592 0.2822 55.73 1.0132 1.7918 55.55 
PSDT 0.1594 0.2829 55.84 1.0200 1.8071 55.68 
FSDT 0.1592 - - 1.0132 - - 
CPT 0.1592 - - 1.0132 - - 

Table 2. Normalized stress values for an orthotropic plate under cylindrical bending influenced by linear (L) and nonlinear 
thermal (NL) loads with aspect ratios 4 and 10 

Theory 𝝈̄𝝈𝒙𝒙 𝝉̄𝝉𝒛𝒛𝒛𝒛𝑬𝑬𝑬𝑬 
S L NL L NL Remark 

TSDT 

4 

0.0003 -1.6426 0.0000 -0.0859 Values are less than zero 
PSDT -0.0267 -1.7601 -0.0004 -0.0904 Values are less than zero 
FSDT 0.0000 - 0.0000 - - 
CPT 0.0000 - 0.0000 - - 

TSDT 

10 

0.0001 -1.7053 0.0000 -0.0357 Values are less than zero 
PSDT -0.0171 -1.7463 -0.0001 -0.0361 Values are less than zero 
FSDT 0.0000 - 0.0000 - - 
CPT 0.0000 - 0.0000 - - 

Figure 4. Variation of axial displacement (𝑢𝑢�) through the thickness (h) under linear and nonlinear thermal load for an aspect ratio 
4 

The results of normal stresses are very small under linear 
thermal load (L) and nonlinear thermal load (NL). 
Nonlinearity in thermal load does not affect normal stress 

significantly. The transverse shear stresses are affected 
strongly than normal stresses by the influence of aspect ratio. 
Slender plate in cylindrical bending experiences reduced shear 
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stresses under nonlinear thermal load (NL). The results of 
transverse shear stresses appear to be highly sensitive to the 
choice of theory. It is noted that nonlinear thermal effects 
reduce shear stresses as the plate becomes thinner. Aspect ratio 
plays an important role under nonlinear thermal load, where 
slender plate relieves thermal shear stress more effectively. 
Higher order theories (TSDT and PSDT) provide consistent 
and realistic prediction of normal stresses and shear stresses. 
The results evaluated by higher theories confirm that higher 
order plate theories are essential for analysis under thermal 
loadings. 

The variation of these displacements and stresses are shown 
in Figures 4-6. The variations of axial displacement, normal 
stress and shear stress across the thickness (h) evaluated by 
trigonometric shear deformation theory (TSDT) under linear 

and nonlinear thermal loadings is shown in Figures 4-6 
respectively. The higher values of axial displacement and 
nonlinear variation of normal stress across thickness (h) is seen 
under nonlinear thermal load and shown in Figures 4 and 5. 
The transverse shear stresses evaluated by 3D equations of 
equilibrium are zero at upper and lower surfaces of plate under 
cylindrical bending. The nonlinear variation and realistic 
curve of shear stresses is seen across the thickness (h) of plate 
as shown in Figure 6. Table 2 shows negative stresses under 
nonlinear thermal loading which indicates that nonlinear 
thermal effects induce compressive type stresses in the plate 
undergoing cylindrical bending. On the other hand, CPT and 
FSDT yield zero stress prediction under same conditions. This 
shows their limitations in capturing nonlinear response. 

Figure 5. Variation of normal stress (𝜎𝜎�𝑥𝑥) across the thickness (h) under linear and nonlinear thermal load for an aspect ratio 4 

Figure 6. Variation of transverse shear stress (𝜏𝜏𝑧̅𝑧𝑧𝑧) across the thickness (h) under linear and nonlinear thermal load for an aspect 
ratio 4 

4. CONCLUSION

The study explores the thermal behaviour of an orthotropic
laminated plate subjected to cylindrical bending under both 
linear and nonlinear thermal loading conditions, employing 
trigonometric shear deformation theory. The finding revels a 
pronounced increase in thermal displacements and stress 
levels when the thermal load transitions from a linear to 
nonlinear profile. This shift underscores the sensitivity of 

plate’s structural response to the nature of thermal input. 
Furthermore, under nonlinear thermal loading the results 

obtained using trigonometric shear deformation theory show 
only a slight deviation from those predicted by PSTD. This 
implies that both higher order theories are capable of capturing 
the intricate thermal effects with reasonable accuracy.  

In real world applications, thermal loads are seldom 
uniform or linear. Nonlinear thermal loading reflects a more 
realistic and complex distribution of heat across the structure 
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which significantly influences the mechanical response. By 
incorporating these nonlinear effects, the analysis yields a 
more precise prediction of plate’s behaviour.  

Higher order theories, such as trigonometric and parabolic 
models are better equipped to account for these complexities. 
Their ability to represent the through thickness variation of 
temperature and shear strains make them especially valuable 
in evaluating the performance of laminated composite 
structures under thermal stress. The comparative results 
reinforce the importance of using advanced modelling 
approaches when dealing with nonlinear thermal environment 
as they provide deeper insights into the structural integrity and 
reliability of such systems. A key limitation of this study is the 
assumption of simply supported boundary conditions which 
may not fully represent the complexity of real-world structural 
constraints. One of key area for future studies is the integration 
of coupled thermo-mechanical effects were both temperature 
variation and mechanical forces acts on the laminates 
undergoing cylindrical bending. Another important area for 
future studies is the extension of this work and study of 
optimization. This will improve overall structural efficiency.  
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NOMENCLATURE 

𝜀𝜀𝑥𝑥 normal strain 
𝛾𝛾𝑧𝑧𝑧𝑧 shear strain 
E modulus of elasticity 
G shear modulus  
𝑢̄𝑢 normalized axial displacement  
𝑤̄𝑤 normalized transverse  
𝜎̄𝜎𝑥𝑥 normalized normal stress  
𝜏̄𝜏𝑧𝑧𝑧𝑧𝐸𝐸𝐸𝐸 normalized transverse shear stress obtained 

by using equilibrium equation 
[𝐾𝐾] stiffness matrix 
�𝑄𝑄�𝑖𝑖𝑖𝑖� reduced stiffness coefficient  
{𝑓𝑓} force vector  

�
𝐸𝐸1
𝐸𝐸2
� modular ratio  

𝐸𝐸1 modulus of elasticity in fibre direction 
𝐸𝐸2 modulus of elasticity in transverse direction 
L linear thermal load 
NL nonlinear thermal load  
S aspect ratio �𝑆𝑆 = 𝑎𝑎

ℎ
� 

h thickness of plate 
a length of plate along x axis 
b length of plate along y axis 
Eq. (18) 

𝐷𝐷1 = 𝑄𝑄11
ℎ3

12
,  𝐷𝐷4 = 𝑄𝑄11(0.0645ℎ3) 

Eq. (19) 𝐷𝐷9 = 𝑄𝑄11(0.0506ℎ3),  𝐷𝐷11 = 𝑄𝑄55(0.5 ℎ) 
Eq. (20) 

𝑅𝑅1 =
ℎ2

12
(𝛼𝛼𝑥𝑥𝑄𝑄11),𝑅𝑅2 =  

2ℎ2

𝜋𝜋3
(𝛼𝛼𝑥𝑥𝑄𝑄11) 

Eq. (21) 
𝑅𝑅5 =

2ℎ2

𝜋𝜋3
(𝛼𝛼𝑥𝑥𝑄𝑄11),𝑅𝑅6 =

ℎ2

2𝜋𝜋2
(𝛼𝛼𝑥𝑥𝑄𝑄11) 

Greek symbols 

�
𝛼𝛼2
𝛼𝛼1
� ratio of coefficient of thermal expansion 

𝛼𝛼2 coefficient of thermal expansion in 
transverse direction  

𝛼𝛼1 coefficient of thermal expansion in fiber 
direction   

𝜃𝜃 angle between fiber axis and reference axis 
x. In present case 𝜃𝜃 = 0. Hence, 𝛼𝛼1 = 𝛼𝛼𝑥𝑥 and
𝛼𝛼2 = 𝛼𝛼𝑦𝑦

𝛿𝛿 variational operator
𝜇𝜇𝑖𝑖𝑖𝑖 Poisson’s ratio

900


	1. Introduction



