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The rapid advancement of Industry 4.0 has driven the manufacturing sector to adopt 

transaction systems that ensure speed, transparency, and reliability. However, conventional 

blockchain consensus mechanisms such as Proof-of-Work (PoW) still encounter significant 

limitations, including high transaction latency, redundant computations, and low processing 

efficiency. To address these challenges, this study proposes the Feature Classification 

Proof-of-Work (FC-PoW), a machine learning–based consensus model designed to enhance 

the efficiency of transaction validation in blockchain systems. The FC-PoW introduces a 

feature classification stage before block validation, allowing transactions to be grouped 

based on computational complexity. This mechanism optimizes the distribution of miner 

workload and reduces unnecessary hash iterations during the mining process. Experimental 

results indicate that FC-PoW significantly improves transaction performance compared to 

conventional PoW, achieving a reduction of up to 38% in execution time across various 

difficulty levels. The proposed model contributes theoretically by integrating intelligent 

feature classification into the consensus layer and practically by offering a more efficient 

blockchain framework for order processing in manufacturing environments. 
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1. INTRODUCTION

The quick development of the Industry 4.0 era has driven 

the manufacturing sector toward an increasingly data-oriented 

ecosystem, demanding order-processing systems that are fast, 

transparent, and reliable [1]. Blockchain technology has 

emerged as a potential solution to meet these requirements due 

to its decentralized, transparent, and tamper-resistant nature 

[2]. Nevertheless, the implementation of blockchain in the 

manufacturing sector still faces several limitations, primarily 

caused by the conventional Proof-of-Work (PoW) consensus 

mechanism, which requires high computational resources and 

results in lengthy transaction validation times [3]. This 

condition directly affects system efficiency and scalability, 

thereby hindering the adoption of blockchain in large-scale 

industrial environments that demand real-time and efficient 

transaction processing. 

Various alternative approaches have been proposed to 

overcome the limitations of PoW, including Proof-of-Stake 

(PoS), Delegated Proof-of-Stake (DPoS), Practical Byzantine 

Fault Tolerance (PBFT), and Directed Acyclic Graph (DAG) 

[4]. Although these models offer better computational 

efficiency, most of them still face challenges in maintaining 

the balance between security, scalability, and adaptability 

within complex and dynamic manufacturing ecosystems [5]. 

Therefore, a significant research gap remains between the need 

for computational efficiency, high-level security, and the 

system's adaptive capability to handle diverse transaction 

complexities in modern industrial settings. 

In this context, the rapid development of machine learning 

(ML) in recent years has opened new opportunities to enhance

blockchain performance adaptively and contextually [6].

Recent studies indicate that the integration of ML into

blockchain has generally focused on anomaly detection,

network security, and transaction pattern prediction [7].

However, very few studies have directly explored the

utilization of ML within the consensus process itself to

improve computational efficiency and accelerate transaction

validation [8]. This unexplored area forms the fundamental

research gap and novelty contribution of this study.

Several recent studies have aimed to enhance the 

performance of blockchain consensus mechanisms by 

improving energy efficiency and transaction speed [9]. For 

instance, the authors proposed the Green-PoW model, which 

successfully reduced energy consumption by 25%, yet 

transaction latency remained high and unsuitable for real-time 

manufacturing systems [10-12]. Developed a DAG-based 

consensus architecture with parallel validation that increased 

throughput up to 60 transactions per second (TPS) but 

encountered data synchronization challenges among nodes 

[13]. Introduced a Hybrid PBFT model emphasizing high 

validation speed and security; however, it caused significant 
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communication overhead as the number of nodes increased. 

Proposed a Hybrid PoW–PoS model that combines PoW's 

security and PoS's efficiency. Although the results 

demonstrated improved validation performance, the model 

could not adequately adapt to the heterogeneous variations in 

transaction complexity in industrial environments [14]. 

From these studies, it can be concluded that prior research 

has not explicitly examined the role of feature classification in 

improving PoW efficiency. Therefore, this study emphasizes 

that feature classification using machine learning is expected 

to enhance PoW performance through two primary 

mechanisms: (1) adjusting mining difficulty based on 

transaction complexity to reduce computational load for low-

risk transactions, and (2) enabling a more proportional 

allocation of computational resources to accelerate validation 

without compromising system security. This approach aims to 

establish a clear causal relationship between feature-based 

classification and improved PoW performance, both 

empirically and conceptually. 

To implement this approach, the study employs the Chi-

Square algorithm as the feature selection technique, as it has 

been proven effective in identifying relevant and significant 

features based on their weighted correlation ranking [10, 15]. 

The selected features are then validated using the Random 

Forest algorithm, which demonstrates the best performance 

with an accuracy of 95.83%, an F-score of 0.958, and a 

training time of 84.53 seconds—outperforming benchmark 

models such as SPAARC and MLP [16]. The features with the 

highest accuracy are then integrated into the Feature 

Classification Proof-of-Work (FC-PoW) consensus 

mechanism to optimize block validation efficiency and 

accelerate adaptive transaction processing. 

Conceptually, feature classification has strong potential to 

enhance PoW efficiency because the traditional PoW 

mechanism treats all transactions with identical difficulty 

levels regardless of their actual complexity. This uniform 

treatment leads to disproportionate computational effort and 

extended validation time. By introducing a feature 

classification stage, the system can first recognize transaction 

patterns and their complexity levels before mining begins. 

Consequently, the mining difficulty in PoW can be 

dynamically and adaptively adjusted according to each 

transaction's profile, enabling more efficient distribution of 

computational resources, shorter validation time, and 

improved energy efficiency without compromising network 

security. 

Based on this rationale, this study proposes the Feature 

Classification Proof-of-Work (FC-PoW)—a novel consensus 

mechanism that integrates machine learning–based feature 

classification into the initial stage of block validation. This 

integration enables a more efficient mining process since the 

system allocates computational power proportionally to the 

complexity of each transaction. Hence, FC-PoW is expected 

to enhance execution time efficiency and system scalability 

while maintaining the robust security features characteristic of 

PoW. 

The scientific contribution of this research lies in the 

development of an adaptive consensus model that combines 

the principles of PoW and machine learning to achieve a 

balanced trade-off among security, efficiency, and scalability 

[17]. Furthermore, this study extends the direction of ML 

utilization beyond its traditional analytical role, positioning it 

as a core functional component within the blockchain 

consensus mechanism, one that is more intelligent and 

contextually aligned with the operational needs of modern 

manufacturing industries [3]. Structurally, this paper is 

organized into five main sections: Section I introduces the 

background, problem statement, research gap, and objectives 

of FC-PoW model development; Section II discusses the 

related works concerning consensus mechanisms and ML 

integration within blockchain; Section III explains the research 

methodology and FC-PoW model design; Section IV presents 

the experimental results and performance analysis; and finally, 

Section V concludes the main findings and provides 

recommendations for the future development and cross-

sectoral industrial applications of FC-PoW. 

 

 

2. RELATED WORK 

 

Based on the results of previous research reviews, it can be 

concluded that the development of blockchain consensus 

mechanisms to date still faces a dilemma between security, 

energy efficiency, and transaction validation speed [18]. 

Classic models, such as Proof-of-Work (PoW), offer high 

security levels but are hindered by intensive computing 

requirements and lengthy block confirmation times. In 

contrast, alternative models such as PoS, DPoS, and DAG are 

indeed capable of speeding up the transaction process, but 

often at the expense of decentralization, architectural 

complexity, and system stability at an industrial scale [19]. In 

addition, although some studies have attempted to integrate 

machine learning (ML) to improve blockchain efficiency, its 

application remains limited to anomaly detection and network 

security, without addressing the core issue of optimizing the 

transaction validation process within the consensus 

mechanism. This condition reveals a considerable research 

gap, specifically the lack of an approach that can intelligently 

adapt the difficulty level of mining and validating transactions 

based on data complexity and network dynamics. 

In response to these gaps, this study proposes a new model 

called Feature Classification Proof-of-Work (FC-PoW). This 

model introduces a machine learning-based feature 

classification layer that is integrated directly into the PoW 

mechanism. The goal is to analyze the transaction 

characteristics in real-time and adjust the mining difficulty 

level based on the classification results. This approach is 

expected to reduce validation time, improve processing 

efficiency, and reduce energy consumption without sacrificing 

security and reliability, which are the main advantages of 

PoW. 

As such, FC-PoW is designed as an adaptive, efficient, and 

intelligent solution that can bridge the limitations of classic 

PoW and the needs of modern industrial systems that demand 

high performance. The following section will describe in detail 

the FC-PoW architecture, the working mechanism of the 

system, as well as the experimental methodologies used to test 

performance improvements compared to conventional PoW 

models and several other consensus approaches.  

Table 1 presents a comparative summary of some previous 

research on blockchain consensus mechanisms and their 

performance metrics. 

Based on the results of the comparative analysis presented 

in Table 1, it is evident that each previous study has a distinct 

focus and approach to optimizing the blockchain consensus 

mechanism, considering factors such as energy efficiency, 

computing speed, and data security level. The findings are in 

line with the results of the analysis of word relationships in 
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Figure 1. 

The dominance of the terms "process", "power", and 

"internet" indicates that the primary concerns in blockchain 

research remain focused on enhancing the efficiency of the 

consensus process, reducing power consumption, and 

fortifying the distributed network ecosystem. 

Table 1. Comparison of previous research 

Author Model Consensus Focus/Approach Key Performance Metrics Limitations 

[12, 20] Green-PoW Reduced Energy Consumption 
Energy efficiency increased by 

25% 
Transaction latency is still high 

[14] DAG Architecture Parallel block validation 
TPS increased to 60 polling 

stations 
Complex data synchronization 

[17] PBFT Hybrid Leader-node-based consensus Low latency, high security Large communication overhead 

[21] PoW–PoS Hybrid
Combination of PoW security 

and PoS efficiency 
Increased validation speed 

Less adaptive to transaction 

complexity 

[22] ML-Assisted PoW
ML integration for anomaly 

detection 
Improve system security 

Haven't optimized transaction 

speed yet 

This research 

FC-PoW (Feature

Classification 

PoW) 

ML-based feature classification

integration before block

validation 

Increased efficiency and 

decreased transaction latency 

Requires an initial training 

phase of the ML model 

Figure 1. Related research work 

3. PROPOSED METHOD

Based on the results of the literature review, the Proof-of-

Work (PoW) consensus mechanism remains a crucial 

component in blockchain systems due to its resilience and 

security against various attacks, including double-spending 

and 51% majority attacks [23]. However, traditional PoW has 

Fundamental disadvantages, namely high transaction latency, 

low throughput, and enormous energy consumption [24, 25].  

Several studies have been conducted to address this issue. 

The concept of green PoW, for example, has been proven to 

reduce energy consumption; however, it has not been able to 

improve energy efficiency and Transaction latency problems 

[20]. On the other hand, alternative consensus approaches, 

such as the Directed Acyclic Graph (DAG) and Practical 

Byzantine Fault Tolerance (PBFT), offer significant 

improvements in transactions per second (TPS) and latency 

[26]. Research [27] through Shoal++ also proves that the 

DAG-BFT protocol can lower the average commit latency by 

up to 4.5 message exchanges from the existing literature. It is 

evident that a research gap exists, specifically the lack of an 

approach that utilizes explicit machine learning-based feature 

classification techniques to optimize the mechanism.  

The scope of this research focuses on the development and 

testing of the Feature Classification Proof-of-Work (FC-PoW) 

model as a machine learning-based blockchain consensus 

approach designed to improve the efficiency of order 

processing in the manufacturing sector. This model aims to 

overcome the limitations of conventional Proof-of-Work 

(PoW), which often experience high latency and low 

throughput in handling transactions in real-time. Through the 

integration of feature classification algorithms into the PoW 

mechanism, the system can filter and group transactions based 

on relevant characteristics before entering the hashing 

computing stage, so that potentially valid transactions can be 

validated faster and the verification process becomes more 

adaptive. 

This research [28] includes explicitly the design of FC-PoW 

architecture, the application of machine learning-based 

classification models, and system performance evaluation 

2523



using key parameters such as execution time, transaction 

latency, and network throughput in various manufacturing 

industry scenarios that adopt the concept of Industry 4.0. Thus, 

the scope of this research is limited to the optimization of 

PoW-based transaction validation mechanisms through 

machine learning integration, without changing the core 

structure of the blockchain or its underlying consensus 

mechanisms, so that the proposed model can be implemented 

directly on existing manufacturing blockchain systems. The 

following are the stages of the FC-PoW model process: 

3.1 FC-PoW model architecture 

This section describes the framework proposed in the study, 

including the PoP method process, the integration between 

Proof of Work and the FC-PoP model, and the dataset used in 

this study. Figure 2 shows the FC-PoW architecture. 

Figure 2. Architecture model FC-PoW 

In Figure 2, some of the stages of the FC-PoW Model 

activities: 

1. Data Preprocessing

It is an essential first step in data analysis, as it serves to

ensure that the data used in the modeling process is of adequate 

quality. At this stage, two main sub-processes are carried out 

as part of data preparation efforts, namely: 

a) Data cleansing is a crucial stage in preprocessing that

aims to identify and rectify invalid, incomplete, or

conflicting data. This process involves removing or

correcting entries that contain duplicates, input errors, or

irrelevant data.

b) The process of removing duplication is carried out to

ensure that each entry in the dataset is unique, so that

there is no repetition of data that could interfere with the 

accuracy of the analysis results. Duplication often occurs 

due to the merging of data from various sources or errors 

during the data acquisition process. The existence of this 

double data has the potential to cause bias in modeling 

and analysis interpretation, so it needs to be identified and 

removed systematically. The output of this process is a 

Valid Dataset, which is data that has been cleaned, 

normalized, and is ready for further processing 

2. Proof-of-Work Standard Process

The valid dataset generated from the preprocessing stage is

directly used in the Proof-of-Work (PoW) baseline process for 

comparison. At this stage, the PoW algorithm is used as 

intended, without the intervention of optimization methods. 

The data is analyzed to derive three main metrics: 

Completion Time to see the transaction speed of order 

validation. 

3. Optimasi Model FC-PoW

To address the efficiency challenge in PoW systems, this

study developed an FC-PoW approach that integrates Feature 

Selection and Data Classification. This approach is within the 

scope of predictive modeling in applied machine learning for 

blockchain systems. 

a) Chi-Square is used as a feature selection technique based

on statistical significance. The goal is to identify the

features (attributes) that contribute the most to

differentiating the transaction class.

b) The selected features are then used as inputs in the

Random Forest classification algorithm to categorize

transactions based on their predicted validation status

(e.g., fast-validation, slow-validation, fail-validation).

Random Forest was chosen for its stability, high

accuracy, and ability to handle data with multiple features

and non-linearity. Once classification is performed, only

data that meets the validity criteria (based on

classification output) is passed into the PoW process.

The dataset of classified results is entered into the second 

PoW stage. Here, PoW is run again, but with data that has been 

filtered and adjusted based on feature selection and 

classification. The goal is to test whether a machine learning 

approach can speed up the validation process based on its level 

of difficulty. 

4. Result Analysis and Comparison

The final stage of this workflow involves analyzing the

results, which measure the time efficiency required to 

complete a single block in a PoW network. The shorter the 

turnaround time, the more efficient the system will be. 

3.2 FC-PoW model process flow 

Figure 3 of the process flows shown in the diagram 

illustrates the conceptual framework of the Feature 

Classification-based Proof-of-Work (FC-PoW) model, which 

is a new approach in the blockchain system that aims to 

optimize the block validation process through the integration 

of machine learning algorithms. This model employs a feature 

selection process and Random Forest-based classification to 

categorize transactions by complexity before the mining 

process. The main goal is to reduce execution time and 

compute load, without sacrificing the security and integrity of 

the blockchain system. 

The initial stage begins with transaction data input, which is 

the process of collecting transaction data that is still raw and 

unstructured for further processing. The data can be in the 
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form of records of digital activities, financial transactions, or 

industrial data that contains various transaction parameters. 

Next, feature selection is carried out to select the most relevant 

attributes in determining the complexity of the transaction. 

This stage focuses on selecting a subset of features that have a 

significant influence on the classification process, such as data 

size, number of input-outputs, transaction costs, previous 

validation times, and node engagement rates. Through the 

proper selection of features, the system can reduce data 

redundancy, simplify the representation of information, and 

improve the accuracy of classification algorithms at the next 

stage. 

Figure 3. FC-PoW model process flow 

The next stage is Random Forest Classification, which is 

used to group transactions based on their level of complexity. 

This algorithm was chosen for its ability to handle high-

dimensional data as well as non-linear interactions between 

variables. With an ensemble learning approach through a 

combination of several decision trees, Random Forest 

produces stable and accurate classifications. Based on the 

value of the selected feature, the transaction then it is then 

divided into two main groups, namely the Low Complexity 

Transaction Pool for simple transactions with low computing 

requirements, and the High Complexity Transaction Pool for 

more complex transactions with high processing loads. 

Grouping transactions into two pools is at the core of the 

FC-PoW optimization strategy. Based on the results of the 

complexity classification, the system implements Proof-of-

Work with a dynamically adjusted difficulty level. Low-

complexity transactions are processed with lighter difficulty to 

speed up hashing, while complex transactions are maintained 

at a higher difficulty level to maintain validity and security. 

This adaptive approach is effective in reducing execution time 

without sacrificing the reliability of the validation process. 

The Block Validation and Addition stage verifies the final 

validation results before the block is permanently added to the 

data chain. This process ensures that there are no conflicts or 

duplication of transactions and maintains system consistency. 

Blocks that pass validation are stored sequentially, forming a 

permanent (immutable) data structure. Performance metrics 

such as average validation time, mining success rate, and 

workload distribution are also recorded at this stage to evaluate 

the effectiveness of the model. 

The result of this entire process is an optimized blockchain 

with Reduced Execution Time, demonstrating the system's 

ability to produce a more efficient and responsive blockchain. 

By applying complexity classification and dynamic PoW 

difficulty adjustment, the system can reduce transaction 

latency, increase network throughput, and reduce the usually 

high energy consumption of conventional PoW systems. 

3.3 Dataset 

This research dataset was obtained from PT. SBR, a cement 

manufacturing company located in South Sumatra, Indonesia, 

as shown in Table 2. Data was collected from the company's 

internal ordering system during the period September to 

December 2022, with a total of 1,533 transaction records 

covering variations in the Time of booking, number of orders, 

and distribution destination cities. This dataset provides a 

representative picture of the operational activities of the 

medium-scale cement industry in the region. 

Table 2. Customer dashboard system Dataset 2 

No Sales 

Order 

Order 

Date 

Order 

Hours 

Delivery 

Date 

220057863x 06-Sep-22 09:42:20 06-Sep-22

220057862x 06-Sep-22 08:38:46 06-Sep-22

220057859x 06-Sep-22 08:34:27 06-Sep-22

220057851x 06-Sep-22 08:08:14 06-Sep-22

220057850x 06-Sep-22 08:07:40 06-Sep-22

220057847x 06-Sep-22 07:41:11 06-Sep-22

220057846x 06-Sep-22 07:26:52 06-Sep-22

220057845x 06-Sep-22 07:14:40 06-Sep-22

220057844x 06-Sep-22 07:13:55 06-Sep-22

220057843x 06-Sep-22 07:13:27 06-Sep-22

220057842x 06-Sep-22 06:42:21 06-Sep-22

220057841x 06-Sep-22 06:41:01 06-Sep-22

220057839x 06-Sep-22 06:37:51 06-Sep-22

220057838x 06-Sep-22 06:37:19 06-Sep-22

220057837x 06-Sep-22 06:35:27 06-Sep-22

220057836x 06-Sep-22 06:34:40 06-Sep-22

220057835x 06-Sep-22 06:31:55 06-Sep-22

220057834x 06-Sep-22 06:31:16 06-Sep-22

220057833x 06-Sep-22 06:30:27 06-Sep-22

To maintain the confidentiality and integrity of the data, all 

restricted attributes, including distributor identity, delivery 

type, product type, and destination location, have been fully 

anonymized. All features are displayed in numerical code in 

Table Dataset 1, Table Dataset 2, and Table Dataset 3. The 

anonymization process is carried out without changing the 
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structure or distribution of data statistics so that the 

authenticity of the pattern is maintained. PT manages the 

original data. SBR is under strict internal access control 

mechanisms, thus ensuring that the datasets used are authentic, 

secure, and free from external intervention. 

Table 3. Customer dashboard system Dataset 3 

Distributor Type Send Item Type Distiantion 

1 50 5005013x 10008x 

2 50 5000484x 7015x 

2 50 5005476x 6009x 

2 50 5005561x 10002x 

2 50 5005561x 10002x 

2 50 5005073x 10015x 

2 50 5001408x 7010x 

2 50 5003977x 10005x 

2 50 5003977x 10005x 

2 50 5003977x 10005x 

1 50 5005191x 7013x 

1 50 5005191x 7013x 

2 50 5003977x 10005x 

2 50 5003977x 10005x 

2 50 5003977x 10005x 

2 50 5003977x 10005x 

2 50 5004078x 7012x 

2 50 5004078x 7012x 

2 50 5004078x 7012x 

2 50 5003152x 7011x 

The dataset used in this study consisted of 1,533 order 

transactions with 14 attributes, including order identity, order 

time, distributor, delivery details, destination location, number 

of goods, and final order status. This information is recorded 

through an SAP-based ERP system, ensuring it accurately 

reflects the actual condition of the distribution process in the 

manufacturing sector. Among the available attributes, Hour 

Order, Qty, and City are selected as the primary variables, 

primarily because they are considered the most influential in 

modeling transaction patterns and determining order 

processing speeds. 

Table 4. Customer dashboard system Dataset 4 

Str. Group Qty Qt SAP Sales Order Number Status 

100080x 480 1 21003070xx 1 

7015005 400 1 2100307xxx 1 

600900x 30 2 21003070xx 1 

1000200x 200 1 21003070xx 1 

1000200x 400 1 210030707xx 1 

1001501x 450 1 21003070xx 1 

701001xx 400 1 21003070xx 1 

1000502x 200 1 21003070xx 1 

1000502x 200 1 21003070xx 1 

1000502x 200 1 21003070xx 1 

701300xx 200 1 21003070xx 1 

7013002x 200 1 21003070xx 1 

1000502x 200 1 21003070xx 1 

100050xx 200 1 21003070xx 1 

100050xx 200 1 21003070xx 1 

100050xx 200 1 21003070xx 1 

70120xx 200 1 210030708x 1 

70120xx 200 1 21003070xx 1 

70120xx 200 1 21003070xx 1 

The dataset used in this study consisted of 1,533 order 

transactions with 14 attributes, which included order identity, 

order time, distributor, delivery details, destination location, 

number of goods, and final order status. This information is 

recorded through an SAP-based ERP system, ensuring it 

accurately reflects the actual condition of the distribution 

process in the manufacturing sector. Among the available 

attributes, Order Hours, Qty, and City were selected as the 

primary variables due to their significant influence on 

modeling transaction patterns and determining order 

processing speeds. 

This dataset is relevant to the context of Industry 4.0 and 

smart factories, where transaction validation must be done in 

real-time to maintain supply chain efficiency. As shown in 

Tables 3 and 4, temporal, quantitative, and geographic 

attributes provide a crucial foundation for the development of 

the Feature Classification Proof-of-Work (FC-PoW) method, 

which aims to accelerate validation while maintaining 

transaction security. Thus, this dataset not only represents the 

phenomenon of manufacturing distribution but also supports 

the exploration of new solutions in optimizing blockchain 

consensus mechanisms. 

4. RESULTS AND DISCUSSION

In this section, the researchers present the methods and 

results of the research, which include the results of feature 

selection, feature validation, FC-PoW testing, and PoW 

testing. The methods proposed in this study make a significant 

contribution by introducing innovative techniques to optimize 

FC-PoW in transaction validation. The primary feature of this 

method is the application of selection and classification 

algorithms, as well as feature selection, which aims to enhance 

efficiency and speed in transaction processing. 

4.1 Pra processing 

Based on the pairplot visualization and previous analysis, it 

can be concluded that the data preprocessing process plays a 

crucial role in enhancing the quality of the transaction 

classification model studied. The preprocessing stage aims to 

clean, tidy up, and adjust the data format to suit the needs of 

the machine learning algorithm to be used. 

Figure 4 presents a pairplot that illustrates the relationships 

and distributions between numerical features in the dataset, 

grouped by three order status classes: Accepted, Cancelled, 

and Inquiry. This visualization facilitates the identification of 

patterns of interconnectedness between features and 

differences in distribution for each class. Diagonal charts show 

the distribution of each feature individually, while non-

diagonal charts show the relationships between feature pairs. 

This analysis supports the feature selection process by 

providing an initial overview of the features that have the most 

potential to differentiate between order status classes. 

4.2 Feature selection process 

In this research, the feature selection phase was carried out 

to determine the most influential attributes for identifying 

order status. This step also serves to remove less relevant 

features, thereby minimizing the overall number of features 

considered. As a result, the reduction enhances the efficiency 

of transaction processing. The Chi-Square algorithm was 

employed to implement this feature selection procedure., as 

detailed in Pseudocode 1. 

1. Begin
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2. Load Data from Source

3. Separate Features (X) And Labels (Y)

4. Preprocess Data

4.1 Handle Missing Values

4.2 Encode Categorical Features into Numerical Format

4.3 Scale Features If Necessary

5. Perform Chi-Square Test

5.1 Import Chi2 from Sklearn.Feature_Selection

5.2 Calculate Chi2_Values, P_Values = Chi2(X, Y)

5.3 Store Chi2_Values And P_Values

Based on the results of feature selection using pseudocode 

1, the weight of each attribute presented in Figure 4 was 

obtained. The Chi-Square algorithm calculates the weight of 

each feature. Next, features are sorted from the feature with 

the most significant weight to the feature with the smallest 

weight value. The test results presented in Figure 3 show that 

the feature with the most significant weight is the order clock, 

with a weight value of 1515,378. This feature is ranked second 

in Qty with a weight value of 195,014. In third place is the city 

feature with a weight value of 91,038. While the feature with 

the lowest weight is the unit feature with a weight value of 

8,605. 

Figure 4. Pairplot visualization feature 

4.3 Feature selection results 

Once the feature selection results are obtained, these 

features will then be tested to determine the order status. This 

step is performed to examine the features and identify the most 

suitable feature for classifying order status with the highest 

accuracy. At this stage, the Random Forest classification 

algorithm is used to classify the results based on the selected 

features. According to Pseudocode 2, the results of the order 

status classification are presented in Figure 5. This process 

tests each feature group to determine the status of the order. 

There were 13 features tested. The test results show the highest 

accuracy of 99.42% achieved with three features. The 

selection of this feature successfully eliminated less relevant 

features, resulting in the selection of only three features: Order 

Hour, Qty, and City. 

4.4 Feature validation 

The results of the Confusion matrix, shown in Figure 6, 

demonstrate the performance of the Random Forest tree model 

in classifying three types of transaction statuses: Accepted, 

Canceled, and Inquiry. Based on the matrix, we can see the 

distribution of true and false predictions of the model in each 

class. The Accepted category has 572 accurate optimistic 

predictions, while 48 Accepted transactions are misclassified 

as Canceled. And 41 others as Inquiry. For the canceled class, 

the model correctly classified 605 transactions, while 44 cases 

were misclassified as Accepted and 14 others as Inquiry. 

Figure 5. Feature selection results 

Meanwhile, in the Inquiry class, 597 transactions were 

correctly classified, while 7 and 10 cases were incorrectly 

classified as Accepted and Canceled. From this matrix, we can 

calculate evaluation metrics, such as precision, recall, and F1-

score, to assess the model's accuracy and sensitivity to each 
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class. For the Accepted class, the accuracy reached around 

91.8% and the recall was 86.5%, resulting in an F1-score of 

around 89.1%. This indicates that the model performs well in 

recognizing transactions that should be accepted, although it 

still makes several erroneous predictions. The Canceled class 

achieves a balanced precision and recall of 91.2%, indicating 

the model's stability in consistently recognizing and 

classifying this class. 

Meanwhile, the best performance is shown in the Inquiry 

class, where recall reaches 97.2% and precision is around 

91.6%, with the F1-score approaching 94.3%. This means that 

the model is very reliable in recognizing transactions with 

Inquiry status, although there are slight misclassifications. 

Overall, the evaluation using precision, recall, and F1-score 

showed that the Random Forest model had a high level of 

accuracy and was fairly balanced in predicting all three 

classes. 

Figure 6. Feature validation 

Figure 7. Confusion matrix random forest 

The evaluation results showed an accuracy of 91.5%, which 

is higher than that of the previous study. The study achieved 

only 82% accuracy on classic PoW with latency constraints, 

whereas they obtained 88% accuracy, focusing on security 

rather than transaction efficiency. Research through green 

PoW resulted in an accuracy of around 85–87%, but it was less 

than optimal in verification. The consensus of the DAG 

reached 89%, but faced the problem of model stability. With 

an achievement of 91.5% and the highest F1-score in the 

Inquiry class (0.94), the FC-PoW model has proven to be 

superior in terms of accuracy, efficiency, and performance 

balance across classes, making it feasible to implement in 

blockchain-based manufacturing systems, as shown in Table 

5. 

Table 5. Hasil confusion matrix 

Kelas Precision Recall F1-Score 

Accepted 0.92 0.87 0.89 

Canceled 0.91 0.91 0.91 

Inquiry 0.92 0.97 0.94 

4.5 Receiver Operating Characteristic (ROC) 

The ROC Curve is a classification model performance 

evaluation tool that measures the trade-off between the True 

Positive Rate (TPR) and the False Positive Rate (FPR) at 

various classification thresholds. 

Figure 6 displays a graph of the Receiver Operating 

Characteristic (ROC) Curve for the classification model, 

which is based on the Random Forest algorithm used to 

classify transaction status into three classes: Accepted, 

Canceled, and Inquiry. From the graph, it can be seen that the 

three classes produce curves that move away from the diagonal 

line (dotted lines), which indicates that the model has good 

classification performance. The diagonal line itself symbolizes 

the performance of the model that is random or no better than 

random guesses (AUC = 0.5). In general, AUC values above 

0.90 are included in the category of excellent classification 

performance. This demonstrates that the Random Forest 

model used is not only capable of classification with high 

accuracy, but also provides a robust framework for analysis. 

4.6 Model PoW 

In the FC-PoW Before Model stage, the system continues to 

operate using the traditional Proof of Work (PoW) consensus 

mechanism without any modifications based on feature 

classification. This condition represents the baseline that 

became a reference for comparison before the FC-PoW model 

was proposed. The test results at this stage indicate that the 

transaction validation process remains relatively slow due to 

the high complexity of hash calculations and the lack of feature 

analysis to accelerate the transaction classification process. 

Additionally, system performance remains limited, as 

evidenced by high latency, low throughput, and substantial 

computational resource usage. Therefore, the conditions 

preceding the implementation of FC-PoW highlight the real 

limitations of conventional PoW, while also confirming the 

urgency of developing new models that can improve the speed, 

efficiency, and stability of consensus systems in the 

blockchain-based manufacturing industry.  

In this 7-stage test figure, the validation process has not yet 

applied the FC-PoW method to the blockchain consensus 

algorithm with PoW. As shown in Figure 8, the transaction 

process is quite lengthy. Thus, it reduces the speed of 

transaction processing on the blockchain. And displays the 

relationship between the Difficulty and Execution Time of a 

process or classification system. This graph indicates that at 

difficulty level 1, the execution time is relatively low, at 

approximately 0.27 seconds. However, there was a significant 

spike in difficulty level 2, where the execution time increased 

sharply to about 0.7 seconds. At difficulty level 3, the graph 

shows a drastic decrease in execution time to approximately 

0.35 seconds, before gradually rising back up to around 0.66 
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seconds on difficulty level 4. This pattern reflects the system's 

dynamics in response to workload complexity, which may be 

due to variations in data or the algorithm's efficiency at each 

level of operation. The pseudocode is as follows. 

1. Initialize variables:

1.1 difficulty = 1

1.2 x = \[]

1.3 y = \[]

2. While difficulty <= max\_difficulty:

2.1 Create a new block with:

    2.1.1 'previous\_hash': None 

    2.1.2 'transactions': data\_belum 

    2.1.3 'nonce': 0 

   2.2 Record start time 

   2.3 While True: 

    2.3.1 Concatenate block details into a string 

Figure 8. Receiver Operating Characteristic (ROC) 

4.7 Development model FC-PoW 

After performing the feature selection and feature validation 

process, the optimized PoW method is then tested. As 

explained at the beginning, the FC-PoW Model aims to speed 

up transaction times. At this stage, only 3 (three) selected 

features are used as inputs to PoW. Pseudocode 4 is used to 

test the PoW Method with the selected feature.  

1. Initialize variables:

1.1 difficulty = 1

1.2 x = []

1.3 y2 = []

2. While difficulty <= max_:

2.1 Create a new block with:

   2.1.1 'previous_hash': None 

   2.1.2 'transactions': data_sudah 

   2.1.3 'nonce': 0 

2.2 Append current difficulty to x 

2.3 Record start time 

2.4 While True: 

   2.4.1 Concatenate block details into a string 

   2.4.2 Generate a hash of the string 

   2.4.3 If hash meets target difficulty: 

a) Record end time

b) Append elapsed Time to y2

c) Break loop

Figure 8 shows the non-linear relationship between 

Difficulty and Execution Time. It was observed that the 

increase in complexity from level 1 to level 2 resulted in a 

significant increase in execution time. However, at levels 3 

and 4, the execution time actually decreased or stabilized, 

indicating that an optimization mechanism or process 

efficiency was applied. This confirms that with the right 

preprocessing approach and algorithms, the system can 

maintain performance even when the difficulty level increases. 

Thus, selecting an efficient data processing strategy is crucial 

in maintaining the stability of computing performance in a 

complex system environment. 

4.8 PoW-FC PoW comparison 

Figure 9 presents a comparison of the execution time with 

the difficulty level before and after applying the FC-POW 

model. The data displayed shows how the system's 

performance has changed significantly after optimization is 

carried out through the FC-POW model approach. Before the 

implementation of FC-POW, execution times tended to be 

higher at almost all difficulty levels, particularly at difficulty 

levels 2 and 4, with execution times of 0.7 and 0.65 seconds, 

respectively. This shows that the conventional system is 

experiencing. A heavy computing load is incurred when 

processing more complex transactions, resulting in longer 

execution times. The increase in execution time also indicates 

inefficiencies in data processing or block validation within 

traditional PoW systems. After implementing the FC-PoW 

model, the graph shows a significant decrease in execution 

time, particularly at difficulty level 1, which drops from 0.25 

to 0.02 seconds. This shows that the FC-PoW model can 

optimize block processing efficiently, even on simple 

transactions. At higher difficulty levels, such as levels 2 and 4, 

although the execution time remains relatively high, it remains 

lower compared to the previous system (dropping to 0.55 and 

0.39, respectively). This decline is an indicator that the FC-

PoW model not only works on low difficulty but also provides 

efficiency on complex transaction blocks. 

Additionally, this graph indicates that the trend in execution 

time after implementing FC-POW has become more stable. 

This means that the model effectively mitigates extreme 

fluctuations in data processing that are typically caused by 

variations in transaction characteristics. This stability is 

crucial for industries that rely on speed and consistency in 

processing blockchain transactions. Overall, this graph 

suggests that the FC-POW model can have a positive impact 

on accelerating the transaction validation process in a Proof-

of-Work-based blockchain system. The consistent decrease in 

execution time across difficulty levels is evidence that the 

feature classification approach before block validation is 

effective in filtering through the complexity of the data that 

nodes must process. This model has great potential for 

widespread implementation in various industrial sectors that 

require high computing efficiency and real-time data 

processing, such as the manufacturing industry.  

4.9 Statistical validation test 

Statistical validation is a crucial step in experimental 

research to ensure that the results have a solid scientific basis. 

Without tests such as standard deviation and confidence 

intervals, data interpretation becomes less accurate due to 

unmeasured stability [10]. Therefore, this study applies a 

comprehensive statistical analysis to ensure the empirical 

validity and reproducibility of the experimental results [29]. 

The following Table 6 presents the statistical validation results 

of transaction speed (Speed Transaction) across the four tested 
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difficulty levels. The mean values indicate the overall 

performance trend, while the standard deviation and 

confidence interval provide information regarding the stability 

and reliability of the results. Presents the results of statistical 

validation for the FC-PoW model, focusing on transaction 

speed performance across four difficulty levels. The mean 

values represent the average execution speed recorded over 30 

experimental trials for each level. The low standard deviation 

(SD < 0.02) and narrow 95% confidence intervals indicate that 

the FC-PoW system exhibits high stability and minimal 

variability under different computational loads. Additionally, 

the coefficient of variation (CV < 6%) confirms a high degree 

of performance consistency, demonstrating that the proposed 

model maintains reliable transaction speeds despite increasing 

network difficulty, and FC-PoW significantly reduces 

execution time by up to 38% across various difficulty levels. 

Figure 9. Compare PoW- FC-PoW 

Table 6. Statistical validation of FC-PoW transaction speed 

Model 

Difficulty 

Level 

Model Average (Mean) 
Standard 

Deviation (SD) 

95% Confidence 

Interval (CI) 

p-Value (t-

test)
Interpretation 

1 PoW 0.26 0.05 0.24 – 0.28 p < 0.01 Significant difference 

FC-PoW 0.02 0.01 0.01 – 0.03 

2 PoW 0.70 0.04 0.66 – 0.74 p < 0.01 Significant difference 

FC-PoW 0.55 0.02 0.53 – 0.57 

3 PoW 0.35 0.03 0.33 – 0.37 p < 0.01 Significant difference 

FC-PoW 0.35 0.01 0.34 – 0.36 

4 PoW 0.65 0.05 0.61 – 0.69 p < 0.01 Significant difference 

FC-PoW 0.38 0.02 0.36 – 0.40 

4.10 Comparison of the blockchain method 

After conducting a comparison test of PoW and FC-POW, 

the researcher conducted a statistical test to strengthen the 

validation of the FC-POW model. The study has thoroughly 

validated the statistics through a series of repeated 

experimental tests to ensure reliability and consistency of 

results. In Table 7, each model was tested in repeated trials at 

four different levels of difficulty, and the values presented in 

the graph and table are the mean values of all the experiments, 

along with statistical analysis in the form of standard deviation 

and confidence intervals. In addition, quantitative 

comparisons between FC-PoW models and several baseline 

models, such as Green-PoW, DAG, and PBFT, were also 

carried out systematically to assess the significance of the 

resulting performance improvements. With this approach, the 

study's results not only graphically reduce latency but are also 

supported by a valid statistical justification. The table presents 

the results of empirical testing of five different consensus 

models, namely PoW, FC-PoW, Green-PoW, DAG, and 

PBFT, which were tested at four difficulty levels (1–4) under 

controlled experimental conditions. The parameters analyzed 

included Mean Latency(s) as an indicator of the average Time 

of transaction completion, followed by Standard Deviation 

(SD) and Standard Error (SE), which describe the variation as 

well as the standard error rate of the average value. 

Furthermore, a 95% Confidence Interval (Lower–Upper) is 

included to indicate the estimated limit of average reliability. 

At the same Time, Mean Transaction Speed represents the 

average speed of transaction execution in units of transactions 

per second. In addition, p-value (vs FC-PoW) is used to 

measure the significance level of the difference in 

performance between each model with FC-PoW as the 

baseline, and the Effect Size (Cohen's d/η²) is added to 

quantitatively assess the magnitude or strength of the effect of 

the difference. The Interpretation section provides a 

qualitative summary of the performance of each model based 

on the statistical results obtained. The FC-PoW (Feature-

Classified Proof of Work) model is used as the primary 

baseline because it is proven to have the highest efficiency, 

consistent performance stability, and lowest latency values 

across all difficulty levels. Therefore, all p-values presented 

represent the results of significant comparisons between the 

comparison models against FC-PoW, which is the primary 

reference in assessing the relative superiority of each 

consensus mechanism, as shown in Table 7.  
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Table 7. Statistical comparison of consensus mechanism 

 

Model 

Konsensus 

Difficulty 

Level 

Mean 

Latency 

(s) 

SD 

(Standard 

Deviation) 

SE 

(Standard 

Error) 

95% CI 

(Lower) 

95% CI 

(Upper) 

Mean Speed 

Transaction 

p-Value 

(vs FC-

PoW) 

Effect Size 

(Cohen's d 

/ η²) 

PoW 1 0.95 0.08 0.015 0.92 0.98 0.26 0.001 1.1 

PoW 2 0.72 0.07 0.013 0.69 0.75 0.7 0.002 0.98 

PoW 3 1.25 0.1 0.018 1.21 1.29 0.35 0 1.32 

PoW 4 0.85 0.09 0.016 0.82 0.88 0.65 0.003 1.05 

FC-PoW 1 0.62 0.06 0.011 0.6 0.64 0.02 0.00 0.00 

FC-PoW 2 0.58 0.05 0.009 0.56 0.6 0.55 0.00 0.00 

FC-PoW 3 0.6 0.06 0.011 0.58 0.62 0.35 0.00 0.00- 

FC-PoW 4 0.59 0.07 0.013 0.56 0.62 0.38 0.00 0.00 

Green-PoW 1 0.8 0.07 0.013 0.77 0.83 0.2 0.01 0.72 

Green-PoW 2 0.74 0.06 0.011 0.72 0.76 0.45 0.007 0.85 

Green-PoW 3 0.92 0.09 0.016 0.89 0.95 0.32 0.002 1 

Green-PoW 4 0.78 0.08 0.015 0.75 0.81 0.41 0.005 0.95 

DAG 1 0.7 0.06 0.011 0.68 0.72 0.3 0.02 0.6 

DAG 2 0.66 0.05 0.009 0.64 0.68 0.5 0.012 0.68 

DAG 3 0.82 0.07 0.013 0.79 0.85 0.33 0.006 0.88 

DAG 4 0.73 0.08 0.015 0.7 0.76 0.42 0.01 0.79 

PBFT 1 0.78 0.06 0.011 0.76 0.8 0.25 0.015 0.7 

PBFT 2 0.71 0.05 0.009 0.69 0.73 0.46 0.008 0.83 

PBFT 3 0.86 0.08 0.015 0.83 0.89 0.34 0.004 0.95 

PBFT 4 0.77 0.07 0.013 0.74 0.8 0.4 0.006 0.9 

This validation approach is designed to ensure that the 

reported results are not a single result or experimental 

deviation, but rather an average representation of a stable and 

consistent data distribution. Thus, each mean latency in the 

results table does not represent a single experiment, but rather 

is an aggregation result of a series of tests conducted under the 

same parameters and conditions. The use of a 95% confidence 

interval provides a more accurate picture of the lower and 

upper limits of the estimated mean value, thus increasing the 

statistical validity of the comparison between models [29, 30]. 

In addition, the p-value obtained from the comparison test 

against the FC-PoW model serves as an indicator of the 

significance of the difference in performance between 

algorithms, where the p-value < 0.05 indicates that the 

differences found are statistically significant and do not occur 

randomly. 

In addition to these basic statistical parameters, this study 

also adds effect size using Cohen's d or η² (eta squared) metric 

to assess the magnitude of the influence of the FC-PoW model 

on system performance compared to other baseline models. 

This approach is essential because it not only highlights the 

statistical significance but also provides context regarding the 

practical significance or magnitude of the real impact that the 

proposed model has on improving system efficiency. In this 

context. Cohen's high value of d (above 0.8) is categorized as 

a significant effect, which suggests that the difference in FC-

PoW performance against other models is substantial and 

relevant in the context of practical applications to blockchain 

systems. 

The test results are presented in the form of a statistical table 

that includes five consensus models and four difficulty levels 

(Difficulty Levels 1–4), resulting in a total of 20 analysis 

conditions. Each condition generates mean latency, standard 

deviation (SD), and standard error (SE) to illustrate the 

stability of the model's performance. In addition, the Mean 

Transaction Speed value is also calculated to assess the overall 

system throughput efficiency [10]. The results of the analysis 

showed that the FC-PoW model consistently recorded the 

lowest Mean Latency across the entire difficulty level, ranging 

from 0.58 to 0.62 seconds, with minor standard deviations (SD 

between 0.05–0.07). This confirms that FC-PoW is not only 

efficient but also stable, as fluctuations between tests remain 

within a very narrow range. 

In contrast, conventional PoW models exhibit greater 

fluctuations and significant performance decreases as the 

difficulty level increases. For instance, at Difficulty Level 3, 

the latency increases to 1.25 seconds, accompanied by a high 

standard deviation (SD = 0.1), indicating system instability in 

handling high complexity. Meanwhile, Green-PoW offers 

increased energy efficiency, but experiences a trade-off in the 

form of a decrease in transaction speed at a higher difficulty 

level (Mean Latency of around 0.92 seconds at Level 3). The 

DAG model performs well at low difficulty but loses 

efficiency at high loads. In contrast, PBFT is relatively stable, 

although it has a high overhead that limits its scalability. 

To further support the FC-PoW performance advantage 

argument, the analysis results are visualized in a graph 

illustrating the relationship between Mean Latency and 

Difficulty Level across the consensus model. This graph 

shows a consistent trend of declining latency in FC-PoW 

compared to other models, with performance lines tending to 

be flat and stable even as complexity increases. These trends 

demonstrate that the feature classification and dynamic 

difficulty adjustment approach implemented in FC-PoW plays 

a crucial role in maintaining system efficiency without 

compromising execution time stability. Thus, the 

improvement in FC-PoW performance is not only statistically 

significant but also reflects continued systemic efficiency. 

The p-value column on the FC-PoW model in the results 

table is marked with a "–" or zero sign because this model 

serves as a benchmark baseline. All significance tests were 

performed on FC-PoW as the primary reference, so it is 

irrelevant to calculate the p-value against itself. This approach 

is in accordance with the standard of practice in comparative 

analysis, where the proposed model is used as a benchmark to 

measure the performance of other models. In addition, taking 

into account the narrow confidence interval (CI) and low 

standard deviation (SD), it can be concluded that FC-PoW has 

high experimental reliability. The consistency of these results 

shows that the model's performance is not only superior under 
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certain conditions but can also be replicated in a variety of 

operational scenarios without experiencing significant 

performance degradation. Overall, the results of this extended 

statistical analysis provide a strong scientific justification for 

the FC-PoW model's performance improvement claims. 

Quantitative evidence in the form of significant p-values, tight 

confidence intervals, and large effect sizes reinforces the 

conclusion that FC-PoW is consistently able to speed up 

execution times, improve transaction efficiency, and maintain 

the stability of the blockchain system. The statistical validation 

approach applied ensures that the results of this study have a 

solid empirical basis and are scientifically acceptable in the 

context of the development of the modern consensus model. 

Figure 10. Comparison of the average transaction delay time 

Figure 10 shows a comparison of the average transaction 

delay time (mean latency in seconds) across five blockchain 

consensus models — PoW, FC-PoW, Green-PoW, DAG, and 

PBFT tested at four difficulty levels (difficulty levels 1–4). In 

general, the FC-PoW model consistently exhibits the lowest 

latency across all difficulty levels, which signifies its ability to 

process transactions more efficiently than other models. In 

contrast, the conventional PoW model exhibits the highest 

latency value, particularly at the 3rd difficulty level, due to its 

static block validation mechanism that requires high 

computing power. The error bar displayed (standard deviation) 

confirms the stability and statistical significance.  

Figure 11. Comparison of the mean transaction speed 

Reliability of the average value obtained. Figure 11 shows 

the comparison of the mean transaction speed (in transactions 

per second) of the five consensus mechanisms. PoW, FC-

PoW, Green-PoW, DAG, and PBFT, at four different 

difficulty levels. The test results showed that the FC-PoW 

model has higher throughput stability and can maintain 

competitive transaction speeds despite increasing difficulty. 

This is in contrast to the basic PoW model, which shows large 

fluctuations, especially at low difficulty levels. due to its 

reliance on random computational processes. The consistency 

of FC-PoW performance proves the effectiveness of the 

feature classification mechanism and adaptive difficulty 

adjustment applied, thereby improving transaction speed as 

well as overall network efficiency. 

4.11 Discussion 

The results show that the application of the FC-PoW model 

significantly lowers the transaction execution time, both at low 

and high difficulty levels. Before implementation, execution 

times tended to be high due to heavy computing loads on 

complex transactions. FC-PoW optimizes block processing 

through more efficient computational filtering and reduced 

block structural complexity, resulting in a lower data 

processing load on nodes. The model also improves the 

stability of execution times, which is essential for industries 

that prioritize the speed and consistency of transaction 

processing. In addition, FC-PoW demonstrates good 

scalability, with execution time decreasing consistently 

despite increased difficulty levels. Although this study used 

datasets from one factory, it needs further validation in other 

industrial environments. The complexity of these findings and 

their potential applications in various industrial sectors, which 

require high computing efficiency and real-time data 

processing, such as manufacturing, confirm the effectiveness 

of FC-PoW in accelerating transaction validation and 

systematically filtering out data. 

5. CONCLUSIONS

The application of the FC-PoW model shows the potential 

to improve the performance of blockchain systems in the 

context of the manufacturing industry. By implementing a 

feature classification process before block validation, the 

model can reduce transaction execution time across different 

difficulty levels, demonstrating its ability to filter and segment 

transaction complexity and reduce computational burden. In 

addition to improving efficiency, FC-PoW also contributes to 

the stability of the validation process, which is essential for 

manufacturing environments that prioritize consistency and 

speed of data processing. However, this study has several 

limitations, including assumptions about transaction 

complexity that may impact the generalizability of the results. 

Potential risks in industrial deployments include scalability 

challenges and variations in real transactions.  

Characteristics, for further research, it is recommended to 

validate models at various industrial facilities, integrate FC-

PoW with real-time systems, and explore further optimization 

strategies to improve computing efficiency and reliability. 

Overall, FC-PoW represents a promising approach to modern 

blockchain consensus, with potential for adoption in various 

industry sectors that require high computing efficiency and 

real-time transaction processing, while providing further 

development and research direction. 
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