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In this work, we propose an innovative approach that combines mutation analysis with
parallel genetic algorithms to evaluate coordination mechanisms in multi-agent systems
(MAS), particularly in critical contexts where effective conflict management is essential.
The approach involves temporarily disabling coordination, injecting simulated errors
(mutants) into concurrent access to shared resources, and then automatically generating test
cases that intensify potential conflicts. Coordination is then reactivated to observe whether
it successfully resolves these conflicts, thereby assessing its robustness. The approach is
applied to a concrete case study, the En-route air traffic control system (EATC), in order to
test the ability of the adopted coordination mechanism to manage trajectory conflicts
between aircraft, while ensuring compliance with minimum separation standards (vertical,
lateral, and longitudinal). The experimental results validate the effectiveness of the
proposed approach. Indeed, after 150 generations, the best test case quality achieved an
average of 97.6064%, with a maximum fitness of 98.1281%. Among 428 conflict cases, the
adopted coordination mechanism successfully resolved 417 (97.43%), failing in only 2.57%
of the cases. These outcomes underscore both the robustness and scalability of the proposed
approach for testing MAS coordination in critical domains.

1. INTRODUCTION

related to complex agent interactions. These conflicts can
significantly impact the system’s stability and efficiency,

Multi-agent systems (MAS) [1-3] consist of autonomous
and self-organizing agents that collaborate within a shared
environment to achieve individual or shared goals. These
systems have widespread applications in such vital domains as
cooperative robotics [4, 5], intelligent transportation systems
[6], control of energy grid [7, 8], financial markets [9], and
social simulation [10], where effective coordination among
agents is required to ensure optimal performance and
harmonious coexistence with minimal conflicts. In an MAS,
conflict arises when a group of agents pursues incompatible
goals, executes conflicting actions, or competes for access to
limited and non-shareable resources. Such conflicts are
common in distributed and dynamic environments and
represent a major danger for the proper functioning of the
system [11]. Their occurrence reveals the MAS’s actual ability
to manage agent interactions and maintain overall system
coherence despite interference situations. However, in
dynamic and competitive environments [12, 13], these
conflicts may emerge due to various factors, including
competition for scarce resources, divergence of agents’
objectives, disagreements in decision-making, or uncertainties
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leading to deadlocks, operational inefficiencies, or even
breakdowns in cooperation among agents. Therefore, the
ability of a coordination mechanism to handle such conflicts
turns into a critical parameter for the robustness and
responsiveness of MAS. Several coordination approaches
have been put forward, such as collective planning [14, 15],
negotiation, auctions [16-18], and resource allocation
protocols [19]. However, it is a challenging task to analyze
these mechanisms as conflicts tend to occur under
unanticipated and varying situations. Traditional methods rely
primarily on scenario simulation and performance
measurement with tangible parameters such as conflict
resolution time [20], success rate of negotiations [21, 22] and
resource optimization [23]. However, traditional methods
have their limitations: they cannot always anticipate failure of
coordination mechanisms while facing unexpected
disturbances or identifying the structural vulnerabilities of the
system. A hidden failure can undermine a MAS's capacity to
solve conflicts in an effective manner, to the point that its
overall performance and reliability are negatively affected. In
order to surpass these challenges, we suggest applying an
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approach based on mutation analysis [24-27], a software
testing-derived technique [28-32] that entails introducing
controlled perturbations into the system under test by design.
By seeing how the system reacts to these disruptions, one can
identify  instances where coordination mechanisms
malfunction or lose effectiveness in managing conflicts. This
approach thus enables the identification of weaknesses in
existing strategies and suggests adjustments to enhance their
robustness. Unlike traditional approaches, mutation analysis
provides a more rigorous and objective evaluation framework
capable of testing coordination mechanisms under adverse and
unpredictable conditions [33]. The main objective of this study
is to propose a systematic and reproducible approach for
evaluating and improving conflict management in MAS by
identifying vulnerabilities in coordination mechanisms and
suggesting adjustments to optimize their resilience. Our
approach also allows for an objective comparison of different
coordination strategies and guides the design of more efficient
and adaptive mechanisms. Thus, mutation analysis represents
a significant advancement in the evaluation and enhancement
of MAS, making them more effective and robust in addressing
the challenges posed by dynamic and conflict-prone
environments. Given that our testing approach specifically
targets conflicts arising from concurrent access to resources, it
proves particularly relevant for multi-agent systems developed
according to the Agent & Artifact (A&A) paradigm [34],
where artifacts play a central role in agent coordination. In this
framework, artifacts represent functional and observable

entities that serve as mediators for agent interactions and
coordination. Since the concept of resources aligns with that
of artifacts both functionally and conceptually, our
methodology not only enables the evaluation of the robustness
of proposed coordination mechanisms but also assesses their
ability to effectively manage resource-related conflicts that
emerge during agent interactions via these artifacts. Thus, our
approach provides a rigorous and systematic framework for
testing and validating coordination mechanisms within multi-
agent systems based on the A&A model.

The remainder of this work is structured as follows: Section
2 provides an overview of the state-of-the-art approaches for
testing coordination mechanisms in MAS, highlighting their
limitations. Section 3 presents our methodology based on
mutation analysis and details the process of generating and
applying mutations. Section 4 presents the experimental
results obtained after applying our method to a real case study.
Finally, Section 5 concludes this paper by summarizing the
main contributions and outlining future work on improving
MAS testing.

2. SIMILAR WORKS

In the literature, a limited number of approaches have been
proposed for testing MAS in recent years. Subsequently, we
outline a selection of these approaches in Table 1.

Table 1. Comparative analysis of testing approaches for multi-agent systems: main contributions and limitations

Reference Approach

Main Contribution

Limitations (in Light of MAS Global
Behaviour & Coordination)

model-based testing using

Dehimi et al. genetic algorithms for holonic

[35] B
gents

Dehimi & sequence diagrams with OCL
Mokhati [36] “plugs”

Winikoff [37] testability of BDI agents (all-

edges vs all-paths criteria)
Moise+ — CPN4M
transformation for testing
social behaviour

Gongalves et al.
[38]

Rehman et al. model-based methodology

[39] with Prometheus artefacts
Huane et al semantic Mutation Testing
; f()] : (SMT) for Jason, GOAL,

2APL
mutation + parallel GA for
isolating scenarios

Dehimi et al.
[41]

Savarimuthu .
and Winikoff mutation operators for Goal
[42] language

deep learning for error
detection across MAS
versions

Dehimi et al.
[43]

iterative testing across evolving
versions; focuses on newly
introduced behaviors
formal test case generation capturing
constraints on interactions

adequacy metrics for BDI programs

organisational-level testing with
path/state-transition adequacy

fault model for goals, plans, and
interactions; new coverage criteria

semantic operators to assess
robustness of rule-based agents

detects errors within concurrent
scenario executions

empirical validation of mutation
hypotheses in Goal programs

automated scalable error detection

incremental but limited to individual agent
evolution; lacks integrated view of MAS
coordination
focuses on single interactions; does not
evaluate coordination/conflict mechanisms
structural coverage only; no assessment of
coordination or conflict resolution
restricted to Moise+ model; coordination
assumed from org. model, no dynamic
adaptability
limited to goal/plan execution; does not
consider emergent conflicts or adaptive
coordination

language-specific; focuses on robustness of
logic, not on coordination or conflict handling

only targets scenario isolation; does not ensure
robustness of coordination mechanisms

restricted to Goal language; ignores global
MAS interactions and coordination

strong for error prediction but not designed to
assess coordination or conflict resilience

Although significant progress has been made in MAS
testing through the introduction of new strategies, many of
these approaches reveal important limitations. They often lack
a global and integrated view of MAS behaviour, focusing
instead on specific aspects such as communication, plan
execution, or individual agent logic. Moreover, conflict
management and coordination mechanisms are often
overlooked or assumed to function correctly without
evaluation. These shortcomings limit the capacity of existing
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methods to ensure the overall robustness and adaptability of
MAS, particularly in dynamic or unpredictable environments.
To address these limitations, we propose a novel approach
capable of identifying vulnerabilities in coordination
mechanisms and suggesting targeted improvements to
enhance their resilience. Additionally, it enables objective
comparisons between coordination strategies and supports the
development of more robust and adaptive mechanisms. What
further strengthens the relevance of our approach compared to



existing ones is its applicability to MAS based on the A&A
model, where artifacts play a central role in coordination and
interaction management. This compatibility ensures that our
method can be directly integrated into systems developed
under this paradigm, providing a comprehensive and
systematic framework for testing and validating coordination
mechanisms in MAS.

3. THE PROPOSED APPROACH

The proposed approach aims to evaluate the effectiveness
of the coordination mechanism implemented within a given
MAS. It relies on the generation of a series of test cases whose
inputs are specifically designed to force the maximum number
of agents in the system under test to simultaneously access or
occupy the same resource. This scenario inevitably leads to
interference among the agents and consequently generates
conflict situations around that resource.

1
Multi-agent system to be tested I !
'

1 '

'

'

'

Disabling coordination actions for |

this system '
'

+ i

Generation of a Mutant M; for
each Resource R; of the system

!

Generation of test case inputs

Enabling coordination actions for
this system

s L :

Execution of this system using the

pre-generated test case inputs from

the first phase. followed by output
analysis

!

Evaluation and then judgment of

! Phase 2 :

'
'

i "

1 the success or failure of the

! : : . .

1 coordination adopted in this system
H by comparing the obtained outputs
: with the expected output

'

Figure 1. The Phases of the proposed approach for testing
coordination in MASs

In cases where the system under test lacks a coordination
mechanism, or if such a mechanism is insufficient or faulty,
executing the system with these generated test inputs will
inevitably lead to system failure. Conversely, if the system
integrates a robust and effective coordination mechanism, it
will enable the agents to resolve their conflicts, thereby
ensuring the system’s stability and overall performance. The
proposed approach provides a concrete and operational means
of evaluating the effectiveness of the coordination mechanism
adopted, regardless of the type of coordination implemented
(e.g., cooperation, collaboration, negotiation, protocols,
planning, etc.). It offers the ability to assess the system’s
capacity to resolve or manage conflict situations generated by
agents competing for access to shared resources. It is essential
to emphasize that the emergence and detection of such
conflicts depend directly on the quality of the test case inputs
generated and applied to the system. Indeed, the more relevant
and rigorously designed these inputs are, the higher the
likelihood of detecting conflicts, including those that occur
rarely and might otherwise go unnoticed in standard testing
conditions. Ultimately, this confirms the relevance and
robustness of the proposed approach in evaluating whether the
adopted coordination mechanism is capable of effectively
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resolving conflicts, or conversely, fails to manage them. The
proposed approach relies on the combined use of mutation
analysis techniques and parallel genetic algorithms [44]. It also
involves the temporary deactivation of the coordination
mechanism to prevent it from masking the conflict situations
that form the basis for generating test case inputs. The
approach is structured into two main phases, illustrated in
Figure 1 and detailed in the following subsection.

3.1 Description of the first phase

First of all, during this initial phase, before starting the
procedures for generating test case inputs, it is essential to
ensure that the MAS under test is completely free of any
coordination mechanism. It is important to remember that
coordination includes a set of rules and additional actions
necessary to enable interactions and actions among the various
agents with a minimum of conflict. These coordination actions
can be implemented either in a centralized manner by a single
coordinating agent or in a distributed manner by all the agents
in the system. Consequently, it is necessary to deactivate all
coordination actions, as illustrated in Figures 2 and 3 for the
centralized and distributed coordination configurations,
respectively. Additional details are provided in Algorithm 1.

Agatn

System statebefore L _________ L |
deactivating R —
coordination

Multi-Agent
System
to be test
(Original MAS)
Centralized
Control System

System state after

coordination

Geactivated Coordinating

Deactivate

Figure 2. Illustration of the process for disabling a
centralized coordination in the multi-agent system to be
tested

Seat
[Covrdimation actons:

System state before ! *\ . e Y .
deactivating . o
coordination

Multi-Agent
System
to be test
(Original MAS)
; Tean
Distributed o
Control System Deat
Deactivate

System state after T i
coordination
deactivated

ot of coordination information flow

Figure 3. Illustration of the process for disabling distributed
coordination in the multi-agent system to be tested



The purpose of this deactivation is to avoid any disruption
in the process of generating test case inputs and to ensure the
production of high-quality test cases. This guarantees that the
MAS is tested exhaustively, taking into account all possible
conflict situations between its agents. Indeed, if coordination
actions are not deactivated, the system remains controlled and
prevents the occurrence of conflict situations. However, these
conflict situations are essential for generating test case inputs,
as the selection of these inputs depends directly on the number
and nature of the conflict situations in which the system under
test can find itself.

Algorithm 1: Deactivate_Coordination_for_a_Multi-Agent
System
Inputs: Coordinated system S;
Outputs: Uncoordinated system S’;
Begin

/I Step 1: Identify agents responsible for coordination

CoordinationAgents

Identify_Coordination_Agents(S);
4 /I Step 2: For each coordination agent, disable its
coordination actions

«—

1
2
3

5 for each Agent Aj € CoordinationAgents do

6 for each coordination action ac € Aj do

7 *

8 Formal deactivation of a coordination action
ac:

9 Let ac € Aj be a coordination mechanism

(e.g., protocol, method, or rule)

10 used to manage shared resources (e.g., message
sending, negotiation, etc.).

11 The operation: Deactivate(ac) = ac.disabled :=
true

12

involve:

13

system code,
14 - Suspending or deleting the related behaviour
(e.g., in JADE),

15

coordination via ac.
16 */

17 Deactivate ac;
18 end;

19 end;

20 End.

implies disabling ac at runtime, which may

- Cancelling or removing its execution from

- Preventing agent Aj from initiating

(A

MAS to be tested
without
coordination

(&)

rroet into Resouree By
Inject an errer *Error into Reson
> E

Mutant;: an exact copy of the

system in which one and only

one error “Error” is injected
nta resource Ru.

the system

Figure 4. Illustration of the process for generating mutants

The next step in this phase describes how to generate the
test case inputs Inputsn for the tested MAS, with which we
can provoke or direct as many system agents as possible to
either access, use, or occupy one of these resources at the same
time. This step is based on the mutation analysis technique and
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parallel genetic algorithms. It consists of producing, for each
resource Ri belonging to the system, a mutant. Each produced
mutant, called Mutanti, represents a copy similar to the
system under test. The only difference being that a single error
(as formally defined in Eq. (1)) has been injected at the level
of instructions that allow an agent A; of the system to access,
use, or occupy the resource R;. Here, j is the agent's identifier,
with a value between 0 and N-1, where N is the total number
of agents in the system. Figure 4 shows how the mutants are
generated, highlighting the different key steps of the process.
Additionally, Algorithm 2, in pseudo-code form, explains the
logic of mutant generation for the test MAS. These two
illustrations provide a comprehensive and technical overview
of this approach.

Algorithm 2: Mutants_Generation
Inputs: Uncoordinated system S’;
Set of resources R = {Ro, Ry,
Shared resources in the system.
Outputs: Set of mutants; // Mutants containing injected
errors.

oy Rna};

1 Begin
2 for each resource Ri € R do
3 Mutanti < exact copy of system S'; // Duplicate

the uncoordinated system.

4 Inject Ri.Error into Mutanti; // Inject an error
related to Ri (see the formula in Eq. (1)).

5 end;

6 End.

Eq. (1) below describes the error we introduced to obtain a
mutant Mutanti. This means that the agent A; is in conflict
with the agent A; (with j’ #j ) regarding the use of the resource
R; at the same time t. It should be noted that the symbols “+”
in this formula indicate a simple concatenation operation:

{Aco (EWag,y), Act (EWp(,), s Ack—1 (EWpg, )3+ )
Ri+t+ Vyq +ED; + EW; + "// ERROR "

To better understand the structure of this error, it is
important to explain each parameter composing Eq. (1). Here
is a detailed explanation of each parameter:

* {Aco (EWpy), Act (EWp(,)s -5 Ack-1 (EWyg )} A
list representing a subset of agents involved in a specific
conflict over access to resource R;. where each element
corresponds to an agent competing for the use of this resource.
Each agent A;, is associated with an error weight, denoted
EWA]. (Error Weight), which indicates the importance or
weight of agent A; in the conflict. The indices co, 2, ..., Ck-1
are unique identifiers assigned to these agents, with the
condition that all indices are distinct (i.e., Co#Ci#...#Ck-1).
These indices refer to agents from the complete set of system
agents, denoted {Ao, Ai, ..., An-1}. In other words, the list
{Aco (EWac,)s Act (EWp(,), ..., Ack—1 (EWy, )} includes
only those agents who, at a given time t, are in conflict due to
concurrent access to resource R;.

* Ri: Represents the identifier of the resource over which
the agents in the list {Aco (EWp(), Aci (EWy(,), -5 Acko1
(EWj,_,)} are in conflict. The parameter i refers to the index
of this resource, where i ranges from 0 to M—1, with M being
the total number of resources available in the system (this
number also corresponds to the number of mutants in the



system under test). This resource lies at the core of the conflict
among the concerned agents competing for its use at a given
moment.

* t: Represents the time instant at which a conflict occurs
between the agents in the list {Aco (EWa, ), Act (EWac,), ...
Ack-1 (EWy, _,)} for the use of resource Ri. This moment is
crucial for determining the exact point in time when the
interference between the agents in this list takes place.

* V44’ : Represents the identifier of the data vector that
triggered the error. This vector belongs to the population
POPg4, where d is an index used to number the generated
populations, ranging from 0 to h, with h being the index of the
last generated population. d’ belongs to the interval [0, Pq],
where d’ indicates the position of the vector within the
population POPg. For example, Vo1, represents the identifier of
the second data vector in population POPy.

¢ ED;: The Error Degree associated with Mutant;, where the
index i represents the unique identifier of this mutant. This is
a key parameter that measures the extent of conflicts related to
the use of a specific resource in the system. It corresponds to
the total number of agents involved in the conflict over access
to resource R;. It is directly linked to the size of the list {A¢,
(EWaeo )» Act (EWye, ), oo Acker (EWy, )}, which
includes the conflicting agents. For example, an error degree
of 3 means that three agents, {Aco, Aci, Ac2}, are
simultaneously in conflict for access to resource R; at a given
time. As the error degree increases, the situation becomes
more complex and critical, since it involves a greater number
of agents and may impact the overall performance of the
system. This criterion thus serves to measure the intensity of
the conflict and helps guide the prioritization of adjustments
to restore balance in the MAS. For each Mutant;, killed by a
data vector V,4, the associated ED; is calculated using the
following Eq. (2):

ED; = Size ({Aco (EWy(,), Act (EWag,)s --.» Ack—1

(EWpg,)}) @

* EW;: The Error Weight assigned to Mutant;, where i
denotes the unique identifier of this mutant. This parameter
represents the accumulated weight of the agents involved in a
conflict over access to resource R;. It is calculated as the sum
of the individual error weights (EWA]., Error Weight) of each

agent included in the conflict list for that resource. In other
words, EW; reflects the cumulative impact of the agents
participating in the conflict over R;. Thus, for each Mutant;,
killed by a data vector Vg4, the associated EW; is computed
using the following Eq. (3):

j=Ck-1
EW, = > EW, =EW, +EW, +..+EW,

j=Co

(€)

¢ "// ERROR": Indicates that an error has been detected in
the system. This marker signals that the agents in the list {A¢q
(EWacy)s Act (EWay), ooy Acket (EWACk—l)} are in conflict
over the use of resource R; at time t, thereby generating an
abnormal situation in the system.

After completing the mutant generation process, the number
of mutants produced will be equal to the number of resources
in the system under test. The next step is to generate test case
inputs that, when executed, are capable of killing as many
mutants as possible. More precisely, among all the possible
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execution inputs, the goal is to identify those that expose the
highest number of errors previously injected into these
mutants. These inputs are then retained as test case inputs
(Inputsn), as they are particularly effective in detecting and
eliminating the introduced errors.

It is important to note that a condition must be met for the
error to be triggered: there must be at least one conflict (ED; >
2). This implies the presence of at least two agents using the
same resource at the same time t. To this end, the use of
parallel genetic algorithms facilitates the acquisition of high-
quality test case inputs, ensuring a thorough test of the
effectiveness of the coordination mechanism adopted by the
system under test. This process is illustrated in Figure 5.

—>Nutanty B ofVtants |

ableto | |

[ Mmtanty |

| —s/\iatangy

DA ATDA;

tant, was oaly

2] Ra toV,1-EDy=5 EW,=13/ERROR]
killed by the vector V157

> Matanta |

> Matanty| - - -

v
1,+C+Mmp POR)VH

'
Vi-n,. \I Vipy
Improvemen =

» Inputs

pop, V!
t Vor,
Inputsss

1,y Fitness function. Ma" Mutation. € - Crossover. - - Parallel execution of test case inputs on each Mtaat,

Figure 5. Illustration of test case generation using mutation
analysis techniques and genetic algorithms
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Figure 6. Flowchart of test case input generation using the
parallel genetic algorithms technique

The application of parallel genetic algorithms begins with
the generation of an initial population, POPy, composed of
several individuals. Each individual, representing a possible
test case input, is described by a data vector V4/. Each element
of this vector represents one of the data necessary for the
execution of the system under test. The initial population POP,



is created randomly and serves as the basis for the generation
of subsequent populations. Each new population, such as
POP;, is improved compared to the previous one, and the
process is repeated to produce successive populations. This
cycle continues until we obtain a final population, POPy,
capable of achieving the desired objectives.

To clarify and eliminate any ambiguity regarding the
process of generating and improving test inputs using genetic
algorithms, the flowchart presented in Figure 6 details all the
steps involved, from the beginning to the end of this process,
and what follows is a complete explanation of all the steps
presented therein:

* Creation of an initial population POPy, consisting of Py
individuals, each represented by a data vector V4, where d’
ranges from 0 to Po-1, such that (Vyg, Vo1, Vo2, --
This population is generated randomly.

¢ Parallel execution of all individuals (vectors) from this
population on each previously generated mutant.

¢ Collection of execution results for each individual in this
population: for each data vector Vg4, we compute my .

- Vopo-1))-

representing the total number of mutants killed by this
individual V4. This includes the calculation of my, , my,,,
Additionally, we calculate the Total Error
which includes TEDy,,, TEDy,,
TEDy,,, ---, TEDVO(pO—l)' This parameter is obtained using the
following Eq. (4):

Myg,5 - My pg_gy-
Degree, denoted TEDVdd

IE)

i=M-1
TED, = > ED, @)
dd =0

Finally, we also calculate the Total Error Weight, denoted
TEWVdd which includes TEWy,,, TEWy, , TEWy,, ...,

TEVVo(po_ by This parameter is determined by applying the

IR

following Eq. (5):

TEW, (5)

¢ Evaluation of each individual in this population is carried
out by calculating its fitness function, denoted fy;. In our
approach, this fitness function is specifically designed to
measure the ability of each solution to maximize conflicts
among agents, by promoting an increase in the number of
errors and optimizing multiple performance criteria. The
fitness function is defined as Eq. (6):

B log(1 + ded')
s = 4 X T 0g(1+ M)
x(1-——
th ( TEDy_, + 1) ©)
+y x(1 !
X _—— —
v TEWy,, + 1

With the following constraint: o + f+y =1

In this context, the fitness function is used to identify the
best solutions for maximizing conflicts between agents. It does
so by considering the number of mutants killed (i.e., the
number of generated errors), the degree of error representing
the intensity of agents involved in the conflicts, and the
cumulative impact of these agents in the conflicts. This
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ensures a thorough evaluation of each individual in the
population.

The meaning of each term in this function is as follows:

log(1+mvdd,)

log(1+M)
Description. This term expresses the proportion of mutants

killed by the individual V4, denoted by my . relative to the

e First term: a X

total number of mutants (M). It is weighted by a, the main
coefficient, which gives this term a priority role in the
optimization of the fitness function.

Impact. By maximizing this term, the approach favours
solutions that generate the highest number of errors by killing
a greater number of mutants, which indicates a strong ability
to trigger conflicts between agents.

aar T1 )

Description. This term takes into account the total error
degree generated by the vector Vg4, denoted as TEDVdd” It

* Second term: § X (1 !

" TEDy

corresponds to the sum of the error degrees associated with
each Mutant; in the system under test, as mentioned in Eq. (4).
The factor B weights this term as a secondary criterion.

Impact. Maximizing this term favors solutions that involve
a larger number of agents in conflicts, contributing to a more
complex conflict dynamic between agents.

dd’+1)

Description. This term considers the total error weight,
TEWy /s where the vector V4 is the source of these errors.

1
TEWYy

* Third term: y X (1 -

It represents the cumulative impact of the agents involved in
the errors that have occurred and corresponds to the sum of the
individual error weights of agents involved in a conflict for
each Mutant; in the system's set of mutants. This total weight
is calculated according to Eq. (5) mentioned previously. This
term is weighted by the factor y, which is the least prioritized
of the three.

Impact. Increasing this term aims to favour solutions where
the conflicting agents have a high error weight, thereby
amplifying the severity of their involvement in these conflicts.

It should be noted that the final result of this function
belongs to the interval [0, 1], with 1 representing an ideal
solution that simultaneously maximizes the three evaluation
criteria.

¢ Selection of the most promising individuals, aiming to
enhance the quality of the initial population, POP,. Only the
individuals with the highest scores according to the fitness
function are selected to contribute to this improvement.

Piece 1 Piece 2

Chromosome 00 Chromosome 05

Voo |atagg , datag; , d .t(lﬂ'[ﬂ\jg , datagy , datags ’)

Parent individuals

l

Child individuals
(New individuals)

Voi(| datayg. datay; . datas, datays . datays)

Voo datagg, datag; , datag, . data;o, data, , datay,)

Vos( datayg, datay;, data;,, datagy, datay,; , datag, )

Figure 7. Example of crossover for creating a new individual

* Enrichment of our population by crossing a certain
number of previously selected individuals to generate new



individuals. In our approach, we use a simple crossover
technique. It involves selecting two or three individuals
(parents) and exchanging one or more chromosomes between
them to create a new individual (child). A correction step is
then performed to eliminate any duplication errors and ensure
that the new individuals are unique and valid (see Figure 7).

* A mutation step is integrated into the process. It involves
randomly modifying certain individuals in the population by
altering one or more genes. These modifications pave the way
for new possibilities, which could very well be useful for
creating good solutions.

* Generation of a new population, named POP;. This new
generation consists of promising individuals selected from the
previous population, to which new individuals created by
crossover and mutation are added. These two mechanisms aim
to improve the diversity and quality of the population, while
preserving the favourable traits identified in the selected
individuals.

* Once the new population is generated, the process of
improving individuals can be repeated by reapplying the
previous steps, until a population of robust individuals fully
meeting the fitness function is obtained. This process
continues up to a maximum number of generations, denoted as
h, determined based on the tester's evaluation. If, at the end of
these generations, convergence is not achieved, the best
individuals of the last generation (POPy,) will be selected.

3.2 Description of the second phase

After obtaining a series of high-quality test case inputs
(Inputsp) and reactivating all the coordination mechanisms in
the system under test, previously deactivated during the earlier
phase, we will proceed to execute the system with these test
inputs. If the system manages to process all these cases without
encountering any problems or generating conflicts, we will
consider the adopted coordination mechanism to be effective.

EXECUTION: Inputsy (Vyg Vit == Vhpp-1))

| |- |

SMA to be test
(Coordination reactivated) Successful
coordination of

| L wa o p
EXECUTION RESULTS: Outputs  Outputs  Outputs 3 System

| Execution of each input from the Inputsy test |
| case suite on the system under test. followed |
' by the evaluation of the results obtained.

t

Figure 8. Evaluation of the coordination of the multi-agent
system under test (success of the system coordination)

EXECUTION: Inputsy (Vi Vi =t Vhpy-1))

|

SMA to be test

(Coordination reactivated) System
l coordination
o v failure!

EXECUTION RESULTS: Outpufs Outputs OQutputs

Vi Vi Vhep, a
)

| Execution of each input from the Inputss test |
! case snite on the system under test. followed |
1 by the evaluation of the results obtained.

v

Figure 9. Evaluation of the coordination of the multi-agent
system under test (system coordination failure)
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On the other hand, if it fails in any of the test case inputs, it
will undoubtedly indicate the inefficiency of the adopted
coordination mechanism. Figures 8 and 9 briefly illustrate the
processes that take place at this stage, while Algorithm 3
demonstrates how coordination is reactivated in the MAS
under test.

Algorithm  3:  Reactivate_Coordination_for_a_Multi-Agent
System

Inputs: Uncoordinated system S’;

Outputs: Coordinated system S;
1 Begin
2 /I Step 1: Identify agents responsible for coordination.
3 CoordinationAgents «— Identify Coordination Agents(S’);
4 /I Step 2: For each coordination agent, reactivate its
coordination action.

5 for each Agent Aj € CoordinationAgents do

6 for each coordination action ac € Aj do

7 I*

8 Formal reactivation of a coordination action ac:

9 This operation is the inverse of Deactivate (ac).

10 It restores the coordination mechanism ac, such that:
11 Reactivate(ac) = ac.disabled := false

12 Meaning: the action ac (e.g., a method, protocol, or
rule managing shared resources)

13 is re-enabled, allowing agent Aj to resume coordinated
interactions with other agents

14 or shared entities.

15 */

16 Reactivate ac;

17 end;

18 end;

19 End.

4. CASE STUDY
4.1 General presentation

In order to validate our proposed approach, we selected the
En-route air traffic control system (EATC) as a case study,
given its critical and complex nature as a representative
domain for testing coordination mechanisms in MAS. EATC,
managed in area control centres (ACCs), ensures the
surveillance and management of aircraft during the cruise
phase to prevent collisions by maintaining minimum vertical
(VSM), lateral (LASM), and longitudinal (LOSM)
separations, as defined by international regulations (Table 2).
To achieve this, controllers rely on advanced technologies
such as primary and secondary radar, ADS-B, TCAS,
ACARS, and satellite communications (SATCOM), which
provide real-time data on aircraft position, velocity, trajectory,
and environmental conditions. Figures 10-16 illustrate these
separation distances and violation scenarios that lead to
conflicts requiring corrective actions (e.g., altitude, heading,
or speed adjustments). In this context, EATC is modeled as a
MAS using a centralized approach, where an Air Traffic
Controller Agent (ControllerAgent) supervises a set of
AircraftAgents, each representing an aircraft in cruise.
AircraftAgents share their complete trajectories as vectors of
waypoints, each characterized by precise attributes such as
position, altitude, speed, heading, estimated time of arrival,
protection zones, and priority (see Figure 17). Every waypoint
is associated with a resource zone (PointResource), which
defines its protection area based on VSM, LASM, and LOSM
criteria. The ControllerAgent continuously analyzes the



resources of all AircraftAgents and detects conflicts whenever
protection zones overlap simultaneously in all three
dimensions of separation. Upon conflict detection, it generates
tailored corrective instruction vectors for the involved aircraft,
adjusting parameters such as altitude, trajectory, or speed to
restore safe separation without creating new conflicts. Each
AircraftAgent then updates its trajectory accordingly. The
cruise environment is represented as a dynamic operational
airspace, encompassing external factors such as weather

conditions, airspace configuration, and relative speeds, all of
which influence both the ControllerAgent’s decisions and
AircraftAgents’ behaviors. This MAS-based modeling of
EATC provides a realistic and demanding framework for
evaluating the robustness and effectiveness of coordination
mechanisms in critical systems by subjecting them to
representative and challenging conflict scenarios, thereby
testing their resilience and capacity to ensure flight safety.

Table 2. Summary of minimum vertical and horizontal separation distances between aircraft in cruise phase

Minimum

Type of Separation Separation Distance

Separation Conditions

1000 feet! (304.8

i i meters)
Verpgal separation 1000 feet (304.8
minimal (VSM)
(See Figure 10) meters)
2000 feet (609.6
meters)

Horizontal separation
minimal (HSM?3)

4
Lateral separation minimal > nm'* (approx. 9.26

Below FL290 (Flight Level 290, approximately 29000 feet)

Between FL290 and FL410 for aircraft equipped with RVSM? systems

Above FL290 for No-RVSM aircraft

general regulations concerning the minimum distance for lateral separation in cruise

km) for radar-controlled aircraft.
(LASM) . . o . .
. 3 nm (approx. 5.56 applicable in certain airspace areas with dense traffic or very accurate surveillance
(See Figure 12) .
km) systems, such as near airports.
Loneitudinal separation 5 nm (approx. 3 between two aircraft on the same route with different speeds, where the leading
e P minutes) aircraft is assumed to fly at least 44 kt> (81.49 km/h) faster than the following aircraft.
minimal (LOSM) . o .
(See Figures 14 and 15) 10 nm (approx. 5 . betwe}en two aircraft on the same route with different speeds, where tht? leadmg
minutes) aircraft is assumed to fly at least 22 kt (40.74 km/h) faster than the following aircraft.

Altitude (ft)
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[ Aircraft equipped
with RVSM
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VSM = 2000 f¢

FL2%90
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Figure 10. Representation of different vertical separation
minima (VSM) between aircraft in cruise phase
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Figure 11. Representation of vertical separation violation
situations when one of the two aircraft breaches their VSM
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Notes: 1. Feet: 1 foot (ft) equals 0.3048 metres. 2. RVSM (Reduced
Vertical Separation Minima): RVSM is a standard that reduces the vertical
separation minima (VSM) between aircraft flying between flight levels FL290
and FL410 from 2,000 feet to 1,000 feet. The aim is to increase airspace
capacity by allowing more aircraft to operate at optimal cruising altitudes,
thereby improving fuel efficiency and reducing traffic congestion [45-47]. 3.
HSM (Horizontal Separation Minimum): Can be measured in two ways: by
lateral distance and by longitudinal distance. 4. Nautical Miles: 1 nautical mile
(nm) equals 1.852 kilometres. 5. kt (knot): kt is the standard unit of
measurement for aircraft speed, where 1 kt = 1 nautical mile per hour = 1.852
kilometres per hour.
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Figure 12. Representation of lateral separation minima
(LASM) between two aircraft flying at the same or closely
spaced altitudes
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Figure 13. Representation of a lateral separation violation
situation when one of the two aircraft breaches their LASM
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Figure 14. Representation of longitudinal separation minima
(LOSM) between two aircraft flying at the same or closely
spaced altitudes, where the leading aircraft must fly at least

44 kt (81.49 km/h) faster than the following aircraft
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Figure 15. Representation of LOSM between two aircraft
flying at the same or closely spaced altitudes, where the
leading aircraft must fly at least 22 kt (40.74 km/h) faster
than the following aircraft
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Figure 16. Representation of a longitudinal separation
violation situation when one of the two aircraft breaches their
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Figure 17. An example of a trajectory for an aircraft agent
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4.2 Application of the proposed approach to the EATC
system

In accordance with our testing methodology, which is based
on seven essential steps, we shall now examine and apply them
one by one:

4.2.1 MAS to be tested

As outlined in Section 4.1, the system under test is a
centralised MAS designed for cruise-phase air traffic control
(EATC). It comprises 20 aircraft agents (AircraftAgent), each
following its own trajectory in cruise airspace
(TrajectoryVector). Each trajectory consists of a series of
points (Point), with the number of points ranging from 6 to 30,
excluding the departure and arrival points. These points
represent estimated spatial positions of each agent at specific
time instances, under the assumption of a constant cruising
speed. External influences such as wind, weather, or other
environmental factors are not considered in this model. To
manage traffic and prevent conflicts, a controller agent
(ControllerAgent) is responsible for coordinating the actions
of all aircraft, thereby facilitating safe and efficient navigation
within the cruise airspace.

Figure 18 illustrates the overall architecture of the system
under test, highlighting the interactions between the various
agents involved in managing cruise-phase air traffic. Within
this framework, each AircraftAgent periodically transmits its
trajectory information (TrajectoryVector or TV) to the
ControllerAgent, who oversees the coordination process to
detect and resolve potential conflicts, ensuring smooth and
secure navigation.

Cruise airspace

AircrafideentO
o
Point0.0 —--[ PomtoP@-P<32)
Aircrafideent] 9
avey
Point19.0 Pomtl9.P (6<P<32)
4 PAg i ior} flow

Figure 18. Multi-agent system to be tested (EATC)

4.2.2 Disabling coordination actions for this system

In this step, the coordination mechanism that enables
trajectory adjustments in the event of conflicts is deliberately
deactivated. This prevents the ControllerAgent from sending
adjustment instructions to the AircraftAgents, effectively
disabling any conflict resolution intervention. Figure 19
illustrates  this deactivation by showing that the
ControllerAgent continues to receive the trajectories of the 20
AircraftAgents (from TVO to TV19), but that the correction
instructions (Inso to Insi9) are no longer sent. The red crosses
clearly indicate that the transmission of adjustments is
blocked, thus preventing any modification of heading or
altitude by the AircraftAgents.
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Figure 19. Illustration of the coordination flow deactivation
for the EATC system

4.2.3 Generation of mutants for each system resource

Following the deactivation of the coordination mechanism
in the previous step, the system under test becomes an "EATC-
Without Coordination" configuration. In this state,
communication between the ControllerAgent and the
AircraftAgents is completely disabled. Each AircraftAgent
then follows its trajectory autonomously, without receiving
any corrective adjustments in the event of a conflict. The
resources of the system are the spatial coordinates in cruise
airspace, since each agent navigates independently during this
phase and uses these coordinates to position itself in space.
Each AircraftAgent passes through multiple waypoints along
its trajectory. If a conflict is to arise, it will necessarily occur
at these points-where the trajectories of different aircraft
agents may intersect.

In this step, each waypoint in a trajectory is treated as a
resource. According to the mutation analysis technique, an
error is injected at each point (as defined in Eq. (1), Section
3.1). An error is triggered if another point, belonging to a
different trajectory, enters the safety zone around that point (as
defined by VSM, LOSM, and LASM thresholds). In other
words, each time an error is injected, a mutant is created. This
mutant is an exact copy of the original system, except for a
single error introduced at one specific point.

At the end of this process, the total number of mutants
corresponds to the total number of points across all
trajectories. Since the system comprises 20 AircraftAgents
(and thus 20 trajectories), each containing between 8 and 32
points, the total number of mutants ranges from 160 to 640.
This approach allows the system's coordination mechanism to
be tested under conflict scenarios in cruise phase, by observing
how each mutant behaves when safety zones (VSM, LOSM
and LASM) are violated.

4.2.4 Generation of test case inputs

As illustrated in Section 3.1, through Figures 7 and 8, the
process of generating test case inputs is carried out using
parallel genetic algorithms. Below is a detailed presentation of
the various steps that make up this process, from initialisation
to the generation of the desired test case inputs:

Process 1: Generation of an Initial Population. Test cases
are modelled as individuals (Vector or V) within an initial
population (with a fixed size of 100), which is generated
randomly. This diversity is crucial for effectively exploring the
solution space and avoiding bias from the outset.

Each individual consists of 20 genes (TrajectoryVector or
TV), and each gene contains between 8 and 32 waypoints
(Point). Figures 20 and 21 illustrate the structure of the first
and last individuals in the initial population. Furthermore,
Table 3 clearly presents the parameters used to generate a
trajectory (TrajectoryVector).

Table 3. Key parameters for generating an aircraft trajectory (Trajectory Vector)

Parameter Description Value/Range Unit
InitialPointIndex index of the starting point 0 Integer
minIntermediatePoints minimum number of intermediate points 6 Integer
maxIntermediatePoints maximum number of intermediate points 30 Integer
stepPointsInVector step between points in the vector 1 Integer
leastDistance minimum distance between origin and destination 1000 Nautical miles (nm)
minLon / maxLon longitude range -180 to 180 Degrees
stepLon longitude step 0.00001 Degrees
minLat / maxLat latitude range -90 to 90 Degrees
stepLat latitude step 0.00001 Degrees
minAltitude / maxAltitude altitude range 20,000 to 51,000 Feet (ft)
stepAltitude altitude step 20 Feet (ft)
minSpeed / maxSpeed speed range 350 to 600 Knots (kt)
stepSpeed speed step 20 Knots (kt)
minStartingTime / maxStartingTime time range 0to 23 Hours
stepStartingTime time step 1 Hours
VSMValue vertical separation minimum 1000 or 2000 Feet (ft)
LASMValue lateral separation minimum 500 Nautical miles (nm)
LOSMValue longitudinal separation minimum 1000 Nautical miles (nm)
RVSM reduced vertical separation minimum True or False Boolean
priority agent priority 0to 19 Integer
EARTH_RADIUS NM earth's radius 3440.065 Nautical miles (nm)
AgentName aircraft agent name AircraftAgent String
maxIntermediatePoints maximum number of intermediate points 30 Integer
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Figure 22. Summary of the generation of the initial
population (POPO0)
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Figure 23. Graphical Representation of the First (V0,0) and
Last (V0,99) Individuals of the Generated Initial Population
(POPO)

Figure 22 provides a summary view of the display after the
generation of the initial population POPO, while Figure 23
graphically represents the first individual (V0,0) and the last
(V0,99) of this population.

Process 2: Mutant Generation. In an initial population of
100 individuals, where each individual is composed of 20
genes, and each gene contains between 8 and 32 waypoints
(resources), the total number of mutants generated per
individual ranges from 160 to 640. Consequently, at the
population level, the total number of generated mutants lies
between 16000 and 64000. Figure 24 illustrates a sample
output showing a subset of the generated mutants.
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Figure 24. Excerpt of the display of mutants generated for
the initial population POP0

Processing generation of population 1...
Step 1: Evaluate all vectors in POPULATION 0 using the fitness function...
1.1) ERRORS detected while running POPULATION 0 on the system under test:

{aircraftagent15(1), Aircraftagent7(1)} R0,49,15,0 18:00:00 V0,49 degE=2 TCWs=2 //ERROR

{aircraftagent14(1), Aircraftagent4(1)} R0,90,14,0 15:00:00 V0,90 degE=2 TCWs=2 //ERROR
The ID of the individual who caused the error. J
AircraftAgent14 isin conflict with AircraftAgentd over

resource R0,90,14,0, involving a total of two agents.

A single point from AircraftAgentl4's trajectory and another
from AircraftAgentd's trajectory are involved in this conflict,
making a total of two points.

Figure 25. Excerpt of errors detected during the parallel
execution of POPO on each generated mutant



Process 3: Error Triggering and Evaluation of Individuals.
During the parallel execution of each individual from the
initial population on each previously generated mutant (see
Figure 5, Section 3.1), one or more errors may occur (as
defined in Eq. (1), Section 3.1). This indicates simultaneous

use of the same resource, meaning that safety separation rules
are violated at certain waypoints. In such cases, the
corresponding mutants are considered "killed". Figure 25
illustrates a representative excerpt of the detected errors, and
Table 4 details the extracted information.

Table 4. Information extracted from the parallel execution of the initial population on all generated mutants

Individual gerrfere Conflict Total Number Total Total Total
Triggered ID Mutant ID Involved (SD Weidht Conflict  of Killed Mutants Error Error
Errors (Error (Killed) Agent or (CVg\/) Weight  Mutants M) Degree  Weight
Source) (Tcw) (m) (TED) (TEW)
degE)
AircraftAgent15 irllcFI)L?tljgtd
Error 1 V0,49 M0,49,150 —— 2 “1point 2 1 427 2 2
AircraftAgent? P
included
AircraftAgent14 irllcrIJL?:JIr;td
Error 2 V0,90 M0,90,140 — 2 1 point point 2 1 436 2 2
AircraftAgent4 included

Following the analysis of the triggered errors and the
extraction of relevant information for the evaluation of each
individual in the initial population, we apply the previously
defined fitness function, using the parameters a=0.6, $=0.3
and y=0.1 (see Eq. (6), Section 3.1). Figure 26 provides a
detailed excerpt of the evaluations for each individual, while
Figure 27 offers a graphical overview of the fitness-based
evaluation for individuals ranging from V0,40 to V0,79.

action v

sest fitness va

Figure 26. Detailed extract of individual evaluations from
population POPO

Fitness value for Population POPO - Idividuals (Vectors)
V40 to V79

Fitness Value

Fitness (V0,60) = 0
(No Quality

Individuals (Vectors)

Fituss Classfications
* 1 : Optanal Quality (Light Bhw) * 0.9 - 1[ : Excellers Qualzy (Light Green) * [0.7 - 0.9] - Good Quality (Daak Green) * [0.5 - 0.7 : Aversge
GENTA)

Quality (MA
* 9.3 - 0.5(: Low Quality (Orwnge) * 0 - 0.3[ : Very Low Quality (Red) * 0 : No Quality (Duk Groy)

~=- Population 0

Figure 27. Graphical representation of fitness values of
individuals (v0,40 to v0,79) in population POPO

Process 4: Selection of the Fittest Individuals. Following the
evaluation of the initial population, the next step is to select
the fittest individuals - those with the highest performance

scores. A selection rate is randomly determined within a
predefined range of 60% to 90%. In this case, the selected rate
is 82.13%, meaning that 82 individuals from the initial
population have been chosen for the next stage.

Process 5: Crossover and Mutation. To diversify and enrich
our population, we performed simple crossover between every
two parent individuals to produce two offspring. The crossover
probability was randomly selected between 70% and 100%.
Additionally, the crossover point was chosen from the
following authorized values: 30%, 40%, 50%, 60%, and 70%.
However, due to computational and memory constraints, the
total number of individuals generated after each crossover
operation (parents + offspring) was limited to a maximum of
40.

The mutation probability was randomly chosen between 1% and 20%
Step 4: Apply a mutation with a 16.99% probability to each vector resulting from the crossover process...

mutated Individual (vector) :

replaced ™0,4,2 with nen gene w
01d Gene gTra]e(torwe((or) Tra]e((ory\/ec(or PopIndex=0, vecIndex=4, TrajvecIndex=2, Points=10
New Gene (Trajectoryvector) : Tra]ec(oryvec(or PopIndex=0, VecIndex=4, TrajvecIndex=2, Points=23
Replaced gene Tv0,4,6 with new gene TV0,4

01d Gene (Trajectoryvector) : Traleczoryvec(or PopIndex=0, VecIndex=4, TrajvecIndex=6, Points=26
New Gene (Yraiecmryve(tor) Trajectoryvector [PopIndex=0, vecIndex=4, TrajvecIndex=6, Points=30,
Itispreferable that the new gene retains

o) Nu(anng 2 gene(s)

mutated Individual (vector) : -> Mutating 2 gene(s)

Replaced gene Tv0,8,0 with new gene TVO 8,0

old Gene (Yraje(mrwe(mr) ve

New Gene (Traje Ta 2

Replaced gene Gu0.& ] QV0:5.0

0ld Gene nga ecroryvector) »Trajectoryve [Poprndex 0, vecIndex=8, TrajvecIndex=1, Points=32
Tra%ec(orwe(tor) ‘ Yra%e(torwenor PopIndex=0, vecIndex=8, TrajvecIndex=1, Points=24

New Gene
The new gene contains 32

the same indices as the old one
gwe0 VecIndex=8, TrajvecIndex=0, Points=8]
o dex-o vecIndex=8, TrajvecIndex=0, Points=17]

waypoints
The old gene contained 24 waypoints

Mutated Individual (vector) : v0,25 --

Replaced gene Tv0,25,0 with new gene wo
0ld Gene Yraje:mryve:tor) Tra; e((oryveuor[?opxndex-o vecIndex=25, TrajvecIndex=0, Points=11
New Gene (Trajectoryvector) : Tra euoryve((or PopIndex=0, VecIndex=25, TrajvecIndex=0, Points=25

-> Mutating 1 gene(s)
25,0 9

Mutated xrdaudual (vector) : v0,31

-> Mutating 1 gene(s)
replaced Zene ,31,8 with new gene WO 31,8

0ld Gene Yra]eczoryveuor)

Trajectoryvector [PopIndex=0, vecIndex=31, Tra)veundex-a.
New Gene (Trajectoryvector) :

Points=22
Trajectoryvector [PopIndex=0, vecIndex=31, TrajvecIndex=8,

POints=20,

Total Individuals (vectors) mutated in POPULATION O : 6 out of 40

Figure 28. Display of mutated individuals from the initial
population after crossover

Mutation was also applied, with a randomly selected
probability between 1% and 20%, determining the chance for
each individual to be mutated. When an individual was
selected for mutation, only one of its genes was modified, with
the gene being randomly chosen. Figure 28 illustrates an
excerpt of the displayed results, showing a mutation
probability of 16.99%, which led to the mutation of 6
individuals out of a total of 40.

Process 6: Generation of the New Population. This process
involves creating a new population that incorporates all
individuals after mutation. To achieve this, new indices must
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be generated: the index of the previous population is
incremented by 1, and all indices of individuals, genes, and
waypoints are updated accordingly. Figure 29 presents a

sample display of a newly generated population, POP1.

Step 5: New pepulation 1 15 ready to be used for the next generation, Regeneration of individual indexes
Em aying 1 (Popalation size = 40): +Regeneration of gene indexes
= Rwenr‘rallnn of passing point indexes

410, 176130000000005, alte29640, speeded g 10, OHL2GORLL, timesLL:00:
Trjectonpectorlnde’ 0, ‘Porntinee 0, ot i, Lo i, e

0, t
RiStetrue, priceitysd,

Foint1,0,0.7 LS, Al e, Db IO, o

ectoryVectorIndex 20, "Point] 11000.0, “LASK"500.0, LOSH" 1

RiStatroe, priceitysd,

PR, L2 LB, 02600, e, eniop TS
0, “Trajectoryectornden’ 19, “Pontlnder”:0, VOX': LS50,

7:00:00, pointhesourcesPointResource
)}, RVifalse, prioeityls,

Tat=1. 6510200000000088, alt=26020, xme-»w nuw?nlm&wma 8 53, pointaesourcesPointhesoorce{
10, “TrajectoryVectorlndex’:19, “Pointinder” 11000.0, 0}, tvsufalse, prioritytd,

35, 9537000000001, altsd0620, speededs0, bentioge11. 1082
ectorlnder 3, v«mw,\x-uwua “PontIndex”:0, V12000
craftigentt)

S,
" ectorTndex” 3,
wircraftigent m-mn‘umo

, tines01:00:00, poi t:nme-e intResource{
“109¢°:1000.0}, WVSMefalse, priceitysd,

.0,

53288, altsd0620, speededsO, beadings1S8. 21082020
Nectorl !

ectorIndex":0, “Pointladex” 10, “V(':2000.0,

ines13:36:29, pointRescurcesPointies
3000, “L0S¢200.0), BSwfalse, prierityd,

Indend oo, KESUBOONN, ot LITOOONOL, A0S0, spe . enfinel S
e, Vetoelodo '3, Trjetionec oelade’3, “Pointinder,
aftigent1s)

tinesd , istiesrceistteson cef
Rres 'ma iifalse, pricritysts,

370, headinge24s,
119, “Pointisden’s16, V't

60,5901, alts30540, 5
9, TrajectoryVectorl

07:53, po i {
1500.0, "LOSK':1000,0), WSuefalse, prioritysts,

Figure 29. An excerpt of the display of a new population
POP1
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Figure 30. Evaluation curves of test case inputs (Inputs0)

Process 7: Development of Test Case Inputs. The
development of test case inputs is based on the repeated
execution of the previous processes (Processes 1 to 6) until the
fitness function reaches a stable state. In other words, as long
as the fitness scores of individuals continue to improve, the
algorithm proceeds with its evolution. However, once no
significant improvement is observed, it is considered that the
algorithm has reached convergence.

Despite constraints - most notably the limitation to 40
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individuals per new generation - a fitness score of 98.1281%
was achieved after 150 generations. While this restriction may
have slowed convergence, it allowed for more efficient
management of computational and memory resources.

Once convergence is achieved, individuals from the final
generation are selected as the best difficult test case inputs.
These represent the most relevant scenarios for evaluating the
coordination mechanism of the system under test.

Test case mputs Evaluation curves
Fitness value for Population POP10 - Idividuals (Vectors)
V0 to V38
1. .
POPIO il 1 ’
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Figure 31. Evaluation curves of test case inputs (Inputs10)
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Figure 32. Evaluation curves of test case inputs (Inputs40)
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Figure 33. Evaluation curves of test case inputs (Inputs45)
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Figure 34. Evaluation curves of test case inputs (Inputs70)
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Figure 35. Evaluation curves of test case inputs (Inputs100)
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Figure 36. Evaluation curves of test case inputs (Inputs150)

Figures 30 to 36 illustrate the progressive evolution of test
case input quality, ranging from poor to excellent. They first
show low-quality inputs, followed by moderate and good

quality, and finally, excellent-quality inputs. In this final
category, the best score achieved is 98.1281%.

Trajuctories of ircraft Agants in craise
Display of the indsvidual {Veciar) ¥150,24 in Population POP 150

Figure 37. Graphical representation of one of the best test
case inputs, represented by individual V150,24

At the peak of this progression, Figure 37 provides a
graphical representation of individual V150,24, identified as
the best test case input. Additionally, Table 5 presents a
detailed analysis of each test case input illustrated in Figures
30-36, highlighting their evolution in terms of performance
and quality.

Table 5. Detailed analysis of test case input evolution in terms of performance and quality

Population Analysis Results

Analysis Results of the Worst Individual in

Analysis Results of the Best Individual in the

the Population Population
z z
£ g @ g z g 5 5 z £ = =
- 2 i 3 £ g : & £ g s & &
Test Case Oms nd = 5 z3 z2 o am =3 z2 - A
Inputs g 232 Ef 2 35 355 252 M3 @3 355 25% @3 o3
& 2o = I 2 Q3 38 o B mg S 380 B m 3 3
® S a0 2 & <o S = =50 o= é-‘ 3S =50 os g,
g7 & < < = Zav.N @3 o s 7 x 3 o s
g g g £ z 5 g g £ g 2
2 ® ’ < = g 8 = = g E =
InputsO 100 2
(POPO) Individuals Errors 0.000000 0.335305 0.006704 0 / 0 0 1 427 2 2
Inputs10 39 27
(POP10) Individuals Efrors 0.000000 0.591954 0.101607 0 / 0 0 7 435 29 29
:nguFt’fl‘(l)(; Indi\:l%i%uals 1001 Errors 0.670151 0.775251 0.721229 15 444 150 150 44 423 174 174
:gpou;?; Indi\f’isc‘iuals 1098 Errors 0.684276 0.802932 0.746361 16 356 80 80 57 411 235 235
;g‘(’)”;%()) il STI0EMOrS 0869194 0910780 0.889561 119 450 485 485 166 404 580 580
Inputs100 40 10579
(POP100) Individuals Errors 0.929362 0.953865 0.943855 230 474 872 872 293 469 1039 1039
Inputs150 35 13805
(POP150) Individuals Errors 0.962033 0.981281 0.976064 323 476 1175 1175 428 519 1522 1522

In our coordination testing approach, the main objective is
clearly defined: to generate the most challenging possible test
case inputs. This means producing scenarios that maximise
conflicts, trigger a higher number of errors, and eliminate as
many mutants as possible.

This objective is directly reflected in Table 5, which
illustrates the evolution of generations and highlights the
progressive increase in the number of detected conflicts, as
well as the growing complexity of the generated errors, as
expressed by the TED (Total Error Degree) and TEW (Total
Error Weight) indices. Furthermore, it underscores the rise in
the number of eliminated mutants, represented by the term
(m). The analysis of the results confirms that the genetic
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algorithm successfully increases the complexity of test cases,
thereby enabling a more rigorous and in-depth evaluation of
the coordination mechanism within the tested system.

4.2.5 Enabling coordination actions for this system

This step corresponds to the reactivation of the coordination
mechanism, which had been disabled in Step 2 (see Figure 19).

Figure 38 provides an abstract illustration of this
reactivation: the ControllerAgent continues to receive the
trajectories of the 20 aircraft agents (from TVO to TV19), but
this time, it is once again able to intervene in the event of a
conflict. Adjustment instructions are therefore sent to the
relevant agents to correct their trajectories when necessary.



The ControllerAgent functions as a central coordinator, * The required minimum vertical separation (VSM) must be

with the primary role of ensuring safe separation between the maintained between all points;

trajectories transmitted by the various AircraftAgents. It does * The altitude of the highest-priority point remains

so by enforcing the criteria for vertical, lateral, and unchanged;

longitudinal separation (VSM, LASM and LOSM). The * The altitudes of other points already adjusted during the

adopted coordination strategy focuses exclusively on adjusting same cycle are considered to avoid introducing new conflicts;

the altitude of conflicting trajectories, without altering either * The suggested altitude must remain within authorised

the speed or the heading. bounds, between FL200 (minimum) and FL510 (maximum).
* Coordination Strategy Adopted: All adjustments are recorded locally using structures of type
a. Trajectory reception: The process begins when each “AdjustmentInstructions”.

AircraftAgent sends its complete trajectory to the
ControllerAgent, represented as a list of waypoints (Point).
Once all trajectories have been received, the controller can
initiate the analysis.

b. Conflict detection: The controller identifies potential
conflict points between aircraft using the function
“getAllConflictPoints(trajectory VectorList)”, which compiles
all such points for further processing.

c. Conflict resolution (Multi-Cycle Approach): he controller
attempts to resolve conflicts over multiple successive cycles,
continuing until either all conflicts are resolved or the
maximum number of cycles (MAX CYCLES, set to 10) is
reached.

In each cycle, the controller calls the TVI9(Peint19Pto Poiati9.P)
“resolveConflicts(allConflictPointsMap)” function to process
the detected conflicts and generate adjustment instructions to
be sent to the relevant aircraft agents.

For each group of conflicting points:

e The point with the highest priority (i.e., the lowest
numerical value) is protected and remains unchanged.

* The remaining points are adjusted one by one, in
descending order of priority (from less to more important).

* For each adjusted point, a safe altitude is determined using
the method “findSafeAltitude(pointToAdjust,
referencePoints)”, taking into account:

Cruise airspace

Aircrafideent0
V0
Point0,0 -~ ~[ Pointh,P (6<P<32)

Alrcrafidgent19
) Vi
ROYRN Pointi90 - - [ PointIoP (6<P<32)

Figure 38. Reactivation of the coordination process

Table 6. System execution results for the best test cases from each predefined input set

Test Case Execution Results

Top 2 Number Resolved Conflicts / Resolution Success Latest Planned
Inputs  Test .. of  Number of Adjustments / Total Number of Adjustment Points Agents’ IDs Index of the Previous Safe Conflicts
Inputs Quality Cases S Planned Affected Points . .
%) per core Affected T P Altitude Altitude
(%) . After After After After After After After After After After by the - (ft) (ft)
Input Confllctsc le Cycle Cycle Cycle Cvcle Cycle Cycle Cycle Cycle Cyel di Adjustments Resolved
(Errors) ylc e yzc e ygc e )zc e )gc e )g: e y?c e )gc e )gc e )llg e Adjustments Conflicts
1/Yes . ) 1/1
Inputsg: V0,49 335305 1 71 / / / / / / / / | AircraftAgentl5 Point0,49,150 36600 38600 Success:
100 100%
Test 0.6704 1/1
Cases V0,90 33.5070 1 lgf S / / / / / / / / | AircraftAgentl4 Point0,90,14,0 32440 34440 Success:
100%
AircraftAgentl4 Point10,25,14,0 32440 28440
7IYes AircraftAgentl5 Point10,25,15,0 32440 36440 7/7

Inputsso: V10,2559.1954 7 / / / / / / / / | AircraftAgentl7 Point10,25,17,0 32440 30440 Success:

4/5 .
39 . Point10,25,18,0 32440 34440 100%
Test 10-1607 AIrcraftAgentis o095 1823 32440 34440
Cases 4Yes AircraftAgentl4 Point10,27,14,0 32440 36440 4/4
V10,2753.7376 4 33 / / / / / / / / | AircraftAgentl7 Point10,27,17,0 32440 30440 Success:
AircraftAgent18 Point10,27,18,0 32440 34440 100%
44 | 44
Inputsao: V40,1 775251 44 493/’2'\;0441’/\295 I 1 1 1 1 1 I | AircraftAgentl2 Pointd0,1,12,0 32440 36420 Success:
40 100%
72.1229
Test 37/No38/Yes . _ 38/38
Cases V40,1176.9086 38 / / / / / / / | AircraftAgent12 Point40,11,12,0 38420 36420 Success:
9/23 1/1 100%
54/No 55/No 55/No55/No55/No55/No57/Yes e
Inputsss: V45,2380.2932 57 / / | AircraftAgentl9 Point45,23,19,0 47960 48960 Success:
33 12/35 2/2 11 11 11 11 11 100%
74.6361 >
1S 50/No51/Yes ailiell
Cases V45,6 79.2381 51 / / / / / / / | AircraftAgent12 Point45,6,12,0 38420 36420 Success:
9/30 111 100%
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Table 7. Additional results for the remaining test cases

Test Case Execution Results

Number

Inputs Top of Resolved Conflicts / Resolution Success i Planned
o 2 Test . Number of Adjustments / Total Number of Adjustment Points A Index of the Previou Safe Conflicts
Qualit Fitness Planned Agents’ IDs B :
Inputs Cases Score Affected Affected Points s Altitud /
(%) Iper t (%) Conflict After After After After After After After After After After by the E dt_hetLateit AltﬁUde fet Resolved
npu S Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Adjustments justments  (ft) (f) cesoﬂ\_/et
(Errors) 1 2 3 4 5 6 7 8 9 10 OIS
91078 162/N 162/N 162/N 162/N 162/N 164/N 164/N 164/N 165/N 164/N AircraftAgentl 15?160(/:61524
V70,18 .O 166 0 0 0 0 0 0 0 0 0 0 Y Point70,18,19,0 48960 47960 08 7952'
13/99 3/3 2/2 22 22 22 11 11 11 11 '%
, AlrcraftAgentl o i70.13,13,0 46960 45960
Inputsyo: 3
T‘th 88'558 A'rcranggeml POIN(70,13,16,0 47960 46960 ;o, ;-
Cases 90.903 176/N 172/N 172/N 174/N 174/N 175/N 175/N 176/N 177/N 176/N AircraftAgentl e —
V70,13 '5 184 0 0 0 0 0 0 0 0 0 0 7 9 Point70,13,17,0 47960 48960 o5 6522'
15/104 7/7 6/6 6/6 55 55 55 55 55 5/5 AircraftAgentl '0/
8 d Point70,13,18,0 46960 47960 0
A"”angge”tl Point70,13,19,0 48960 47960
AlrcrafIAgentl Pomtlo(;),l?,ll, 45960 46960
Alrcraf;Agentl P0|nt10(;),17,13, 46960 47960 203/ 284
V100,1 95.386 . 284/N 277/N 277/N 279/N 279/N 281/N 281/N 283/N 283/N 284/N AircraftAgentl Point100,17,16, S
8 e G @8 sh 7 97 66 66 BB e 6 0 47960 45969 96,9283
i i 0,
INpUts100 AlrcraféAgentl P0|nt10(;),17,18, 48960 49960 %
39 94.5385 Alrcraf;Agentl P0|nt10(§J,17,19, 50060 49960
Test . .
Cases Alrcraf;Agentl P0|nt10(§J,15,13, 46960 47960
AircraftAgent1 Point100,15,16, 286 /279
V100,1 95,059 285 273/N 27§/N 27§/N 273/N 273/N 27g/N 27g/N 27(8;/N 27(8;/N 27g/N 6 0 47960 48960 e~
S 2 15174 777 77 7T 66 6/6 5/5 5/5 44 44 A"CraféAgeml P°'"t1°(?'15'18' 48960 49960 97;?25
Alrcraf;Agentl P0|nt10(;).15,19, 50960 49960
chraf;Agentl P0|nt15(;),24,12, 45960 46960
A|rcraf}1Agent1 P0|nt15(;),24,14, 46960 47960
AircraftAgentl Point150,24,16, 428/ 417
V1502 98.128 428 41§/N 41(())/N 4l§/N 4l§/N 413/N 413/N 41(6)3/N 41(6)/N 41(6)/N 4lZ/N 6 0 46960 47960 S
4 ! 18/252 9/9 9/9 8/8 8)8 77 T 6/6 6/6 6/6 A"”angge”u Po'”ﬂs(?*z“'”' 47960 48960 97'3}0299
AlrcraféAgentl P0|nt15(§J,24,18, 49960 50960
Inputsiso . .
) AircraftAgentl Point150,24,19,
3.5 97.606 9 0 50960 49960
Test 4 AlrcraféAgentl P0|nt15éJ,31,12, 45960 46960
Cases A A
A|rcraf}1Agent1 P0|nt15(;),31,14, 46960 47960
V1503 97969 400/ 392/N 394/N 394/N 396/N 396/N 398N 398/N 30B/N g9/ ATCTANAGENtL POINILE03L16, 1796, 4gee0 410/399
! ) 410 0 0 0 0 0 0 o] 0 o} o] . . ’
. 18244 919 909 B8 &8 77 U 66 66 o6 ~CAMAGNLPONUNILIT yogqy 5ogg0 TSI
Alrcraf;Agentl P0|nt15(§),31,18, 48960 49960
Alrcraf;Agentl P0|nt15(§),31,19, 50960 49960

d. Sending adjustments: inputs

¢ If, during a given cycle, no further conflicts are detected,
the adjustments calculated in the previous cycle are sent to the
relevant AircraftAgents.

¢ If the maximum number of cycles is reached and some
conflicts remain unresolved, the controller sends the most
recent available adjustments regardless.

e. Receiving adjustments: Each AircraftAgent receives only
the adjustments that concern it. Each adjustment specifies: the
waypoint to be modified and the new altitude to be applied to
that point.

applied.

under test

Table 6 and Table 7 present the execution results of the
system under test. For each pre-generated test set (InputsO
(POP0), InputslO (POP10), Inputs40 (POP40), Inputs45
(POP45), Inputs70 (POP70), Inputs100 (POP100), and
Inputs150 (POP150)), the two best test cases were selected and

4.2.7 Evaluation of the coordination adopted in this system

This step constitutes the final phase of the approach. Now

that the execution results have been obtained in the previous

4.2.6 Execution of this system using pre-generated test case

2248

step, it is possible to evaluate the coordination strategy



implemented in the EATC. The objective is to assess the
effectiveness of the strategy used to resolve conflicts between
aircraft.

This evaluation is based on the number of cycles required to
resolve all detected conflicts, according to a simple and
interpretable scale presented in Table 8.

Table 9 clearly and concisely presents the evaluation results
obtained for each test case, based on the grading scale defined
in Table 8. This allows for a concrete assessment of the
effectiveness of the coordination strategy, particularly in terms
of how quickly the system resolves conflicts between aircraft.

Table 8. Coordination evaluation scale based on the number of cycles

Number of Cycles

Coordination Rating

Meaning

Conflicts are resolved very quickly

! » Excellent coordination with minimal adjustments.
2105 Good coordination Conflicts are resolved efficiently
over several cycles.
6to9 © Acceptable coordination Confl.|cts are more complex and
require more effort to resolve.
10 or more % Coordination failure Not all conflicts could be resolved

despite multiple attempts.

Table 9. Coordination evaluation of the EATC system under test

Fitness

Top 2 Test Cases "o - Planned Resolved ~ Number . ..o tin Meanin
Per Input (%) Conflicts Conflicts  of Cycles g g
V0,90 33.5070 1 1 1 “ Excellent Conflicts are _resolvec_i very quickly with
coordination minimal adjustments
V0,49 33.5305 1 1 1 " "
V10,27 53.7376 4 4 1 " "
V10,25 59.1954 7 7 1 " "
V40,11 76.9086 38 38 2 Good coordination Conflicts are resolved efficiently over
several cycles.
V40,1 775251 44 44 2 " p
V45,6 79.2381 51 51 2 " "
V45,23 80.2932 57 57 7 - Acc_eptgble Conflicts are more complex and require
coordination more effort to resolve.
% L . .
V70,13 90.9035 184 176 10 or Coo_rdlnatlon Not all conflicts _could be resolved despite
more failure multiple attempts.
V70,18 91.0780 166 164 10 or " )
more
V100,15 95.0592 286 279 10 or " ,
more
V100,17 95.3865 203 284 10 or " ,
more
V150,31 97.9693 410 399 L0or ’ ]
more
V150,24 98.1281 428 417 10 or " ,
more
5. DISCUSSION Future improvements can further enhance this framework.

The application of our approach to the case study
demonstrated its effectiveness and yielded promising results.
It enabled a thorough evaluation of the coordination
mechanism under test, validating its ability to detect
coordination flaws and assess the system’s resilience. A major
strength of the method lies in its generality: it can be applied
regardless of the coordination mechanism used - whether
planning, negotiation, or rule-based - and across both
centralized and distributed MAS architectures. The strategic
combination of mutation analysis and genetic algorithms is
another key advantage. Mutation analysis deliberately injects
faults to evaluate robustness under degraded conditions, while
the genetic algorithm generates and evolves test cases,
automatically prioritizing those most likely to expose
conflicts. This evolutionary process helps uncover subtle
vulnerabilities that may escape manual testing.

2249

One promising direction involves the integration of machine
learning [48, 49] and deep learning techniques [50, 51] to
enrich the test case generation process. For instance,
supervised learning could exploit historical conflict data to
predict high-risk situations and guide the mutation process
toward more critical test cases. Deep learning, particularly
sequence-based models such as recurrent or transformer
architectures, could capture temporal interaction patterns
among agents, allowing the generation of conflict scenarios
that more closely resemble real-world dynamics.
Reinforcement learning could also be applied to iteratively
refine test strategies, rewarding test inputs that reveal
previously undetected vulnerabilities. These integrations
would transform the framework into a self-adaptive testing
system, capable of continuously improving as more data
becomes available.

Another important avenue is the adaptation of the approach



for open MAS environments, where the number of agents and
resources may change dynamically. Unlike static systems,
open environments introduce uncertainty that challenges
traditional conflict modelling. To address this, the approach
could be extended with dynamic resource tracking and
adaptive conflict detection algorithms, capable of recalibrating
the system model in real time as new agents or resources
appear. Probabilistic models could further be incorporated to
anticipate coordination risks under uncertainty, ensuring that
the testing process remains effective despite the fluid nature of
open MAS. While these future directions promise to extend
the applicability of the method, it is important to acknowledge
its limitations. The primary challenge remains the preparatory
modelling effort: the accuracy of conflict detection depends
heavily on correctly identifying and modelling all
coordination-sensitive resources. Any omissions can lead to
undetected conflicts. In highly dynamic open MAS, this
limitation becomes even more pronounced, as the evolving
system state complicates accurate resource representation.

In summary, our approach provides a flexible and effective
framework for testing coordination in MAS, with
demonstrated scalability and robustness in safety-critical
applications such as air traffic control. Its integration with
advanced learning techniques and its extension to open
environments represent concrete and impactful avenues for
future research, bringing us closer to comprehensive and
adaptive testing strategies for real-world MAS.

6. CONCLUSION

Testing coordination in multi-agent systems (MAS) is a
challenging and often overlooked task, despite its critical role
in ensuring coherent system behavior. This work introduced
an innovative methodology that combines mutation analysis
with parallel genetic algorithms, enabling the systematic
generation of conflict-intensifying scenarios. The approach
functions as a targeted stress test for coordination mechanisms,
capable of uncovering weaknesses that traditional testing
techniques frequently miss. The experimental validation on
the En-route air traffic control (EATC) system provided
concrete evidence of the method’s effectiveness. Indeed, the
obtained results clearly demonstrate both the scalability of the
method and its practical relevance for safety-critical domains
where reliability is paramount. Beyond this case study, the
methodology offers a generic testing strategy applicable to
centralized, distributed, or hybrid MAS architectures. Its
ability to create realistic and conflict-intensive scenarios opens
the door to a more rigorous assessment of coordination
robustness. Looking ahead, several concrete directions for
extension emerge:

* Adaptation to open MAS environments, where the number
of agents and resources changes dynamically, reflecting real-
world operational challenges that are inherently unstable and
harder to model,

* Integration of machine learning and deep learning

techniques, which could leverage past data to generate more
diverse, realistic, and critical scenarios, thereby uncovering
subtle coordination vulnerabilities;
Application to distributed architectures, where
decentralized coordination introduces specific challenges
related to communication, synchronization, and fault
tolerance;

* Scaling to larger agent populations, to simulate dense and
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complex environments such as high-traffic airspaces or large-
scale industrial systems.

In summary, this study lays the foundations of a robust and
extensible framework for testing MAS coordination under
realistic and adverse conditions. By combining mutation
analysis and genetic algorithms, the proposed approach not
only identifies coordination vulnerabilities but also contributes
to the design of more resilient, adaptive, and trustworthy
multi-agent systems capable of thriving in complex, real-
world environments.
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