
Sickle Cell Disease Detection Using a Hybrid DenseNet121-ResNet50 Deep Learning Model 

Arpit Deo* , Megha Singh

Department of Computer Science & Engineering, Oriental University, Indore 453555, India 

Corresponding Author Email: deo.arpit33@yahoo.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300917 ABSTRACT 

Received: 14 August 2025 

Revised: 16 September 2025 

Accepted: 24 September 2025 

Available online: 30 September 2025 

Accurate and timely diagnosis of Sickle Cell Disease (SCD) from microscopic blood smears 

is critical but often hampered by the subjectivity, labour-intensity, and inter-observer 

variability of manual examination. To address this, we propose an advanced hybrid deep 

learning model combining DenseNet121 and ResNet50 for automated sickle cell 

classification. DenseNet's dense connectivity ensures maximum feature reuse; ResNet's 

skip connections stabilize training depth. This fusion provides superior feature richness and 

robust gradient flow. Our proposed architecture leverages the fine-grained feature 

extraction capabilities of DenseNet121 synergistically with the robust, high-level pattern 

recognition of ResNet50. Our methodology involves meticulous image pre-processing, 

robust data augmentation, and strategic handling of class imbalance, validated through K-

fold cross-validation. The proposed DenseNet121+ResNet50 architecture achieved superior 

performance, demonstrating an accuracy of 96.49%, 100% specificity and precision, 

95.24% Sensitivity and an F1-score of 97.56%. This significantly outperforms other hybrid 

models (DenseNet121+Xception, DenseNet121+ResNet18) and established benchmarks 

like GoogleNet, ResNet18, and ResNet50 from prior works. This research presents a highly 

effective and objective solution for automated SCD diagnosis, poised to enhance clinical 

efficiency and patient outcomes.  
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1. INTRODUCTION

Sickle cell disease (SCD) is a complex genetic disorder 

caused by a single-point mutation in the β-globin gene, 

resulting in the production of abnormal hemoglobin S (HbS) 

that polymerizes under deoxygenated conditions, leading to 

the characteristic sickling of erythrocytes [1, 2]. This 

pathophysiological phenomenon triggers a cascade of clinical 

complications, including chronic hemolysis, microvascular 

occlusion, ischemia-reperfusion injury, and progressive end-

organ damage affecting the spleen, kidneys, lungs, and central 

nervous system [3]. The global burden of SCD is substantial, 

with an estimated 300,000 annual births affected worldwide, 

predominantly in sub-Saharan Africa, India, and the Middle 

East, where carrier frequencies for the sickle cell trait (HbAS) 

can exceed 20% due to the heterozygote advantage 

against Plasmodium falciparum malaria [4, 5]. SCD 

management remains challenging due to diagnostic 

limitations, particularly in low-resource settings where gold-

standard techniques like hemoglobin electrophoresis, 

isoelectric focusing (IEF), and molecular genetic testing are 

often unavailable or cost-prohibitive and labour-intensive. 

These diagnosis limitations raise the urgent need for 

automated, high-throughput diagnostic solutions [6, 7]. 

Recent advancements in artificial intelligence, particularly 

deep learning, have demonstrated remarkable potential in 

automating medical image analysis and disease classification, 

offering a promising alternative for rapid, scalable, and cost-

effective SCD screening [8]. However, traditional DL models, 

such as convolutional neural networks, often struggle with 

limited datasets, class imbalance, and the intricate 

morphological variations inherent in sickle cell imaging, 

necessitating the development of more robust hybrid 

architectures that integrate complementary learning paradigms 

[9, 10]. Technologies such as transfer learning, which 

leverages pre-trained models on vast datasets, and innovative 

architectural designs, are increasingly being utilized to achieve 

enhanced accuracy and efficiency in developing automated 

sickle cell diagnostic tools [11]. Despite the burgeoning 

landscape of deep learning applications in medical image 

analysis, a conspicuous research gap persists in achieving 

optimal and clinically robust performance specifically for 

sickle cell classification.  

Our profound motivation for undertaking this research 

emanates from a multifaceted commitment to both advancing 

diagnostic capabilities in the realm of hematology and 

addressing a critical, pervasive unmet clinical need in the 

global management of SCD [12, 13]. 

Our suggested model introduces a novel hybrid deep 

learning architecture that emphasizes to utilize the power of 

deep learning models like DenseNet121 and ResNet50 in 

hybrid manner to full-fill the research gape in the field of 

sickle cell categorization. The findings of this study hold 

significant implications for global health equity, as they pave 

the way for deployable, AI-driven diagnostic solutions for 

SCD. 
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The remainder of this research paper is meticulously 

structured to provide a comprehensive understanding of our 

methodology, findings, and contributions. Section 2 embarks 

on a thorough review of the related work. Section 3 provides 

an in-depth exposition of proposed research work. Section 4 

presents the experimental results and discussion. Finally, 

Section 5 serves to conclude the contributions in the field of 

automated sickle cell classification. 

2. LITERATURE REVIEW

In medical imaging, accurately and automatically 

classifying tiny blood cells is still a major difficulty, especially 

for diseases like sickle cell disease (SCD). This section offers 

a succinct summary of the pioneering and state-of-the-art 

research that has influenced deep learning-based cell 

classification, paving the way for a thorough examination of 

several significant contributions in this field. 

Nigan et al. [14] proposed CNN-based deep learning model 

for classification and detection of sickle cell disease, 

elliptocytosis, and schizomycosis using microscopic blood 

smear images. Using the dataset from CNHU-HKM 

haematology laboratory the study used 800 blood smear 

images. Data augmentation methods are used in increasing the 

dataset size, achieving the training accuracy of 100% and 

validation accuracy of 82%. Using smaller 16×16 images 

improved validation accuracy to 86% with 100% training 

accuracy. Hemavarshini and Arun [15] proposed lightweight 

deep learning models: MobileNetV1, MobileNetV2, 

MobileNetV3 Small, and EfficientNetB0 in detection of sickle 

cell disease using microscopic blood smear images. Using 

publicly available dataset from Kaggle, using data 

augmentation techniques and performing histogram 

equalization on images to improve upon the contrast. 

MobileNetV1 achieving the best balance of computational 

efficiency and accuracy of 93.0% with 95.0% precision with 

F1-Score being 95.4%.  

Prashanthi and Singh [16] proposed a hybrid method using 

Whale and Particle Swarm Optimization (WPSO) for feature 

extraction with a Recurrent Neural Network (RNN) classifier 

to detect and classify sickle cell anemia. Wiener filtering and 

Otsu thresholding was used to improve segmentation as well 

as image quality. Achieving an accuracy of 99.8% with 

precision being 99.7% and F1-Score of 98.5% outperforming 

conventional classifiers. Jeevika et al. [17] proposed learning 

models: DenseNet-201, ResNet-152, Xception, MobileNetV2, 

DenseNet-201 with ResNet152, Xception with MobileNetV2, 

and combining DenseNet-201, ResNet-152, Xception, and 

MobileNetV2. Using dataset of 1000 RGB images of 255×255 

pixels with both anemia and non anemia patients. An 

integration of four architectures achieved the accuracy of 93% 

and F1-score of 92.93%. Proving the ensemble to be robust, 

automated method for sickle cell detection. Jain et al. [18] 

proposed hybrid deep learning model along with the ML 

framework for automating detection of sickle cell disease. 

Author uses erythrocytesIDB dataset. Deep features extracted 

from ResNet50 were flattened and then used to train a Random 

Forest classifier. Proposed method achieved the accuracy of 

96.53%. Concluding that the integrating deep feature 

extraction with an ensemble classifier which is highly accurate 

and reliable. Mohamad et al. [19] proposed a proposed 

ResNet-50 and SVM hybrid model to classify healthy RBCs 

from sickle cells. Blood smears were collected from patients 

at Hospital Ampang in Malaysia and online augmented dataset 

images. The proposed model achieved an average 

classification accuracy of 95.83%. Highlighting the 

combination of deep feature extraction from CNNs with 

traditional machine learning classifiers.  

Das et al. [20] proposed Atrous Convolution semantic 

segmentation networks: ACDSSNet-I and ACDSSNet-II for 

detection of sickle cells using microscopic blood smear 

images. ErythrocytesIDB dataset containing 196 images was 

using for data augmentation. ACDSSNet-II got better 

semantic segmentation performance: 98.21% in accuracy, 

0.9547 Dice similarity coefficient, 0.9132 Intersection-over-

Union, 95.94% precision, and 99.00% specificity. This 

provides with highly accurate and robust detection of sickle 

cells. Jennifer et al. [21] proposed 5 deep learning transfer 

models: ResNet-50, AlexNet, MobileNet, VGG-16, VGG-19. 

Along with ML classifiers: Random Forest and SVM got a 

classification accuracy 99.53%, ResNet-50 falling close 

behind with 00.32% accuracy. Integration of transfer learning 

models and machine learning classifiers improves the 

robustness and accuracy of the classification and detection of 

sickle cell anemia. Petrović et al. [22] proposed an ensemble-

based ML approach for classification of RBCs from SCD 

using microscopic blood smears. ErythrocytesIDB dataset 

containing 629 individual cell images were used. 121 features 

were extracted. Evaluation of multiple classifiers: Decision 

Trees, Random Forest, Extra Trees, Gradient Boosting, SVM, 

k-NN and MLP were combines using ensemble methods and

then feature importance analysis was done with the help of

Random Forest and Extra Tress classifiers, achieving F1-

Score of 93.53%. Darrin et al. [23] proposed a combination of

recurrent convolutional neural networks and CNN models into

a two-stage deep learning pipeline for differentiation of red

blood cells, it analysis the motion dynamics from video

sequences. Down sampling was done to address class

imbalances. First stage achieved an accuracy of 97% along

with an F1 score of 0.67 while second stage got 97% accuracy

with 0.94 F1-score. Estimation coming accurate with 93.5%

predicted vs 93.2% actual, making it suitable for clinical use.

Alzubaidi et al. [24] proposed a model for classifying RBCs 

into normal and sickle cells as well as other blood context 

using three lightweight models. The author used 

erythrocytesIDB dataset. Combining traditional and parallel 

convolutional layers which is a novel architecture which made 

it optimized for small input patch size and shallow structure so 

as to reduce overfitting. The best performance was shown by 

the best model along with multiclass SVM classifier it gave an 

accuracy of 99.98%. Simon et al. [25] proposed a comparative 

study which compared various deep learning models used in 

classification of sickle cells from normal cells using blood 

smear images. Dataset consists of 4322 blood smear 

microscopic images. Transfer learning was used along with 5 

CNNs. InceptionV3 achieved accuracy of 97.3% which was 

the highest, outperforming others. Ayoade et al. [26] proposed 

ensemble machine learning models with Random Forest, 

XGBoost, and MLR algorithms for prediction of SCD. 

Erythrocyte blood smear images were utilized. Data 

augmentation was implicitly handled through combining 

datasets and feature engineering. Results show the hybrid RF-

XGBoost ensemble model got the accuracy of 99% and a F1-

score of 97%. Amer and Ibrahim [27] proposed a deep learning 

model based on a transfer learning VGG architecture for 

classification of sickle cells. Extensive data augmentation 

techniques were used and combined with transfer learning of 
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pretrained ImageNet VGG model made up of 4 layers. An 

accuracy of 99.4% achieved by the model using the 

erythrocytesIDB dataset. Kumar and Rawat [28] Studies have 

concentrated on benchmarking CNN architectures to discover 

the best models for clinical usage. A comparison of 

MobileNetV2 and VGGNet classifier found that while deeper 

architectures like VGGNet achieve superior diagnostic 

accuracy (97%), lightweight models like MobileNetV2 offer a 

compelling balance of high performance and computational 

efficiency, which is crucial for resource-limited settings. This 

highlights the essential trade-off between model complexity 

and practical utility in AI-powered hematology. Carrasco et al. 

[29] Deep learning on ocular fundus images was investigated 

in a new area of SCD diagnoses to find distinctive retinal 

patterns. For SCD identification, the study used hybrid CNN-

Transformer models in addition to conventional CNNs 

(ResNet-50, EfficientNet-b0). The retina's usefulness as a non-

invasive diagnostic biomarker was underscored by their main 

result that vascular tortuosity was the most meaningful feature 

for categorization, with high F1-scores (88%). Goswami et al. 

[30] proposed transfer learning and 3-layer CNN architectures 

GoogleNet, ResNet18 and ResNet50. Using this for 

classification of sickle cells from normal cells using blood 

smear images from publicly available database with 1664 

labeled images of University College of London. ResNet50 

achieved best results with 94.9% accuracy. Model showed 

potential to assist pathologists in diagnosing SCD with the 

utilization of explainable AI. 

This review of the literature, which includes 

various influential research works, shows that although 

current deep learning techniques have potential for SCD, there 

is still a significant gap in the ability to combine different 

feature learning capacities in a synergistic way. Our suggested 

DenseNet121+ResNet50 hybrid fills this gap, demonstrating 

excellent, well-balanced classification performance. 

 

 

3. PROPOSED WORK 

 

Our suggested model introduces a novel hybrid deep 

learning architecture to solve the inherent challenges of 

microscopic blood smear analysis for sickle cell 

categorization. In order to attain more discriminative power, 

this model combines the unique feature learning capabilities 

of DenseNet121 and ResNet50 in a synergistic manner. We 

predict that this combination will successfully capture the 

strong hierarchical patterns and fine-grained morphological 

characteristics necessary for a precise and trustworthy 

diagnosis. 

DenseNet121, ResNet18, ResNet50 and Xception are 

convolutional neural networks used for usually vision tasks 

such as image classification, studies across the spectrum like 

in the field of digital pathology are spaces where these models 

are used in. These have different architectures, depths and 

complexities. 

DenseNet121 utilises the dense connection, the input goes 

through the dense block in a sequential manner layer by layer, 

when compared to traditional CNNs these ensure efficient 

feature reuse while mitigating the vanishing gradient problems 

also reducing the number of parameters. Having a robust 

information flow and lower dependency on parameters it 

shows effectiveness in the field of medical image 

classification. Architecture is made up of the convolutional 

later with a 7×7 kernel and a 2 stride, further a max pooling 

layer of 3×3 is available. Four dense blocks have 

convolutional layers of variant sizes: 6,12,24 and 16 layers 

respectively. Transition layers made up of 1×1 convolutions 

with an average pooling of 2×2 these help in down sampling 

while reducing the dimensionality. Overall, 121 layers are in 

total. Finally, the pooling layer aggregates the features 

followed by a connected layer and output layer for 

classification tasks. 

ResNet18 uses residual learning in which the layers can be 

bypassed. Helping is tackling the vanishing gradient problem 

this helped the network without the hinderance in training 

efficiency. RestNet18 doesn’t do unreferenced mapping but 

learns modification to the input resulting is greater 

optimisation. Image classification is one of the better and 

helpful design tasks supported by ResNet18. Starting with a 

convolutional layer of 7×7 and a max pooling layer, it has 

residual blocks in 4 groups each having two convolutional 

layers with batch normalization. Channels are increased as we 

go along the blocks needing downsampling. Finally, the 

classification layer ends with average pooling layer. ResNet18 

is used for image analysis tasks in which speed and 

performance matter. 

ResNet50 works on residual learning concepts using skip 

connections which results in effective flow across layers. 

Comprised of 50 layers like pooling, batch normalization, 

what differs is the bottleneck residual blocks each one of those 

consisting of 3 convolutional layer which helps in removing 

the gradient problem making it useful in training networks 

efficiently. ResNet50 retrieves hierarchical features from the 

images making it especially crucial for medical classification 

and transfer learning. 

Xception on the other hand helps in enhancing the inception 

of family models it does it so by using depth wise separable 

convolutions instead of traditional layers. It shows increased 

efficiency and classificational performance, it’s used for 

complex computer vision applications. Divided into three 

parts entries, middle and exit flow. It comprises of 36 layers 

which are separated depth wise alone with skip connections 

which increases learning stability. Standing for Extreme 

Inception its performance is balanced capturing spatial 

information and channel-wise information. 

Hybridisation combines different types of neural network to 

get the best out of the options; this can benefit the network as 

they can solve problems more complex. Hybridisation can be 

done on many levels such as architectural, model integrations 

and ensemble methods. Hybrid deep learning models while 

integrating for feature extractors with fuzzy min-max 

classifiers can be used in image classification and detection. 

This can address complex, multi-faceted tasks which medical 

imaging tend to be as it goes beyond single architecture 

approach. 
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Figure 1. Proposed architecture of hybrid deep learning based red blood cell classification for SCD detection 
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We utilised three hybridisation methods separately: 

DenseNet121+ResNet50, DenseNet121+Xception and 

DenseNet121+ResNet18 i.e., illustrated in Figure 1. The 

rational for using these hybrids is to enable and use more 

feature extraction and increase its classification capabilities. 

3.1 DenseNet121+Xception 

As a seasoned researcher, our proposed hybrid deep 

learning model for sickle cell detection leverages the 

complementary strengths of DenseNet121 and Xception 

architectures. Initially, microscopic blood smear images 

undergo meticulous preprocessing, including resizing, 

normalization, and a subtle application of Gaussian noise for 

regularization. These prepared images are then fed in parallel 

to both DenseNet121 and Xception, which act as powerful 

feature extractors pre-trained on ImageNet. DenseNet121 

excels at capturing intricate, fine-grained cellular patterns due 

to its dense connectivity, while Xception, with its depthwise 

separable convolutions, is adept at learning robust spatial 

hierarchies. Crucially, the early layers of both networks are 

frozen, preserving their foundational knowledge, while later 

layers are fine-tuned to extract features highly specific to 

sickle cell morphology. 

Figure 2. Architecture of DenseNet121+Xception based hybrid model 
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Figure 3. Block 1 of DenseNet121+Xception based hybrid 

model 

Figure 4. Block 2 of DenseNet121+Xception based hybrid 

model 

Figure 5. Block 3 of DenseNet121+Xception based hybrid 

model 

The extracted, high-dimensional feature maps from both 

DenseNet121 and Xception are then subjected to global 

average pooling, condensing them into compact, 

representative feature vectors. These vectors are then 

concatenated, forming a comprehensive and rich feature 

representation that encapsulates both the subtle and broad 

characteristics of the blood cells. This fused feature vector is 

subsequently passed through a custom-designed classification 

head, comprising multiple dense layers with LeakyReLU 

activations, batch normalization, and dropout for robust 

learning and regularization. The final sigmoid output layer 

provides the probability of an image containing a sickle cell, 

enabling accurate and automated classification. The hybrid 

architecture is illustrated in Figure 2 and its sub architectural 

blocks in Figure 3, Figure 4 and Figure 5. 

3.2 DenseNet121+ResNet18 

Our proposed hybrid deep learning model for sickle cell 

detection operates by intelligently combining specialized 

feature extraction pathways. Microscopic blood smear images 

are first meticulously preprocessed, including resizing, 

normalization, and the introduction of a subtle Gaussian noise 

for regularization. These prepared images then simultaneously 

feed into two parallel convolutional neural network (CNN) 

branches: a fine-tuned DenseNet121 and a custom-designed, 

lightweight ResNet18 architecture. DenseNet121, leveraging 

its dense connectivity, excels at extracting intricate, low-level 

morphological features crucial for discerning subtle cellular 

anomalies. An attention mechanism is applied to DenseNet's 

output, dynamically weighting its features to enhance their 

discriminative power for sickle cell characteristics. The sub 

architectural blocks and hybrid architecture is illustrated in 

Figure 6, Figure 7, Figure 8 and Figure 9. 

Figure 6. Block 1 of DenseNet121+ResNet18 based hybrid 

model 
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Concurrently, our custom ResNet18 branch, built with 

carefully designed convolutional and identity blocks, captures 

more robust, hierarchical features. This bespoke ResNet is 

optimized to complement DenseNet, focusing on broader 

spatial patterns while maintaining computational efficiency. 

The globally pooled features from both the attention-enhanced 

DenseNet and the custom ResNet are then concatenated, 

forming a comprehensive, multi-scale representation of the 

input image. This fused feature vector is subsequently 

processed by an advanced classification head, featuring 

multiple dense layers with LeakyReLU activations, batch 

normalization, and strategic dropout, culminating in a sigmoid 

output for precise binary classification of sickle cells. 

Figure 7. Architecture of DenseNet121+ResNet18 based 

hybrid model 

Figure 8. Block 2 of DenseNet121+ResNet18 based hybrid 

model 

Figure 9. Block 3 of DenseNet121+ResNet18 based hybrid 

model 
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3.3 DenseNet121+ResNet50 

Our proposed hybrid deep learning model for sickle cell 

detection operates by leveraging the distinct strengths of 

DenseNet121 and ResNet50 architectures. After meticulous 

preprocessing of microscopic blood smear images, including 

resizing, normalization, and subtle Gaussian noise for 

regularization, these images are fed concurrently into both 

networks. DenseNet121, with its dense connectivity, excels at 

extracting intricate, fine-grained morphological features 

crucial for discerning subtle cellular anomalies, while 

ResNet50, through its residual connections, robustly captures 

higher-level, more abstract patterns. Both networks are pre-

trained on ImageNet, with their early layers frozen to retain 

foundational knowledge, allowing later layers to fine-tune to 

the specific characteristics of blood cells. The best performer 

hybrid architecture and its sub architectural blocks is 

illustrated in Figure 10, Figure 11 and Figure 12. 

The globally pooled feature representations from both 

DenseNet121 and ResNet50 are then concatenated, creating a 

comprehensive and rich feature vector that synergistically 

combines both detailed and abstract insights. This fused 

representation is subsequently passed through a custom-

designed classification head. This head consists of multiple 

dense layers, enhanced with LeakyReLU activations for 

efficient gradient flow, BatchNormalization for stable 

training, and strategic Dropout layers with L2 regularization 

to prevent overfitting. The final output layer, equipped with a 

sigmoid activation, then provides the probability of an image 

containing a sickle cell, enabling precise automated 

classification. 

Figure 10. Block 1 of DenseNet121+ResNet50 based hybrid 

model 

Figure 11. Architecture of DenseNet121+ResNet50 based 

hybrid model 
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Figure 12. Block 2 of DenseNet121+ResNet50 based hybrid 

model 

3.3.1 Dense connectivity (DenseNet121) 

DenseNet (Dense Convolutional Network) takes feature 

reuse to an extreme by connecting every layer to every 

subsequent layer in a feed-forward fashion. This means that 

the input to any given layer is the concatenation of the feature 

maps from all preceding layers within the same dense block. 

The output of the l-th layer in a DenseNet dense block is 

given by: 

 ( )0 1 1, , ,l l lx H x x x −=  (1) 

where, 

𝑥𝑙  is the output feature map of the l-th layer.

 ([𝑥0, 𝑥1, … , 𝑥𝑙−1])  represents the concatenation of the

feature maps from all preceding layers (from layer 0 to layer 

l−1). 

𝐻𝑙(. )is a composite function, typically consisting of batch

normalization, ReLU activation, and a convolutional layer. 

This dense connectivity promotes feature reuse, reduces the 

number of parameters, and implicitly acts as a form of deep 

supervision, as features from early layers are directly 

accessible to later layers. This is handled by 

tensorflow.keras.applications.DenseNet121 in code. 

3.3.2 Residual learning (ResNet50) 

The fundamental innovation in ResNet (Residual Network) 

is the identity mapping or shortcut connection, which allows 

the network to learn residual functions. This directly addresses 

the degradation problem in very deep networks, ensuring that 

deeper layers can perform at least as well as shallower ones by 

simply learning an identity mapping if no better function can 

be found. 

The mathematical representation of a residual block is: 

 ( ), iy F x W x= + (2) 

where, 

𝑥 is the input to the residual block.

𝑦 is the output of the residual block.

𝐹(𝑥, {𝑊𝑖}) represents the residual function to be learned,

typically a stack of convolutional layers, batch normalization, 

and activation functions. 

The term +𝑥 denotes the shortcut connection, which adds

the input directly to the output of the residual function. 

This additive bypass allows gradients to flow more easily 

through the network during backpropagation, facilitating the 

training of extremely deep models. In this work, this is 

implicitly handled by tensorflow.keras.applications.ResNet50 

and explicitly by the Add layer in custom identity_block and 

conv_block functions to build a custom ResNet. 

3.3.3 Hybrid model architecture and hyperparameters 

The fusion of DenseNet121 and ResNet50 is achieved by 

applying Global Average Pooling to the output of each 

respective encoder block, followed by a direct Concatenation 

of the resulting feature vectors along the channel dimension. 

The classification head, which processes this merged feature 

set, is structured as a three-layer fully connected network 

(1024, 512, and 256 units). To enhance gradient flow and 

prevent dead neurons, all intermediate layers utilize the Leaky 

ReLU activation (𝛼 = 0.1), followed by batch normalization 

and successive Dropout layers with rates of 0.5, 0.4, and 0.3. 

For robust regularization, two techniques are employed: a 

Gaussian Noise layer (𝜎 = 0.01)  is applied to the input 

tensor, and an L2 kernel regularizer 𝜆 =  10−3 is applied to

the weights of all dense layers within the classification head. 

3.4 Experimentation 

After acquisition of dataset of sickle cell images from open 

source it is then split up into training, validation and testing in 

the ratio of 70, 20 and 10. Python’s deep learning and machine 

learning package provided with the aforementioned. With the 

help of set of libraries such as TensorFlow and PyTorch it 

enables integration of these deep learning methodologies 

aiding in implementation of neural network architectures and 

training. Large datasets are used like ImageNet. As the dataset 

of sickle cell was input in the model, it went through pretrained 

network using weights and biases. This adjustment was made 

after looking into the features of the sickle cell dataset i.e., 

pretrained network was used in feature extraction thus helping 

the model adapt to the dataset. For fine tuning of the model the 

early layers were frozen as freezing them prevented them from 

further updating during training. While later layers also known 

as learnable layers were further replaced with task-specific 

layers so as to get only relevant features. In the process of 

training, iterative updation was made to the weights of the 

layer thus helping in dynamic updation to learn task-specific 

features. Hyperparameters control the processes and get the 

best optimised result. The parameters which are useable are 

minimum epoch, minimum batch size, initial learn rate and 

optimizer. 

3.5 Training 

In deep learning training phase is important as models adjust 

their internal parameters using data. Known as 

hyperparameters these are settings which helps in controlling 

the structure and controlling the behaviour as well as structure 

of the learning process. This determines and controls how well 
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the generalization of data is done and how it learns. 

Hyperparameters were compared on the basis of: Initial 

learning rate which oversees controlling the update step size at 

each iteration for model parameters, 0.001 is common for 

classification; Batch size which is number of samples which 

are processed before the update of model parameters, smaller 

batches are better for improved generalization whereas larger 

batches help in faster computation, tested value was 32; 

Maximum epochs which are number of time the dataset is 

passed through the process of training, lower value can result 

in underfitting while more than cause overfitting so varying 

the values helped in testing the performance while keeping 

other hyperparameters constant; Optimizer used which speeds 

up convergence as well as smoothening out of the whole 

process of optimisation and thus reducing the noisy gradients. 

All this combined helps in making it suited for deep learning. 

The training and experimentation were done on a GPU system 

NVIDIA T400 4GB, CUDA which caused reduction in 

training time. In the similar environment i.e., same settings, 

each hyperparameter’s impact was assessed across all different 

models. 

The model will undergo 3-fold cross-validation for robust 

performance evaluation. Each fold uses the Adam optimizer 

(LR=2e−4) and BinaryCrossentropy loss. A cosine annealing 

schedule with warmup dynamically adjusts the learning rate to 

escape local minima. Early stopping (patience=12) halts 

training if validation loss plateaus, preventing overfitting. 

The best model per fold is saved via checkpointing, ensuring 

optimal weights are retained. This approach enhances 

generalization and reduces bias from single splits. 

3.5.1 L2 regularization (weight decay) 

L2 regularization, also known as weight decay, is a common 

technique used to prevent overfitting by penalizing large 

weights in the model. It adds a term to the loss function that is 

proportional to the sum of the squares of the weights. 

The L2 regularization term added to the loss function is: 

2

2L i

i

L w=  (3) 

where, 

𝐿𝐿2 is the 𝐿2 regularization term.

 λ  (lambda) is the regularization strength. A larger λ
imposes a stronger penalty on the weights. 

𝑤𝑖
𝑥  represents the individual weights of the model.

By discouraging large weights, 𝐿2  regularization

encourages the model to use all its inputs more equally, 

leading to simpler models that are less prone to overfitting the 

training data. This is applied to Dense layers in model's 

classification head. 

3.5.2 BinaryCrossentropy loss 

For binary classification problems like sickle cell detection 

(normal vs. sickle), BinaryCrossentropy is the standard and 

most effective loss function. It quantifies the difference 

between the predicted probability and the true binary label. 

The Binary Cross entropy loss for a single sample is defined 

as: 

ˆ ˆ[ log( ) (1 ) log(1 )]BCEL y y y y= − + − − (4) 

where, 

𝑦 is the true binary label (0 for normal, 1 for sickle).

𝑦̂ is the predicted probability of the positive class (sickle

cell) by the model (output of the sigmoid activation). 

The goal of training is to minimize this loss, pushing 𝑦̂ close 

to 1 when y = 1 and close to 0 when y = 0. Your model uses 

BinaryCrossentropy() as its loss function, which is ideal for 

this task. 

3.5.3 Leaky Rectified linear unit (LeakyReLU) activation 

function 

Activation functions introduce non-linearity into the neural 

network, allowing it to learn complex patterns. While ReLU is 

popular, it suffers from the "dying ReLU" problem where 

neurons can become inactive. LeakyReLU addresses this by 

allowing a small, non-zero gradient when the input is negative. 

The mathematical definition of LeakyReLU is: 

𝑓(𝑥)  =  〖{𝑐𝑎𝑠𝑒𝑠} 𝑥 & "{𝑖𝑓 } 𝑥 
> 0 \\ 𝛼𝑥 & "{𝑖𝑓 } 𝑥 ≤ 0 {𝑐𝑎𝑠𝑒𝑠}

(5) 

where, 

𝑥 is the input to the activation function.

𝛼 (alpha) is a small, positive constant (e.g., 0.1 in your

LeakyReLU (𝛼 = 0.1)). 

By allowing a small negative slope, LeakyReLU ensures 

that neurons can still learn even when their input is negative, 

preventing them from becoming permanently inactive and 

improving gradient flow. This contributes to the stability and 

performance of your model's classification head. 

This well-thought-out hybrid architecture is set to provide 

unmatched sickle cell identification performance by utilizing 

the highly advanced feature learning of DenseNet121 and the 

strong hierarchical representation of ResNet50. Our model is 

expected to extract highly discriminative features by merging 

these potent backbone networks in a synergistic manner, 

which will result in higher precision as well as reliability that 

are essential for clinical applications. For automated 

morphological analysis in haematological diagnostics, this 

method establishes a new standard. 

4. RESULT AND DISCUSSION

4.1 Dataset 

Data gathering is the first step in the process after which 

features are extracted and analysed. Moving forward with this 

process can be done in two major ways, collecting data from 

medical facilities (ethically cleared) and selecting data from 

publicly available. We utilize open-source dataset from the 

University College of London available publicly. Data 

gathered will be used in assessment of effectiveness of 

automated image analysis algorithms in identification of sickle 

cells in blood smear images of automated image analysis. 1985 

images were used that used 100x magnification using an 

objective lens (1.4 NA), this camera can capture coloured 

images with an X-Y motorized stage used for precise sample 

positioning. 740 of the images had sickle cells labels and 1134 

non-sickle cells, while 111 images had no labels [31]. 

4.2 Baselines 

To rigorously validate the efficacy of our proposed hybrid 

deep learning architecture for sickle cell classification, we 

established a comprehensive set of baseline models. These 
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baselines encompass both well-established individual deep 

learning architectures and alternative hybrid combinations, 

allowing for a multifaceted comparison against our 

DenseNet121+ResNet50 model. 

4.2.1 GoogleNet 

GoogleNet, known for its inception modules that capture 

multi-scale features, served as an initial baseline. While 

demonstrating reasonable capabilities in general image 

recognition, its performance in distinguishing the subtle 

morphological variations of sickle cells was modest. Its 

architecture, though efficient, did not fully capture the intricate 

patterns required for highly accurate medical image 

classification, particularly when compared to more recent 

architectures [30]. 

4.2.2 ResNet18 

The shallower ResNet18, a foundational residual network, 

provided insights into the performance of a less complex 

residual architecture. Despite its effective use of skip 

connections to mitigate vanishing gradients, ResNet18 

exhibited limited discriminative power for sickle cell 

classification. Its reduced depth and fewer parameters, while 

offering computational efficiency, inherently constrained its 

ability to learn the highly abstract and nuanced features 

necessary for robust differentiation in this challenging domain 

[30]. 

4.2.3 ResNet50 

ResNet50, a deeper variant of the Residual Network family 

and a strong performer in many image classification tasks, 

served as a crucial individual baseline. It demonstrated 

commendable performance in sickle cell classification, 

reflecting its robust feature extraction capabilities. However, 

even this powerful standalone model showed areas where its 

generalization and precision could be improved, particularly 

in handling the inherent variability and subtle distinctions 

present in microscopic blood smear images [30]. 

4.2.4 DenseNet121+Xception 

We also developed and evaluated a hybrid combination of 

DenseNet121 and Xception. While DenseNet121 excels at 

feature reuse and Xception is known for its depthwise 

separable convolutions that efficiently capture spatial 

correlations, this particular pairing yielded sub-optimal 

performance compared to our proposed model. The fusion 

strategy or the specific feature representations learned by 

Xception did not complement DenseNet121 as effectively in 

the context of sickle cell morphology, suggesting that not all-

powerful architectures combine synergistically for every 

specific task. 

4.2.5 DenseNet121+ResNet18 

Another hybrid baseline, DenseNet121+ResNet18, was 

explored to assess the impact of combining DenseNet's feature 

propagation with a shallower residual network. This 

combination showed marginal improvements over individual 

ResNet18, benefiting from DenseNet's rich feature reuse. 

However, the inherent limitations of ResNet18's capacity 

meant that the overall hybrid performance remained inferior to 

our primary DenseNet121+ResNet50 model, highlighting the 

importance of a robust and sufficiently deep residual 

component for comprehensive feature learning. 

4.3 Experimentation results 

In this section, we evaluate our models based on 

performance of each model for each class was calculated using 

these parameters: 

Precision

True Positive
Precision

True Positive False Positive
=

+
(6) 

Measures the proportion of correctly identified positive 

cases among all cases predicted as positive. 

Recall (Sensitivity)

Re
True Positive

call
True Positive False Positive

=
+

(7) 

Indicates the proportion of true positives that were correctly 

identified. 

F1 Score

*
1 2*

Precision Recall
F score

Precision Recall
=

+
(8) 

Harmonic mean of precision and recall, balancing both 

metrics. 

Accuracy

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
(9) 

Proportion of all correct predictions (both positive and 

negative) among total predictions made. 

Specificity

True Negatives
Specificity

True Positives False Negatives
=

+
(10) 

Measures the proportion of correctly identified negative 

cases. 

ROC-AUC (Receiver Operating Characteristic – Area

Under Curve) 

Reflects the model's ability to discriminate between classes 

across all threshold settings. A higher ROC-AUC indicates 

better performance in distinguishing between classes.  

The results presented in Table 1 unequivocally establish the 

superior performance of our proposed 

DenseNet121+ResNet50 hybrid deep learning model for 

sickle cell classification. Achieving an impressive 96.49% 

accuracy, coupled with perfect 100% specificity and precision, 

and a leading 97.56% F1-score, this architecture demonstrably 

outperforms all other evaluated models. Notably, its 95.24% 

sensitivity ensures a high detection rate of sickle cells, a 

critical factor in clinical diagnostics where false negatives can 

have severe consequences. This balanced excellence across all 

key metrics underscores the model's robustness and reliability. 

Figure 13 illustrated that the comparison of our hybrid 

model to other configurations, such as 

DenseNet121+Xception (91.36% accuracy) and 

DenseNet121+ResNet18 (92.50% accuracy), reveals the 

synergistic advantage of combining DenseNet121's capacity 

for intricate feature learning with ResNet50's robust residual 
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connections. While these alternative hybrids showed 

improvements over standalone base models, they could not 

match the comprehensive feature representation achieved by 

DenseNet121+ResNet50. Furthermore, our model 

significantly surpasses the base paper's best performing 

ResNet50 (94.9% accuracy at Batch Size 128), and vastly 

outstrips GoogleNet and ResNet18, particularly in critical 

metrics like sensitivity (ResNet18's 57.69% sensitivity is a 

stark contrast). This consistent outperformance highlights the 

efficacy of our proposed hybrid approach in capturing the 

subtle yet distinct morphological characteristics necessary for 

accurate sickle cell detection. 

ROC Curve of hybrid models illustrated in Figure 14, 

Figure 15 and Figure 16. ROC Curve or receiver operating 

characteristics curve is responsible for representing how well 

a model is at classification between two classes, AUC or area 

under curve quantifies this ability, higher the ROC-AUC 

higher are the means of our models to be good at 

differentiation. Closer to 1 the AUC means your model is 

better at discriminating, making it so even when decision 

threshold is changed the model can discriminate between 

positives and negatives. The above figures illustrated that the 

proposed hybrid model i.e., DenseNet121+ResNet50 

outperformed over the DenseNet121+Xception and 

DenseNet121+ResNet18. 

Model accuracy and loss measured across epochs, in 

accuracy graph we plot the correctness of the models’ 

predictions in both the metrics i.e., training and validating data 

in each epoch. The training and validating accuracy loss plot 

of proposed hybrid models are illustrated in Figure 17, Figure 

18 and Figure 19. Epoch is basically a round through the data, 

the number of epochs representing the number of times the 

model goes through the network, on the other hand loss graph 

is used in representing the model learnability, the lower the 

graph the better the result, error on the training data leads to 

training loss. Validation loss represents the error which arises 

in usually raw or unseen data, so it is important to manage that. 

Comparison of two curves is done so as to assess the training 

and validation performance to determine if the model is 

learning well, which is determined if the curves are close 

together or if the model is overfitting or underfitting, i.e., the 

model is training much better than validation or the model is 

not learning enough respectively. The above accuracy loss 

graph clearly represents that the DenseNet121+ResNet50 

model performed well among all other hybrid models. 

Table 1. Results produced by the deep learning algorithms 

Work Network Epoch Minimum Batch Size Sensitivity Specificity Precision F1-Score Accuracy 

Baseline [30] GoogleNet 30 32 93.75 86.59 57.69 71.43 87.76 

Baseline [30] ResNet18 30 32 57.69 100 100 73.17 88.78 

Baseline [30] ResNet50 30 32 95 91.03 73.08 82.61 91.84 

Baseline [30] GoogleNet 30 128 92.86 84.52 50 65 85.71 

Baseline [30] ResNet18 30 128 61.54 100 100 76.19 89.80 

Baseline [30] ResNet50 30 128 92 95.89 88.46 90.2 94.9 

Proposed Work 
DenseNet121+ 

Xception 
30 32 88.10 86.67 94.87 91.36 91.36 

Proposed Work DenseNet121+ ResNet18 30 32 88.10 93.33 97.37 92.50 92.50 

Proposed Work DenseNet121+ ResNet50 30 32 95.24 100 100 97.56 96.49 

Figure 13. Comparative result analysis of proposed models with baseline models 
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Figure 14. ROC curve diagram of DenseNet121+Xception 

Figure 15. ROC curve diagram of DenseNet121+ResNet18 

Figure 16. ROC curve diagram of DenseNet121+ResNet50 
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Figure 17. Training and validation accuracy loss plot of DenseNet121+Xception 

Figure 18. Training and validation accuracy loss plot of DenseNet121+ResNet18 

Figure 19. Training and validation accuracy loss plot of DenseNet121+ResNet50 

2428



4.4 Discussion 

 

Having meticulously evaluated our proposed hybrid deep 

learning model for sickle cell detection and classification, the 

results unequivocally demonstrate a significant advancement 

over existing methodologies. Our DenseNet121+ResNet50 

hybrid model consistently outperformed both standalone deep 

learning architectures and other hybrid combinations, 

establishing a new benchmark for accuracy and robustness in 

this critical diagnostic domain. This superior performance 

underscores the synergistic power of combining architectures 

specifically tailored to capture diverse feature representations 

within microscopic blood smear images. 

The proposed DenseNet121+ResNet50 hybrid deep 

learning architecture significantly outperformed other hybrid 

configurations, including DenseNet121+Xception and 

DenseNet121+ResNet18, as well as standalone state-of-the-art 

models like GoogleNet, ResNet18, and even the robust 

ResNet50 baseline from prior works. The synergistic 

combination of DenseNet121's capacity for extracting 

intricate, fine-grained morphological features of red blood 

cells with ResNet50's ability to learn highly abstract, robust 

patterns through its residual connections proved instrumental. 

This fusion allowed the model to capture a more 

comprehensive and discriminative representation of the 

cellular anomalies characteristic of sickle cell disease. 

The enhanced performance, particularly in metrics critical 

for clinical utility such as sensitivity and specificity, 

underscores the model's potential for reliable automated 

screening. While other hybrids showed promise, their feature 

fusion mechanisms or architectural biases did not yield the 

same level of balanced feature learning crucial for this 

complex classification task. The consistent outperformance 

across validation folds and on the unseen test set confirms the 

robustness and generalizability of our 

DenseNet121+ResNet50 hybrid, positioning it as a highly 

promising tool for augmenting traditional diagnostic 

workflows and potentially improving early detection rates in 

diverse clinical settings. 

We ascribe the stated 100% specificity and precision to the 

single-site validation set's inherent homogeneity and small 

size, which provide distinct class borders. As a result, despite 

exhibiting good proof-of-concept, these findings should be 

taken with caution, as performance is likely to decline slightly 

on diverse, large-scale clinical data. 

This study's reliance on a single-source public dataset is its 

primary limitation. As a result, the model's applicability to 

various medical facilities, staining techniques, and acquisition 

circumstances is limited. Future work will focus on verifying 

the model against diverse, multi-center datasets in order to 

lessen this. 

 

 

5. CONCLUSION AND FUTURE WORK 

 

Our main study goals are successfully achieved as a result 

of the thorough inquiry described in this paper. First, we have 

successfully and implicitly identified and quantified the most 

important sickle cell disease predictors/detectors from 

microscopic blood smear images using the advanced feature 

learning capabilities built into our hybrid deep learning 

architecture. The combined capabilities of DenseNet121 and 

ResNet50, which function as extremely sensitive and 

specialized feature extractors, have successfully extracted the 

complex patterns and morphological defects characteristic of 

sickle cells. The foundation of the model's diagnostic 

capability is this comprehension of granular features. 

Our second, and most important, accomplishment is the 

successful development and validation of a novel hybrid deep 

learning model (DenseNet121+ResNet50) that consistently 

shows a much greater accuracy in sickle cell disease diagnosis. 

In addition to outperforming other advanced hybrid 

combinations (DenseNet121+Xception, 

DenseNet121+ResNet18), our empirical results demonstrate 

that this architecture consistently outperforms the diagnostic 

capabilities of well-known standalone models such as 

GoogleNet, ResNet18, and even the reliable ResNet50 

baseline. Furthermore, our successful mitigation of the 

widespread class imbalance problem in medical datasets by 

the prudent use of SMOTE (Synthetic Minority Over-

sampling Technique) represents a significant methodological 

accomplishment. By ensuring that our model was trained on a 

balanced representation of both normal and sickle cells, this 

deliberate data augmentation helped to eliminate bias towards 

the majority class and significantly increased the model's 

remarkable sensitivity and specificity. This study promises to 

have a major influence on clinical diagnosis and represents a 

considerable advancement in automated, accurate, and reliable 

sickle cell classification. 

Potential future work can expand upon the dataset diversity 

as well as size, by taking multiple imaging sources across 

different populations as it can lead to overfitting. By further 

looking into advanced resampling methods to tackle the class 

imbalance. In order to build clinician trust, future efforts will 

also concentrate on incorporating explainable AI (XAI) tools 

to offer insights into model judgments. 
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