
A Mutation Analysis-Based Approach for Testing Coordination Mechanisms in Multi-Agent

Systems: Application to Air Traffic Control Systems

Soufiene Boukelloul1* , Nour El Houda Dehimi2 , Stéphane Galland2,3 , Sofiane Zaidi4

1 LIAOA Laboratory, Department of Mathematics and Computer Science, University of Oum El Bouaghi, Oum El Bouaghi

04000, Algeria
2 Université de Technologie de Belfort Montbéliard, UTBM, CIAD UR 7533, Belfort 90010, France
3 Université Bourgogne Europe, UBE, CIAD UR 7533, Dijon 21000, France
4 Department of Mathematics and Computer Science, Research Laboratory on Computer Science’s Complex Systems

(RELA(CS)2), University of Oum El Bouaghi, Oum El Bouaghi 04000, Algeria

Corresponding Author Email: soufiene.boukelloul@univ-oeb.dz

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300903 ABSTRACT

Received: 19 July 2025

Revised: 15 September 2025

Accepted: 21 September 2025

Available online: 30 September 2025

In this work, we propose an innovative approach that combines mutation analysis with

parallel genetic algorithms to evaluate coordination mechanisms in multi-agent systems

(MAS), particularly in critical contexts where effective conflict management is essential.

The approach involves temporarily disabling coordination, injecting simulated errors

(mutants) into concurrent access to shared resources, and then automatically generating test

cases that intensify potential conflicts. Coordination is then reactivated to observe whether

it successfully resolves these conflicts, thereby assessing its robustness. The approach is

applied to a concrete case study, the En-route air traffic control system (EATC), in order to

test the ability of the adopted coordination mechanism to manage trajectory conflicts

between aircraft, while ensuring compliance with minimum separation standards (vertical,

lateral, and longitudinal). The experimental results validate the effectiveness of the

proposed approach. Indeed, after 150 generations, the best test case quality achieved an

average of 97.6064%, with a maximum fitness of 98.1281%. Among 428 conflict cases, the

adopted coordination mechanism successfully resolved 417 (97.43%), failing in only 2.57%

of the cases. These outcomes underscore both the robustness and scalability of the proposed

approach for testing MAS coordination in critical domains.

Keywords:

multi-agent systems, system level testing,

mutation analysis, parallel genetic

algorithms, test case generation,

coordination mechanisms, conflict detection,

air traffic control

1. INTRODUCTION

Multi-agent systems (MAS) [1-3] consist of autonomous

and self-organizing agents that collaborate within a shared

environment to achieve individual or shared goals. These

systems have widespread applications in such vital domains as

cooperative robotics [4, 5], intelligent transportation systems

[6], control of energy grid [7, 8], financial markets [9], and

social simulation [10], where effective coordination among

agents is required to ensure optimal performance and

harmonious coexistence with minimal conflicts. In an MAS,

conflict arises when a group of agents pursues incompatible

goals, executes conflicting actions, or competes for access to

limited and non-shareable resources. Such conflicts are

common in distributed and dynamic environments and

represent a major danger for the proper functioning of the

system [11]. Their occurrence reveals the MAS’s actual ability

to manage agent interactions and maintain overall system

coherence despite interference situations. However, in

dynamic and competitive environments [12, 13], these

conflicts may emerge due to various factors, including

competition for scarce resources, divergence of agents’

objectives, disagreements in decision-making, or uncertainties

related to complex agent interactions. These conflicts can

significantly impact the system’s stability and efficiency,

leading to deadlocks, operational inefficiencies, or even

breakdowns in cooperation among agents. Therefore, the

ability of a coordination mechanism to handle such conflicts

turns into a critical parameter for the robustness and

responsiveness of MAS. Several coordination approaches

have been put forward, such as collective planning [14, 15],

negotiation, auctions [16-18], and resource allocation

protocols [19]. However, it is a challenging task to analyze

these mechanisms as conflicts tend to occur under

unanticipated and varying situations. Traditional methods rely

primarily on scenario simulation and performance

measurement with tangible parameters such as conflict

resolution time [20], success rate of negotiations [21, 22] and

resource optimization [23]. However, traditional methods

have their limitations: they cannot always anticipate failure of

coordination mechanisms while facing unexpected

disturbances or identifying the structural vulnerabilities of the

system. A hidden failure can undermine a MAS's capacity to

solve conflicts in an effective manner, to the point that its

overall performance and reliability are negatively affected. In

order to surpass these challenges, we suggest applying an

Ingénierie des Systèmes d’Information
Vol. 30, No. 9, September, 2025, pp. 2233-2252

Journal homepage: http://iieta.org/journals/isi

2233

https://orcid.org/0009-0004-1320-9169
https://orcid.org/0000-0001-9402-2304
https://orcid.org/0000-0002-1559-7861
https://orcid.org/0000-0002-5743-8850
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/isi.300903&domain=pdf

approach based on mutation analysis [24-27], a software

testing-derived technique [28-32] that entails introducing

controlled perturbations into the system under test by design.

By seeing how the system reacts to these disruptions, one can

identify instances where coordination mechanisms

malfunction or lose effectiveness in managing conflicts. This

approach thus enables the identification of weaknesses in

existing strategies and suggests adjustments to enhance their

robustness. Unlike traditional approaches, mutation analysis

provides a more rigorous and objective evaluation framework

capable of testing coordination mechanisms under adverse and

unpredictable conditions [33]. The main objective of this study

is to propose a systematic and reproducible approach for

evaluating and improving conflict management in MAS by

identifying vulnerabilities in coordination mechanisms and

suggesting adjustments to optimize their resilience. Our

approach also allows for an objective comparison of different

coordination strategies and guides the design of more efficient

and adaptive mechanisms. Thus, mutation analysis represents

a significant advancement in the evaluation and enhancement

of MAS, making them more effective and robust in addressing

the challenges posed by dynamic and conflict-prone

environments. Given that our testing approach specifically

targets conflicts arising from concurrent access to resources, it

proves particularly relevant for multi-agent systems developed

according to the Agent & Artifact (A&A) paradigm [34],

where artifacts play a central role in agent coordination. In this

framework, artifacts represent functional and observable

entities that serve as mediators for agent interactions and

coordination. Since the concept of resources aligns with that

of artifacts both functionally and conceptually, our

methodology not only enables the evaluation of the robustness

of proposed coordination mechanisms but also assesses their

ability to effectively manage resource-related conflicts that

emerge during agent interactions via these artifacts. Thus, our

approach provides a rigorous and systematic framework for

testing and validating coordination mechanisms within multi-

agent systems based on the A&A model.

The remainder of this work is structured as follows: Section

2 provides an overview of the state-of-the-art approaches for

testing coordination mechanisms in MAS, highlighting their

limitations. Section 3 presents our methodology based on

mutation analysis and details the process of generating and

applying mutations. Section 4 presents the experimental

results obtained after applying our method to a real case study.

Finally, Section 5 concludes this paper by summarizing the

main contributions and outlining future work on improving

MAS testing.

2. SIMILAR WORKS

In the literature, a limited number of approaches have been

proposed for testing MAS in recent years. Subsequently, we

outline a selection of these approaches in Table 1.

Table 1. Comparative analysis of testing approaches for multi-agent systems: main contributions and limitations

Reference Approach Main Contribution
Limitations (in Light of MAS Global

Behaviour & Coordination)

Dehimi et al.

[35]

model-based testing using

genetic algorithms for holonic

agents

iterative testing across evolving

versions; focuses on newly

introduced behaviors

incremental but limited to individual agent

evolution; lacks integrated view of MAS

coordination

Dehimi &

Mokhati [36]

sequence diagrams with OCL

“plugs”

formal test case generation capturing

constraints on interactions

focuses on single interactions; does not

evaluate coordination/conflict mechanisms

Winikoff [37]
testability of BDI agents (all-

edges vs all-paths criteria)
adequacy metrics for BDI programs

structural coverage only; no assessment of

coordination or conflict resolution

Gonçalves et al.

[38]

Moise+ → CPN4M

transformation for testing

social behaviour

organisational-level testing with

path/state-transition adequacy

restricted to Moise+ model; coordination

assumed from org. model, no dynamic

adaptability

Rehman et al.

[39]

model-based methodology

with Prometheus artefacts

fault model for goals, plans, and

interactions; new coverage criteria

limited to goal/plan execution; does not

consider emergent conflicts or adaptive

coordination

Huang et al.

[40]

semantic Mutation Testing

(SMT) for Jason, GOAL,

2APL

semantic operators to assess

robustness of rule-based agents

language-specific; focuses on robustness of

logic, not on coordination or conflict handling

Dehimi et al.

[41]

mutation + parallel GA for

isolating scenarios

detects errors within concurrent

scenario executions

only targets scenario isolation; does not ensure

robustness of coordination mechanisms

Savarimuthu

and Winikoff

[42]

mutation operators for Goal

language

empirical validation of mutation

hypotheses in Goal programs

restricted to Goal language; ignores global

MAS interactions and coordination

Dehimi et al.

[43]

deep learning for error

detection across MAS

versions

automated scalable error detection
strong for error prediction but not designed to

assess coordination or conflict resilience

Although significant progress has been made in MAS

testing through the introduction of new strategies, many of

these approaches reveal important limitations. They often lack

a global and integrated view of MAS behaviour, focusing

instead on specific aspects such as communication, plan

execution, or individual agent logic. Moreover, conflict

management and coordination mechanisms are often

overlooked or assumed to function correctly without

evaluation. These shortcomings limit the capacity of existing

methods to ensure the overall robustness and adaptability of

MAS, particularly in dynamic or unpredictable environments.

To address these limitations, we propose a novel approach

capable of identifying vulnerabilities in coordination

mechanisms and suggesting targeted improvements to

enhance their resilience. Additionally, it enables objective

comparisons between coordination strategies and supports the

development of more robust and adaptive mechanisms. What

further strengthens the relevance of our approach compared to

2234

existing ones is its applicability to MAS based on the A&A

model, where artifacts play a central role in coordination and

interaction management. This compatibility ensures that our

method can be directly integrated into systems developed

under this paradigm, providing a comprehensive and

systematic framework for testing and validating coordination

mechanisms in MAS.

3. THE PROPOSED APPROACH

The proposed approach aims to evaluate the effectiveness

of the coordination mechanism implemented within a given

MAS. It relies on the generation of a series of test cases whose

inputs are specifically designed to force the maximum number

of agents in the system under test to simultaneously access or

occupy the same resource. This scenario inevitably leads to

interference among the agents and consequently generates

conflict situations around that resource.

Figure 1. The Phases of the proposed approach for testing

coordination in MASs

In cases where the system under test lacks a coordination

mechanism, or if such a mechanism is insufficient or faulty,

executing the system with these generated test inputs will

inevitably lead to system failure. Conversely, if the system

integrates a robust and effective coordination mechanism, it

will enable the agents to resolve their conflicts, thereby

ensuring the system’s stability and overall performance. The

proposed approach provides a concrete and operational means

of evaluating the effectiveness of the coordination mechanism

adopted, regardless of the type of coordination implemented

(e.g., cooperation, collaboration, negotiation, protocols,

planning, etc.). It offers the ability to assess the system’s

capacity to resolve or manage conflict situations generated by

agents competing for access to shared resources. It is essential

to emphasize that the emergence and detection of such

conflicts depend directly on the quality of the test case inputs

generated and applied to the system. Indeed, the more relevant

and rigorously designed these inputs are, the higher the

likelihood of detecting conflicts, including those that occur

rarely and might otherwise go unnoticed in standard testing

conditions. Ultimately, this confirms the relevance and

robustness of the proposed approach in evaluating whether the

adopted coordination mechanism is capable of effectively

resolving conflicts, or conversely, fails to manage them. The

proposed approach relies on the combined use of mutation

analysis techniques and parallel genetic algorithms [44]. It also

involves the temporary deactivation of the coordination

mechanism to prevent it from masking the conflict situations

that form the basis for generating test case inputs. The

approach is structured into two main phases, illustrated in

Figure 1 and detailed in the following subsection.

3.1 Description of the first phase

First of all, during this initial phase, before starting the

procedures for generating test case inputs, it is essential to

ensure that the MAS under test is completely free of any

coordination mechanism. It is important to remember that

coordination includes a set of rules and additional actions

necessary to enable interactions and actions among the various

agents with a minimum of conflict. These coordination actions

can be implemented either in a centralized manner by a single

coordinating agent or in a distributed manner by all the agents

in the system. Consequently, it is necessary to deactivate all

coordination actions, as illustrated in Figures 2 and 3 for the

centralized and distributed coordination configurations,

respectively. Additional details are provided in Algorithm 1.

Figure 2. Illustration of the process for disabling a

centralized coordination in the multi-agent system to be

tested

Figure 3. Illustration of the process for disabling distributed

coordination in the multi-agent system to be tested

2235

The purpose of this deactivation is to avoid any disruption

in the process of generating test case inputs and to ensure the

production of high-quality test cases. This guarantees that the

MAS is tested exhaustively, taking into account all possible

conflict situations between its agents. Indeed, if coordination

actions are not deactivated, the system remains controlled and

prevents the occurrence of conflict situations. However, these

conflict situations are essential for generating test case inputs,

as the selection of these inputs depends directly on the number

and nature of the conflict situations in which the system under

test can find itself.

Algorithm 1: Deactivate_Coordination_for_a_Multi-Agent

System

 Inputs: Coordinated system S;

 Outputs: Uncoordinated system S’;

1 Begin

2 // Step 1: Identify agents responsible for coordination

3 CoordinationAgents ←

Identify_Coordination_Agents(S);

4 // Step 2: For each coordination agent, disable its

coordination actions

5 for each Agent Aj ∈ CoordinationAgents do

6 for each coordination action ac ∈ Aj do

7 /*

8 Formal deactivation of a coordination action

ac:

9 Let ac ∈ Aj be a coordination mechanism

(e.g., protocol, method, or rule)

10 used to manage shared resources (e.g., message

sending, negotiation, etc.).

11 The operation: Deactivate(ac) ≡ ac.disabled :=

true

12 implies disabling ac at runtime, which may

involve:

13 - Cancelling or removing its execution from

system code,

14 - Suspending or deleting the related behaviour

(e.g., in JADE),

15 - Preventing agent Aj from initiating

coordination via ac.

16 */

17 Deactivate ac;

18 end;

19 end;

20 End.

Figure 4. Illustration of the process for generating mutants

The next step in this phase describes how to generate the

test case inputs Inputsh for the tested MAS, with which we

can provoke or direct as many system agents as possible to

either access, use, or occupy one of these resources at the same

time. This step is based on the mutation analysis technique and

parallel genetic algorithms. It consists of producing, for each

resource Ri belonging to the system, a mutant. Each produced

mutant, called Mutanti, represents a copy similar to the

system under test. The only difference being that a single error

(as formally defined in Eq. (1)) has been injected at the level

of instructions that allow an agent Aj of the system to access,

use, or occupy the resource Ri. Here, j is the agent's identifier,

with a value between 0 and N-1, where N is the total number

of agents in the system. Figure 4 shows how the mutants are

generated, highlighting the different key steps of the process.

Additionally, Algorithm 2, in pseudo-code form, explains the

logic of mutant generation for the test MAS. These two

illustrations provide a comprehensive and technical overview

of this approach.

Algorithm 2: Mutants_Generation

 Inputs: Uncoordinated system S’;

 Set of resources R = {R0, R1, ..., RN-1}; //

Shared resources in the system.

 Outputs: Set of mutants; // Mutants containing injected

errors.

1 Begin

2 for each resource Ri ∈ R do

3 Mutanti ← exact copy of system S′; // Duplicate

the uncoordinated system.

4 Inject Ri.Error into Mutanti; // Inject an error

related to Ri (see the formula in Eq. (1)).

5 end;

6 End.

Eq. (1) below describes the error we introduced to obtain a

mutant Mutanti. This means that the agent Aj is in conflict

with the agent Aj' (with j′ ≠ j) regarding the use of the resource

Ri at the same time t. It should be noted that the symbols “+”

in this formula indicate a simple concatenation operation:

{AC0 (EWAC0
), 𝐴𝐶1 (EWAC1

), …, ACk−1 (EWACk−1
)}+

Ri + t + Vdd′ + EDi + EWi + "// ERROR "
(1)

To better understand the structure of this error, it is

important to explain each parameter composing Eq. (1). Here

is a detailed explanation of each parameter:

 {𝐀𝐂𝟎 (𝐄𝐖𝐀𝐂𝟎
), 𝑨𝑪𝟏 (𝐄𝐖𝐀𝐂𝟏

), …, 𝐀𝐂𝐤−𝟏 (𝐄𝐖𝐀𝐂𝐤−𝟏
)}: A

list representing a subset of agents involved in a specific

conflict over access to resource Ri. where each element

corresponds to an agent competing for the use of this resource.

Each agent Aj , is associated with an error weight, denoted

EWAj
 (Error Weight), which indicates the importance or

weight of agent Aj in the conflict. The indices c0, c2, …, ck-1

are unique identifiers assigned to these agents, with the

condition that all indices are distinct (i.e., c0≠c1≠…≠ck-1).

These indices refer to agents from the complete set of system

agents, denoted {A0, A1, …, AN−1}. In other words, the list

{AC0 (EWAC0
), 𝐴𝐶1 (EWAC1

), …, ACk−1 (EWACk−1
)} includes

only those agents who, at a given time t, are in conflict due to

concurrent access to resource Ri.

 Ri: Represents the identifier of the resource over which

the agents in the list {AC0 (EWAC0
), 𝐴𝐶1 (EWAC1

), …, ACk−1

(EWACk−1
)} are in conflict. The parameter i refers to the index

of this resource, where i ranges from 0 to M−1, with M being

the total number of resources available in the system (this

number also corresponds to the number of mutants in the

2236

system under test). This resource lies at the core of the conflict

among the concerned agents competing for its use at a given

moment.

 t: Represents the time instant at which a conflict occurs

between the agents in the list {AC0 (EWAC0
), 𝐴𝐶1 (EWAC1

), …,

ACk−1 (EWACk−1
)} for the use of resource Ri. This moment is

crucial for determining the exact point in time when the

interference between the agents in this list takes place.

 𝐕𝐝𝐝′ : Represents the identifier of the data vector that

triggered the error. This vector belongs to the population

POPd, where d is an index used to number the generated

populations, ranging from 0 to h, with h being the index of the

last generated population. 𝑑′ belongs to the interval [0, Pd],

where 𝑑′ indicates the position of the vector within the

population POPd. For example, V01, represents the identifier of

the second data vector in population POP0.

 𝐄𝐃𝐢: The Error Degree associated with Mutanti, where the

index i represents the unique identifier of this mutant. This is

a key parameter that measures the extent of conflicts related to

the use of a specific resource in the system. It corresponds to

the total number of agents involved in the conflict over access

to resource Ri. It is directly linked to the size of the list {AC0

(EWAC0
), 𝐴𝐶1 (EWAC1

), …, ACk−1 (EWACk−1
)}, which

includes the conflicting agents. For example, an error degree

of 3 means that three agents, {AC0, AC1, AC2}, are

simultaneously in conflict for access to resource Ri at a given

time. As the error degree increases, the situation becomes

more complex and critical, since it involves a greater number

of agents and may impact the overall performance of the

system. This criterion thus serves to measure the intensity of

the conflict and helps guide the prioritization of adjustments

to restore balance in the MAS. For each Mutanti, killed by a

data vector Vdd′ , the associated EDi is calculated using the

following Eq. (2):

EDi = 𝑆𝑖𝑧𝑒 ({AC0 (EWAC0
), 𝐴𝐶1 (EWAC1

), …, ACk−1

(EWACk−1
)})

(2)

 𝐄𝐖𝐢 : The Error Weight assigned to Mutanti, where i

denotes the unique identifier of this mutant. This parameter

represents the accumulated weight of the agents involved in a

conflict over access to resource Ri. It is calculated as the sum

of the individual error weights (EWAj
, Error Weight) of each

agent included in the conflict list for that resource. In other

words, EWi reflects the cumulative impact of the agents

participating in the conflict over Ri. Thus, for each Mutanti,

killed by a data vector Vdd′ , the associated EWi is computed

using the following Eq. (3):

0 1 1

1

0

EW EW EW EW EW
j C C Ck

j Ck

i A A A A

j C
−

= −

=

= = + ++ (3)

 "// ERROR": Indicates that an error has been detected in

the system. This marker signals that the agents in the list {AC0

(EWAC0
), 𝐴𝐶1 (EWAC1

), …, ACk−1 (EWACk−1
)} are in conflict

over the use of resource Ri at time t, thereby generating an

abnormal situation in the system.

After completing the mutant generation process, the number

of mutants produced will be equal to the number of resources

in the system under test. The next step is to generate test case

inputs that, when executed, are capable of killing as many

mutants as possible. More precisely, among all the possible

execution inputs, the goal is to identify those that expose the

highest number of errors previously injected into these

mutants. These inputs are then retained as test case inputs

(Inputsh), as they are particularly effective in detecting and

eliminating the introduced errors.

It is important to note that a condition must be met for the

error to be triggered: there must be at least one conflict (EDi ≥

2). This implies the presence of at least two agents using the

same resource at the same time t. To this end, the use of

parallel genetic algorithms facilitates the acquisition of high-

quality test case inputs, ensuring a thorough test of the

effectiveness of the coordination mechanism adopted by the

system under test. This process is illustrated in Figure 5.

Figure 5. Illustration of test case generation using mutation

analysis techniques and genetic algorithms

Figure 6. Flowchart of test case input generation using the

parallel genetic algorithms technique

The application of parallel genetic algorithms begins with

the generation of an initial population, POP0, composed of

several individuals. Each individual, representing a possible

test case input, is described by a data vector Vdd′ . Each element

of this vector represents one of the data necessary for the

execution of the system under test. The initial population POP0

2237

is created randomly and serves as the basis for the generation

of subsequent populations. Each new population, such as

POP1, is improved compared to the previous one, and the

process is repeated to produce successive populations. This

cycle continues until we obtain a final population, POPh,

capable of achieving the desired objectives.

To clarify and eliminate any ambiguity regarding the

process of generating and improving test inputs using genetic

algorithms, the flowchart presented in Figure 6 details all the

steps involved, from the beginning to the end of this process,

and what follows is a complete explanation of all the steps

presented therein:

 Creation of an initial population POP0, consisting of P0

individuals, each represented by a data vector V0d′, where d′

ranges from 0 to P0-1, such that (V00, V01, V02, …, V0(p0−1)).

This population is generated randomly.

 Parallel execution of all individuals (vectors) from this

population on each previously generated mutant.

 Collection of execution results for each individual in this

population: for each data vector Vdd′ , we compute mV
dd′ ,

representing the total number of mutants killed by this

individual Vdd′ . This includes the calculation of mV00
, mV01

,

mV02
, …, mV0(P0−1)

. Additionally, we calculate the Total Error

Degree, denoted TEDV
dd′ , which includes TEDV00

, TEDV01
,

TEDV02
, …, TEDV0(p0−1)

. This parameter is obtained using the

following Eq. (4):

dd

1

0

TED ED
i M

V i

i


= −

=

=  (4)

Finally, we also calculate the Total Error Weight, denoted

TEWV
dd′ , which includes TEWV00

, TEWV01
, TEWV02

, …,

TEVV0(p0−1)
. This parameter is determined by applying the

following Eq. (5):

dd

1

0

TEW EW
i M

V i

i


= −

=

=  (5)

 Evaluation of each individual in this population is carried

out by calculating its fitness function, denoted fss . In our

approach, this fitness function is specifically designed to

measure the ability of each solution to maximize conflicts

among agents, by promoting an increase in the number of

errors and optimizing multiple performance criteria. The

fitness function is defined as Eq. (6):

fss = α ×
log(1 + mV

dd′)

log(1 + M)

+ β × (1 −
1

TEDVdd′ + 1
)

+ γ × (1 −
1

TEWVdd′ + 1
)

(6)

With the following constraint: α + β + γ = 1

In this context, the fitness function is used to identify the

best solutions for maximizing conflicts between agents. It does

so by considering the number of mutants killed (i.e., the

number of generated errors), the degree of error representing

the intensity of agents involved in the conflicts, and the

cumulative impact of these agents in the conflicts. This

ensures a thorough evaluation of each individual in the

population.

The meaning of each term in this function is as follows:

 First term: 𝛼 ×
log(1+mV

dd′)

log(1+𝑀)

Description. This term expresses the proportion of mutants

killed by the individual Vdd′ , denoted by mV
dd′ , relative to the

total number of mutants (M). It is weighted by α, the main

coefficient, which gives this term a priority role in the

optimization of the fitness function.

Impact. By maximizing this term, the approach favours

solutions that generate the highest number of errors by killing

a greater number of mutants, which indicates a strong ability

to trigger conflicts between agents.

 Second term: β × (1 −
1

TEDV
dd′ + 1

)

Description. This term takes into account the total error

degree generated by the vector Vdd′ , denoted as TEDV
dd′ , It

corresponds to the sum of the error degrees associated with

each Mutanti in the system under test, as mentioned in Eq. (4).

The factor β weights this term as a secondary criterion.

Impact. Maximizing this term favors solutions that involve

a larger number of agents in conflicts, contributing to a more

complex conflict dynamic between agents.

 Third term: 𝛾 × (1 −
1

𝑇𝐸𝑊𝑉
𝑑𝑑′ + 1

)

Description. This term considers the total error weight,

TEWV
dd′ , where the vector Vdd′ is the source of these errors.

It represents the cumulative impact of the agents involved in

the errors that have occurred and corresponds to the sum of the

individual error weights of agents involved in a conflict for

each Mutanti in the system's set of mutants. This total weight

is calculated according to Eq. (5) mentioned previously. This

term is weighted by the factor γ, which is the least prioritized

of the three.

Impact. Increasing this term aims to favour solutions where

the conflicting agents have a high error weight, thereby

amplifying the severity of their involvement in these conflicts.

It should be noted that the final result of this function

belongs to the interval [0, 1], with 1 representing an ideal

solution that simultaneously maximizes the three evaluation

criteria.

 Selection of the most promising individuals, aiming to

enhance the quality of the initial population, POP0. Only the

individuals with the highest scores according to the fitness

function are selected to contribute to this improvement.

Figure 7. Example of crossover for creating a new individual

 Enrichment of our population by crossing a certain

number of previously selected individuals to generate new

2238

individuals. In our approach, we use a simple crossover

technique. It involves selecting two or three individuals

(parents) and exchanging one or more chromosomes between

them to create a new individual (child). A correction step is

then performed to eliminate any duplication errors and ensure

that the new individuals are unique and valid (see Figure 7).

 A mutation step is integrated into the process. It involves

randomly modifying certain individuals in the population by

altering one or more genes. These modifications pave the way

for new possibilities, which could very well be useful for

creating good solutions.

 Generation of a new population, named POP1. This new

generation consists of promising individuals selected from the

previous population, to which new individuals created by

crossover and mutation are added. These two mechanisms aim

to improve the diversity and quality of the population, while

preserving the favourable traits identified in the selected

individuals.

 Once the new population is generated, the process of

improving individuals can be repeated by reapplying the

previous steps, until a population of robust individuals fully

meeting the fitness function is obtained. This process

continues up to a maximum number of generations, denoted as

h, determined based on the tester's evaluation. If, at the end of

these generations, convergence is not achieved, the best

individuals of the last generation (POPh) will be selected.

3.2 Description of the second phase

After obtaining a series of high-quality test case inputs

(Inputsh) and reactivating all the coordination mechanisms in

the system under test, previously deactivated during the earlier

phase, we will proceed to execute the system with these test

inputs. If the system manages to process all these cases without

encountering any problems or generating conflicts, we will

consider the adopted coordination mechanism to be effective.

Figure 8. Evaluation of the coordination of the multi-agent

system under test (success of the system coordination)

Figure 9. Evaluation of the coordination of the multi-agent

system under test (system coordination failure)

On the other hand, if it fails in any of the test case inputs, it

will undoubtedly indicate the inefficiency of the adopted

coordination mechanism. Figures 8 and 9 briefly illustrate the

processes that take place at this stage, while Algorithm 3

demonstrates how coordination is reactivated in the MAS

under test.

Algorithm 3: Reactivate_Coordination_for_a_Multi-Agent

System

 Inputs: Uncoordinated system S’;

 Outputs: Coordinated system S;

1 Begin

2 // Step 1: Identify agents responsible for coordination.

3 CoordinationAgents ← Identify_Coordination_Agents(S’);

4 // Step 2: For each coordination agent, reactivate its

coordination action.

5 for each Agent Aj ∈ CoordinationAgents do

6 for each coordination action ac ∈ Aj do

7 /*

8 Formal reactivation of a coordination action ac:

9 This operation is the inverse of Deactivate (ac).

10 It restores the coordination mechanism ac, such that:

11 Reactivate(ac) ≡ ac.disabled := false

12 Meaning: the action ac (e.g., a method, protocol, or

rule managing shared resources)

13 is re-enabled, allowing agent Aj to resume coordinated

interactions with other agents

14 or shared entities.

15 */

16 Reactivate ac;

17 end;

18 end;

19 End.

4. CASE STUDY

4.1 General presentation

In order to validate our proposed approach, we selected the

En-route air traffic control system (EATC) as a case study,

given its critical and complex nature as a representative

domain for testing coordination mechanisms in MAS. EATC,

managed in area control centres (ACCs), ensures the

surveillance and management of aircraft during the cruise

phase to prevent collisions by maintaining minimum vertical

(VSM), lateral (LASM), and longitudinal (LOSM)

separations, as defined by international regulations (Table 2).

To achieve this, controllers rely on advanced technologies

such as primary and secondary radar, ADS-B, TCAS,

ACARS, and satellite communications (SATCOM), which

provide real-time data on aircraft position, velocity, trajectory,

and environmental conditions. Figures 10-16 illustrate these

separation distances and violation scenarios that lead to

conflicts requiring corrective actions (e.g., altitude, heading,

or speed adjustments). In this context, EATC is modeled as a

MAS using a centralized approach, where an Air Traffic

Controller Agent (ControllerAgent) supervises a set of

AircraftAgents, each representing an aircraft in cruise.

AircraftAgents share their complete trajectories as vectors of

waypoints, each characterized by precise attributes such as

position, altitude, speed, heading, estimated time of arrival,

protection zones, and priority (see Figure 17). Every waypoint

is associated with a resource zone (PointResource), which

defines its protection area based on VSM, LASM, and LOSM

criteria. The ControllerAgent continuously analyzes the

2239

resources of all AircraftAgents and detects conflicts whenever

protection zones overlap simultaneously in all three

dimensions of separation. Upon conflict detection, it generates

tailored corrective instruction vectors for the involved aircraft,

adjusting parameters such as altitude, trajectory, or speed to

restore safe separation without creating new conflicts. Each

AircraftAgent then updates its trajectory accordingly. The

cruise environment is represented as a dynamic operational

airspace, encompassing external factors such as weather

conditions, airspace configuration, and relative speeds, all of

which influence both the ControllerAgent’s decisions and

AircraftAgents’ behaviors. This MAS-based modeling of

EATC provides a realistic and demanding framework for

evaluating the robustness and effectiveness of coordination

mechanisms in critical systems by subjecting them to

representative and challenging conflict scenarios, thereby

testing their resilience and capacity to ensure flight safety.

Table 2. Summary of minimum vertical and horizontal separation distances between aircraft in cruise phase

Type of Separation
Minimum

Separation Distance
Separation Conditions

Vertical separation

minimal (VSM)

(See Figure 10)

1000 feet1 (304.8

meters)
Below FL290 (Flight Level 290, approximately 29000 feet)

1000 feet (304.8

meters)
Between FL290 and FL410 for aircraft equipped with RVSM2 systems

2000 feet (609.6

meters)
Above FL290 for No-RVSM aircraft

Horizontal separation

minimal (HSM3)

Lateral separation minimal

(LASM)

(See Figure 12)

5 nm4 (approx. 9.26

km)

general regulations concerning the minimum distance for lateral separation in cruise

for radar-controlled aircraft.

3 nm (approx. 5.56

km)

applicable in certain airspace areas with dense traffic or very accurate surveillance

systems, such as near airports.

Longitudinal separation

minimal (LOSM)

(See Figures 14 and 15)

5 nm (approx. 3

minutes)

between two aircraft on the same route with different speeds, where the leading

aircraft is assumed to fly at least 44 kt5 (81.49 km/h) faster than the following aircraft.

10 nm (approx. 5

minutes)

between two aircraft on the same route with different speeds, where the leading

aircraft is assumed to fly at least 22 kt (40.74 km/h) faster than the following aircraft.

Figure 10. Representation of different vertical separation

minima (VSM) between aircraft in cruise phase

Figure 11. Representation of vertical separation violation

situations when one of the two aircraft breaches their VSM

Notes: 1. Feet: 1 foot (ft) equals 0.3048 metres. 2. RVSM (Reduced

Vertical Separation Minima): RVSM is a standard that reduces the vertical
separation minima (VSM) between aircraft flying between flight levels FL290

and FL410 from 2,000 feet to 1,000 feet. The aim is to increase airspace

capacity by allowing more aircraft to operate at optimal cruising altitudes,
thereby improving fuel efficiency and reducing traffic congestion [45-47]. 3.

HSM (Horizontal Separation Minimum): Can be measured in two ways: by

lateral distance and by longitudinal distance. 4. Nautical Miles: 1 nautical mile
(nm) equals 1.852 kilometres. 5. kt (knot): kt is the standard unit of

measurement for aircraft speed, where 1 kt = 1 nautical mile per hour = 1.852

kilometres per hour.

Figure 12. Representation of lateral separation minima

(LASM) between two aircraft flying at the same or closely

spaced altitudes

Figure 13. Representation of a lateral separation violation

situation when one of the two aircraft breaches their LASM

2240

Figure 14. Representation of longitudinal separation minima

(LOSM) between two aircraft flying at the same or closely

spaced altitudes, where the leading aircraft must fly at least

44 kt (81.49 km/h) faster than the following aircraft

Figure 15. Representation of LOSM between two aircraft

flying at the same or closely spaced altitudes, where the

leading aircraft must fly at least 22 kt (40.74 km/h) faster

than the following aircraft

Figure 16. Representation of a longitudinal separation

violation situation when one of the two aircraft breaches their

LOSM

Figure 17. An example of a trajectory for an aircraft agent

(AircraftAgent0)

4.2 Application of the proposed approach to the EATC

system

In accordance with our testing methodology, which is based

on seven essential steps, we shall now examine and apply them

one by one:

4.2.1 MAS to be tested

As outlined in Section 4.1, the system under test is a

centralised MAS designed for cruise-phase air traffic control

(EATC). It comprises 20 aircraft agents (AircraftAgent), each

following its own trajectory in cruise airspace

(TrajectoryVector). Each trajectory consists of a series of

points (Point), with the number of points ranging from 6 to 30,

excluding the departure and arrival points. These points

represent estimated spatial positions of each agent at specific

time instances, under the assumption of a constant cruising

speed. External influences such as wind, weather, or other

environmental factors are not considered in this model. To

manage traffic and prevent conflicts, a controller agent

(ControllerAgent) is responsible for coordinating the actions

of all aircraft, thereby facilitating safe and efficient navigation

within the cruise airspace.

Figure 18 illustrates the overall architecture of the system

under test, highlighting the interactions between the various

agents involved in managing cruise-phase air traffic. Within

this framework, each AircraftAgent periodically transmits its

trajectory information (TrajectoryVector or TV) to the

ControllerAgent, who oversees the coordination process to

detect and resolve potential conflicts, ensuring smooth and

secure navigation.

Figure 18. Multi-agent system to be tested (EATC)

4.2.2 Disabling coordination actions for this system

In this step, the coordination mechanism that enables

trajectory adjustments in the event of conflicts is deliberately

deactivated. This prevents the ControllerAgent from sending

adjustment instructions to the AircraftAgents, effectively

disabling any conflict resolution intervention. Figure 19

illustrates this deactivation by showing that the

ControllerAgent continues to receive the trajectories of the 20

AircraftAgents (from TV0 to TV19), but that the correction

instructions (Ins0 to Ins19) are no longer sent. The red crosses

clearly indicate that the transmission of adjustments is

blocked, thus preventing any modification of heading or

altitude by the AircraftAgents.

2241

Figure 19. Illustration of the coordination flow deactivation

for the EATC system

4.2.3 Generation of mutants for each system resource

Following the deactivation of the coordination mechanism

in the previous step, the system under test becomes an "EATC-

Without Coordination" configuration. In this state,

communication between the ControllerAgent and the

AircraftAgents is completely disabled. Each AircraftAgent

then follows its trajectory autonomously, without receiving

any corrective adjustments in the event of a conflict. The

resources of the system are the spatial coordinates in cruise

airspace, since each agent navigates independently during this

phase and uses these coordinates to position itself in space.

Each AircraftAgent passes through multiple waypoints along

its trajectory. If a conflict is to arise, it will necessarily occur

at these points-where the trajectories of different aircraft

agents may intersect.

In this step, each waypoint in a trajectory is treated as a

resource. According to the mutation analysis technique, an

error is injected at each point (as defined in Eq. (1), Section

3.1). An error is triggered if another point, belonging to a

different trajectory, enters the safety zone around that point (as

defined by VSM, LOSM, and LASM thresholds). In other

words, each time an error is injected, a mutant is created. This

mutant is an exact copy of the original system, except for a

single error introduced at one specific point.

At the end of this process, the total number of mutants

corresponds to the total number of points across all

trajectories. Since the system comprises 20 AircraftAgents

(and thus 20 trajectories), each containing between 8 and 32

points, the total number of mutants ranges from 160 to 640.

This approach allows the system's coordination mechanism to

be tested under conflict scenarios in cruise phase, by observing

how each mutant behaves when safety zones (VSM, LOSM

and LASM) are violated.

4.2.4 Generation of test case inputs

As illustrated in Section 3.1, through Figures 7 and 8, the

process of generating test case inputs is carried out using

parallel genetic algorithms. Below is a detailed presentation of

the various steps that make up this process, from initialisation

to the generation of the desired test case inputs:

Process 1: Generation of an Initial Population. Test cases

are modelled as individuals (Vector or V) within an initial

population (with a fixed size of 100), which is generated

randomly. This diversity is crucial for effectively exploring the

solution space and avoiding bias from the outset.

Each individual consists of 20 genes (TrajectoryVector or

TV), and each gene contains between 8 and 32 waypoints

(Point). Figures 20 and 21 illustrate the structure of the first

and last individuals in the initial population. Furthermore,

Table 3 clearly presents the parameters used to generate a

trajectory (TrajectoryVector).

Table 3. Key parameters for generating an aircraft trajectory (Trajectory Vector)

Parameter Description Value/Range Unit

InitialPointIndex index of the starting point 0 Integer

minIntermediatePoints minimum number of intermediate points 6 Integer

maxIntermediatePoints maximum number of intermediate points 30 Integer

stepPointsInVector step between points in the vector 1 Integer

leastDistance minimum distance between origin and destination 1000 Nautical miles (nm)

minLon / maxLon longitude range -180 to 180 Degrees

stepLon longitude step 0.00001 Degrees

minLat / maxLat latitude range -90 to 90 Degrees

stepLat latitude step 0.00001 Degrees

minAltitude / maxAltitude altitude range 20,000 to 51,000 Feet (ft)

stepAltitude altitude step 20 Feet (ft)

minSpeed / maxSpeed speed range 350 to 600 Knots (kt)

stepSpeed speed step 20 Knots (kt)

minStartingTime / maxStartingTime time range 0 to 23 Hours

stepStartingTime time step 1 Hours

VSMValue vertical separation minimum 1000 or 2000 Feet (ft)

LASMValue lateral separation minimum 500 Nautical miles (nm)

LOSMValue longitudinal separation minimum 1000 Nautical miles (nm)

RVSM reduced vertical separation minimum True or False Boolean

priority agent priority 0 to 19 Integer

EARTH_RADIUS_NM earth's radius 3440.065 Nautical miles (nm)

AgentName aircraft agent name AircraftAgent String

maxIntermediatePoints maximum number of intermediate points 30 Integer

2242

Figure 20. Structure of the first individual in the initial

population (POP0)

Figure 21. Structure of the last individual in the initial

population (POP0)

Figure 22. Summary of the generation of the initial

population (POP0)

(a) Graphical representation of individual V0,0

(b) Graphical representation of individual V0,99

Figure 23. Graphical Representation of the First (V0,0) and

Last (V0,99) Individuals of the Generated Initial Population

(POP0)

Figure 22 provides a summary view of the display after the

generation of the initial population POP0, while Figure 23

graphically represents the first individual (V0,0) and the last

(V0,99) of this population.

Process 2: Mutant Generation. In an initial population of

100 individuals, where each individual is composed of 20

genes, and each gene contains between 8 and 32 waypoints

(resources), the total number of mutants generated per

individual ranges from 160 to 640. Consequently, at the

population level, the total number of generated mutants lies

between 16000 and 64000. Figure 24 illustrates a sample

output showing a subset of the generated mutants.

Figure 24. Excerpt of the display of mutants generated for

the initial population POP0

Figure 25. Excerpt of errors detected during the parallel

execution of POP0 on each generated mutant

2243

Process 3: Error Triggering and Evaluation of Individuals.

During the parallel execution of each individual from the

initial population on each previously generated mutant (see

Figure 5, Section 3.1), one or more errors may occur (as

defined in Eq. (1), Section 3.1). This indicates simultaneous

use of the same resource, meaning that safety separation rules

are violated at certain waypoints. In such cases, the

corresponding mutants are considered "killed". Figure 25

illustrates a representative excerpt of the detected errors, and

Table 4 details the extracted information.

Table 4. Information extracted from the parallel execution of the initial population on all generated mutants

Triggered

Errors

Individual

ID

(Error

Source)

Mutant ID

(Killed)

Involved

Agent

Error

Degree

(ED

or

degE)

Conflict

Weight

(CW)

Total

Conflict

Weight

(TCW)

Number

of Killed

Mutants

(m)

Total

Mutants

(M)

Total

Error

Degree

(TED)

Total

Error

Weight

(TEW)

Error 1 V0,49 M0,49,15,0

AircraftAgent15

2

1 point

included
2 1 427 2 2

AircraftAgent7
1 point

included

Error 2 V0,90 M0,90,14,0

AircraftAgent14

2

1 point

included
2 1 436 2 2

AircraftAgent4
1 point

included

Following the analysis of the triggered errors and the

extraction of relevant information for the evaluation of each

individual in the initial population, we apply the previously

defined fitness function, using the parameters α=0.6, β=0.3

and γ=0.1 (see Eq. (6), Section 3.1). Figure 26 provides a

detailed excerpt of the evaluations for each individual, while

Figure 27 offers a graphical overview of the fitness-based

evaluation for individuals ranging from V0,40 to V0,79.

Figure 26. Detailed extract of individual evaluations from

population POP0

Figure 27. Graphical representation of fitness values of

individuals (v0,40 to v0,79) in population POP0

Process 4: Selection of the Fittest Individuals. Following the

evaluation of the initial population, the next step is to select

the fittest individuals - those with the highest performance

scores. A selection rate is randomly determined within a

predefined range of 60% to 90%. In this case, the selected rate

is 82.13%, meaning that 82 individuals from the initial

population have been chosen for the next stage.

Process 5: Crossover and Mutation. To diversify and enrich

our population, we performed simple crossover between every

two parent individuals to produce two offspring. The crossover

probability was randomly selected between 70% and 100%.

Additionally, the crossover point was chosen from the

following authorized values: 30%, 40%, 50%, 60%, and 70%.

However, due to computational and memory constraints, the

total number of individuals generated after each crossover

operation (parents + offspring) was limited to a maximum of

40.

Figure 28. Display of mutated individuals from the initial

population after crossover

Mutation was also applied, with a randomly selected

probability between 1% and 20%, determining the chance for

each individual to be mutated. When an individual was

selected for mutation, only one of its genes was modified, with

the gene being randomly chosen. Figure 28 illustrates an

excerpt of the displayed results, showing a mutation

probability of 16.99%, which led to the mutation of 6

individuals out of a total of 40.

Process 6: Generation of the New Population. This process

involves creating a new population that incorporates all

individuals after mutation. To achieve this, new indices must

2244

be generated: the index of the previous population is

incremented by 1, and all indices of individuals, genes, and

waypoints are updated accordingly. Figure 29 presents a

sample display of a newly generated population, POP1.

Figure 29. An excerpt of the display of a new population

POP1

Figure 30. Evaluation curves of test case inputs (Inputs0)

Process 7: Development of Test Case Inputs. The

development of test case inputs is based on the repeated

execution of the previous processes (Processes 1 to 6) until the

fitness function reaches a stable state. In other words, as long

as the fitness scores of individuals continue to improve, the

algorithm proceeds with its evolution. However, once no

significant improvement is observed, it is considered that the

algorithm has reached convergence.

Despite constraints - most notably the limitation to 40

individuals per new generation - a fitness score of 98.1281%

was achieved after 150 generations. While this restriction may

have slowed convergence, it allowed for more efficient

management of computational and memory resources.

Once convergence is achieved, individuals from the final

generation are selected as the best difficult test case inputs.

These represent the most relevant scenarios for evaluating the

coordination mechanism of the system under test.

Figure 31. Evaluation curves of test case inputs (Inputs10)

Figure 32. Evaluation curves of test case inputs (Inputs40)

Figure 33. Evaluation curves of test case inputs (Inputs45)

Figure 34. Evaluation curves of test case inputs (Inputs70)

2245

Figure 35. Evaluation curves of test case inputs (Inputs100)

Figure 36. Evaluation curves of test case inputs (Inputs150)

Figures 30 to 36 illustrate the progressive evolution of test

case input quality, ranging from poor to excellent. They first

show low-quality inputs, followed by moderate and good

quality, and finally, excellent-quality inputs. In this final

category, the best score achieved is 98.1281%.

Figure 37. Graphical representation of one of the best test

case inputs, represented by individual V150,24

At the peak of this progression, Figure 37 provides a

graphical representation of individual V150,24, identified as

the best test case input. Additionally, Table 5 presents a

detailed analysis of each test case input illustrated in Figures

30-36, highlighting their evolution in terms of performance

and quality.

Table 5. Detailed analysis of test case input evolution in terms of performance and quality

Test Case

Inputs

Population Analysis Results
Analysis Results of the Worst Individual in

the Population

Analysis Results of the Best Individual in the

Population

S
ize

N
u

m
b

er o
f D

etected

E
rro

rs

(C
o

n
flicts)

w
o
rst fitn

ess V
a

lu
e

B
est fitn

ess V
a

lu
e

P
o

p
u

la
tio

n
 Q

u
a
lity

(P
Q

)

N
u

m
b

er o
f K

illed

M
u

ta
n

ts

(m
)

N
u

m
b

er o
f G

en
era

ted

M
u

ta
n

ts

(M
)

T
o
ta

l E
rro

r D
eg

ree

(T
E

D
)

T
o
ta

l E
rro

r W
eig

h
t

(T
E

W
)

N
u

m
b

er o
f K

illed

M
u

ta
n

ts

(m
)

N
u

m
b

er o
f G

en
era

ted

M
u

ta
n

ts

(M
)

T
o
ta

l E
rro

r D
eg

ree

(T
E

D
)

T
o
ta

l E
rro

r W
eig

h
t

(T
E

W
)

Inputs0

(POP0)

100

Individuals

2

Errors
0.000000 0.335305 0.006704 0 / 0 0 1 427 2 2

Inputs10

(POP10)

39

Individuals

27

Errors
0.000000 0.591954 0.101607 0 / 0 0 7 435 29 29

Inputs40

(POP40)

39

Individuals
1001 Errors 0.670151 0.775251 0.721229 15 444 150 150 44 423 174 174

Inputs45

(POP45)

33

Individuals
1098 Errors 0.684276 0.802932 0.746361 16 356 80 80 57 411 235 235

Inputs70

(POP70)

39

Individuals
5710 Errors 0.869194 0.910780 0.889581 119 450 485 485 166 404 580 580

Inputs100

(POP100)

40

Individuals

10579

Errors
0.929362 0.953865 0.943855 230 474 872 872 293 469 1039 1039

Inputs150

(POP150)

35

Individuals

13805

Errors
0.962033 0.981281 0.976064 323 476 1175 1175 428 519 1522 1522

In our coordination testing approach, the main objective is

clearly defined: to generate the most challenging possible test

case inputs. This means producing scenarios that maximise

conflicts, trigger a higher number of errors, and eliminate as

many mutants as possible.

This objective is directly reflected in Table 5, which

illustrates the evolution of generations and highlights the

progressive increase in the number of detected conflicts, as

well as the growing complexity of the generated errors, as

expressed by the TED (Total Error Degree) and TEW (Total

Error Weight) indices. Furthermore, it underscores the rise in

the number of eliminated mutants, represented by the term

(m). The analysis of the results confirms that the genetic

algorithm successfully increases the complexity of test cases,

thereby enabling a more rigorous and in-depth evaluation of

the coordination mechanism within the tested system.

4.2.5 Enabling coordination actions for this system

This step corresponds to the reactivation of the coordination

mechanism, which had been disabled in Step 2 (see Figure 19).

Figure 38 provides an abstract illustration of this

reactivation: the ControllerAgent continues to receive the

trajectories of the 20 aircraft agents (from TV0 to TV19), but

this time, it is once again able to intervene in the event of a

conflict. Adjustment instructions are therefore sent to the

relevant agents to correct their trajectories when necessary.

2246

The ControllerAgent functions as a central coordinator,

with the primary role of ensuring safe separation between the

trajectories transmitted by the various AircraftAgents. It does

so by enforcing the criteria for vertical, lateral, and

longitudinal separation (VSM, LASM and LOSM). The

adopted coordination strategy focuses exclusively on adjusting

the altitude of conflicting trajectories, without altering either

the speed or the heading.

 Coordination Strategy Adopted:

a. Trajectory reception: The process begins when each

AircraftAgent sends its complete trajectory to the

ControllerAgent, represented as a list of waypoints (Point).

Once all trajectories have been received, the controller can

initiate the analysis.

b. Conflict detection: The controller identifies potential

conflict points between aircraft using the function

“getAllConflictPoints(trajectoryVectorList)”, which compiles

all such points for further processing.

c. Conflict resolution (Multi-Cycle Approach): he controller

attempts to resolve conflicts over multiple successive cycles,

continuing until either all conflicts are resolved or the

maximum number of cycles (MAX_CYCLES, set to 10) is

reached.

In each cycle, the controller calls the

“resolveConflicts(allConflictPointsMap)” function to process

the detected conflicts and generate adjustment instructions to

be sent to the relevant aircraft agents.

For each group of conflicting points:

 The point with the highest priority (i.e., the lowest

numerical value) is protected and remains unchanged.

 The remaining points are adjusted one by one, in

descending order of priority (from less to more important).

 For each adjusted point, a safe altitude is determined using

the method “findSafeAltitude(pointToAdjust,

referencePoints)”, taking into account:

 The required minimum vertical separation (VSM) must be

maintained between all points;

 The altitude of the highest-priority point remains

unchanged;

 The altitudes of other points already adjusted during the

same cycle are considered to avoid introducing new conflicts;

 The suggested altitude must remain within authorised

bounds, between FL200 (minimum) and FL510 (maximum).

All adjustments are recorded locally using structures of type

“AdjustmentInstructions”.

Figure 38. Reactivation of the coordination process

Table 6. System execution results for the best test cases from each predefined input set

Inputs

Inputs

Quality

(%)

 Top 2

Test

Cases

per

Input

Fitness

Score

(%)

Number

 of

Planned

Conflicts

(Errors)

Test Case Execution Results

Resolved Conflicts / Resolution Success

Number of Adjustments / Total Number of Adjustment Points
Latest

Agents’ IDs

Affected

by the

Adjustments

Index of the

Affected Points

in the Latest

Adjustments

Previous

Altitude

(ft)

Safe

Altitude

(ft)

Planned

Conflicts

/

Resolved

Conflicts

After

Cycle

1

After

Cycle

2

After

Cycle

3

After

Cycle

4

After

Cycle

5

After

Cycle

6

After

Cycle

7

After

Cycle

8

After

Cycle

9

After

Cycle

10

Inputs0:

 100

Test
Cases

0.6704

V0,49 33.5305 1
1/Yes

1/1
/ / / / / / / / / AircraftAgent15 Point0,49,15,0 36600 38600

1 / 1

Success:

100%

V0,90 33.5070 1
1/Yes

1/1
/ / / / / / / / / AircraftAgent14 Point0,90,14,0 32440 34440

1 / 1
Success:

100%

Inputs10:

 39

Test

Cases

10.1607

V10,25 59.1954 7
7/Yes

4/5
/ / / / / / / / /

AircraftAgent14 Point10,25,14,0 32440 28440

7 / 7

Success:

100%

AircraftAgent15 Point10,25,15,0 32440 36440

AircraftAgent17 Point10,25,17,0 32440 30440

AircraftAgent18
Point10,25,18,0 32440 34440

Point10,25,18,23 32440 34440

V10,27 53.7376 4
4/Yes

3/3
/ / / / / / / / /

AircraftAgent14 Point10,27,14,0 32440 36440 4 / 4
Success:

100%

AircraftAgent17 Point10,27,17,0 32440 30440

AircraftAgent18 Point10,27,18,0 32440 34440

Inputs40:

 40

Test

Cases

72.1229

V40,1 77.5251 44
43/No

9/27

44/Yes

1/1
/ / / / / / / / AircraftAgent12 Point40,1,12,0 32440 36420

44 / 44

Success:

100%

V40,11 76.9086 38
37/No

9/23

38/Yes

1/1
/ / / / / / / / AircraftAgent12 Point40,11,12,0 38420 36420

38 / 38

Success:

100%

Inputs45:

 33

Test

Cases

74.6361

V45,23 80.2932 57
54/No

12/35

55/No

2/2

55/No

1/1

55/No

1/1

55/No

1/1

55/No

1/1

57/Yes

1/1
/ / / AircraftAgent19 Point45,23,19,0 47960 48960

57 / 57

Success:

100%

V45,6 79.2381 51
50/No

9/30

51/Yes

1/1
/ / / / / / / / AircraftAgent12 Point45,6,12,0 38420 36420

51 / 51

Success:

100%

2247

Table 7. Additional results for the remaining test cases

Inputs

Inputs

Qualit

y

(%)

 Top

2 Test

Cases

per

Input

Fitness

Score

(%)

Number

 of

Planned

Conflict

s

(Errors)

Test Case Execution Results

Resolved Conflicts / Resolution Success

Number of Adjustments / Total Number of Adjustment Points
Latest

Agents’ IDs

Affected

by the

Adjustments

Index of the

Affected Points

in the Latest

Adjustments

Previou

s

Altitude

(ft)

Safe

Altitud

e

(ft)

Planned

Conflicts

/

Resolved

Conflicts

After

Cycle

1

After

Cycle

2

After

Cycle

3

After

Cycle

4

After

Cycle

5

After

Cycle

6

After

Cycle

7

After

Cycle

8

After

Cycle

9

After

Cycle

10

Inputs70:

 39
Test

Cases

88.958
1

V70,18
91.078

0
166

162/N

o

13/99

162/N

o

3/3

162/N

o

2/2

162/N

o

2/2

162/N

o

2/2

164/N

o

2/2

164/N

o

1/1

164/N

o

1/1

165/N

o

1/1

164/N

o

1/1

AircraftAgent1

9
Point70,18,19,0 48960 47960

166 / 164

Success:

98.7952

%

V70,13
90.903

5
184

176/N

o

15/104

172/N

o

7/7

172/N

o

6/6

174/N

o

6/6

174/N

o

5/5

175/N

o

5/5

175/N

o

5/5

176/N

o

5/5

177/N

o

5/5

176/N

o

5/5

AircraftAgent1

3
Point70,13,13,0 46960 45960

184 / 176

Success:

95.6522

%

AircraftAgent1
6

Point70,13,16,0 47960 46960

AircraftAgent1

7
Point70,13,17,0 47960 48960

AircraftAgent1

8
Point70,13,18,0 46960 47960

AircraftAgent1

9
Point70,13,19,0 48960 47960

Inputs100

:

39

Test

Cases

94.385

5

V100,1

7

95.386

5
293

284/N

o

17/167

277/N

o

8/8

277/N

o

8/8

279/N

o

8/8

279/N

o

7/7

281/N

o

7/7

281/N

o

6/6

283/N

o

6/6

283/N

o

5/5

284/N

o

5/5

AircraftAgent1

1

Point100,17,11,

0
45960 46960

293 / 284

Success:

96.9283

%

AircraftAgent1

3

Point100,17,13,

0
46960 47960

AircraftAgent1

6

Point100,17,16,

0
47960 48960

AircraftAgent1

8

Point100,17,18,

0
48960 49960

AircraftAgent1

9

Point100,17,19,

0
50960 49960

V100,1

5

95.059

2
286

278/N

o

15/174

272/N

o

7/7

272/N

o

7/7

274/N

o

7/7

274/N

o

6/6

276/N

o

6/6

276/N

o

5/5

278/N

o

5/5

278/N

o

4/4

279/N

o

4/4

AircraftAgent1

3

Point100,15,13,

0
46960 47960

286 / 279

Success:

97.5525

%

AircraftAgent1

6

Point100,15,16,

0
47960 48960

AircraftAgent1

8

Point100,15,18,

0
48960 49960

AircraftAgent1

9

Point100,15,19,

0
50960 49960

Inputs150

:

 35
Test

Cases

97.606

4

V150,2

4

98.128

1
428

418/N
o

18/252

410/N
o

9/9

412/N
o

9/9

412/N
o

8/8

414/N
o

8/8

414/N
o

7/7

416/N
o

7/7

416/N
o

6/6

416/N
o

6/6

417/N
o

6/6

AircraftAgent1

2

Point150,24,12,

0
45960 46960

428 / 417
Success:

97.4299

%

AircraftAgent1

4

Point150,24,14,

0
46960 47960

AircraftAgent1
6

Point150,24,16,
0

46960 47960

AircraftAgent1

7

Point150,24,17,

0
47960 48960

AircraftAgent1

8

Point150,24,18,

0
49960 50960

AircraftAgent1

9

Point150,24,19,

0
50960 49960

V150,3

1

97.969

3
410

400/N

o

18/244

392/N

o

9/9

394/N

o

9/9

394/N

o

8/8

396/N

o

8/8

396/N

o

7/7

398/N

o

7/7

398/N

o

6/6

398/N

o

6/6

399/N

o

6/6

AircraftAgent1
2

Point150,31,12,
0

45960 46960

410 / 399

Success:

97.3171

%

AircraftAgent1

4

Point150,31,14,

0
46960 47960

AircraftAgent1

6

Point150,31,16,

0
47960 48960

AircraftAgent1

7

Point150,31,17,

0
49960 50960

AircraftAgent1

8

Point150,31,18,

0
48960 49960

AircraftAgent1

9

Point150,31,19,

0
50960 49960

d. Sending adjustments:

 If, during a given cycle, no further conflicts are detected,

the adjustments calculated in the previous cycle are sent to the

relevant AircraftAgents.

 If the maximum number of cycles is reached and some

conflicts remain unresolved, the controller sends the most

recent available adjustments regardless.

e. Receiving adjustments: Each AircraftAgent receives only

the adjustments that concern it. Each adjustment specifies: the

waypoint to be modified and the new altitude to be applied to

that point.

4.2.6 Execution of this system using pre-generated test case

inputs

Table 6 and Table 7 present the execution results of the

system under test. For each pre-generated test set (Inputs0

(POP0), Inputs10 (POP10), Inputs40 (POP40), Inputs45

(POP45), Inputs70 (POP70), Inputs100 (POP100), and

Inputs150 (POP150)), the two best test cases were selected and

applied.

4.2.7 Evaluation of the coordination adopted in this system

under test

This step constitutes the final phase of the approach. Now

that the execution results have been obtained in the previous

step, it is possible to evaluate the coordination strategy

2248

implemented in the EATC. The objective is to assess the

effectiveness of the strategy used to resolve conflicts between

aircraft.

This evaluation is based on the number of cycles required to

resolve all detected conflicts, according to a simple and

interpretable scale presented in Table 8.

Table 9 clearly and concisely presents the evaluation results

obtained for each test case, based on the grading scale defined

in Table 8. This allows for a concrete assessment of the

effectiveness of the coordination strategy, particularly in terms

of how quickly the system resolves conflicts between aircraft.

Table 8. Coordination evaluation scale based on the number of cycles

Number of Cycles Coordination Rating Meaning

1 Excellent coordination
Conflicts are resolved very quickly

with minimal adjustments.

2 to 5 Good coordination
Conflicts are resolved efficiently

over several cycles.

6 to 9 Acceptable coordination
Conflicts are more complex and

require more effort to resolve.

10 or more Coordination failure
Not all conflicts could be resolved

despite multiple attempts.

Table 9. Coordination evaluation of the EATC system under test

Top 2 Test Cases

Per Input

Fitness

Score

(%)

Planned

Conflicts

Resolved

Conflicts

Number

of Cycles
Coordination Rating Meaning

V0,90 33.5070 1 1 1
 Excellent

coordination

Conflicts are resolved very quickly with

minimal adjustments

V0,49 33.5305 1 1 1 ″ ″

V10,27 53.7376 4 4 1 ″ ″

V10,25 59.1954 7 7 1 ″ ″

V40,11 76.9086 38 38 2 Good coordination
Conflicts are resolved efficiently over

several cycles.

V40,1 77.5251 44 44 2 ″ ″

V45,6 79.2381 51 51 2 ″ ″

V45,23 80.2932 57 57 7
 Acceptable

coordination

Conflicts are more complex and require

more effort to resolve.

V70,13 90.9035 184 176
10 or

more
 Coordination

failure

Not all conflicts could be resolved despite

multiple attempts.

V70,18 91.0780 166 164
10 or

more
″ ″

V100,15 95.0592 286 279
10 or

more
″ ″

V100,17 95.3865 293 284
10 or

more
″ ″

V150,31 97.9693 410 399
10 or

more
″ ″

V150,24 98.1281 428 417
10 or

more
″ ″

5. DISCUSSION

The application of our approach to the case study

demonstrated its effectiveness and yielded promising results.

It enabled a thorough evaluation of the coordination

mechanism under test, validating its ability to detect

coordination flaws and assess the system’s resilience. A major

strength of the method lies in its generality: it can be applied

regardless of the coordination mechanism used - whether

planning, negotiation, or rule-based - and across both

centralized and distributed MAS architectures. The strategic

combination of mutation analysis and genetic algorithms is

another key advantage. Mutation analysis deliberately injects

faults to evaluate robustness under degraded conditions, while

the genetic algorithm generates and evolves test cases,

automatically prioritizing those most likely to expose

conflicts. This evolutionary process helps uncover subtle

vulnerabilities that may escape manual testing.

Future improvements can further enhance this framework.

One promising direction involves the integration of machine

learning [48, 49] and deep learning techniques [50, 51] to

enrich the test case generation process. For instance,

supervised learning could exploit historical conflict data to

predict high-risk situations and guide the mutation process

toward more critical test cases. Deep learning, particularly

sequence-based models such as recurrent or transformer

architectures, could capture temporal interaction patterns

among agents, allowing the generation of conflict scenarios

that more closely resemble real-world dynamics.

Reinforcement learning could also be applied to iteratively

refine test strategies, rewarding test inputs that reveal

previously undetected vulnerabilities. These integrations

would transform the framework into a self-adaptive testing

system, capable of continuously improving as more data

becomes available.

Another important avenue is the adaptation of the approach

2249

for open MAS environments, where the number of agents and

resources may change dynamically. Unlike static systems,

open environments introduce uncertainty that challenges

traditional conflict modelling. To address this, the approach

could be extended with dynamic resource tracking and

adaptive conflict detection algorithms, capable of recalibrating

the system model in real time as new agents or resources

appear. Probabilistic models could further be incorporated to

anticipate coordination risks under uncertainty, ensuring that

the testing process remains effective despite the fluid nature of

open MAS. While these future directions promise to extend

the applicability of the method, it is important to acknowledge

its limitations. The primary challenge remains the preparatory

modelling effort: the accuracy of conflict detection depends

heavily on correctly identifying and modelling all

coordination-sensitive resources. Any omissions can lead to

undetected conflicts. In highly dynamic open MAS, this

limitation becomes even more pronounced, as the evolving

system state complicates accurate resource representation.

In summary, our approach provides a flexible and effective

framework for testing coordination in MAS, with

demonstrated scalability and robustness in safety-critical

applications such as air traffic control. Its integration with

advanced learning techniques and its extension to open

environments represent concrete and impactful avenues for

future research, bringing us closer to comprehensive and

adaptive testing strategies for real-world MAS.

6. CONCLUSION

Testing coordination in multi-agent systems (MAS) is a

challenging and often overlooked task, despite its critical role

in ensuring coherent system behavior. This work introduced

an innovative methodology that combines mutation analysis

with parallel genetic algorithms, enabling the systematic

generation of conflict-intensifying scenarios. The approach

functions as a targeted stress test for coordination mechanisms,

capable of uncovering weaknesses that traditional testing

techniques frequently miss. The experimental validation on

the En-route air traffic control (EATC) system provided

concrete evidence of the method’s effectiveness. Indeed, the

obtained results clearly demonstrate both the scalability of the

method and its practical relevance for safety-critical domains

where reliability is paramount. Beyond this case study, the

methodology offers a generic testing strategy applicable to

centralized, distributed, or hybrid MAS architectures. Its

ability to create realistic and conflict-intensive scenarios opens

the door to a more rigorous assessment of coordination

robustness. Looking ahead, several concrete directions for

extension emerge:

 Adaptation to open MAS environments, where the number

of agents and resources changes dynamically, reflecting real-

world operational challenges that are inherently unstable and

harder to model;

 Integration of machine learning and deep learning

techniques, which could leverage past data to generate more

diverse, realistic, and critical scenarios, thereby uncovering

subtle coordination vulnerabilities;

 Application to distributed architectures, where

decentralized coordination introduces specific challenges

related to communication, synchronization, and fault

tolerance;

 Scaling to larger agent populations, to simulate dense and

complex environments such as high-traffic airspaces or large-

scale industrial systems.

In summary, this study lays the foundations of a robust and

extensible framework for testing MAS coordination under

realistic and adverse conditions. By combining mutation

analysis and genetic algorithms, the proposed approach not

only identifies coordination vulnerabilities but also contributes

to the design of more resilient, adaptive, and trustworthy

multi-agent systems capable of thriving in complex, real-

world environments.

REFERENCES

[1] Wooldridge, M. (2009). An Introduction to Multiagent

Systems. John Wiley & Sons.

[2] Ferber, J. (1997). Les systÈmes Multi-Agents: Vers une

Intelligence Collective. InterEditions.

[3] Dorri, A., Kanhere, S.S., Jurdak, R. (2018). Multi-agent

systems: A survey. IEEE Access, 6: 28573-28593.

https://doi.org/10.1109/ACCESS.2018.2831228

[4] Cortés, J., Egerstedt, M. (2017). Coordinated control of

multi-robot systems: A survey. SICE Journal of Control,

Measurement, and System Integration, 10(6): 495-503.

https://doi.org/10.9746/jcmsi.10.495

[5] Kernbach, S. (2008). Structural Self-Organization in

Multi-Agents and Multi-Robotic Systems. Logos Verlag

Berlin GmbH.

[6] Satunin, S., Babkin, E. (2014). A multi-agent approach

to intelligent transportation systems modeling with

combinatorial auctions. Expert Systems with

Applications, 41(15): 6622-6633.

https://doi.org/10.1016/j.eswa.2014.05.015

[7] Mahela, O.P., Khosravy, M., Gupta, N., Khan, B., et al.

(2020). Comprehensive overview of multi-agent systems

for controlling smart grids. CSEE Journal of Power and

Energy Systems, 8(1): 115-131.

https://doi.org/10.17775/CSEEJPES.2020.03390

[8] Anvari-Moghaddam, A., Rahimi-Kian, A., Mirian, M.S.,

Guerrero, J.M. (2017). A multi-agent based energy

management solution for integrated buildings and

microgrid system. Applied Energy, 203: 41-56.

https://doi.org/10.1016/j.apenergy.2017.06.007

[9] Shavandi, A., Khedmati, M. (2022). A multi-agent deep

reinforcement learning framework for algorithmic

trading in financial markets. Expert Systems with

Applications, 208: 118124.

https://doi.org/10.1016/j.eswa.2022.118124

[10] Li, X., Mao, W., Zeng, D., Wang, F.Y. (2008). Agent-

based social simulation and modeling in social

computing. In International Conference on Intelligence

and Security Informatics, Berlin, pp. 401-412.

https://doi.org/10.1007/978-3-540-69304-8_41

[11] Tessier, C., Chaudron, L., Müller, H.J. (2005).

Conflicting Agents: Conflict Management in Multi-

Agent Systems (Vol. 1). Springer Science & Business

Media.

[12] Cao, Y., Yu, W., Ren, W., Chen, G. (2012). An overview

of recent progress in the study of distributed multi-agent

coordination. IEEE Transactions on Industrial

Informatics, 9(1): 427-438.

https://doi.org/10.1109/TII.2012.2219061

[13] Berndt, J.O., Herzog, O. (2011). Efficient multiagent

coordination in dynamic environments. In 2011

2250

IEEE/WIC/ACM International Conferences on Web

Intelligence and Intelligent Agent Technology, Lyon,

France, 2: 188-195. https://doi.org/10.1109/WI-

IAT.2011.63

[14] Tonino, H., Bos, A., de Weerdt, M., Witteveen, C.

(2002). Plan coordination by revision in collective agent

based systems. Artificial Intelligence, 142(2): 121-145.

https://doi.org/10.1016/S0004-3702(02)00273-4

[15] Albrecht, M. (2009). Supply Chain Coordination

Mechanisms: New Approaches for Collaborative

Planning (Vol. 628). Springer Science & Business

Media.

[16] Benameur, H., Chaib-Draa, B., Kropf, P. (2002). Multi-

item auctions for automatic negotiation. Information and

Software Technology, 44(5): 291-301.

https://doi.org/10.1016/S0950-5849(01)00216-6

[17] Lopes, F., Coelho, H. (2014). Negotiation and

Argumentation in Multi-Agent Systems: Fundamentals,

Theories, Systems and Applications. Bentham Science

Publishers.

[18] Chen, C., Xu, C. (2018). A negotiation optimization

strategy of collaborative procurement with supply chain

based on Multi-Agent System. Mathematical Problems

in Engineering, 2018(1): 4653648.

https://doi.org/10.1155/2018/4653648

[19] Doostmohammadian, M., Aghasi, A., Pirani, M.,

Nekouei, E., et al. (2025). Survey of distributed

algorithms for resource allocation over multi-agent

systems. Annual Reviews in Control, 59: 100983.

https://doi.org/10.1016/j.arcontrol.2024.100983

[20] Tang, X., Zeng, T., Tan, Y., Ding, B.X. (2020). Conflict

analysis based on three-way decision theoretic fuzzy

rough set over two universes. Ingénierie des Systèmes

d’Information, 25(1): 75-82.

https://doi.org/10.18280/isi.250110

[21] Fatima, S.S., Wooldridge, M., Jennings, N.R. (2004). An

agenda-based framework for multi-issue negotiation.

Artificial Intelligence, 152(1): 1-45.

https://doi.org/10.1016/S0004-3702(03)00115-2

[22] Kraus, S., Wilkenfeld, J. (2013). Strategic Negotiation in

Multiagent Environments. In Coordination Theory and

Collaboration Technology, pp. 93-124. Psychology

Press.

[23] Hady, M.A., Hu, S., Pratama, M., Cao, Z., Kowalczyk,

R. (2025). Multi-agent reinforcement learning for

resources allocation optimization: A survey. Artificial

Intelligence Review, 58(11): 354.

https://doi.org/10.1007/s10462-025-11340-5

[24] Crouzet, Y., Thévenod-Fosse, P., Waeselynck, H.

(1998). Validation du test du logiciel par injection de

fautes: l’outil SESAME. In 11eme Colloque National de

Fiabilité & Maintenabilité, pp. 551-559.

[25] Fabbri, S.C.P.F., Maldonado, J.C., Sugeta, T., Masiero,

P.C. (1999). Mutation testing applied to validate

specifications based on statecharts. In Proceedings 10th

International Symposium on Software Reliability

Engineering (Cat. No. PR00443), Boca Raton, FL, USA,

pp. 210-219.

https://doi.org/10.1109/ISSRE.1999.809326

[26] Mouelhi, T., Le Traon, Y., Baudry, B. (2009).

Utilisations de la mutation pour les tests de contrôle

d'accès dans les applications. In SARSSI 2009: 4ème

conférence sur la sécurité des architectures réseaux et des

systèmes d'information.

[27] Pizzoleto, A.V., Ferrari, F.C., Offutt, J., Fernandes, L.,

Ribeiro, M. (2019). A systematic literature review of

techniques and metrics to reduce the cost of mutation

testing. Journal of Systems and Software, 157: 110388.

https://doi.org/10.1016/j.jss.2019.07.100

[28] Rashmi, V., Mohan, C.C., Bhavani, V., Anuradha, Y.,

Kumar, L.K., Sowjanya, B., Kumar, K.S., Rao, K.K.,

Pallikonda, A.K. (2023). Experimental investigations to

fault reduction system for software applications.

Ingénierie des Systèmes d’Information, 28(3): 567-573.

https://doi.org/10.18280/isi.280304

[29] Menassel, Y., Marir, T., Mokhati, F., Gupta, V. (2025).

Operational profile-based test case generation for

normative MAS. Journal of Systems and Software,

112553. https://doi.org/10.1016/j.jss.2025.112553

[30] Harshbarger, S., Collins, M., Heckle, R.R. (2024).

Transforming the testing and evaluation of autonomous

Multi-Agent Systems: Introducing in-situ testing via

distributed ledger technology. The ITEA Journal of Test

and Evaluation, 45(1).

https://doi.org/10.61278/itea.45.1.1003

[31] Guassmi, D., Dehimi, N.E.H., Derdour, M. (2023). A

state of art review on testing open multi-agent systems.

In Novel & Intelligent Digital Systems Conferences,

Athens, Greece, pp. 262-266.

https://doi.org/10.1007/978-3-031-44097-7_28

[32] Guassmi, D., Dehimi, N.E.H., Derdour, M., Kouzou, A.

(2024). Using machine learning techniques for multi-

agent systems testing. In Artificial Intelligence and Its

Practical Applications in the Digital Economy.

I2COMSAPP 2024. Lecture Notes in Networks and

Systems, pp. 194-201. https://doi.org/10.1007/978-3-

031-71426-9_16

[33] Gray, P. (2019). Automated Mutation Testing for

Concurrent Software. MSc dissertation. Department of

Computer and Information Sciences, University of

Strathclyde, Glasgow, Scotland, United Kingdom.

https://local.cis.strath.ac.uk/wp/extras/msctheses/papers/

strath_cis_publication_2742.pdf.

[34] Omicini, A., Ricci, A., Viroli, M. (2008). Artifacts in the

A&A Meta-Model for Multi-Agent Systems.

Autonomous Agents and Multi-Agent Systems, 17(3):

432-456. https://doi.org/10.1007/s10458-008-9053-x

[35] Dehimi, N.E.H., Mokhati, F., Badri, M. (2015). Testing

HMAS-based applications: An ASPECS-based

approach. Engineering Applications of Artificial

Intelligence, 46: 25-33.

https://doi.org/10.1016/j.engappai.2015.09.013

[36] Dehimi, N.E.H., Mokhati, F. (2019). A novel test case

generation approach based on auml sequence diagram. In

2019 International Conference on Networking and

Advanced Systems (ICNAS), Annaba, Algeria, pp. 1-4.

https://doi.org/10.1109/ICNAS.2019.8807874

[37] Winikoff, M. (2017). BDI agent testability revisited.

Autonomous Agents and Multi-Agent Systems, 31(6):

1094-1132. https://doi.org/10.1007/s10458-016-9356-2.

[38] Gonçalves, E.M.N., Machado, R.A., Rodrigues, B.C.,

Adamatti, D. (2022). CPN4M: Testing multi-agent

systems under organizational model Moise+ using

colored Petri nets. Applied Sciences, 12(12): 5857.

https://doi.org/10.3390/app12125857

[39] Rehman, M.S.U., Nadeem, A., Sindhu, M.A. (2019).

Towards automated testing of multi-agent systems using

prometheus design models. The International Arab

2251

https://local.cis.strath.ac.uk/wp/extras/msctheses/papers/strath_cis_publication_2742.pdf?utm_source=chatgpt.com
https://local.cis.strath.ac.uk/wp/extras/msctheses/papers/strath_cis_publication_2742.pdf?utm_source=chatgpt.com

Journal of Information Technology, 16: 54-65.

https://dblp.uni-

trier.de/db/journals/iajit/iajit16.html#RehmanNS19.

[40] Huang, Z., Alexander, R., Clark, J. (2014). Mutation

testing for Jason agents. In International Workshop on

Engineering Multi-Agent Systems, pp. 309-327.

https://doi.org/10.1007/978-3-319-14484-9_16

[41] Dehimi, N.E.H., Benkhalef, A.H., Tolba, Z. (2022). A

novel mutation analysis-based approach for testing

parallel behavioural scenarios in Multi-Agent Systems.

Electronics, 11(22): 3642.

https://doi.org/10.3390/electronics11223642

[42] Savarimuthu, S., Winikoff, M. (2013). Mutation

operators for the GOAL agent language. In International

Workshop on Engineering Multi-Agent Systems, Berlin,

pp. 255-273. https://doi.org/10.1007/978-3-642-45343-

4_14

[43] Dehimi, N.E.H., Tolba, Z., Medkour, M., Hadjadj, A.,

Galland, S. (2025). Improving testing of multi-agent

systems: An innovative deep learning strategy for

automatic, scalable, and dynamic error detection and

optimisation. Bulletin of the Polish Academy of Sciences

Technical Sciences, pp. e154062-e154062.

https://doi.org/10.24425/bpasts.2025.154062

[44] Kadri, R.L., Boctor, F.F. (2018). An efficient genetic

algorithm to solve the resource-constrained project

scheduling problem with transfer times: The single mode

case. European Journal of Operational Research, 265(2):

454-462. https://doi.org/10.1016/j.ejor.2017.07.027

[45] Zeng, L., Wang, B., Tian, J.W., Wang, Z. (2021). Threat

impact analysis to air traffic control systems through

flight delay modeling. Computers & Industrial

Engineering, 162: 107731.

https://doi.org/10.1016/j.cie.2021.107731

[46] Ming, Y. (2024). Research on RVSM flight test data

processing and real-time monitoring for civil aircraft. In

International Conference on Aerospace System Science

and Engineering, pp. 375-381.

https://doi.org/10.1007/978-981-96-2440-9_36

[47] Kim, J., Nam, G., Min, D., Kim, N.M., Lee, J. (2023).

Safety risk assessment based minimum separation

boundary for UAM operations. In 2023 IEEE/AIAA

42nd Digital Avionics Systems Conference (DASC),

Barcelona, Spain, pp. 1-8.

https://doi.org/10.1109/DASC58513.2023.10311141

[48] Khatibsyarbini, M., Isa, M.A., Jawawi, D.N., Shafie,

M.L.M., Wan-Kadir, W.M.N., Hamed, H.N.A., Suffian,

M.D.M. (2021). Trend application of machine learning

in test case prioritization: A review on techniques. IEEE

Access, 9: 166262-166282.

https://doi.org/10.1109/ACCESS.2021.3135508

[49] Witten, I.H., Frank, E. (2002). Data mining: Practical

machine learning tools and techniques with Java

implementations. Acm Sigmod Record, 31(1): 76-77.

https://doi.org/10.1145/507338.507355

[50] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning.

Nature, 521(7553): 436-444.

https://doi.org/10.1038/nature14539

[51] Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.

(2011). A systematic literature review on fault prediction

performance in software engineering. IEEE Transactions

on Software Engineering, 38(6): 1276-1304.

https://doi.org/10.1109/TSE.2011.103

2252

