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The rapid advancement of Industry 4.0 has driven the manufacturing sector to adopt
transaction systems that ensure speed, transparency, and reliability. However, conventional
blockchain consensus mechanisms such as Proof-of-Work (PoW) still encounter significant
limitations, including high transaction latency, redundant computations, and low processing
efficiency. To address these challenges, this study proposes the Feature Classification
Proof-of-Work (FC-PoW), a machine learning—based consensus model designed to enhance
the efficiency of transaction validation in blockchain systems. The FC-PoW introduces a
feature classification stage before block validation, allowing transactions to be grouped
based on computational complexity. This mechanism optimizes the distribution of miner
workload and reduces unnecessary hash iterations during the mining process. Experimental
results indicate that FC-PoW significantly improves transaction performance compared to
conventional PoW, achieving a reduction of up to 38% in execution time across various
difficulty levels. The proposed model contributes theoretically by integrating intelligent
feature classification into the consensus layer and practically by offering a more efficient

blockchain framework for order processing in manufacturing environments.

1. INTRODUCTION

The quick development of the Industry 4.0 era has driven
the manufacturing sector toward an increasingly data-oriented
ecosystem, demanding order-processing systems that are fast,
transparent, and reliable [1]. Blockchain technology has
emerged as a potential solution to meet these requirements due
to its decentralized, transparent, and tamper-resistant nature
[2]. Nevertheless, the implementation of blockchain in the
manufacturing sector still faces several limitations, primarily
caused by the conventional Proof-of-Work (PoW) consensus
mechanism, which requires high computational resources and
results in lengthy transaction validation times [3]. This
condition directly affects system efficiency and scalability,
thereby hindering the adoption of blockchain in large-scale
industrial environments that demand real-time and efficient
transaction processing.

Various alternative approaches have been proposed to
overcome the limitations of PoW, including Proof-of-Stake
(PoS), Delegated Proof-of-Stake (DPoS), Practical Byzantine
Fault Tolerance (PBFT), and Directed Acyclic Graph (DAG)
[4]. Although these models offer better computational
efficiency, most of them still face challenges in maintaining
the balance between security, scalability, and adaptability
within complex and dynamic manufacturing ecosystems [5].
Therefore, a significant research gap remains between the need
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for computational efficiency, high-level security, and the
system's adaptive capability to handle diverse transaction
complexities in modern industrial settings.

In this context, the rapid development of machine learning
(ML) in recent years has opened new opportunities to enhance
blockchain performance adaptively and contextually [6].
Recent studies indicate that the integration of ML into
blockchain has generally focused on anomaly detection,
network security, and transaction pattern prediction [7].
However, very few studies have directly explored the
utilization of ML within the consensus process itself to
improve computational efficiency and accelerate transaction
validation [8]. This unexplored area forms the fundamental
research gap and novelty contribution of this study.

Several recent studies have aimed to enhance the
performance of blockchain consensus mechanisms by
improving energy efficiency and transaction speed [9]. For
instance, the authors proposed the Green-PoW model, which
successfully reduced energy consumption by 25%, yet
transaction latency remained high and unsuitable for real-time
manufacturing systems [10-12]. Developed a DAG-based
consensus architecture with parallel validation that increased
throughput up to 60 transactions per second (TPS) but
encountered data synchronization challenges among nodes
[13]. Introduced a Hybrid PBFT model emphasizing high
validation speed and security; however, it caused significant
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communication overhead as the number of nodes increased.
Proposed a Hybrid PoW—PoS model that combines PoW's
security and PoS's efficiency. Although the results
demonstrated improved validation performance, the model
could not adequately adapt to the heterogeneous variations in
transaction complexity in industrial environments [14].

From these studies, it can be concluded that prior research
has not explicitly examined the role of feature classification in
improving PoW efficiency. Therefore, this study emphasizes
that feature classification using machine learning is expected
to enhance PoW performance through two primary
mechanisms: (1) adjusting mining difficulty based on
transaction complexity to reduce computational load for low-
risk transactions, and (2) enabling a more proportional
allocation of computational resources to accelerate validation
without compromising system security. This approach aims to
establish a clear causal relationship between feature-based
classification and improved PoW performance, both
empirically and conceptually.

To implement this approach, the study employs the Chi-
Square algorithm as the feature selection technique, as it has
been proven effective in identifying relevant and significant
features based on their weighted correlation ranking [10, 15].
The selected features are then validated using the Random
Forest algorithm, which demonstrates the best performance
with an accuracy of 95.83%, an F-score of 0.958, and a
training time of 84.53 seconds—outperforming benchmark
models such as SPAARC and MLP [16]. The features with the
highest accuracy are then integrated into the Feature
Classification ~ Proof-of-Work  (FC-PoW)  consensus
mechanism to optimize block validation efficiency and
accelerate adaptive transaction processing.

Conceptually, feature classification has strong potential to
enhance PoW efficiency because the traditional PoW
mechanism treats all transactions with identical difficulty
levels regardless of their actual complexity. This uniform
treatment leads to disproportionate computational effort and
extended validation time. By introducing a feature
classification stage, the system can first recognize transaction
patterns and their complexity levels before mining begins.
Consequently, the mining difficulty in PoW can be
dynamically and adaptively adjusted according to each
transaction's profile, enabling more efficient distribution of
computational resources, shorter validation time, and
improved energy efficiency without compromising network
security.

Based on this rationale, this study proposes the Feature
Classification Proof-of-Work (FC-PoW)—a novel consensus
mechanism that integrates machine learning—based feature
classification into the initial stage of block validation. This
integration enables a more efficient mining process since the
system allocates computational power proportionally to the
complexity of each transaction. Hence, FC-PoW is expected
to enhance execution time efficiency and system scalability
while maintaining the robust security features characteristic of
PoW.

The scientific contribution of this research lies in the
development of an adaptive consensus model that combines
the principles of PoW and machine learning to achieve a
balanced trade-off among security, efficiency, and scalability
[17]. Furthermore, this study extends the direction of ML
utilization beyond its traditional analytical role, positioning it
as a core functional component within the blockchain
consensus mechanism, one that is more intelligent and
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contextually aligned with the operational needs of modern
manufacturing industries [3]. Structurally, this paper is
organized into five main sections: Section I introduces the
background, problem statement, research gap, and objectives
of FC-PoW model development; Section II discusses the
related works concerning consensus mechanisms and ML
integration within blockchain; Section I1I explains the research
methodology and FC-PoW model design; Section IV presents
the experimental results and performance analysis; and finally,
Section V concludes the main findings and provides
recommendations for the future development and cross-
sectoral industrial applications of FC-PoW.

2. RELATED WORK

Based on the results of previous research reviews, it can be
concluded that the development of blockchain consensus
mechanisms to date still faces a dilemma between security,
energy efficiency, and transaction validation speed [18].
Classic models, such as Proof-of-Work (PoW), offer high
security levels but are hindered by intensive computing
requirements and lengthy block confirmation times. In
contrast, alternative models such as PoS, DPoS, and DAG are
indeed capable of speeding up the transaction process, but
often at the expense of decentralization, architectural
complexity, and system stability at an industrial scale [19]. In
addition, although some studies have attempted to integrate
machine learning (ML) to improve blockchain efficiencys, its
application remains limited to anomaly detection and network
security, without addressing the core issue of optimizing the
transaction validation process within the consensus
mechanism. This condition reveals a considerable research
gap, specifically the lack of an approach that can intelligently
adapt the difficulty level of mining and validating transactions
based on data complexity and network dynamics.

In response to these gaps, this study proposes a new model
called Feature Classification Proof-of-Work (FC-PoW). This
model introduces a machine learning-based feature
classification layer that is integrated directly into the PoW
mechanism. The goal is to analyze the transaction
characteristics in real-time and adjust the mining difficulty
level based on the classification results. This approach is
expected to reduce validation time, improve processing
efficiency, and reduce energy consumption without sacrificing
security and reliability, which are the main advantages of
PoW.

As such, FC-PoW is designed as an adaptive, efficient, and
intelligent solution that can bridge the limitations of classic
PoW and the needs of modern industrial systems that demand
high performance. The following section will describe in detail
the FC-PoW architecture, the working mechanism of the
system, as well as the experimental methodologies used to test
performance improvements compared to conventional PoW
models and several other consensus approaches.

Table 1 presents a comparative summary of some previous
research on blockchain consensus mechanisms and their
performance metrics.

Based on the results of the comparative analysis presented
in Table 1, it is evident that each previous study has a distinct
focus and approach to optimizing the blockchain consensus
mechanism, considering factors such as energy efficiency,
computing speed, and data security level. The findings are in
line with the results of the analysis of word relationships in



Figure 1.
The dominance of the terms "process", "power", and
"internet" indicates that the primary concerns in blockchain

research remain focused on enhancing the efficiency of the
consensus process, reducing power consumption, and
fortifying the distributed network ecosystem.

Table 1. Comparison of previous research

Author Model Consensus Focus/Approach Key Performance Metrics Limitations

[12, 20] Green-PoW Reduced Energy Consumption Energy efﬂmzrég% increased by Transaction latency is still high
[14] DAG Architecture Parallel block validation s mcrez;\fzgotrc:sﬁo polling Complex data synchronization
[17] PBFT Hybrid Leader-node-based consensus Low latency, high security Large communication overhead
[21] POW-PoS Hybrid Combination of RoW security Increased validation speed Less adaptive to transaction

and PosS efficiency complexity
[22] ML-Assisted PoW ML |nteg:jat|0n_for anomaly Improve system security Haven't optimized transaction
etection speed yet
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Figure 1. Related research work

3. PROPOSED METHOD

Based on the results of the literature review, the Proof-of-
Work (PoW) consensus mechanism remains a crucial
component in blockchain systems due to its resilience and
security against various attacks, including double-spending
and 51% majority attacks [23]. However, traditional PoW has
Fundamental disadvantages, hamely high transaction latency,
low throughput, and enormous energy consumption [24, 25].

Several studies have been conducted to address this issue.
The concept of green PoW, for example, has been proven to
reduce energy consumption; however, it has not been able to
improve energy efficiency and Transaction latency problems
[20]. On the other hand, alternative consensus approaches,
such as the Directed Acyclic Graph (DAG) and Practical
Byzantine Fault Tolerance (PBFT), offer significant
improvements in transactions per second (TPS) and latency
[26]. Research [27] through Shoal++ also proves that the
DAG-BFT protocol can lower the average commit latency by
up to 4.5 message exchanges from the existing literature. It is
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evident that a research gap exists, specifically the lack of an
approach that utilizes explicit machine learning-based feature
classification techniques to optimize the mechanism.

The scope of this research focuses on the development and
testing of the Feature Classification Proof-of-Work (FC-PoW)
model as a machine learning-based blockchain consensus
approach designed to improve the efficiency of order
processing in the manufacturing sector. This model aims to
overcome the limitations of conventional Proof-of-Work
(PoW), which often experience high latency and low
throughput in handling transactions in real-time. Through the
integration of feature classification algorithms into the Pow
mechanism, the system can filter and group transactions based
on relevant characteristics before entering the hashing
computing stage, so that potentially valid transactions can be
validated faster and the verification process becomes more
adaptive.

This research [28] includes explicitly the design of FC-PoW
architecture, the application of machine learning-based
classification models, and system performance evaluation



using key parameters such as execution time, transaction
latency, and network throughput in various manufacturing
industry scenarios that adopt the concept of Industry 4.0. Thus,
the scope of this research is limited to the optimization of
PoW-based transaction validation mechanisms through
machine learning integration, without changing the core
structure of the blockchain or its underlying consensus
mechanisms, so that the proposed model can be implemented
directly on existing manufacturing blockchain systems. The
following are the stages of the FC-PoW model process:

3.1 FC-PoW model architecture

This section describes the framework proposed in the study,
including the PoP method process, the integration between
Proof of Work and the FC-PoP model, and the dataset used in
this study. Figure 2 shows the FC-PoW architecture.
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In Figure 2, some of the stages of the FC-PoW Model
activities:
1. Data Preprocessing

It is an essential first step in data analysis, as it serves to

ensure that the data used in the modeling process is of adequate
quality. At this stage, two main sub-processes are carried out
as part of data preparation efforts, namely:

a) Data cleansing is a crucial stage in preprocessing that
aims to identify and rectify invalid, incomplete, or
conflicting data. This process involves removing or
correcting entries that contain duplicates, input errors, or
irrelevant data.

b) The process of removing duplication is carried out to
ensure that each entry in the dataset is unique, so that
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there is no repetition of data that could interfere with the
accuracy of the analysis results. Duplication often occurs
due to the merging of data from various sources or errors
during the data acquisition process. The existence of this
double data has the potential to cause bias in modeling
and analysis interpretation, so it needs to be identified and
removed systematically. The output of this process is a
Valid Dataset, which is data that has been cleaned,
normalized, and is ready for further processing
2. Proof-of-Work Standard Process
The valid dataset generated from the preprocessing stage is
directly used in the Proof-of-Work (PoW) baseline process for
comparison. At this stage, the PoW algorithm is used as
intended, without the intervention of optimization methods.
The data is analyzed to derive three main metrics:
Completion Time to see the transaction speed of order
validation.
3. Optimasi Model FC-PoW
To address the efficiency challenge in POW systems, this
study developed an FC-PoW approach that integrates Feature
Selection and Data Classification. This approach is within the
scope of predictive modeling in applied machine learning for
blockchain systems.
a) Chi-Square is used as a feature selection technique based
on statistical significance. The goal is to identify the
features (attributes) that contribute the most to
differentiating the transaction class.
b) The selected features are then used as inputs in the
Random Forest classification algorithm to categorize
transactions based on their predicted validation status
(e.g., fast-validation, slow-validation, fail-validation).
Random Forest was chosen for its stability, high
accuracy, and ability to handle data with multiple features
and non-linearity. Once classification is performed, only
data that meets the wvalidity criteria (based on
classification output) is passed into the POW process.
The dataset of classified results is entered into the second
PoW stage. Here, PoW is run again, but with data that has been
filtered and adjusted based on feature selection and
classification. The goal is to test whether a machine learning
approach can speed up the validation process based on its level
of difficulty.
4. Result Analysis and Comparison

The final stage of this workflow involves analyzing the
results, which measure the time efficiency required to
complete a single block in a PoW network. The shorter the
turnaround time, the more efficient the system will be.

3.2 FC-PoW model process flow

Figure 3 of the process flows shown in the diagram
illustrates the conceptual framework of the Feature
Classification-based Proof-of-Work (FC-PoW) model, which
is a new approach in the blockchain system that aims to
optimize the block validation process through the integration
of machine learning algorithms. This model employs a feature
selection process and Random Forest-based classification to
categorize transactions by complexity before the mining
process. The main goal is to reduce execution time and
compute load, without sacrificing the security and integrity of
the blockchain system.

The initial stage begins with transaction data input, which is
the process of collecting transaction data that is still raw and
unstructured for further processing. The data can be in the



form of records of digital activities, financial transactions, or
industrial data that contains various transaction parameters.
Next, feature selection is carried out to select the most relevant
attributes in determining the complexity of the transaction.
This stage focuses on selecting a subset of features that have a
significant influence on the classification process, such as data
size, number of input-outputs, transaction costs, previous
validation times, and node engagement rates. Through the
proper selection of features, the system can reduce data
redundancy, simplify the representation of information, and
improve the accuracy of classification algorithms at the next
stage.

Input Transaction Data

Feacfure Selection

Random Forest Classification
- Classify by feature complexity

Low High

Low Complexity

Transaction Pool
Proof-of-Work (Mining)

- Adjust difficulty

- Validate grouped transactions

High Complexity
Transaction Pool

o

A

Block Validation &amp; Addition
to Blockchain Iedger

Output: Optimized Blockchain
with Reduced Execution Time

Figure 3. FC-PoW model process flow

The next stage is Random Forest Classification, which is
used to group transactions based on their level of complexity.
This algorithm was chosen for its ability to handle high-
dimensional data as well as non-linear interactions between
variables. With an ensemble learning approach through a
combination of several decision trees, Random Forest
produces stable and accurate classifications. Based on the
value of the selected feature, the transaction then it is then
divided into two main groups, namely the Low Complexity
Transaction Pool for simple transactions with low computing
requirements, and the High Complexity Transaction Pool for
more complex transactions with high processing loads.

Grouping transactions into two pools is at the core of the
FC-PoW optimization strategy. Based on the results of the
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complexity classification, the system implements Proof-of-
Work with a dynamically adjusted difficulty level. Low-
complexity transactions are processed with lighter difficulty to
speed up hashing, while complex transactions are maintained
at a higher difficulty level to maintain validity and security.
This adaptive approach is effective in reducing execution time
without sacrificing the reliability of the validation process.

The Block Validation and Addition stage verifies the final
validation results before the block is permanently added to the
data chain. This process ensures that there are no conflicts or
duplication of transactions and maintains system consistency.
Blocks that pass validation are stored sequentially, forming a
permanent (immutable) data structure. Performance metrics
such as average validation time, mining success rate, and
workload distribution are also recorded at this stage to evaluate
the effectiveness of the model.

The result of this entire process is an optimized blockchain
with Reduced Execution Time, demonstrating the system's
ability to produce a more efficient and responsive blockchain.
By applying complexity classification and dynamic PowW
difficulty adjustment, the system can reduce transaction
latency, increase network throughput, and reduce the usually
high energy consumption of conventional PoW systems.

3.3 Dataset

This research dataset was obtained from PT. SBR, a cement
manufacturing company located in South Sumatra, Indonesia,
as shown in Table 2. Data was collected from the company's
internal ordering system during the period September to
December 2022, with a total of 1,533 transaction records
covering variations in the Time of booking, number of orders,
and distribution destination cities. This dataset provides a
representative picture of the operational activities of the
medium-scale cement industry in the region.

Table 2. Customer dashboard system Dataset 2

No Sales Order Order Delivery
Order Date Hours Date
220057863x 06-Sep-22 09:42:20 06-Sep-22
220057862x 06-Sep-22 08:38:46 06-Sep-22
220057859x 06-Sep-22 08:34:27 06-Sep-22
220057851x 06-Sep-22 08:08:14 06-Sep-22
220057850x 06-Sep-22 08:07:40 06-Sep-22
220057847x 06-Sep-22 07:41:11 06-Sep-22
220057846x 06-Sep-22 07:26:52 06-Sep-22
220057845x 06-Sep-22 07:14:40 06-Sep-22
220057844x 06-Sep-22 07:13:55 06-Sep-22
220057843x 06-Sep-22 07:13:27 06-Sep-22
220057842x 06-Sep-22 06:42:21 06-Sep-22
220057841x 06-Sep-22 06:41:01 06-Sep-22
220057839x 06-Sep-22 06:37:51 06-Sep-22
220057838x 06-Sep-22 06:37:19 06-Sep-22
220057837x 06-Sep-22 06:35:27 06-Sep-22
220057836x 06-Sep-22 06:34:40 06-Sep-22
220057835x 06-Sep-22 06:31:55 06-Sep-22
220057834x 06-Sep-22 06:31:16 06-Sep-22
220057833x 06-Sep-22 06:30:27 06-Sep-22

To maintain the confidentiality and integrity of the data, all
restricted attributes, including distributor identity, delivery
type, product type, and destination location, have been fully
anonymized. All features are displayed in numerical code in
Table Dataset 1, Table Dataset 2, and Table Dataset 3. The
anonymization process is carried out without changing the



structure or distribution of data statistics so that the
authenticity of the pattern is maintained. PT manages the
original data. SBR is under strict internal access control
mechanisms, thus ensuring that the datasets used are authentic,
secure, and free from external intervention.

Table 3. Customer dashboard system Dataset 3

Distributor Type Send Item Type Distiantion
1 50 5005013x 10008x
2 50 5000484x 7015x
2 50 5005476x 6009x
2 50 5005561x 10002x
2 50 5005561x 10002x
2 50 5005073x 10015x
2 50 5001408x 7010x
2 50 5003977x 10005x
2 50 5003977x 10005x
2 50 5003977x 10005x
1 50 5005191x 7013x
1 50 5005191x 7013x
2 50 5003977x 10005x
2 50 5003977x 10005x
2 50 5003977x 10005x
2 50 5003977x 10005x
2 50 5004078x 7012x
2 50 5004078x 7012x
2 50 5004078x 7012x
2 50 5003152x 7011x

The dataset used in this study consisted of 1,533 order
transactions with 14 attributes, including order identity, order
time, distributor, delivery details, destination location, number
of goods, and final order status. This information is recorded
through an SAP-based ERP system, ensuring it accurately
reflects the actual condition of the distribution process in the
manufacturing sector. Among the available attributes, Hour
Order, Qty, and City are selected as the primary variables,
primarily because they are considered the most influential in
modeling transaction patterns and determining order
processing speeds.

Table 4. Customer dashboard system Dataset 4

Str.Group Qty Qt SAP Sales Order Number  Status
100080x 480 1 21003070xx 1
7015005 400 1 2100307xxx 1
600900x 30 2 21003070xx 1
1000200x 200 1 21003070xx 1
1000200x 400 1 210030707xx 1
1001501x 450 1 21003070xx 1
701001xx 400 1 21003070xx 1
1000502x 200 1 21003070xx 1
1000502x 200 1 21003070xx 1
1000502x 200 1 21003070xx 1
701300xx 200 1 21003070xx 1
7013002x 200 1 21003070xx 1
1000502x 200 1 21003070xx 1
100050xx 200 1 21003070xx 1
100050xx 200 1 21003070xx 1
100050xx 200 1 21003070xx 1
70120xx 200 1 210030708x 1
70120xx 200 1 21003070xx 1
70120xx 200 1 21003070xx 1

The dataset used in this study consisted of 1,533 order
transactions with 14 attributes, which included order identity,
order time, distributor, delivery details, destination location,
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number of goods, and final order status. This information is
recorded through an SAP-based ERP system, ensuring it
accurately reflects the actual condition of the distribution
process in the manufacturing sector. Among the available
attributes, Order Hours, Qty, and City were selected as the
primary variables due to their significant influence on
modeling transaction patterns and determining order
processing speeds.

This dataset is relevant to the context of Industry 4.0 and
smart factories, where transaction validation must be done in
real-time to maintain supply chain efficiency. As shown in
Tables 3 and 4, temporal, quantitative, and geographic
attributes provide a crucial foundation for the development of
the Feature Classification Proof-of-Work (FC-PoW) method,
which aims to accelerate validation while maintaining
transaction security. Thus, this dataset not only represents the
phenomenon of manufacturing distribution but also supports
the exploration of new solutions in optimizing blockchain
consensus mechanisms.

4. RESULTS AND DISCUSSION

In this section, the researchers present the methods and
results of the research, which include the results of feature
selection, feature validation, FC-PoW testing, and PoW
testing. The methods proposed in this study make a significant
contribution by introducing innovative technigues to optimize
FC-PoW in transaction validation. The primary feature of this
method is the application of selection and classification
algorithms, as well as feature selection, which aims to enhance
efficiency and speed in transaction processing.

4.1 Pra processing

Based on the pairplot visualization and previous analysis, it
can be concluded that the data preprocessing process plays a
crucial role in enhancing the quality of the transaction
classification model studied. The preprocessing stage aims to
clean, tidy up, and adjust the data format to suit the needs of
the machine learning algorithm to be used.

Figure 4 presents a pairplot that illustrates the relationships
and distributions between numerical features in the dataset,
grouped by three order status classes: Accepted, Cancelled,
and Inquiry. This visualization facilitates the identification of
patterns of interconnectedness between features and
differences in distribution for each class. Diagonal charts show
the distribution of each feature individually, while non-
diagonal charts show the relationships between feature pairs.
This analysis supports the feature selection process by
providing an initial overview of the features that have the most
potential to differentiate between order status classes.

4.2 Feature selection process

In this research, the feature selection phase was carried out
to determine the most influential attributes for identifying
order status. This step also serves to remove less relevant
features, thereby minimizing the overall number of features
considered. As a result, the reduction enhances the efficiency
of transaction processing. The Chi-Square algorithm was
employed to implement this feature selection procedure., as
detailed in Pseudocode 1.

1. Begin



2. Load Data from Source
3. Separate Features (X) And Labels (Y)
4. Preprocess Data
4.1 Handle Missing Values
4.2 Encode Categorical Features into Numerical Format
4.3 Scale Features If Necessary
5. Perform Chi-Square Test
5.1 Import Chi2 from Sklearn.Feature_Selection
5.2 Calculate Chi2_Values, P_Values = Chi2(X, Y)
5.3 Store Chi2_Values And P_Values
Based on the results of feature selection using pseudocode
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1, the weight of each attribute presented in Figure 4 was
obtained. The Chi-Square algorithm calculates the weight of
each feature. Next, features are sorted from the feature with
the most significant weight to the feature with the smallest
weight value. The test results presented in Figure 3 show that
the feature with the most significant weight is the order clock,
with a weight value of 1515,378. This feature is ranked second
in Qty with a weight value of 195,014. In third place is the city
feature with a weight value of 91,038. While the feature with
the lowest weight is the unit feature with a weight value of
8,605.

Figure 4. Pairplot visualization feature

4.3 Feature selection results

Once the feature selection results are obtained, these
features will then be tested to determine the order status. This
step is performed to examine the features and identify the most
suitable feature for classifying order status with the highest
accuracy. At this stage, the Random Forest classification
algorithm is used to classify the results based on the selected
features. According to Pseudocode 2, the results of the order
status classification are presented in Figure 5. This process
tests each feature group to determine the status of the order.
There were 13 features tested. The test results show the highest
accuracy of 99.42% achieved with three features. The
selection of this feature successfully eliminated less relevant
features, resulting in the selection of only three features: Order
Hour, Qty, and City.

4.4 Feature validation

The results of the Confusion matrix, shown in Figure 6,
demonstrate the performance of the Random Forest tree model
in classifying three types of transaction statuses: Accepted,
Canceled, and Inquiry. Based on the matrix, we can see the
distribution of true and false predictions of the model in each
class. The Accepted category has 572 accurate optimistic
predictions, while 48 Accepted transactions are misclassified
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as Canceled. And 41 others as Inquiry. For the canceled class,
the model correctly classified 605 transactions, while 44 cases
were misclassified as Accepted and 14 others as Inquiry.
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Figure 5. Feature selection results

Meanwhile, in the Inquiry class, 597 transactions were
correctly classified, while 7 and 10 cases were incorrectly
classified as Accepted and Canceled. From this matrix, we can
calculate evaluation metrics, such as precision, recall, and F1-
score, to assess the model's accuracy and sensitivity to each



class. For the Accepted class, the accuracy reached around
91.8% and the recall was 86.5%, resulting in an F1-score of
around 89.1%. This indicates that the model performs well in
recognizing transactions that should be accepted, although it
still makes several erroneous predictions. The Canceled class
achieves a balanced precision and recall of 91.2%, indicating
the model's stability in consistently recognizing and
classifying this class.

Meanwhile, the best performance is shown in the Inquiry
class, where recall reaches 97.2% and precision is around
91.6%, with the F1-score approaching 94.3%. This means that
the model is very reliable in recognizing transactions with
Inquiry status, although there are slight misclassifications.
Overall, the evaluation using precision, recall, and F1-score
showed that the Random Forest model had a high level of
accuracy and was fairly balanced in predicting all three
classes.
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Figure 7. Confusion matrix random forest

The evaluation results showed an accuracy of 91.5%, which
is higher than that of the previous study. The study achieved
only 82% accuracy on classic PoOW with latency constraints,
whereas they obtained 88% accuracy, focusing on security
rather than transaction efficiency. Research through green
PoW resulted in an accuracy of around 85-87%, but it was less
than optimal in verification. The consensus of the DAG
reached 89%, but faced the problem of model stability. With
an achievement of 91.5% and the highest F1-score in the
Inquiry class (0.94), the FC-PoW model has proven to be
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superior in terms of accuracy, efficiency, and performance
balance across classes, making it feasible to implement in
blockchain-based manufacturing systems, as shown in Table
5.

Table 5. Hasil confusion matrix

Kelas Precision Recall F1-Score
Accepted 0.92 0.87 0.89
Canceled 0.91 0.91 0.91

Inquiry 0.92 0.97 0.94

4.5 Receiver Operating Characteristic (ROC)

The ROC Curve is a classification model performance
evaluation tool that measures the trade-off between the True
Positive Rate (TPR) and the False Positive Rate (FPR) at
various classification thresholds.

Figure 6 displays a graph of the Receiver Operating
Characteristic (ROC) Curve for the classification model,
which is based on the Random Forest algorithm used to
classify transaction status into three classes: Accepted,
Canceled, and Inquiry. From the graph, it can be seen that the
three classes produce curves that move away from the diagonal
line (dotted lines), which indicates that the model has good
classification performance. The diagonal line itself symbolizes
the performance of the model that is random or no better than
random guesses (AUC = 0.5). In general, AUC values above
0.90 are included in the category of excellent classification
performance. This demonstrates that the Random Forest
model used is not only capable of classification with high
accuracy, but also provides a robust framework for analysis.

4.6 Model PoW

In the FC-PoW Before Model stage, the system continues to
operate using the traditional Proof of Work (PoW) consensus
mechanism without any modifications based on feature
classification. This condition represents the baseline that
became a reference for comparison before the FC-PoW model
was proposed. The test results at this stage indicate that the
transaction validation process remains relatively slow due to
the high complexity of hash calculations and the lack of feature
analysis to accelerate the transaction classification process.
Additionally, system performance remains limited, as
evidenced by high latency, low throughput, and substantial
computational resource usage. Therefore, the conditions
preceding the implementation of FC-PoW highlight the real
limitations of conventional PoW, while also confirming the
urgency of developing new models that can improve the speed,
efficiency, and stability of consensus systems in the
blockchain-based manufacturing industry.

In this 7-stage test figure, the validation process has not yet
applied the FC-PoW method to the blockchain consensus
algorithm with PoW. As shown in Figure 8, the transaction
process is quite lengthy. Thus, it reduces the speed of
transaction processing on the blockchain. And displays the
relationship between the Difficulty and Execution Time of a
process or classification system. This graph indicates that at
difficulty level 1, the execution time is relatively low, at
approximately 0.27 seconds. However, there was a significant
spike in difficulty level 2, where the execution time increased
sharply to about 0.7 seconds. At difficulty level 3, the graph
shows a drastic decrease in execution time to approximately
0.35 seconds, before gradually rising back up to around 0.66



seconds on difficulty level 4. This pattern reflects the system's
dynamics in response to workload complexity, which may be
due to variations in data or the algorithm's efficiency at each
level of operation. The pseudocode is as follows.
1. Initialize variables:
1.1 difficulty = 1
1.2x=\[]]
1.3y =\[]
2. While difficulty <= max\_difficulty:
2.1 Create a new block with:
2.1.1 'previous\_hash': None
2.1.2 'transactions": data\_belum
2.1.3'nonce": 0
2.2 Record start time
2.3 While True:
2.3.1 Concatenate block details into a string
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Figure 8. Receiver Operating Characteristic (ROC)
4.7 Development model FC-PoW

After performing the feature selection and feature validation
process, the optimized PoW method is then tested. As
explained at the beginning, the FC-PoW Model aims to speed
up transaction times. At this stage, only 3 (three) selected
features are used as inputs to PoW. Pseudocode 4 is used to
test the PoW Method with the selected feature.

1. Initialize variables:

1.1 difficulty = 1

12x=[]

13y2=]]

2. While difficulty <= max_:
2.1 Create a new block with:

2.1.1 'previous_hash': None

2.1.2 'transactions': data_sudah

2.1.3 'nonce": 0
2.2 Append current difficulty to x
2.3 Record start time
2.4 While True:

2.4.1 Concatenate block details into a string

2.4.2 Generate a hash of the string

2.4.3 If hash meets target difficulty:

a) Record end time
b) Append elapsed Time to y2
¢) Break loop

Figure 8 shows the non-linear relationship between
Difficulty and Execution Time. It was observed that the
increase in complexity from level 1 to level 2 resulted in a
significant increase in execution time. However, at levels 3
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and 4, the execution time actually decreased or stabilized,
indicating that an optimization mechanism or process
efficiency was applied. This confirms that with the right
preprocessing approach and algorithms, the system can
maintain performance even when the difficulty level increases.
Thus, selecting an efficient data processing strategy is crucial
in maintaining the stability of computing performance in a
complex system environment.

4.8 PoW-FC PoW comparison

Figure 9 presents a comparison of the execution time with
the difficulty level before and after applying the FC-POW
model. The data displayed shows how the system's
performance has changed significantly after optimization is
carried out through the FC-POW model approach. Before the
implementation of FC-POW, execution times tended to be
higher at almost all difficulty levels, particularly at difficulty
levels 2 and 4, with execution times of 0.7 and 0.65 seconds,
respectively. This shows that the conventional system is
experiencing. A heavy computing load is incurred when
processing more complex transactions, resulting in longer
execution times. The increase in execution time also indicates
inefficiencies in data processing or block validation within
traditional PoW systems. After implementing the FC-PoW
model, the graph shows a significant decrease in execution
time, particularly at difficulty level 1, which drops from 0.25
to 0.02 seconds. This shows that the FC-PoW model can
optimize block processing efficiently, even on simple
transactions. At higher difficulty levels, such as levels 2 and 4,
although the execution time remains relatively high, it remains
lower compared to the previous system (dropping to 0.55 and
0.39, respectively). This decline is an indicator that the FC-
PoW model not only works on low difficulty but also provides
efficiency on complex transaction blocks.

Additionally, this graph indicates that the trend in execution
time after implementing FC-POW has become more stable.
This means that the model effectively mitigates extreme
fluctuations in data processing that are typically caused by
variations in transaction characteristics. This stability is
crucial for industries that rely on speed and consistency in
processing blockchain transactions. Overall, this graph
suggests that the FC-POW model can have a positive impact
on accelerating the transaction validation process in a Proof-
of-Work-based blockchain system. The consistent decrease in
execution time across difficulty levels is evidence that the
feature classification approach before block validation is
effective in filtering through the complexity of the data that
nodes must process. This model has great potential for
widespread implementation in various industrial sectors that
require high computing efficiency and real-time data
processing, such as the manufacturing industry.

4.9 Statistical validation test

Statistical validation is a crucial step in experimental
research to ensure that the results have a solid scientific basis.
Without tests such as standard deviation and confidence
intervals, data interpretation becomes less accurate due to
unmeasured stability [10]. Therefore, this study applies a
comprehensive statistical analysis to ensure the empirical
validity and reproducibility of the experimental results [29].
The following Table 6 presents the statistical validation results
of transaction speed (Speed Transaction) across the four tested



difficulty levels. The mean values indicate the overall
performance trend, while the standard deviation and
confidence interval provide information regarding the stability
and reliability of the results. Presents the results of statistical
validation for the FC-PoW model, focusing on transaction
speed performance across four difficulty levels. The mean
values represent the average execution speed recorded over 30
experimental trials for each level. The low standard deviation

(SD < 0.02) and narrow 95% confidence intervals indicate that
the FC-PoW system exhibits high stability and minimal
variability under different computational loads. Additionally,
the coefficient of variation (CV < 6%) confirms a high degree
of performance consistency, demonstrating that the proposed
model maintains reliable transaction speeds despite increasing
network difficulty, and FC-PoW significantly reduces
execution time by up to 38% across various difficulty levels.
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Table 6. Statistical validation of FC-PoW transaction speed

Model

soe Standard 95% Confidence p-Value (t- .
Dlllifésléllty Model Average (Mean) Deviation (SD) Interval (CI) test) Interpretation

1 PoW 0.26 0.05 0.24-0.28 p <0.01 Significant difference
FC-PoW 0.02 0.01 0.01-0.03

2 PoW 0.70 0.04 0.66 —0.74 p <0.01 Significant difference
FC-PoW 0.55 0.02 0.53-0.57

3 PoW 0.35 0.03 0.33-0.37 p<0.01 Significant difference
FC-PoW 0.35 0.01 0.34-0.36

4 PoW 0.65 0.05 0.61 —0.69 p <0.01 Significant difference
FC-PoW 0.38 0.02 0.36 - 0.40

4.10 Comparison of the blockchain method

After conducting a comparison test of PoW and FC-POW,
the researcher conducted a statistical test to strengthen the
validation of the FC-POW model. The study has thoroughly
validated the statistics through a series of repeated
experimental tests to ensure reliability and consistency of
results. In Table 7, each model was tested in repeated trials at
four different levels of difficulty, and the values presented in
the graph and table are the mean values of all the experiments,
along with statistical analysis in the form of standard deviation
and confidence intervals. In addition, quantitative
comparisons between FC-PoW models and several baseline
models, such as Green-PoW, DAG, and PBFT, were also
carried out systematically to assess the significance of the
resulting performance improvements. With this approach, the
study's results not only graphically reduce latency but are also
supported by a valid statistical justification. The table presents
the results of empirical testing of five different consensus
models, namely PoW, FC-PoW, Green-PoW, DAG, and
PBFT, which were tested at four difficulty levels (1-4) under
controlled experimental conditions. The parameters analyzed
included Mean Latency(s) as an indicator of the average Time
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of transaction completion, followed by Standard Deviation
(SD) and Standard Error (SE), which describe the variation as
well as the standard error rate of the average value.

Furthermore, a 95% Confidence Interval (Lower—Upper) is
included to indicate the estimated limit of average reliability.
At the same Time, Mean Transaction Speed represents the
average speed of transaction execution in units of transactions
per second. In addition, p-value (vs FC-PoW) is used to
measure the significance level of the difference in
performance between each model with FC-PoW as the
baseline, and the Effect Size (Cohen's d/n?) is added to
quantitatively assess the magnitude or strength of the effect of
the difference. The Interpretation section provides a
qualitative summary of the performance of each model based
on the statistical results obtained. The FC-PoW (Feature-
Classified Proof of Work) model is used as the primary
baseline because it is proven to have the highest efficiency,
consistent performance stability, and lowest latency values
across all difficulty levels. Therefore, all p-values presented
represent the results of significant comparisons between the
comparison models against FC-PoW, which is the primary
reference in assessing the relative superiority of each
consensus mechanism, as shown in Table 7.



Table 7. Statistical comparison of consensus mechanism

- Mean SD SE o o p-Value  Effect Size
K(!\I{I\::r?slus D'If_fe'\cllé:ty Latency (Standard (Standard ?Eo(?vecr; ?S;:)eci; 'I\Iflr?;nns:(?t?sg (vs FC-  (Cohen'sd
(s) Deviation) Error) PoW) /%)
PoW 1 0.95 0.08 0.015 0.92 0.98 0.26 0.001 11
PoW 2 0.72 0.07 0.013 0.69 0.75 0.7 0.002 0.98
PoW 3 1.25 0.1 0.018 1.21 1.29 0.35 0 1.32
PoW 4 0.85 0.09 0.016 0.82 0.88 0.65 0.003 1.05
FC-PoW 1 0.62 0.06 0.011 0.6 0.64 0.02 0.00 0.00
FC-PoW 2 0.58 0.05 0.009 0.56 0.6 0.55 0.00 0.00
FC-PoW 3 0.6 0.06 0.011 0.58 0.62 0.35 0.00 0.00-
FC-PoW 4 0.59 0.07 0.013 0.56 0.62 0.38 0.00 0.00
Green-PoW 1 0.8 0.07 0.013 0.77 0.83 0.2 0.01 0.72
Green-PoW 2 0.74 0.06 0.011 0.72 0.76 0.45 0.007 0.85
Green-PoW 3 0.92 0.09 0.016 0.89 0.95 0.32 0.002 1
Green-PoW 4 0.78 0.08 0.015 0.75 0.81 0.41 0.005 0.95
DAG 1 0.7 0.06 0.011 0.68 0.72 0.3 0.02 0.6
DAG 2 0.66 0.05 0.009 0.64 0.68 0.5 0.012 0.68
DAG 3 0.82 0.07 0.013 0.79 0.85 0.33 0.006 0.88
DAG 4 0.73 0.08 0.015 0.7 0.76 0.42 0.01 0.79
PBFT 1 0.78 0.06 0.011 0.76 0.8 0.25 0.015 0.7
PBFT 2 0.71 0.05 0.009 0.69 0.73 0.46 0.008 0.83
PBFT 3 0.86 0.08 0.015 0.83 0.89 0.34 0.004 0.95
PBFT 4 0.77 0.07 0.013 0.74 0.8 0.4 0.006 0.9

This validation approach is designed to ensure that the
reported results are not a single result or experimental
deviation, but rather an average representation of a stable and
consistent data distribution. Thus, each mean latency in the
results table does not represent a single experiment, but rather
is an aggregation result of a series of tests conducted under the
same parameters and conditions. The use of a 95% confidence
interval provides a more accurate picture of the lower and
upper limits of the estimated mean value, thus increasing the
statistical validity of the comparison between models [29, 30].
In addition, the p-value obtained from the comparison test
against the FC-PoW model serves as an indicator of the
significance of the difference in performance between
algorithms, where the p-value < 0.05 indicates that the
differences found are statistically significant and do not occur
randomly.

In addition to these basic statistical parameters, this study
also adds effect size using Cohen's d or 1? (eta squared) metric
to assess the magnitude of the influence of the FC-PoW model
on system performance compared to other baseline models.
This approach is essential because it not only highlights the
statistical significance but also provides context regarding the
practical significance or magnitude of the real impact that the
proposed model has on improving system efficiency. In this
context. Cohen's high value of d (above 0.8) is categorized as
a significant effect, which suggests that the difference in FC-
PoW performance against other models is substantial and
relevant in the context of practical applications to blockchain
systems.

The test results are presented in the form of a statistical table
that includes five consensus models and four difficulty levels
(Difficulty Levels 1-4), resulting in a total of 20 analysis
conditions. Each condition generates mean latency, standard
deviation (SD), and standard error (SE) to illustrate the
stability of the model's performance. In addition, the Mean
Transaction Speed value is also calculated to assess the overall
system throughput efficiency [10]. The results of the analysis
showed that the FC-PoW model consistently recorded the
lowest Mean Latency across the entire difficulty level, ranging
from 0.58 to 0.62 seconds, with minor standard deviations (SD
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between 0.05-0.07). This confirms that FC-PoW is not only
efficient but also stable, as fluctuations between tests remain
within a very narrow range.

In contrast, conventional PoW models exhibit greater
fluctuations and significant performance decreases as the
difficulty level increases. For instance, at Difficulty Level 3,
the latency increases to 1.25 seconds, accompanied by a high
standard deviation (SD = 0.1), indicating system instability in
handling high complexity. Meanwhile, Green-PoW offers
increased energy efficiency, but experiences a trade-off in the
form of a decrease in transaction speed at a higher difficulty
level (Mean Latency of around 0.92 seconds at Level 3). The
DAG model performs well at low difficulty but loses
efficiency at high loads. In contrast, PBFT is relatively stable,
although it has a high overhead that limits its scalability.

To further support the FC-PoW performance advantage
argument, the analysis results are visualized in a graph
illustrating the relationship between Mean Latency and
Difficulty Level across the consensus model. This graph
shows a consistent trend of declining latency in FC-PoW
compared to other models, with performance lines tending to
be flat and stable even as complexity increases. These trends
demonstrate that the feature classification and dynamic
difficulty adjustment approach implemented in FC-PoW plays
a crucial role in maintaining system efficiency without
compromising  execution time stability. Thus, the
improvement in FC-PoW performance is not only statistically
significant but also reflects continued systemic efficiency.

The p-value column on the FC-PoW model in the results
table is marked with a "—" or zero sign because this model
serves as a benchmark baseline. All significance tests were
performed on FC-PoW as the primary reference, so it is
irrelevant to calculate the p-value against itself. This approach
is in accordance with the standard of practice in comparative
analysis, where the proposed model is used as a benchmark to
measure the performance of other models. In addition, taking
into account the narrow confidence interval (Cl) and low
standard deviation (SD), it can be concluded that FC-PoW has
high experimental reliability. The consistency of these results
shows that the model's performance is not only superior under



certain conditions but can also be replicated in a variety of
operational scenarios without experiencing significant
performance degradation. Overall, the results of this extended
statistical analysis provide a strong scientific justification for
the FC-PoW model's performance improvement claims.
Quantitative evidence in the form of significant p-values, tight
confidence intervals, and large effect sizes reinforces the
conclusion that FC-PoW is consistently able to speed up
execution times, improve transaction efficiency, and maintain
the stability of the blockchain system. The statistical validation
approach applied ensures that the results of this study have a
solid empirical basis and are scientifically acceptable in the
context of the development of the modern consensus model.
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Figure 10. Comparison of the average transaction delay time

Figure 10 shows a comparison of the average transaction
delay time (mean latency in seconds) across five blockchain
consensus models — PoW, FC-PoW, Green-PoW, DAG, and
PBFT tested at four difficulty levels (difficulty levels 1-4). In
general, the FC-PoW model consistently exhibits the lowest
latency across all difficulty levels, which signifies its ability to
process transactions more efficiently than other models. In
contrast, the conventional PoOW model exhibits the highest
latency value, particularly at the 3rd difficulty level, due to its
static block validation mechanism that requires high
computing power. The error bar displayed (standard deviation)
confirms the stability and statistical significance.
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Figure 11. Comparison of the mean transaction speed

Reliability of the average value obtained. Figure 11 shows
the comparison of the mean transaction speed (in transactions
per second) of the five consensus mechanisms. PoW, FC-
PoW, Green-PoW, DAG, and PBFT, at four different
difficulty levels. The test results showed that the FC-PoW
model has higher throughput stability and can maintain
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competitive transaction speeds despite increasing difficulty.
This is in contrast to the basic PoW model, which shows large
fluctuations, especially at low difficulty levels. due to its
reliance on random computational processes. The consistency
of FC-PoW performance proves the effectiveness of the
feature classification mechanism and adaptive difficulty
adjustment applied, thereby improving transaction speed as
well as overall network efficiency.

4.11 Discussion

The results show that the application of the FC-PoW model
significantly lowers the transaction execution time, both at low
and high difficulty levels. Before implementation, execution
times tended to be high due to heavy computing loads on
complex transactions. FC-PoW optimizes block processing
through more efficient computational filtering and reduced
block structural complexity, resulting in a lower data
processing load on nodes. The model also improves the
stability of execution times, which is essential for industries
that prioritize the speed and consistency of transaction
processing. In addition, FC-PoW demonstrates good
scalability, with execution time decreasing consistently
despite increased difficulty levels. Although this study used
datasets from one factory, it needs further validation in other
industrial environments. The complexity of these findings and
their potential applications in various industrial sectors, which
require high computing efficiency and real-time data
processing, such as manufacturing, confirm the effectiveness
of FC-PoW in accelerating transaction validation and
systematically filtering out data.

5. CONCLUSIONS

The application of the FC-PoW model shows the potential
to improve the performance of blockchain systems in the
context of the manufacturing industry. By implementing a
feature classification process before block validation, the
model can reduce transaction execution time across different
difficulty levels, demonstrating its ability to filter and segment
transaction complexity and reduce computational burden. In
addition to improving efficiency, FC-PoW also contributes to
the stability of the validation process, which is essential for
manufacturing environments that prioritize consistency and
speed of data processing. However, this study has several
limitations, including assumptions about transaction
complexity that may impact the generalizability of the results.
Potential risks in industrial deployments include scalability
challenges and variations in real transactions.

Characteristics, for further research, it is recommended to
validate models at various industrial facilities, integrate FC-
PoW with real-time systems, and explore further optimization
strategies to improve computing efficiency and reliability.
Overall, FC-PoW represents a promising approach to modern
blockchain consensus, with potential for adoption in various
industry sectors that require high computing efficiency and
real-time transaction processing, while providing further
development and research direction.
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