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In this work, we propose an innovative approach that combines mutation analysis with 

parallel genetic algorithms to evaluate coordination mechanisms in multi-agent systems 

(MAS), particularly in critical contexts where effective conflict management is essential. 

The approach involves temporarily disabling coordination, injecting simulated errors 

(mutants) into concurrent access to shared resources, and then automatically generating test 

cases that intensify potential conflicts. Coordination is then reactivated to observe whether 

it successfully resolves these conflicts, thereby assessing its robustness. The approach is 

applied to a concrete case study, the En-route air traffic control system (EATC), in order to 

test the ability of the adopted coordination mechanism to manage trajectory conflicts 

between aircraft, while ensuring compliance with minimum separation standards (vertical, 

lateral, and longitudinal). The experimental results validate the effectiveness of the 

proposed approach. Indeed, after 150 generations, the best test case quality achieved an 

average of 97.6064%, with a maximum fitness of 98.1281%. Among 428 conflict cases, the 

adopted coordination mechanism successfully resolved 417 (97.43%), failing in only 2.57% 

of the cases. These outcomes underscore both the robustness and scalability of the proposed 

approach for testing MAS coordination in critical domains. 
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1. INTRODUCTION

Multi-agent systems (MAS) [1-3] consist of autonomous 

and self-organizing agents that collaborate within a shared 

environment to achieve individual or shared goals. These 

systems have widespread applications in such vital domains as 

cooperative robotics [4, 5], intelligent transportation systems 

[6], control of energy grid [7, 8], financial markets [9], and 

social simulation [10], where effective coordination among 

agents is required to ensure optimal performance and 

harmonious coexistence with minimal conflicts. In an MAS, 

conflict arises when a group of agents pursues incompatible 

goals, executes conflicting actions, or competes for access to 

limited and non-shareable resources. Such conflicts are 

common in distributed and dynamic environments and 

represent a major danger for the proper functioning of the 

system [11]. Their occurrence reveals the MAS’s actual ability 

to manage agent interactions and maintain overall system 

coherence despite interference situations. However, in 

dynamic and competitive environments [12, 13], these 

conflicts may emerge due to various factors, including 

competition for scarce resources, divergence of agents’ 

objectives, disagreements in decision-making, or uncertainties 

related to complex agent interactions. These conflicts can 

significantly impact the system’s stability and efficiency, 

leading to deadlocks, operational inefficiencies, or even 

breakdowns in cooperation among agents. Therefore, the 

ability of a coordination mechanism to handle such conflicts 

turns into a critical parameter for the robustness and 

responsiveness of MAS. Several coordination approaches 

have been put forward, such as collective planning [14, 15], 

negotiation, auctions [16-18], and resource allocation 

protocols [19]. However, it is a challenging task to analyze 

these mechanisms as conflicts tend to occur under 

unanticipated and varying situations. Traditional methods rely 

primarily on scenario simulation and performance 

measurement with tangible parameters such as conflict 

resolution time [20], success rate of negotiations [21, 22] and 

resource optimization [23]. However, traditional methods 

have their limitations: they cannot always anticipate failure of 

coordination mechanisms while facing unexpected 

disturbances or identifying the structural vulnerabilities of the 

system. A hidden failure can undermine a MAS's capacity to 

solve conflicts in an effective manner, to the point that its 

overall performance and reliability are negatively affected. In 

order to surpass these challenges, we suggest applying an 
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approach based on mutation analysis [24-27], a software 

testing-derived technique [28-32] that entails introducing 

controlled perturbations into the system under test by design. 

By seeing how the system reacts to these disruptions, one can 

identify instances where coordination mechanisms 

malfunction or lose effectiveness in managing conflicts. This 

approach thus enables the identification of weaknesses in 

existing strategies and suggests adjustments to enhance their 

robustness. Unlike traditional approaches, mutation analysis 

provides a more rigorous and objective evaluation framework 

capable of testing coordination mechanisms under adverse and 

unpredictable conditions [33]. The main objective of this study 

is to propose a systematic and reproducible approach for 

evaluating and improving conflict management in MAS by 

identifying vulnerabilities in coordination mechanisms and 

suggesting adjustments to optimize their resilience. Our 

approach also allows for an objective comparison of different 

coordination strategies and guides the design of more efficient 

and adaptive mechanisms. Thus, mutation analysis represents 

a significant advancement in the evaluation and enhancement 

of MAS, making them more effective and robust in addressing 

the challenges posed by dynamic and conflict-prone 

environments. Given that our testing approach specifically 

targets conflicts arising from concurrent access to resources, it 

proves particularly relevant for multi-agent systems developed 

according to the Agent & Artifact (A&A) paradigm [34], 

where artifacts play a central role in agent coordination. In this 

framework, artifacts represent functional and observable 

entities that serve as mediators for agent interactions and 

coordination. Since the concept of resources aligns with that 

of artifacts both functionally and conceptually, our 

methodology not only enables the evaluation of the robustness 

of proposed coordination mechanisms but also assesses their 

ability to effectively manage resource-related conflicts that 

emerge during agent interactions via these artifacts. Thus, our 

approach provides a rigorous and systematic framework for 

testing and validating coordination mechanisms within multi-

agent systems based on the A&A model. 

The remainder of this work is structured as follows: Section 

2 provides an overview of the state-of-the-art approaches for 

testing coordination mechanisms in MAS, highlighting their 

limitations. Section 3 presents our methodology based on 

mutation analysis and details the process of generating and 

applying mutations. Section 4 presents the experimental 

results obtained after applying our method to a real case study. 

Finally, Section 5 concludes this paper by summarizing the 

main contributions and outlining future work on improving 

MAS testing.  

2. SIMILAR WORKS

In the literature, a limited number of approaches have been 

proposed for testing MAS in recent years. Subsequently, we 

outline a selection of these approaches in Table 1.

Table 1. Comparative analysis of testing approaches for multi-agent systems: main contributions and limitations 

Reference Approach Main Contribution 
Limitations (in Light of MAS Global 

Behaviour & Coordination) 

Dehimi et al. 

[35] 

model-based testing using 

genetic algorithms for holonic 

agents 

iterative testing across evolving 

versions; focuses on newly 

introduced behaviors 

incremental but limited to individual agent 

evolution; lacks integrated view of MAS 

coordination 

Dehimi & 

Mokhati [36] 

sequence diagrams with OCL 

“plugs” 

formal test case generation capturing 

constraints on interactions 

focuses on single interactions; does not 

evaluate coordination/conflict mechanisms 

Winikoff [37] 
testability of BDI agents (all-

edges vs all-paths criteria) 
adequacy metrics for BDI programs 

structural coverage only; no assessment of 

coordination or conflict resolution 

Gonçalves et al. 

[38] 

Moise+ → CPN4M 

transformation for testing 

social behaviour 

organisational-level testing with 

path/state-transition adequacy 

restricted to Moise+ model; coordination 

assumed from org. model, no dynamic 

adaptability 

Rehman et al. 

[39] 

model-based methodology 

with Prometheus artefacts 

fault model for goals, plans, and 

interactions; new coverage criteria 

limited to goal/plan execution; does not 

consider emergent conflicts or adaptive 

coordination 

Huang et al. 

[40] 

semantic Mutation Testing 

(SMT) for Jason, GOAL, 

2APL 

semantic operators to assess 

robustness of rule-based agents 

language-specific; focuses on robustness of 

logic, not on coordination or conflict handling 

Dehimi et al. 

[41] 

mutation + parallel GA for 

isolating scenarios 

detects errors within concurrent 

scenario executions 

only targets scenario isolation; does not ensure 

robustness of coordination mechanisms 

Savarimuthu 

and Winikoff 

[42] 

mutation operators for Goal 

language 

empirical validation of mutation 

hypotheses in Goal programs 

restricted to Goal language; ignores global 

MAS interactions and coordination 

Dehimi et al. 

[43] 

deep learning for error 

detection across MAS 

versions 

automated scalable error detection 
strong for error prediction but not designed to 

assess coordination or conflict resilience 

Although significant progress has been made in MAS 

testing through the introduction of new strategies, many of 

these approaches reveal important limitations. They often lack 

a global and integrated view of MAS behaviour, focusing 

instead on specific aspects such as communication, plan 

execution, or individual agent logic. Moreover, conflict 

management and coordination mechanisms are often 

overlooked or assumed to function correctly without 

evaluation. These shortcomings limit the capacity of existing 

methods to ensure the overall robustness and adaptability of 

MAS, particularly in dynamic or unpredictable environments. 

To address these limitations, we propose a novel approach 

capable of identifying vulnerabilities in coordination 

mechanisms and suggesting targeted improvements to 

enhance their resilience. Additionally, it enables objective 

comparisons between coordination strategies and supports the 

development of more robust and adaptive mechanisms. What 

further strengthens the relevance of our approach compared to 
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existing ones is its applicability to MAS based on the A&A 

model, where artifacts play a central role in coordination and 

interaction management. This compatibility ensures that our 

method can be directly integrated into systems developed 

under this paradigm, providing a comprehensive and 

systematic framework for testing and validating coordination 

mechanisms in MAS. 

3. THE PROPOSED APPROACH

The proposed approach aims to evaluate the effectiveness 

of the coordination mechanism implemented within a given 

MAS. It relies on the generation of a series of test cases whose 

inputs are specifically designed to force the maximum number 

of agents in the system under test to simultaneously access or 

occupy the same resource. This scenario inevitably leads to 

interference among the agents and consequently generates 

conflict situations around that resource. 

Figure 1. The Phases of the proposed approach for testing 

coordination in MASs 

In cases where the system under test lacks a coordination 

mechanism, or if such a mechanism is insufficient or faulty, 

executing the system with these generated test inputs will 

inevitably lead to system failure. Conversely, if the system 

integrates a robust and effective coordination mechanism, it 

will enable the agents to resolve their conflicts, thereby 

ensuring the system’s stability and overall performance. The 

proposed approach provides a concrete and operational means 

of evaluating the effectiveness of the coordination mechanism 

adopted, regardless of the type of coordination implemented 

(e.g., cooperation, collaboration, negotiation, protocols, 

planning, etc.). It offers the ability to assess the system’s 

capacity to resolve or manage conflict situations generated by 

agents competing for access to shared resources. It is essential 

to emphasize that the emergence and detection of such 

conflicts depend directly on the quality of the test case inputs 

generated and applied to the system. Indeed, the more relevant 

and rigorously designed these inputs are, the higher the 

likelihood of detecting conflicts, including those that occur 

rarely and might otherwise go unnoticed in standard testing 

conditions. Ultimately, this confirms the relevance and 

robustness of the proposed approach in evaluating whether the 

adopted coordination mechanism is capable of effectively 

resolving conflicts, or conversely, fails to manage them. The 

proposed approach relies on the combined use of mutation 

analysis techniques and parallel genetic algorithms [44]. It also 

involves the temporary deactivation of the coordination 

mechanism to prevent it from masking the conflict situations 

that form the basis for generating test case inputs. The 

approach is structured into two main phases, illustrated in 

Figure 1 and detailed in the following subsection. 

3.1 Description of the first phase 

First of all, during this initial phase, before starting the 

procedures for generating test case inputs, it is essential to 

ensure that the MAS under test is completely free of any 

coordination mechanism. It is important to remember that 

coordination includes a set of rules and additional actions 

necessary to enable interactions and actions among the various 

agents with a minimum of conflict. These coordination actions 

can be implemented either in a centralized manner by a single 

coordinating agent or in a distributed manner by all the agents 

in the system. Consequently, it is necessary to deactivate all 

coordination actions, as illustrated in Figures 2 and 3 for the 

centralized and distributed coordination configurations, 

respectively. Additional details are provided in Algorithm 1. 

Figure 2. Illustration of the process for disabling a 

centralized coordination in the multi-agent system to be 

tested 

Figure 3. Illustration of the process for disabling distributed 

coordination in the multi-agent system to be tested 
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The purpose of this deactivation is to avoid any disruption 

in the process of generating test case inputs and to ensure the 

production of high-quality test cases. This guarantees that the 

MAS is tested exhaustively, taking into account all possible 

conflict situations between its agents. Indeed, if coordination 

actions are not deactivated, the system remains controlled and 

prevents the occurrence of conflict situations. However, these 

conflict situations are essential for generating test case inputs, 

as the selection of these inputs depends directly on the number 

and nature of the conflict situations in which the system under 

test can find itself. 

Algorithm 1: Deactivate_Coordination_for_a_Multi-Agent 

System 

 Inputs: Coordinated system S; 

 Outputs: Uncoordinated system S’; 

1  Begin 

2   // Step 1: Identify agents responsible for coordination 

3 CoordinationAgents ← 

Identify_Coordination_Agents(S); 

4         // Step 2: For each coordination agent, disable its 

coordination actions 

5  for each Agent Aj ∈ CoordinationAgents do 

6  for each coordination action ac ∈ Aj  do  

7  /* 

8  Formal deactivation of a coordination action 

ac: 

9  Let ac ∈ Aj be a coordination mechanism 

(e.g., protocol, method, or rule) 

10    used to manage shared resources (e.g., message 

sending, negotiation, etc.). 

11   The operation: Deactivate(ac) ≡ ac.disabled := 

true 

12 implies disabling ac at runtime, which may 

involve: 

13                  - Cancelling or removing its execution from

system code, 

14                  - Suspending or deleting the related behaviour

(e.g., in JADE), 

15   - Preventing agent Aj from initiating

coordination via ac. 

16                 */ 

17  Deactivate ac; 

18      end; 

19  end; 

20   End. 

Figure 4. Illustration of the process for generating mutants 

The next step in this phase describes how to generate the 

test case inputs Inputsh for the tested MAS, with which we 

can provoke or direct as many system agents as possible to 

either access, use, or occupy one of these resources at the same 

time. This step is based on the mutation analysis technique and 

parallel genetic algorithms. It consists of producing, for each 

resource Ri belonging to the system, a mutant. Each produced 

mutant, called Mutanti, represents a copy similar to the 

system under test. The only difference being that a single error 

(as formally defined in Eq. (1)) has been injected at the level 

of instructions that allow an agent Aj of the system to access, 

use, or occupy the resource Ri. Here, j is the agent's identifier, 

with a value between 0 and N-1, where N is the total number 

of agents in the system. Figure 4 shows how the mutants are 

generated, highlighting the different key steps of the process. 

Additionally, Algorithm 2, in pseudo-code form, explains the 

logic of mutant generation for the test MAS. These two 

illustrations provide a comprehensive and technical overview 

of this approach. 

Algorithm 2: Mutants_Generation 

 Inputs:   Uncoordinated system S’; 

     Set of resources R = {R0, R1, ..., RN-1};   // 

Shared resources in the system. 

     Outputs: Set of mutants;    // Mutants containing injected 

errors. 

1  Begin 

2  for each resource Ri ∈ R do 

3    Mutanti ← exact copy of system S′;    // Duplicate 

the uncoordinated system. 

4  Inject Ri.Error into Mutanti;   // Inject an error 

related to Ri (see the formula in Eq. (1)). 

5            end; 

6  End. 

Eq. (1) below describes the error we introduced to obtain a 

mutant Mutanti. This means that the agent Aj is in conflict 

with the agent Aj' (with j′ ≠ j ) regarding the use of the resource 

Ri at the same time t. It should be noted that the symbols “+” 

in this formula indicate a simple concatenation operation: 

{AC0 (EWAC0
), 𝐴𝐶1 (EWAC1

), …, ACk−1 (EWACk−1
)}+ 

Ri + t + Vdd′  + EDi + EWi + "// ERROR "
(1) 

To better understand the structure of this error, it is 

important to explain each parameter composing Eq. (1). Here 

is a detailed explanation of each parameter: 

 {𝐀𝐂𝟎  (𝐄𝐖𝐀𝐂𝟎
), 𝑨𝑪𝟏  (𝐄𝐖𝐀𝐂𝟏

), …, 𝐀𝐂𝐤−𝟏  (𝐄𝐖𝐀𝐂𝐤−𝟏
)}: A

list representing a subset of agents involved in a specific 

conflict over access to resource Ri. where each element 

corresponds to an agent competing for the use of this resource. 

Each agent Aj , is associated with an error weight, denoted

EWAj
 (Error Weight), which indicates the importance or

weight of agent Aj in the conflict. The indices c0, c2, …, ck-1 

are unique identifiers assigned to these agents, with the 

condition that all indices are distinct (i.e., c0≠c1≠…≠ck-1). 

These indices refer to agents from the complete set of system 

agents, denoted {A0, A1, …, AN−1}. In other words, the list 

{AC0 (EWAC0
), 𝐴𝐶1 (EWAC1

), …, ACk−1 (EWACk−1
)} includes

only those agents who, at a given time t, are in conflict due to 

concurrent access to resource Ri. 

 Ri: Represents the identifier of the resource over which

the agents in the list {AC0 (EWAC0
), 𝐴𝐶1 (EWAC1

), …, ACk−1

(EWACk−1
)} are in conflict. The parameter i refers to the index 

of this resource, where i ranges from 0 to M−1, with M being 

the total number of resources available in the system (this 

number also corresponds to the number of mutants in the 
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system under test). This resource lies at the core of the conflict 

among the concerned agents competing for its use at a given 

moment. 

 t: Represents the time instant at which a conflict occurs

between the agents in the list {AC0 (EWAC0
), 𝐴𝐶1 (EWAC1

), …,

ACk−1 (EWACk−1
)} for the use of resource Ri. This moment is

crucial for determining the exact point in time when the 

interference between the agents in this list takes place. 

 𝐕𝐝𝐝′ : Represents the identifier of the data vector that

triggered the error. This vector belongs to the population 

POPd, where d is an index used to number the generated 

populations, ranging from 0 to h, with h being the index of the 

last generated population. 𝑑′  belongs to the interval [0, Pd],

where 𝑑′  indicates the position of the vector within the

population POPd. For example, V01, represents the identifier of 

the second data vector in population POP0. 

 𝐄𝐃𝐢: The Error Degree associated with Mutanti, where the

index i represents the unique identifier of this mutant. This is 

a key parameter that measures the extent of conflicts related to 

the use of a specific resource in the system. It corresponds to 

the total number of agents involved in the conflict over access 

to resource Ri. It is directly linked to the size of the list {AC0

( EWAC0
), 𝐴𝐶1  ( EWAC1

), …, ACk−1  ( EWACk−1
)}, which

includes the conflicting agents. For example, an error degree 

of 3 means that three agents, {AC0, AC1, AC2}, are 

simultaneously in conflict for access to resource Ri at a given 

time. As the error degree increases, the situation becomes 

more complex and critical, since it involves a greater number 

of agents and may impact the overall performance of the 

system. This criterion thus serves to measure the intensity of 

the conflict and helps guide the prioritization of adjustments 

to restore balance in the MAS. For each Mutanti, killed by a 

data vector Vdd′ , the associated EDi  is calculated using the

following Eq. (2): 

EDi = 𝑆𝑖𝑧𝑒 ({AC0 (EWAC0
), 𝐴𝐶1 (EWAC1

), …, ACk−1

(EWACk−1
)})

(2) 

 𝐄𝐖𝐢 : The Error Weight assigned to Mutanti, where i

denotes the unique identifier of this mutant. This parameter 

represents the accumulated weight of the agents involved in a 

conflict over access to resource Ri. It is calculated as the sum 

of the individual error weights (EWAj
, Error Weight) of each

agent included in the conflict list for that resource. In other 

words, EWi  reflects the cumulative impact of the agents

participating in the conflict over Ri. Thus, for each Mutanti, 

killed by a data vector Vdd′ , the associated EWi is computed

using the following Eq. (3): 

0 1 1

1

0

EW EW EW EW EW
j C C Ck

j Ck

i A A A A

j C
−

= −

=

= = + ++ (3) 

 "// ERROR": Indicates that an error has been detected in

the system. This marker signals that the agents in the list {AC0

(EWAC0
), 𝐴𝐶1 (EWAC1

), …, ACk−1 (EWACk−1
)} are in conflict

over the use of resource Ri at time t, thereby generating an 

abnormal situation in the system. 

After completing the mutant generation process, the number 

of mutants produced will be equal to the number of resources 

in the system under test. The next step is to generate test case 

inputs that, when executed, are capable of killing as many 

mutants as possible. More precisely, among all the possible 

execution inputs, the goal is to identify those that expose the 

highest number of errors previously injected into these 

mutants. These inputs are then retained as test case inputs 

(Inputsh), as they are particularly effective in detecting and 

eliminating the introduced errors. 

It is important to note that a condition must be met for the 

error to be triggered: there must be at least one conflict (EDi ≥

2). This implies the presence of at least two agents using the 

same resource at the same time t. To this end, the use of 

parallel genetic algorithms facilitates the acquisition of high-

quality test case inputs, ensuring a thorough test of the 

effectiveness of the coordination mechanism adopted by the 

system under test. This process is illustrated in Figure 5. 

Figure 5. Illustration of test case generation using mutation 

analysis techniques and genetic algorithms 

Figure 6. Flowchart of test case input generation using the 

parallel genetic algorithms technique 

The application of parallel genetic algorithms begins with 

the generation of an initial population, POP0, composed of 

several individuals. Each individual, representing a possible 

test case input, is described by a data vector Vdd′ . Each element

of this vector represents one of the data necessary for the 

execution of the system under test. The initial population POP0 
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is created randomly and serves as the basis for the generation 

of subsequent populations. Each new population, such as 

POP1, is improved compared to the previous one, and the 

process is repeated to produce successive populations. This 

cycle continues until we obtain a final population, POPh, 

capable of achieving the desired objectives. 

To clarify and eliminate any ambiguity regarding the 

process of generating and improving test inputs using genetic 

algorithms, the flowchart presented in Figure 6 details all the 

steps involved, from the beginning to the end of this process, 

and what follows is a complete explanation of all the steps 

presented therein: 

 Creation of an initial population POP0, consisting of P0

individuals, each represented by a data vector V0d′, where d′

ranges from 0 to P0-1, such that (V00, V01, V02, …, V0(p0−1)).

This population is generated randomly. 

 Parallel execution of all individuals (vectors) from this

population on each previously generated mutant. 

 Collection of execution results for each individual in this

population: for each data vector Vdd′ , we compute mV
dd′ ,

representing the total number of mutants killed by this 

individual Vdd′ . This includes the calculation of mV00
, mV01

,

mV02
, …, mV0(P0−1)

. Additionally, we calculate the Total Error

Degree, denoted TEDV
dd′ , which includes TEDV00

, TEDV01
,

TEDV02
, …, TEDV0(p0−1)

. This parameter is obtained using the 

following Eq. (4): 

dd

1

0

TED ED
i M

V i

i


= −

=

=  (4) 

Finally, we also calculate the Total Error Weight, denoted 

TEWV
dd′ , which includes TEWV00

, TEWV01
, TEWV02

, …,

TEVV0(p0−1)
. This parameter is determined by applying the 

following Eq. (5): 

dd

1

0

TEW EW
i M

V i

i


= −

=

=  (5) 

 Evaluation of each individual in this population is carried

out by calculating its fitness function, denoted fss . In our

approach, this fitness function is specifically designed to 

measure the ability of each solution to maximize conflicts 

among agents, by promoting an increase in the number of 

errors and optimizing multiple performance criteria. The 

fitness function is defined as Eq. (6): 

fss =  α ×
log(1 + mV

dd′ )

log(1 + M)

+ β × (1 −
1

TEDVdd′  +  1
 )

+ γ × (1 −
1

TEWVdd′  +  1
 )

(6) 

With the following constraint: α + β + γ = 1 

In this context, the fitness function is used to identify the 

best solutions for maximizing conflicts between agents. It does 

so by considering the number of mutants killed (i.e., the 

number of generated errors), the degree of error representing 

the intensity of agents involved in the conflicts, and the 

cumulative impact of these agents in the conflicts. This 

ensures a thorough evaluation of each individual in the 

population. 

The meaning of each term in this function is as follows: 

 First term: 𝛼 ×
log(1+mV

dd′ ) 

log(1+𝑀)

Description. This term expresses the proportion of mutants 

killed by the individual Vdd′ , denoted by mV
dd′ , relative to the

total number of mutants (M). It is weighted by α, the main 

coefficient, which gives this term a priority role in the 

optimization of the fitness function. 

Impact. By maximizing this term, the approach favours 

solutions that generate the highest number of errors by killing 

a greater number of mutants, which indicates a strong ability 

to trigger conflicts between agents. 

 Second term: β × (1 −
1

TEDV
dd′  + 1

 ) 

Description. This term takes into account the total error 

degree generated by the vector Vdd′ , denoted as TEDV
dd′ , It

corresponds to the sum of the error degrees associated with 

each Mutanti in the system under test, as mentioned in Eq. (4). 

The factor β weights this term as a secondary criterion. 

Impact. Maximizing this term favors solutions that involve 

a larger number of agents in conflicts, contributing to a more 

complex conflict dynamic between agents. 

 Third term: 𝛾 × (1 −
1

𝑇𝐸𝑊𝑉
𝑑𝑑′  + 1

 ) 

Description. This term considers the total error weight, 

TEWV
dd′ , where the vector Vdd′  is the source of these errors.

It represents the cumulative impact of the agents involved in 

the errors that have occurred and corresponds to the sum of the 

individual error weights of agents involved in a conflict for 

each Mutanti in the system's set of mutants. This total weight 

is calculated according to Eq. (5) mentioned previously. This 

term is weighted by the factor γ, which is the least prioritized 

of the three. 

Impact. Increasing this term aims to favour solutions where 

the conflicting agents have a high error weight, thereby 

amplifying the severity of their involvement in these conflicts. 

It should be noted that the final result of this function 

belongs to the interval [0, 1], with 1 representing an ideal 

solution that simultaneously maximizes the three evaluation 

criteria. 

 Selection of the most promising individuals, aiming to

enhance the quality of the initial population, POP0. Only the 

individuals with the highest scores according to the fitness 

function are selected to contribute to this improvement. 

Figure 7. Example of crossover for creating a new individual 

 Enrichment of our population by crossing a certain

number of previously selected individuals to generate new 
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individuals. In our approach, we use a simple crossover 

technique. It involves selecting two or three individuals 

(parents) and exchanging one or more chromosomes between 

them to create a new individual (child). A correction step is 

then performed to eliminate any duplication errors and ensure 

that the new individuals are unique and valid (see Figure 7). 

 A mutation step is integrated into the process. It involves

randomly modifying certain individuals in the population by 

altering one or more genes. These modifications pave the way 

for new possibilities, which could very well be useful for 

creating good solutions. 

 Generation of a new population, named POP1. This new

generation consists of promising individuals selected from the 

previous population, to which new individuals created by 

crossover and mutation are added. These two mechanisms aim 

to improve the diversity and quality of the population, while 

preserving the favourable traits identified in the selected 

individuals. 

 Once the new population is generated, the process of

improving individuals can be repeated by reapplying the 

previous steps, until a population of robust individuals fully 

meeting the fitness function is obtained. This process 

continues up to a maximum number of generations, denoted as 

h, determined based on the tester's evaluation. If, at the end of 

these generations, convergence is not achieved, the best 

individuals of the last generation (POPh) will be selected. 

3.2 Description of the second phase 

After obtaining a series of high-quality test case inputs 

(Inputsh) and reactivating all the coordination mechanisms in 

the system under test, previously deactivated during the earlier 

phase, we will proceed to execute the system with these test 

inputs. If the system manages to process all these cases without 

encountering any problems or generating conflicts, we will 

consider the adopted coordination mechanism to be effective. 

Figure 8. Evaluation of the coordination of the multi-agent 

system under test (success of the system coordination) 

Figure 9. Evaluation of the coordination of the multi-agent 

system under test (system coordination failure) 

On the other hand, if it fails in any of the test case inputs, it 

will undoubtedly indicate the inefficiency of the adopted 

coordination mechanism. Figures 8 and 9 briefly illustrate the 

processes that take place at this stage, while Algorithm 3 

demonstrates how coordination is reactivated in the MAS 

under test. 

Algorithm 3: Reactivate_Coordination_for_a_Multi-Agent 

System 

 Inputs: Uncoordinated system S’; 

 Outputs: Coordinated system S; 

1  Begin 

2  // Step 1: Identify agents responsible for coordination. 

3   CoordinationAgents ← Identify_Coordination_Agents(S’); 

4  // Step 2: For each coordination agent, reactivate its 

coordination action. 

5  for each Agent Aj ∈ CoordinationAgents do 

6  for each coordination action ac ∈ Aj  do  

7  /* 

8  Formal reactivation of a coordination action ac: 

9  This operation is the inverse of Deactivate (ac). 

10  It restores the coordination mechanism ac, such that: 

11      Reactivate(ac) ≡ ac.disabled := false 

12  Meaning: the action ac (e.g., a method, protocol, or 

rule managing shared resources) 

13    is re-enabled, allowing agent Aj to resume coordinated 

interactions with other agents 

14  or shared entities. 

15  */ 

16  Reactivate ac; 

17      end; 

18  end; 

19   End. 

4. CASE STUDY

4.1 General presentation 

In order to validate our proposed approach, we selected the 

En-route air traffic control system (EATC) as a case study, 

given its critical and complex nature as a representative 

domain for testing coordination mechanisms in MAS. EATC, 

managed in area control centres (ACCs), ensures the 

surveillance and management of aircraft during the cruise 

phase to prevent collisions by maintaining minimum vertical 

(VSM), lateral (LASM), and longitudinal (LOSM) 

separations, as defined by international regulations (Table 2). 

To achieve this, controllers rely on advanced technologies 

such as primary and secondary radar, ADS-B, TCAS, 

ACARS, and satellite communications (SATCOM), which 

provide real-time data on aircraft position, velocity, trajectory, 

and environmental conditions. Figures 10-16 illustrate these 

separation distances and violation scenarios that lead to 

conflicts requiring corrective actions (e.g., altitude, heading, 

or speed adjustments). In this context, EATC is modeled as a 

MAS using a centralized approach, where an Air Traffic 

Controller Agent (ControllerAgent) supervises a set of 

AircraftAgents, each representing an aircraft in cruise. 

AircraftAgents share their complete trajectories as vectors of 

waypoints, each characterized by precise attributes such as 

position, altitude, speed, heading, estimated time of arrival, 

protection zones, and priority (see Figure 17). Every waypoint 

is associated with a resource zone (PointResource), which 

defines its protection area based on VSM, LASM, and LOSM 

criteria. The ControllerAgent continuously analyzes the 
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resources of all AircraftAgents and detects conflicts whenever 

protection zones overlap simultaneously in all three 

dimensions of separation. Upon conflict detection, it generates 

tailored corrective instruction vectors for the involved aircraft, 

adjusting parameters such as altitude, trajectory, or speed to 

restore safe separation without creating new conflicts. Each 

AircraftAgent then updates its trajectory accordingly. The 

cruise environment is represented as a dynamic operational 

airspace, encompassing external factors such as weather 

conditions, airspace configuration, and relative speeds, all of 

which influence both the ControllerAgent’s decisions and 

AircraftAgents’ behaviors. This MAS-based modeling of 

EATC provides a realistic and demanding framework for 

evaluating the robustness and effectiveness of coordination 

mechanisms in critical systems by subjecting them to 

representative and challenging conflict scenarios, thereby 

testing their resilience and capacity to ensure flight safety.

Table 2. Summary of minimum vertical and horizontal separation distances between aircraft in cruise phase 

Type of Separation 
Minimum 

Separation Distance 
Separation Conditions 

Vertical separation 

minimal (VSM) 

(See Figure 10) 

1000 feet1 (304.8 

meters) 
Below FL290 (Flight Level 290, approximately 29000 feet) 

1000 feet (304.8 

meters) 
Between FL290 and FL410 for aircraft equipped with RVSM2 systems 

2000 feet (609.6 

meters) 
Above FL290 for No-RVSM aircraft 

Horizontal separation 

minimal (HSM3) 

Lateral separation minimal 

(LASM) 

(See Figure 12) 

5 nm4 (approx. 9.26 

km) 

general regulations concerning the minimum distance for lateral separation in cruise 

for radar-controlled aircraft. 

3 nm (approx. 5.56 

km) 

applicable in certain airspace areas with dense traffic or very accurate surveillance 

systems, such as near airports. 

Longitudinal separation 

minimal (LOSM) 

(See Figures 14 and 15) 

5 nm (approx. 3 

minutes) 

between two aircraft on the same route with different speeds, where the leading 

aircraft is assumed to fly at least 44 kt5 (81.49 km/h) faster than the following aircraft. 

10 nm (approx. 5 

minutes) 

between two aircraft on the same route with different speeds, where the leading 

aircraft is assumed to fly at least 22 kt (40.74 km/h) faster than the following aircraft. 

Figure 10. Representation of different vertical separation 

minima (VSM) between aircraft in cruise phase 

Figure 11. Representation of vertical separation violation 

situations when one of the two aircraft breaches their VSM 

Notes: 1. Feet: 1 foot (ft) equals 0.3048 metres. 2. RVSM (Reduced 

Vertical Separation Minima):  RVSM is a standard that reduces the vertical 
separation minima (VSM) between aircraft flying between flight levels FL290 

and FL410 from 2,000 feet to 1,000 feet. The aim is to increase airspace 

capacity by allowing more aircraft to operate at optimal cruising altitudes, 
thereby improving fuel efficiency and reducing traffic congestion [45-47]. 3. 

HSM (Horizontal Separation Minimum): Can be measured in two ways: by 

lateral distance and by longitudinal distance. 4. Nautical Miles: 1 nautical mile 
(nm) equals 1.852 kilometres. 5. kt (knot): kt is the standard unit of 

measurement for aircraft speed, where 1 kt = 1 nautical mile per hour = 1.852 

kilometres per hour. 

Figure 12. Representation of lateral separation minima 

(LASM) between two aircraft flying at the same or closely 

spaced altitudes 

Figure 13. Representation of a lateral separation violation 

situation when one of the two aircraft breaches their LASM 
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Figure 14. Representation of longitudinal separation minima 

(LOSM) between two aircraft flying at the same or closely 

spaced altitudes, where the leading aircraft must fly at least 

44 kt (81.49 km/h) faster than the following aircraft 

Figure 15. Representation of LOSM between two aircraft 

flying at the same or closely spaced altitudes, where the 

leading aircraft must fly at least 22 kt (40.74 km/h) faster 

than the following aircraft 

Figure 16. Representation of a longitudinal separation 

violation situation when one of the two aircraft breaches their 

LOSM 

Figure 17. An example of a trajectory for an aircraft agent 

(AircraftAgent0) 

4.2 Application of the proposed approach to the EATC 

system 

In accordance with our testing methodology, which is based 

on seven essential steps, we shall now examine and apply them 

one by one: 

4.2.1 MAS to be tested 

As outlined in Section 4.1, the system under test is a 

centralised MAS designed for cruise-phase air traffic control 

(EATC). It comprises 20 aircraft agents (AircraftAgent), each 

following its own trajectory in cruise airspace 

(TrajectoryVector). Each trajectory consists of a series of 

points (Point), with the number of points ranging from 6 to 30, 

excluding the departure and arrival points. These points 

represent estimated spatial positions of each agent at specific 

time instances, under the assumption of a constant cruising 

speed. External influences such as wind, weather, or other 

environmental factors are not considered in this model. To 

manage traffic and prevent conflicts, a controller agent 

(ControllerAgent) is responsible for coordinating the actions 

of all aircraft, thereby facilitating safe and efficient navigation 

within the cruise airspace.  

Figure 18 illustrates the overall architecture of the system 

under test, highlighting the interactions between the various 

agents involved in managing cruise-phase air traffic. Within 

this framework, each AircraftAgent periodically transmits its 

trajectory information (TrajectoryVector or TV) to the 

ControllerAgent, who oversees the coordination process to 

detect and resolve potential conflicts, ensuring smooth and 

secure navigation. 

Figure 18. Multi-agent system to be tested (EATC) 

4.2.2 Disabling coordination actions for this system 

In this step, the coordination mechanism that enables 

trajectory adjustments in the event of conflicts is deliberately 

deactivated. This prevents the ControllerAgent from sending 

adjustment instructions to the AircraftAgents, effectively 

disabling any conflict resolution intervention. Figure 19 

illustrates this deactivation by showing that the 

ControllerAgent continues to receive the trajectories of the 20 

AircraftAgents (from TV0 to TV19), but that the correction 

instructions (Ins0 to Ins19) are no longer sent. The red crosses 

clearly indicate that the transmission of adjustments is 

blocked, thus preventing any modification of heading or 

altitude by the AircraftAgents. 
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Figure 19. Illustration of the coordination flow deactivation 

for the EATC system 

4.2.3 Generation of mutants for each system resource 

Following the deactivation of the coordination mechanism 

in the previous step, the system under test becomes an "EATC-

Without Coordination" configuration. In this state, 

communication between the ControllerAgent and the 

AircraftAgents is completely disabled. Each AircraftAgent 

then follows its trajectory autonomously, without receiving 

any corrective adjustments in the event of a conflict. The 

resources of the system are the spatial coordinates in cruise 

airspace, since each agent navigates independently during this 

phase and uses these coordinates to position itself in space. 

Each AircraftAgent passes through multiple waypoints along 

its trajectory. If a conflict is to arise, it will necessarily occur 

at these points-where the trajectories of different aircraft 

agents may intersect. 

In this step, each waypoint in a trajectory is treated as a 

resource. According to the mutation analysis technique, an 

error is injected at each point (as defined in Eq. (1), Section 

3.1). An error is triggered if another point, belonging to a 

different trajectory, enters the safety zone around that point (as 

defined by VSM, LOSM, and LASM thresholds). In other 

words, each time an error is injected, a mutant is created. This 

mutant is an exact copy of the original system, except for a 

single error introduced at one specific point. 

At the end of this process, the total number of mutants 

corresponds to the total number of points across all 

trajectories. Since the system comprises 20 AircraftAgents 

(and thus 20 trajectories), each containing between 8 and 32 

points, the total number of mutants ranges from 160 to 640. 

This approach allows the system's coordination mechanism to 

be tested under conflict scenarios in cruise phase, by observing 

how each mutant behaves when safety zones (VSM, LOSM 

and LASM) are violated. 

4.2.4 Generation of test case inputs 

As illustrated in Section 3.1, through Figures 7 and 8, the 

process of generating test case inputs is carried out using 

parallel genetic algorithms. Below is a detailed presentation of 

the various steps that make up this process, from initialisation 

to the generation of the desired test case inputs: 

Process 1: Generation of an Initial Population. Test cases 

are modelled as individuals (Vector or V) within an initial 

population (with a fixed size of 100), which is generated 

randomly. This diversity is crucial for effectively exploring the 

solution space and avoiding bias from the outset. 

Each individual consists of 20 genes (TrajectoryVector or 

TV), and each gene contains between 8 and 32 waypoints 

(Point). Figures 20 and 21 illustrate the structure of the first 

and last individuals in the initial population. Furthermore, 

Table 3 clearly presents the parameters used to generate a 

trajectory (TrajectoryVector). 

Table 3. Key parameters for generating an aircraft trajectory (Trajectory Vector) 

Parameter Description Value/Range Unit 

InitialPointIndex index of the starting point 0 Integer 

minIntermediatePoints minimum number of intermediate points 6 Integer 

maxIntermediatePoints maximum number of intermediate points 30 Integer 

stepPointsInVector step between points in the vector 1 Integer 

leastDistance minimum distance between origin and destination 1000 Nautical miles (nm) 

minLon / maxLon longitude range -180 to 180 Degrees 

stepLon longitude step 0.00001 Degrees 

minLat / maxLat latitude range -90 to 90 Degrees 

stepLat latitude step 0.00001 Degrees 

minAltitude / maxAltitude altitude range 20,000 to 51,000 Feet (ft) 

stepAltitude altitude step 20 Feet (ft) 

minSpeed / maxSpeed speed range 350 to 600 Knots (kt) 

stepSpeed speed step 20 Knots (kt) 

minStartingTime / maxStartingTime time range 0 to 23 Hours 

stepStartingTime time step 1 Hours 

VSMValue vertical separation minimum 1000 or 2000 Feet (ft) 

LASMValue lateral separation minimum 500 Nautical miles (nm) 

LOSMValue longitudinal separation minimum 1000 Nautical miles (nm) 

RVSM reduced vertical separation minimum True or False Boolean 

priority agent priority 0 to 19 Integer 

EARTH_RADIUS_NM earth's radius 3440.065 Nautical miles (nm) 

AgentName aircraft agent name AircraftAgent String 

maxIntermediatePoints maximum number of intermediate points 30 Integer 
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Figure 20. Structure of the first individual in the initial 

population (POP0) 

Figure 21. Structure of the last individual in the initial 

population (POP0) 

Figure 22. Summary of the generation of the initial 

population (POP0) 

(a) Graphical representation of individual V0,0

(b) Graphical representation of individual V0,99

Figure 23. Graphical Representation of the First (V0,0) and 

Last (V0,99) Individuals of the Generated Initial Population 

(POP0) 

Figure 22 provides a summary view of the display after the 

generation of the initial population POP0, while Figure 23 

graphically represents the first individual (V0,0) and the last 

(V0,99) of this population. 

Process 2: Mutant Generation. In an initial population of 

100 individuals, where each individual is composed of 20 

genes, and each gene contains between 8 and 32 waypoints 

(resources), the total number of mutants generated per 

individual ranges from 160 to 640. Consequently, at the 

population level, the total number of generated mutants lies 

between 16000 and 64000. Figure 24 illustrates a sample 

output showing a subset of the generated mutants. 

Figure 24. Excerpt of the display of mutants generated for 

the initial population POP0 

Figure 25. Excerpt of errors detected during the parallel 

execution of POP0 on each generated mutant 
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Process 3: Error Triggering and Evaluation of Individuals. 

During the parallel execution of each individual from the 

initial population on each previously generated mutant (see 

Figure 5, Section 3.1), one or more errors may occur (as 

defined in Eq. (1), Section 3.1). This indicates simultaneous 

use of the same resource, meaning that safety separation rules 

are violated at certain waypoints. In such cases, the 

corresponding mutants are considered "killed". Figure 25 

illustrates a representative excerpt of the detected errors, and 

Table 4 details the extracted information. 

Table 4. Information extracted from the parallel execution of the initial population on all generated mutants 

Triggered 

Errors 

Individual 

ID 

(Error 

Source) 

Mutant ID 

(Killed) 

Involved 

Agent 

Error 

Degree 

(ED 

or 

degE) 

Conflict 

Weight 

(CW) 

Total 

Conflict 

Weight 

(TCW) 

Number 

of Killed 

Mutants 

(m) 

Total 

Mutants 

(M) 

Total 

Error 

Degree 

(TED) 

Total 

Error 

Weight 

(TEW) 

Error 1 V0,49 M0,49,15,0 

AircraftAgent15 

2 

1 point 

included 
2 1 427 2 2 

AircraftAgent7 
1 point 

included 

Error 2 V0,90 M0,90,14,0 

AircraftAgent14 

2 

1 point 

included 
2 1 436 2 2 

AircraftAgent4 
1 point 

included 

Following the analysis of the triggered errors and the 

extraction of relevant information for the evaluation of each 

individual in the initial population, we apply the previously 

defined fitness function, using the parameters α=0.6, β=0.3 

and γ=0.1 (see Eq. (6), Section 3.1). Figure 26 provides a 

detailed excerpt of the evaluations for each individual, while 

Figure 27 offers a graphical overview of the fitness-based 

evaluation for individuals ranging from V0,40 to V0,79. 

Figure 26. Detailed extract of individual evaluations from 

population POP0 

Figure 27. Graphical representation of fitness values of 

individuals (v0,40 to v0,79) in population POP0 

Process 4: Selection of the Fittest Individuals. Following the 

evaluation of the initial population, the next step is to select 

the fittest individuals - those with the highest performance 

scores. A selection rate is randomly determined within a 

predefined range of 60% to 90%. In this case, the selected rate 

is 82.13%, meaning that 82 individuals from the initial 

population have been chosen for the next stage. 

Process 5: Crossover and Mutation. To diversify and enrich 

our population, we performed simple crossover between every 

two parent individuals to produce two offspring. The crossover 

probability was randomly selected between 70% and 100%. 

Additionally, the crossover point was chosen from the 

following authorized values: 30%, 40%, 50%, 60%, and 70%. 

However, due to computational and memory constraints, the 

total number of individuals generated after each crossover 

operation (parents + offspring) was limited to a maximum of 

40. 

Figure 28. Display of mutated individuals from the initial 

population after crossover 

Mutation was also applied, with a randomly selected 

probability between 1% and 20%, determining the chance for 

each individual to be mutated. When an individual was 

selected for mutation, only one of its genes was modified, with 

the gene being randomly chosen. Figure 28 illustrates an 

excerpt of the displayed results, showing a mutation 

probability of 16.99%, which led to the mutation of 6 

individuals out of a total of 40. 

Process 6: Generation of the New Population. This process 

involves creating a new population that incorporates all 

individuals after mutation. To achieve this, new indices must 

2244



be generated: the index of the previous population is 

incremented by 1, and all indices of individuals, genes, and 

waypoints are updated accordingly. Figure 29 presents a 

sample display of a newly generated population, POP1. 

Figure 29. An excerpt of the display of a new population 

POP1 

Figure 30. Evaluation curves of test case inputs (Inputs0) 

Process 7: Development of Test Case Inputs. The 

development of test case inputs is based on the repeated 

execution of the previous processes (Processes 1 to 6) until the 

fitness function reaches a stable state. In other words, as long 

as the fitness scores of individuals continue to improve, the 

algorithm proceeds with its evolution. However, once no 

significant improvement is observed, it is considered that the 

algorithm has reached convergence. 

Despite constraints - most notably the limitation to 40 

individuals per new generation - a fitness score of 98.1281% 

was achieved after 150 generations. While this restriction may 

have slowed convergence, it allowed for more efficient 

management of computational and memory resources. 

Once convergence is achieved, individuals from the final 

generation are selected as the best difficult test case inputs. 

These represent the most relevant scenarios for evaluating the 

coordination mechanism of the system under test. 

Figure 31. Evaluation curves of test case inputs (Inputs10) 

Figure 32. Evaluation curves of test case inputs (Inputs40) 

Figure 33. Evaluation curves of test case inputs (Inputs45) 

Figure 34. Evaluation curves of test case inputs (Inputs70) 

2245



Figure 35. Evaluation curves of test case inputs (Inputs100) 

Figure 36. Evaluation curves of test case inputs (Inputs150) 

Figures 30 to 36 illustrate the progressive evolution of test 

case input quality, ranging from poor to excellent. They first 

show low-quality inputs, followed by moderate and good 

quality, and finally, excellent-quality inputs. In this final 

category, the best score achieved is 98.1281%. 

Figure 37. Graphical representation of one of the best test 

case inputs, represented by individual V150,24 

At the peak of this progression, Figure 37 provides a 

graphical representation of individual V150,24, identified as 

the best test case input. Additionally, Table 5 presents a 

detailed analysis of each test case input illustrated in Figures 

30-36, highlighting their evolution in terms of performance

and quality.

Table 5. Detailed analysis of test case input evolution in terms of performance and quality 

Test Case 

Inputs 

Population Analysis Results 
Analysis Results of the Worst Individual in 

the Population 

Analysis Results of the Best Individual in the 

Population 
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Inputs0 

(POP0) 

100 

Individuals 

2  

Errors 
0.000000 0.335305 0.006704 0 / 0 0 1 427 2 2 

Inputs10 

(POP10) 

39 

Individuals 

27  

Errors 
0.000000 0.591954 0.101607 0 / 0 0 7 435 29 29 

Inputs40 

(POP40) 

39 

Individuals 
1001 Errors 0.670151 0.775251 0.721229 15 444 150 150 44 423 174 174 

Inputs45 

(POP45) 

33 

Individuals 
1098 Errors 0.684276 0.802932 0.746361 16 356 80 80 57 411 235 235 

Inputs70 

(POP70) 

39 

Individuals 
5710 Errors 0.869194 0.910780 0.889581 119 450 485 485 166 404 580 580 

Inputs100 

(POP100) 

40 

Individuals 

10579 

Errors 
0.929362 0.953865 0.943855 230 474 872 872 293 469 1039 1039 

Inputs150 

(POP150) 

35 

Individuals 

13805 

Errors 
0.962033 0.981281 0.976064 323 476 1175 1175 428 519 1522 1522 

In our coordination testing approach, the main objective is 

clearly defined: to generate the most challenging possible test 

case inputs. This means producing scenarios that maximise 

conflicts, trigger a higher number of errors, and eliminate as 

many mutants as possible. 

This objective is directly reflected in Table 5, which 

illustrates the evolution of generations and highlights the 

progressive increase in the number of detected conflicts, as 

well as the growing complexity of the generated errors, as 

expressed by the TED (Total Error Degree) and TEW (Total 

Error Weight) indices. Furthermore, it underscores the rise in 

the number of eliminated mutants, represented by the term 

(m). The analysis of the results confirms that the genetic 

algorithm successfully increases the complexity of test cases, 

thereby enabling a more rigorous and in-depth evaluation of 

the coordination mechanism within the tested system. 

4.2.5 Enabling coordination actions for this system 

This step corresponds to the reactivation of the coordination 

mechanism, which had been disabled in Step 2 (see Figure 19). 

Figure 38 provides an abstract illustration of this 

reactivation: the ControllerAgent continues to receive the 

trajectories of the 20 aircraft agents (from TV0 to TV19), but 

this time, it is once again able to intervene in the event of a 

conflict. Adjustment instructions are therefore sent to the 

relevant agents to correct their trajectories when necessary. 
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The ControllerAgent functions as a central coordinator, 

with the primary role of ensuring safe separation between the 

trajectories transmitted by the various AircraftAgents. It does 

so by enforcing the criteria for vertical, lateral, and 

longitudinal separation (VSM, LASM and LOSM). The 

adopted coordination strategy focuses exclusively on adjusting 

the altitude of conflicting trajectories, without altering either 

the speed or the heading. 

 Coordination Strategy Adopted:

a. Trajectory reception: The process begins when each

AircraftAgent sends its complete trajectory to the 

ControllerAgent, represented as a list of waypoints (Point). 

Once all trajectories have been received, the controller can 

initiate the analysis. 

b. Conflict detection: The controller identifies potential

conflict points between aircraft using the function 

“getAllConflictPoints(trajectoryVectorList)”, which compiles 

all such points for further processing. 

c. Conflict resolution (Multi-Cycle Approach): he controller

attempts to resolve conflicts over multiple successive cycles, 

continuing until either all conflicts are resolved or the 

maximum number of cycles (MAX_CYCLES, set to 10) is 

reached.  

In each cycle, the controller calls the 

“resolveConflicts(allConflictPointsMap)” function to process 

the detected conflicts and generate adjustment instructions to 

be sent to the relevant aircraft agents. 

For each group of conflicting points: 

 The point with the highest priority (i.e., the lowest

numerical value) is protected and remains unchanged. 

 The remaining points are adjusted one by one, in

descending order of priority (from less to more important). 

 For each adjusted point, a safe altitude is determined using

the method “findSafeAltitude(pointToAdjust, 

referencePoints)”, taking into account: 

 The required minimum vertical separation (VSM) must be

maintained between all points; 

 The altitude of the highest-priority point remains

unchanged; 

 The altitudes of other points already adjusted during the

same cycle are considered to avoid introducing new conflicts; 

 The suggested altitude must remain within authorised

bounds, between FL200 (minimum) and FL510 (maximum). 

All adjustments are recorded locally using structures of type 

“AdjustmentInstructions”. 

Figure 38. Reactivation of the coordination process 

Table 6. System execution results for the best test cases from each predefined input set 

Inputs 

Inputs 

Quality 

(%) 

 Top 2 

Test 

Cases  

per  

Input 

Fitness 

Score  

(%) 

Number 

 of  

Planned 

Conflicts 

(Errors) 

Test Case Execution Results 

Resolved Conflicts / Resolution Success  

Number of Adjustments / Total Number of Adjustment Points 
Latest  

Agents’ IDs  

Affected 

by the  

Adjustments 

Index of the 

Affected Points 

in the Latest 

Adjustments 

Previous 

Altitude 

(ft) 

Safe  

Altitude 

(ft) 

Planned 

Conflicts 

/ 

Resolved 

Conflicts 

After 

Cycle 

1 

After 

Cycle 

2 

After 

Cycle 

3 

After 

Cycle 

4 

After 

Cycle 

5 

After 

Cycle 

6 

After 

Cycle 

7 

After 

Cycle 

8 

After 

Cycle 

9 

After 

Cycle 

10 

Inputs0: 

 100  

Test 
Cases 

0.6704  

V0,49 33.5305 1 
1/Yes 

1/1 
/ / / / / / / / / AircraftAgent15 Point0,49,15,0 36600 38600 

1 / 1 

Success: 

100% 

V0,90 33.5070 1 
1/Yes 

1/1 
/ / / / / / / / / AircraftAgent14 Point0,90,14,0 32440 34440 

1 / 1 
Success: 

100% 

Inputs10: 

 39  

Test 

Cases 

10.1607 

V10,25 59.1954 7 
7/Yes 

4/5 
/ / / / / / / / / 

AircraftAgent14 Point10,25,14,0 32440 28440 

7 / 7 

Success: 

100% 

AircraftAgent15 Point10,25,15,0 32440 36440 

AircraftAgent17 Point10,25,17,0 32440 30440 

AircraftAgent18 
Point10,25,18,0 32440 34440 

Point10,25,18,23 32440 34440 

V10,27 53.7376 4 
4/Yes 

3/3 
/ / / / / / / / / 

AircraftAgent14 Point10,27,14,0 32440 36440 4 / 4 
Success: 

100% 

AircraftAgent17 Point10,27,17,0 32440 30440 

AircraftAgent18 Point10,27,18,0 32440 34440 

Inputs40: 

 40  

Test 

Cases 

72.1229 

V40,1 77.5251 44 
43/No 

9/27 

44/Yes 

1/1 
/ / / / / / / / AircraftAgent12 Point40,1,12,0 32440 36420 

44 / 44 

Success: 

100% 

V40,11 76.9086 38 
37/No 

9/23 

38/Yes 

1/1 
/ / / / / / / / AircraftAgent12 Point40,11,12,0 38420 36420 

38 / 38 

Success: 

100% 

Inputs45: 

 33  

Test 

Cases 

74.6361 

V45,23 80.2932 57 
54/No 

12/35 

55/No 

2/2 

55/No 

1/1 

55/No 

1/1 

55/No 

1/1 

55/No 

1/1 

57/Yes 

1/1 
/ / / AircraftAgent19 Point45,23,19,0 47960 48960 

57 / 57 

Success: 

100% 

V45,6 79.2381 51 
50/No 

9/30 

51/Yes 

1/1 
/ / / / / / / / AircraftAgent12 Point45,6,12,0 38420 36420 

51 / 51 

Success: 

100% 
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Table 7. Additional results for the remaining test cases 

Inputs 

Inputs 

Qualit

y  

(%) 

 Top  

2 Test 

Cases  

per  

Input 

Fitness 

Score  

(%) 

Number 

 of  

Planned 

Conflict

s 

(Errors) 

Test Case Execution Results 

Resolved Conflicts / Resolution Success  

Number of Adjustments / Total Number of Adjustment Points 
Latest  

Agents’ IDs  

Affected 

by the  

Adjustments 

Index of the 

Affected Points 

in the Latest 

Adjustments 

Previou

s 

Altitude 

(ft) 

Safe  

Altitud

e  

(ft) 

Planned 

Conflicts 

/ 

Resolved 

Conflicts 

After 

Cycle 

1 

After 

Cycle 

2 

After 

Cycle 

3 

After 

Cycle 

4 

After 

Cycle 

5 

After 

Cycle 

6 

After 

Cycle 

7 

After 

Cycle 

8 

After 

Cycle 

9 

After 

Cycle 

10 

Inputs70: 

 39  
Test 

Cases 

88.958
1 

V70,18 
91.078

0 
166 

162/N

o 

13/99 

162/N

o 

3/3 

162/N

o 

2/2 

162/N

o 

2/2 

162/N

o 

2/2 

164/N

o 

2/2 

164/N

o 

1/1 

164/N

o 

1/1 

165/N

o 

1/1 

164/N

o 

1/1 

AircraftAgent1

9 
Point70,18,19,0 48960 47960 

166 / 164 

Success: 

98.7952

% 

V70,13 
90.903

5 
184 

176/N

o 

15/104 

172/N

o 

7/7 

172/N

o 

6/6 

174/N

o 

6/6 

174/N

o 

5/5 

175/N

o 

5/5 

175/N

o 

5/5 

176/N

o 

5/5 

177/N

o 

5/5 

176/N

o 

5/5 

AircraftAgent1

3 
Point70,13,13,0 46960 45960 

184 / 176 

Success: 

95.6522

% 

AircraftAgent1
6 

Point70,13,16,0 47960 46960 

AircraftAgent1

7 
Point70,13,17,0 47960 48960 

AircraftAgent1

8 
Point70,13,18,0 46960 47960 

AircraftAgent1

9 
Point70,13,19,0 48960 47960 

Inputs100

: 

39  

Test 

Cases 

94.385

5 

V100,1

7 

95.386

5 
293 

284/N

o 

17/167 

277/N

o 

8/8 

277/N

o 

8/8 

279/N

o 

8/8 

279/N

o 

7/7 

281/N

o 

7/7 

281/N

o 

6/6 

283/N

o 

6/6 

283/N

o 

5/5 

284/N

o 

5/5 

AircraftAgent1

1 

Point100,17,11,

0 
45960 46960 

293 / 284 

Success: 

96.9283

% 

AircraftAgent1

3 

Point100,17,13,

0 
46960 47960 

AircraftAgent1

6 

Point100,17,16,

0 
47960 48960 

AircraftAgent1

8 

Point100,17,18,

0 
48960 49960 

AircraftAgent1

9 

Point100,17,19,

0 
50960 49960 

V100,1

5 

95.059

2 
286 

278/N

o 

15/174 

272/N

o 

7/7 

272/N

o 

7/7 

274/N

o 

7/7 

274/N

o 

6/6 

276/N

o 

6/6 

276/N

o 

5/5 

278/N

o 

5/5 

278/N

o 

4/4 

279/N

o 

4/4 

AircraftAgent1

3 

Point100,15,13,

0 
46960 47960 

286 / 279 

Success: 

97.5525

% 

AircraftAgent1

6 

Point100,15,16,

0 
47960 48960 

AircraftAgent1

8 

Point100,15,18,

0 
48960 49960 

AircraftAgent1

9 

Point100,15,19,

0 
50960 49960 

Inputs150

: 

 35  
Test 

Cases 

97.606

4 

V150,2

4 

98.128

1 
428 

418/N
o 

18/252 

410/N
o 

9/9 

412/N
o 

9/9 

412/N
o 

8/8 

414/N
o 

8/8 

414/N
o 

7/7 

416/N
o 

7/7 

416/N
o 

6/6 

416/N
o 

6/6 

417/N
o 

6/6 

AircraftAgent1

2 

Point150,24,12,

0 
45960 46960 

428 / 417 
Success: 

97.4299

% 

AircraftAgent1

4 

Point150,24,14,

0 
46960 47960 

AircraftAgent1
6 

Point150,24,16,
0 

46960 47960 

AircraftAgent1

7 

Point150,24,17,

0 
47960 48960 

AircraftAgent1

8 

Point150,24,18,

0 
49960 50960 

AircraftAgent1

9 

Point150,24,19,

0 
50960 49960 

V150,3

1 

97.969

3 
410 

400/N

o 

18/244 

392/N

o 

9/9 

394/N

o 

9/9 

394/N

o 

8/8 

396/N

o 

8/8 

396/N

o 

7/7 

398/N

o 

7/7 

398/N

o 

6/6 

398/N

o 

6/6 

399/N

o 

6/6 

AircraftAgent1
2 

Point150,31,12,
0 

45960 46960 

410 / 399 

Success: 

97.3171

% 

AircraftAgent1

4 

Point150,31,14,

0 
46960 47960 

AircraftAgent1

6 

Point150,31,16,

0 
47960 48960 

AircraftAgent1

7 

Point150,31,17,

0 
49960 50960 

AircraftAgent1

8 

Point150,31,18,

0 
48960 49960 

AircraftAgent1

9 

Point150,31,19,

0 
50960 49960 

d. Sending adjustments:

 If, during a given cycle, no further conflicts are detected,

the adjustments calculated in the previous cycle are sent to the 

relevant AircraftAgents. 

 If the maximum number of cycles is reached and some

conflicts remain unresolved, the controller sends the most 

recent available adjustments regardless. 

e. Receiving adjustments: Each AircraftAgent receives only

the adjustments that concern it. Each adjustment specifies: the 

waypoint to be modified and the new altitude to be applied to 

that point. 

4.2.6 Execution of this system using pre-generated test case 

inputs 

Table 6 and Table 7 present the execution results of the 

system under test. For each pre-generated test set (Inputs0 

(POP0), Inputs10 (POP10), Inputs40 (POP40), Inputs45 

(POP45), Inputs70 (POP70), Inputs100 (POP100), and 

Inputs150 (POP150)), the two best test cases were selected and 

applied. 

4.2.7 Evaluation of the coordination adopted in this system 

under test 

This step constitutes the final phase of the approach. Now 

that the execution results have been obtained in the previous 

step, it is possible to evaluate the coordination strategy 
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implemented in the EATC. The objective is to assess the 

effectiveness of the strategy used to resolve conflicts between 

aircraft. 

This evaluation is based on the number of cycles required to 

resolve all detected conflicts, according to a simple and 

interpretable scale presented in Table 8. 

Table 9 clearly and concisely presents the evaluation results 

obtained for each test case, based on the grading scale defined 

in Table 8. This allows for a concrete assessment of the 

effectiveness of the coordination strategy, particularly in terms 

of how quickly the system resolves conflicts between aircraft. 

Table 8. Coordination evaluation scale based on the number of cycles 

Number of Cycles Coordination Rating Meaning 

1  Excellent coordination 
Conflicts are resolved very quickly 

with minimal adjustments. 

2 to 5  Good coordination 
Conflicts are resolved efficiently 

over several cycles. 

6 to 9  Acceptable coordination 
Conflicts are more complex and 

require more effort to resolve. 

10 or more  Coordination failure 
Not all conflicts could be resolved 

despite multiple attempts. 

Table 9. Coordination evaluation of the EATC system under test 

Top 2 Test Cases 

Per Input 

Fitness 

Score 

(%) 

Planned 

Conflicts 

Resolved 

Conflicts 

Number 

of Cycles 
Coordination Rating Meaning 

V0,90 33.5070 1 1 1 
 Excellent 

coordination 

Conflicts are resolved very quickly with 

minimal adjustments 

V0,49 33.5305 1 1 1 ″ ″ 

V10,27 53.7376 4 4 1 ″ ″ 

V10,25 59.1954 7 7 1 ″ ″ 

V40,11 76.9086 38 38 2  Good coordination 
Conflicts are resolved efficiently over 

several cycles. 

V40,1 77.5251 44 44 2 ″ ″ 

V45,6 79.2381 51 51 2 ″ ″ 

V45,23 80.2932 57 57 7 
 Acceptable 

coordination 

Conflicts are more complex and require 

more effort to resolve. 

V70,13 90.9035 184 176 
10 or 

more 
 Coordination 

failure 

Not all conflicts could be resolved despite 

multiple attempts. 

V70,18 91.0780 166 164 
10 or 

more 
″ ″ 

V100,15 95.0592 286 279 
10 or 

more 
″ ″ 

V100,17 95.3865 293 284 
10 or 

more 
″ ″ 

V150,31 97.9693 410 399 
10 or 

more 
″ ″ 

V150,24 98.1281 428 417 
10 or 

more 
″ ″ 

5. DISCUSSION

The application of our approach to the case study 

demonstrated its effectiveness and yielded promising results. 

It enabled a thorough evaluation of the coordination 

mechanism under test, validating its ability to detect 

coordination flaws and assess the system’s resilience. A major 

strength of the method lies in its generality: it can be applied 

regardless of the coordination mechanism used - whether 

planning, negotiation, or rule-based - and across both 

centralized and distributed MAS architectures. The strategic 

combination of mutation analysis and genetic algorithms is 

another key advantage. Mutation analysis deliberately injects 

faults to evaluate robustness under degraded conditions, while 

the genetic algorithm generates and evolves test cases, 

automatically prioritizing those most likely to expose 

conflicts. This evolutionary process helps uncover subtle 

vulnerabilities that may escape manual testing. 

Future improvements can further enhance this framework. 

One promising direction involves the integration of machine 

learning [48, 49] and deep learning techniques [50, 51] to 

enrich the test case generation process. For instance, 

supervised learning could exploit historical conflict data to 

predict high-risk situations and guide the mutation process 

toward more critical test cases. Deep learning, particularly 

sequence-based models such as recurrent or transformer 

architectures, could capture temporal interaction patterns 

among agents, allowing the generation of conflict scenarios 

that more closely resemble real-world dynamics. 

Reinforcement learning could also be applied to iteratively 

refine test strategies, rewarding test inputs that reveal 

previously undetected vulnerabilities. These integrations 

would transform the framework into a self-adaptive testing 

system, capable of continuously improving as more data 

becomes available. 

Another important avenue is the adaptation of the approach 
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for open MAS environments, where the number of agents and 

resources may change dynamically. Unlike static systems, 

open environments introduce uncertainty that challenges 

traditional conflict modelling. To address this, the approach 

could be extended with dynamic resource tracking and 

adaptive conflict detection algorithms, capable of recalibrating 

the system model in real time as new agents or resources 

appear. Probabilistic models could further be incorporated to 

anticipate coordination risks under uncertainty, ensuring that 

the testing process remains effective despite the fluid nature of 

open MAS. While these future directions promise to extend 

the applicability of the method, it is important to acknowledge 

its limitations. The primary challenge remains the preparatory 

modelling effort: the accuracy of conflict detection depends 

heavily on correctly identifying and modelling all 

coordination-sensitive resources. Any omissions can lead to 

undetected conflicts. In highly dynamic open MAS, this 

limitation becomes even more pronounced, as the evolving 

system state complicates accurate resource representation. 

In summary, our approach provides a flexible and effective 

framework for testing coordination in MAS, with 

demonstrated scalability and robustness in safety-critical 

applications such as air traffic control. Its integration with 

advanced learning techniques and its extension to open 

environments represent concrete and impactful avenues for 

future research, bringing us closer to comprehensive and 

adaptive testing strategies for real-world MAS. 

6. CONCLUSION

Testing coordination in multi-agent systems (MAS) is a 

challenging and often overlooked task, despite its critical role 

in ensuring coherent system behavior. This work introduced 

an innovative methodology that combines mutation analysis 

with parallel genetic algorithms, enabling the systematic 

generation of conflict-intensifying scenarios. The approach 

functions as a targeted stress test for coordination mechanisms, 

capable of uncovering weaknesses that traditional testing 

techniques frequently miss. The experimental validation on 

the En-route air traffic control (EATC) system provided 

concrete evidence of the method’s effectiveness. Indeed, the 

obtained results clearly demonstrate both the scalability of the 

method and its practical relevance for safety-critical domains 

where reliability is paramount. Beyond this case study, the 

methodology offers a generic testing strategy applicable to 

centralized, distributed, or hybrid MAS architectures. Its 

ability to create realistic and conflict-intensive scenarios opens 

the door to a more rigorous assessment of coordination 

robustness. Looking ahead, several concrete directions for 

extension emerge: 

 Adaptation to open MAS environments, where the number

of agents and resources changes dynamically, reflecting real-

world operational challenges that are inherently unstable and 

harder to model; 

 Integration of machine learning and deep learning

techniques, which could leverage past data to generate more 

diverse, realistic, and critical scenarios, thereby uncovering 

subtle coordination vulnerabilities;  

 Application to distributed architectures, where

decentralized coordination introduces specific challenges 

related to communication, synchronization, and fault 

tolerance; 

 Scaling to larger agent populations, to simulate dense and

complex environments such as high-traffic airspaces or large-

scale industrial systems. 

In summary, this study lays the foundations of a robust and 

extensible framework for testing MAS coordination under 

realistic and adverse conditions. By combining mutation 

analysis and genetic algorithms, the proposed approach not 

only identifies coordination vulnerabilities but also contributes 

to the design of more resilient, adaptive, and trustworthy 

multi-agent systems capable of thriving in complex, real-

world environments. 
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