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Accurate and timely diagnosis of Sickle Cell Disease (SCD) from microscopic blood smears
is critical but often hampered by the subjectivity, labour-intensity, and inter-observer
variability of manual examination. To address this, we propose an advanced hybrid deep
learning model combining DenseNetl21 and ResNet50 for automated sickle cell
classification. DenseNet's dense connectivity ensures maximum feature reuse; ResNet's
skip connections stabilize training depth. This fusion provides superior feature richness and
robust gradient flow. Our proposed architecture leverages the fine-grained feature
extraction capabilities of DenseNet121 synergistically with the robust, high-level pattern
recognition of ResNet50. Our methodology involves meticulous image pre-processing,
robust data augmentation, and strategic handling of class imbalance, validated through K-
fold cross-validation. The proposed DenseNet121+ResNet50 architecture achieved superior
performance, demonstrating an accuracy of 96.49%, 100% specificity and precision,
95.24% Sensitivity and an F1-score of 97.56%. This significantly outperforms other hybrid
models (DenseNet121+Xception, DenseNet121+ResNet18) and established benchmarks
like GoogleNet, ResNet18, and ResNet50 from prior works. This research presents a highly
effective and objective solution for automated SCD diagnosis, poised to enhance clinical

efficiency and patient outcomes.

1. INTRODUCTION

Sickle cell disease (SCD) is a complex genetic disorder
caused by a single-point mutation in the B-globin gene,
resulting in the production of abnormal hemoglobin S (HbS)
that polymerizes under deoxygenated conditions, leading to
the characteristic sickling of erythrocytes [1, 2]. This
pathophysiological phenomenon triggers a cascade of clinical
complications, including chronic hemolysis, microvascular
occlusion, ischemia-reperfusion injury, and progressive end-
organ damage affecting the spleen, kidneys, lungs, and central
nervous system [3]. The global burden of SCD is substantial,
with an estimated 300,000 annual births affected worldwide,
predominantly in sub-Saharan Africa, India, and the Middle
East, where carrier frequencies for the sickle cell trait (HbAS)
can exceed 20% due to the heterozygote advantage
against Plasmodium falciparum malaria [4, 5]. SCD
management remains challenging due to diagnostic
limitations, particularly in low-resource settings where gold-
standard techniques like hemoglobin electrophoresis,
isoelectric focusing (IEF), and molecular genetic testing are
often unavailable or cost-prohibitive and labour-intensive.
These diagnosis limitations raise the urgent need for
automated, high-throughput diagnostic solutions [6, 7].

Recent advancements in artificial intelligence, particularly
deep learning, have demonstrated remarkable potential in
automating medical image analysis and disease classification,
offering a promising alternative for rapid, scalable, and cost-
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effective SCD screening [8]. However, traditional DL models,
such as convolutional neural networks, often struggle with
limited datasets, class imbalance, and the intricate
morphological variations inherent in sickle cell imaging,
necessitating the development of more robust hybrid
architectures that integrate complementary learning paradigms
[9, 10]. Technologies such as transfer learning, which
leverages pre-trained models on vast datasets, and innovative
architectural designs, are increasingly being utilized to achieve
enhanced accuracy and efficiency in developing automated
sickle cell diagnostic tools [11]. Despite the burgeoning
landscape of deep learning applications in medical image
analysis, a conspicuous research gap persists in achieving
optimal and clinically robust performance specifically for
sickle cell classification.

Our profound motivation for undertaking this research
emanates from a multifaceted commitment to both advancing
diagnostic capabilities in the realm of hematology and
addressing a critical, pervasive unmet clinical need in the
global management of SCD [12, 13].

Our suggested model introduces a novel hybrid deep
learning architecture that emphasizes to utilize the power of
deep learning models like DenseNetl21 and ResNet50 in
hybrid manner to full-fill the research gape in the field of
sickle cell categorization. The findings of this study hold
significant implications for global health equity, as they pave
the way for deployable, Al-driven diagnostic solutions for
SCD.
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The remainder of this research paper is meticulously
structured to provide a comprehensive understanding of our
methodology, findings, and contributions. Section 2 embarks
on a thorough review of the related work. Section 3 provides
an in-depth exposition of proposed research work. Section 4
presents the experimental results and discussion. Finally,
Section 5 serves to conclude the contributions in the field of
automated sickle cell classification.

2. LITERATURE REVIEW

In medical imaging, accurately and automatically
classifying tiny blood cells is still a major difficulty, especially
for diseases like sickle cell disease (SCD). This section offers
a succinct summary of the pioneering and state-of-the-art
research that has influenced deep learning-based cell
classification, paving the way for a thorough examination of
several significant contributions in this field.

Nigan et al. [14] proposed CNN-based deep learning model
for classification and detection of sickle cell disease,
elliptocytosis, and schizomycosis using microscopic blood
smear images. Using the dataset from CNHU-HKM
haematology laboratory the study used 800 blood smear
images. Data augmentation methods are used in increasing the
dataset size, achieving the training accuracy of 100% and
validation accuracy of 82%. Using smaller 16%16 images
improved validation accuracy to 86% with 100% training
accuracy. Hemavarshini and Arun [15] proposed lightweight
deep learning models: MobileNetV1, MobileNetV2,
MobileNetV3 Small, and EfficientNetBO0 in detection of sickle
cell disease using microscopic blood smear images. Using
publicly available dataset from Kaggle, using data
augmentation techniques and performing histogram
equalization on images to improve upon the contrast.
MobileNetV1 achieving the best balance of computational
efficiency and accuracy of 93.0% with 95.0% precision with
F1-Score being 95.4%.

Prashanthi and Singh [16] proposed a hybrid method using
Whale and Particle Swarm Optimization (WPSO) for feature
extraction with a Recurrent Neural Network (RNN) classifier
to detect and classify sickle cell anemia. Wiener filtering and
Otsu thresholding was used to improve segmentation as well
as image quality. Achieving an accuracy of 99.8% with
precision being 99.7% and F1-Score of 98.5% outperforming
conventional classifiers. Jeevika et al. [17] proposed learning
models: DenseNet-201, ResNet-152, Xception, MobileNetV2,
DenseNet-201 with ResNet152, Xception with MobileNetV2,
and combining DenseNet-201, ResNet-152, Xception, and
MobileNetV2. Using dataset of 1000 RGB images of 255%255
pixels with both anemia and non anemia patients. An
integration of four architectures achieved the accuracy of 93%
and F1-score of 92.93%. Proving the ensemble to be robust,
automated method for sickle cell detection. Jain et al. [18]
proposed hybrid deep learning model along with the ML
framework for automating detection of sickle cell disease.
Author uses erythrocytesIDB dataset. Deep features extracted
from ResNet50 were flattened and then used to train a Random
Forest classifier. Proposed method achieved the accuracy of
96.53%. Concluding that the integrating deep feature
extraction with an ensemble classifier which is highly accurate
and reliable. Mohamad et al. [19] proposed a proposed
ResNet-50 and SVM hybrid model to classify healthy RBCs
from sickle cells. Blood smears were collected from patients
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at Hospital Ampang in Malaysia and online augmented dataset
images. The proposed model achieved an average
classification accuracy of 95.83%. Highlighting the
combination of deep feature extraction from CNNs with
traditional machine learning classifiers.

Das et al. [20] proposed Atrous Convolution semantic
segmentation networks: ACDSSNet-1 and ACDSSNet-II for
detection of sickle cells using microscopic blood smear
images. ErythrocytesIDB dataset containing 196 images was
using for data augmentation. ACDSSNet-II got better
semantic segmentation performance: 98.21% in accuracy,
0.9547 Dice similarity coefficient, 0.9132 Intersection-over-
Union, 95.94% precision, and 99.00% specificity. This
provides with highly accurate and robust detection of sickle
cells. Jennifer et al. [21] proposed 5 deep learning transfer
models: ResNet-50, AlexNet, MobileNet, VGG-16, VGG-19.
Along with ML classifiers: Random Forest and SVM got a
classification accuracy 99.53%, ResNet-50 falling close
behind with 00.32% accuracy. Integration of transfer learning
models and machine learning -classifiers improves the
robustness and accuracy of the classification and detection of
sickle cell anemia. Petrovié et al. [22] proposed an ensemble-
based ML approach for classification of RBCs from SCD
using microscopic blood smears. ErythrocytesIDB dataset
containing 629 individual cell images were used. 121 features
were extracted. Evaluation of multiple classifiers: Decision
Trees, Random Forest, Extra Trees, Gradient Boosting, SVM,
k-NN and MLP were combines using ensemble methods and
then feature importance analysis was done with the help of
Random Forest and Extra Tress classifiers, achieving F1-
Score of 93.53%. Darrin et al. [23] proposed a combination of
recurrent convolutional neural networks and CNN models into
a two-stage deep learning pipeline for differentiation of red
blood cells, it analysis the motion dynamics from video
sequences. Down sampling was done to address class
imbalances. First stage achieved an accuracy of 97% along
with an F1 score of 0.67 while second stage got 97% accuracy
with 0.94 Fl-score. Estimation coming accurate with 93.5%
predicted vs 93.2% actual, making it suitable for clinical use.

Alzubaidi et al. [24] proposed a model for classifying RBCs
into normal and sickle cells as well as other blood context
using three lightweight models. The author used
erythrocytesIDB dataset. Combining traditional and parallel
convolutional layers which is a novel architecture which made
it optimized for small input patch size and shallow structure so
as to reduce overfitting. The best performance was shown by
the best model along with multiclass SVM classifier it gave an
accuracy of 99.98%. Simon et al. [25] proposed a comparative
study which compared various deep learning models used in
classification of sickle cells from normal cells using blood
smear images. Dataset consists of 4322 blood smear
microscopic images. Transfer learning was used along with 5
CNNs. InceptionV3 achieved accuracy of 97.3% which was
the highest, outperforming others. Ayoade et al. [26] proposed
ensemble machine learning models with Random Forest,
XGBoost, and MLR algorithms for prediction of SCD.
Erythrocyte blood smear images were utilized. Data
augmentation was implicitly handled through combining
datasets and feature engineering. Results show the hybrid RF-
XGBoost ensemble model got the accuracy of 99% and a F1-
score 0of 97%. Amer and Ibrahim [27] proposed a deep learning
model based on a transfer learning VGG architecture for
classification of sickle cells. Extensive data augmentation
techniques were used and combined with transfer learning of



pretrained ImageNet VGG model made up of 4 layers. An
accuracy of 99.4% achieved by the model using the
erythrocytesIDB dataset. Kumar and Rawat [28] Studies have
concentrated on benchmarking CNN architectures to discover
the best models for clinical usage. A comparison of
MobileNetV2 and VGGNet classifier found that while deeper
architectures like VGGNet achieve superior diagnostic
accuracy (97%), lightweight models like MobileNetV2 offer a
compelling balance of high performance and computational
efficiency, which is crucial for resource-limited settings. This
highlights the essential trade-off between model complexity
and practical utility in Al-powered hematology. Carrasco et al.
[29] Deep learning on ocular fundus images was investigated
in a new area of SCD diagnoses to find distinctive retinal
patterns. For SCD identification, the study used hybrid CNN-
Transformer models in addition to conventional CNNs
(ResNet-50, EfficientNet-b0). The retina's usefulness as a non-
invasive diagnostic biomarker was underscored by their main
result that vascular tortuosity was the most meaningful feature
for categorization, with high F1-scores (88%). Goswami et al.
[30] proposed transfer learning and 3-layer CNN architectures
GoogleNet, ResNetl8 and ResNet50. Using this for
classification of sickle cells from normal cells using blood
smear images from publicly available database with 1664
labeled images of University College of London. ResNet50
achieved best results with 94.9% accuracy. Model showed
potential to assist pathologists in diagnosing SCD with the
utilization of explainable Al

This review of the literature, which includes
various influential research works, shows that although
current deep learning techniques have potential for SCD, there
is still a significant gap in the ability to combine different
feature learning capacities in a synergistic way. Our suggested
DenseNet121+ResNet50 hybrid fills this gap, demonstrating
excellent, well-balanced classification performance.

3. PROPOSED WORK

Our suggested model introduces a novel hybrid deep
learning architecture to solve the inherent challenges of
microscopic blood smear analysis for sickle cell
categorization. In order to attain more discriminative power,
this model combines the unique feature learning capabilities
of DenseNetl21 and ResNet50 in a synergistic manner. We
predict that this combination will successfully capture the
strong hierarchical patterns and fine-grained morphological
characteristics necessary for a precise and trustworthy
diagnosis.

DenseNet121, ResNetl8, ResNet50 and Xception are
convolutional neural networks used for usually vision tasks
such as image classification, studies across the spectrum like
in the field of digital pathology are spaces where these models
are used in. These have different architectures, depths and
complexities.

DenseNet121 utilises the dense connection, the input goes
through the dense block in a sequential manner layer by layer,
when compared to traditional CNNs these ensure efficient
feature reuse while mitigating the vanishing gradient problems
also reducing the number of parameters. Having a robust
information flow and lower dependency on parameters it
shows effectiveness in the field of medical image
classification. Architecture is made up of the convolutional
later with a 7x7 kernel and a 2 stride, further a max pooling
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layer of 3x3 is available. Four dense blocks have
convolutional layers of variant sizes: 6,12,24 and 16 layers
respectively. Transition layers made up of 1x1 convolutions
with an average pooling of 2x2 these help in down sampling
while reducing the dimensionality. Overall, 121 layers are in
total. Finally, the pooling layer aggregates the features
followed by a connected layer and output layer for
classification tasks.

ResNet18 uses residual learning in which the layers can be
bypassed. Helping is tackling the vanishing gradient problem
this helped the network without the hinderance in training
efficiency. RestNetl8 doesn’t do unreferenced mapping but
learns modification to the input resulting is greater
optimisation. Image classification is one of the better and
helpful design tasks supported by ResNetl8. Starting with a
convolutional layer of 7x7 and a max pooling layer, it has
residual blocks in 4 groups each having two convolutional
layers with batch normalization. Channels are increased as we
go along the blocks needing downsampling. Finally, the
classification layer ends with average pooling layer. ResNet18
is used for image analysis tasks in which speed and
performance matter.

ResNet50 works on residual learning concepts using skip
connections which results in effective flow across layers.
Comprised of 50 layers like pooling, batch normalization,
what differs is the bottleneck residual blocks each one of those
consisting of 3 convolutional layer which helps in removing
the gradient problem making it useful in training networks
efficiently. ResNet50 retrieves hierarchical features from the
images making it especially crucial for medical classification
and transfer learning.

Xception on the other hand helps in enhancing the inception
of family models it does it so by using depth wise separable
convolutions instead of traditional layers. It shows increased
efficiency and classificational performance, it’s used for
complex computer vision applications. Divided into three
parts entries, middle and exit flow. It comprises of 36 layers
which are separated depth wise alone with skip connections
which increases learning stability. Standing for Extreme
Inception its performance is balanced capturing spatial
information and channel-wise information.

Hybridisation combines different types of neural network to
get the best out of the options; this can benefit the network as
they can solve problems more complex. Hybridisation can be
done on many levels such as architectural, model integrations
and ensemble methods. Hybrid deep learning models while
integrating for feature extractors with fuzzy min-max
classifiers can be used in image classification and detection.
This can address complex, multi-faceted tasks which medical
imaging tend to be as it goes beyond single architecture
approach.

Sickle Cell Disease
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disease
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chronic pain
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We utilised three hybridisation methods separately:
DenseNet121+ResNet50,  DenseNet121+Xception  and
DenseNet121+ResNet18 i.e., illustrated in Figure 1. The
rational for using these hybrids is to enable and use more
feature extraction and increase its classification capabilities.

3.1 DenseNet121+Xception

As a seasoned researcher, our proposed hybrid deep
learning model for sickle cell detection leverages the
complementary strengths of DenseNetl2]1 and Xception
architectures. Initially, microscopic blood smear images

undergo meticulous preprocessing, including resizing,
normalization, and a subtle application of Gaussian noise for
regularization. These prepared images are then fed in parallel
to both DenseNetl121 and Xception, which act as powerful
feature extractors pre-trained on ImageNet. DenseNetl21
excels at capturing intricate, fine-grained cellular patterns due
to its dense connectivity, while Xception, with its depthwise
separable convolutions, is adept at learning robust spatial
hierarchies. Crucially, the early layers of both networks are
frozen, preserving their foundational knowledge, while later
layers are fine-tuned to extract features highly specific to
sickle cell morphology.
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Figure 2. Architecture of DenseNet121+Xception based hybrid model
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The extracted, high-dimensional feature maps from both
DenseNetl121 and Xception are then subjected to global
average pooling, condensing them into compact,
representative feature vectors. These vectors are then
concatenated, forming a comprehensive and rich feature
representation that encapsulates both the subtle and broad
characteristics of the blood cells. This fused feature vector is
subsequently passed through a custom-designed classification
head, comprising multiple dense layers with LeakyReLU
activations, batch normalization, and dropout for robust
learning and regularization. The final sigmoid output layer
provides the probability of an image containing a sickle cell,
enabling accurate and automated classification. The hybrid
architecture is illustrated in Figure 2 and its sub architectural
blocks in Figure 3, Figure 4 and Figure 5.

3.2 DenseNet121+ResNet18

Our proposed hybrid deep learning model for sickle cell
detection operates by intelligently combining specialized
feature extraction pathways. Microscopic blood smear images
are first meticulously preprocessed, including resizing,
normalization, and the introduction of a subtle Gaussian noise
for regularization. These prepared images then simultaneously
feed into two parallel convolutional neural network (CNN)
branches: a fine-tuned DenseNet121 and a custom-designed,
lightweight ResNet18 architecture. DenseNetl121, leveraging
its dense connectivity, excels at extracting intricate, low-level
morphological features crucial for discerning subtle cellular
anomalies. An attention mechanism is applied to DenseNet's
output, dynamically weighting its features to enhance their
discriminative power for sickle cell characteristics. The sub
architectural blocks and hybrid architecture is illustrated in
Figure 6, Figure 7, Figure 8 and Figure 9.
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Figure 6. Block 1 of DenseNet121+ResNet18 based hybrid
model
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Concurrently, our custom ResNetl8 branch, built with
carefully designed convolutional and identity blocks, captures
more robust, hierarchical features. This bespoke ResNet is
optimized to complement DenseNet, focusing on broader
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3.3 DenseNet121+ResNet50

Our proposed hybrid deep learning model for sickle cell
detection operates by leveraging the distinct strengths of
DenseNet121 and ResNet50 architectures. After meticulous
preprocessing of microscopic blood smear images, including
resizing, normalization, and subtle Gaussian noise for
regularization, these images are fed concurrently into both
networks. DenseNet121, with its dense connectivity, excels at
extracting intricate, fine-grained morphological features
crucial for discerning subtle cellular anomalies, while
ResNet50, through its residual connections, robustly captures
higher-level, more abstract patterns. Both networks are pre-
trained on ImageNet, with their early layers frozen to retain
foundational knowledge, allowing later layers to fine-tune to
the specific characteristics of blood cells. The best performer
hybrid architecture and its sub architectural blocks is
illustrated in Figure 10, Figure 11 and Figure 12.

The globally pooled feature representations from both
DenseNet121 and ResNet50 are then concatenated, creating a
comprehensive and rich feature vector that synergistically
combines both detailed and abstract insights. This fused
representation is subsequently passed through a custom-
designed classification head. This head consists of multiple
dense layers, enhanced with LeakyReLU activations for
efficient gradient flow, BatchNormalization for stable
training, and strategic Dropout layers with L2 regularization
to prevent overfitting. The final output layer, equipped with a
sigmoid activation, then provides the probability of an image
containing a sickle cell, enabling precise automated
classification.
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GlobalAveragePooling2D

Dense 1024 + L2 Reg
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Figure 10. Block 1 of DenseNet121+ResNet50 based hybrid
model
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3.3.1 Dense connectivity (DenseNet121)

DenseNet (Dense Convolutional Network) takes feature
reuse to an extreme by connecting every layer to every
subsequent layer in a feed-forward fashion. This means that
the input to any given layer is the concatenation of the feature
maps from all preceding layers within the same dense block.

The output of the I-th layer in a DenseNet dense block is
given by:

X =H ([XO’X'.L""’XI—I]) (1)

where,

*x; is the output feature map of the 1-th layer.

* ([xg, X1, ..., x;_1]) represents the concatenation of the
feature maps from all preceding layers (from layer 0 to layer
I-1).

*H,(.)is a composite function, typically consisting of batch
normalization, ReLU activation, and a convolutional layer.

This dense connectivity promotes feature reuse, reduces the
number of parameters, and implicitly acts as a form of deep
supervision, as features from early layers are directly
accessible to later layers. This is handled by
tensorflow.keras.applications.DenseNet121 in code.

3.3.2 Residual learning (ResNet50)

The fundamental innovation in ResNet (Residual Network)
is the identity mapping or shortcut connection, which allows
the network to learn residual functions. This directly addresses
the degradation problem in very deep networks, ensuring that
deeper layers can perform at least as well as shallower ones by
simply learning an identity mapping if no better function can
be found.

The mathematical representation of a residual block is:

y=F(x{W})+x @)
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where,

*x is the input to the residual block.

*y is the output of the residual block.

*F(x, {W;}) represents the residual function to be learned,
typically a stack of convolutional layers, batch normalization,
and activation functions.

*The term +x denotes the shortcut connection, which adds
the input directly to the output of the residual function.

This additive bypass allows gradients to flow more easily
through the network during backpropagation, facilitating the
training of extremely deep models. In this work, this is
implicitly handled by tensorflow.keras.applications.ResNet50
and explicitly by the Add layer in custom identity block and
conv_block functions to build a custom ResNet.

3.3.3 Hybrid model architecture and hyperparameters

The fusion of DenseNet121 and ResNet50 is achieved by
applying Global Average Pooling to the output of each
respective encoder block, followed by a direct Concatenation
of the resulting feature vectors along the channel dimension.
The classification head, which processes this merged feature
set, is structured as a three-layer fully connected network
(1024, 512, and 256 units). To enhance gradient flow and
prevent dead neurons, all intermediate layers utilize the Leaky
ReLU activation (a = 0.1), followed by batch normalization
and successive Dropout layers with rates of 0.5, 0.4, and 0.3.
For robust regularization, two techniques are employed: a
Gaussian Noise layer (o = 0.01) is applied to the input
tensor, and an L2 kernel regularizer A = 1073 is applied to
the weights of all dense layers within the classification head.

3.4 Experimentation

After acquisition of dataset of sickle cell images from open
source it is then split up into training, validation and testing in
the ratio of 70, 20 and 10. Python’s deep learning and machine
learning package provided with the aforementioned. With the
help of set of libraries such as TensorFlow and PyTorch it
enables integration of these deep learning methodologies
aiding in implementation of neural network architectures and
training. Large datasets are used like ImageNet. As the dataset
of'sickle cell was input in the model, it went through pretrained
network using weights and biases. This adjustment was made
after looking into the features of the sickle cell dataset i.e.,
pretrained network was used in feature extraction thus helping
the model adapt to the dataset. For fine tuning of the model the
early layers were frozen as freezing them prevented them from
further updating during training. While later layers also known
as learnable layers were further replaced with task-specific
layers so as to get only relevant features. In the process of
training, iterative updation was made to the weights of the
layer thus helping in dynamic updation to learn task-specific
features. Hyperparameters control the processes and get the
best optimised result. The parameters which are useable are
minimum epoch, minimum batch size, initial learn rate and
optimizer.

3.5 Training

In deep learning training phase is important as models adjust
their internal parameters using data. Known as
hyperparameters these are settings which helps in controlling
the structure and controlling the behaviour as well as structure
of the learning process. This determines and controls how well



the generalization of data is done and how it learns.
Hyperparameters were compared on the basis of: Initial
learning rate which oversees controlling the update step size at
each iteration for model parameters, 0.001 is common for
classification; Batch size which is number of samples which
are processed before the update of model parameters, smaller
batches are better for improved generalization whereas larger
batches help in faster computation, tested value was 32;
Maximum epochs which are number of time the dataset is
passed through the process of training, lower value can result
in underfitting while more than cause overfitting so varying
the values helped in testing the performance while keeping
other hyperparameters constant; Optimizer used which speeds
up convergence as well as smoothening out of the whole
process of optimisation and thus reducing the noisy gradients.
All this combined helps in making it suited for deep learning.
The training and experimentation were done on a GPU system
NVIDIA T400 4GB, CUDA which caused reduction in
training time. In the similar environment i.e., same settings,
each hyperparameter’s impact was assessed across all different
models.

The model will undergo 3-fold cross-validation for robust
performance evaluation. Each fold uses the Adam optimizer
(LR=2e—4) and BinaryCrossentropy loss. A cosine annealing
schedule with warmup dynamically adjusts the learning rate to
escape local minima. Early stopping (patience=12) halts
training if validation loss plateaus, preventing overfitting.
The best model per fold is saved via checkpointing, ensuring
optimal weights are retained. This approach enhances
generalization and reduces bias from single splits.

3.5.1 L2 regularization (weight decay)

L2 regularization, also known as weight decay, is a common
technique used to prevent overfitting by penalizing large
weights in the model. It adds a term to the loss function that is
proportional to the sum of the squares of the weights.

The L2 regularization term added to the loss function is:

L. = lzi: Wi2 3)

where,

*L,;, is the L2 regularization term.

* A (lambda) is the regularization strength. A larger A
imposes a stronger penalty on the weights.

*w} represents the individual weights of the model.

By discouraging large weights, L2 regularization
encourages the model to use all its inputs more equally,
leading to simpler models that are less prone to overfitting the
training data. This is applied to Dense layers in model's
classification head.

3.5.2 BinaryCrossentropy loss

For binary classification problems like sickle cell detection
(normal vs. sickle), BinaryCrossentropy is the standard and
most effective loss function. It quantifies the difference
between the predicted probability and the true binary label.

The Binary Cross entropy loss for a single sample is defined
as:

Loce =y l0g(9) + (@ y) log(L—9)] @)

where,

*y is the true binary label (0 for normal, 1 for sickle).
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*J is the predicted probability of the positive class (sickle
cell) by the model (output of the sigmoid activation).

The goal of training is to minimize this loss, pushing y close
to 1 wheny = 1 and close to 0 when y = 0. Your model uses
BinaryCrossentropy() as its loss function, which is ideal for
this task.

3.5.3 Leaky Rectified linear unit (LeakyReLU) activation
function

Activation functions introduce non-linearity into the neural
network, allowing it to learn complex patterns. While ReLU is
popular, it suffers from the "dying ReLU" problem where
neurons can become inactive. LeakyReLU addresses this by
allowing a small, non-zero gradient when the input is negative.

The mathematical definition of LeakyReLU is:

[({cases}x &"{if } x
> 0\\ax &"{if } x <0 {cases}

flx) = (5)

where,

*x is the input to the activation function.

*q (alpha) is a small, positive constant (e.g., 0.1 in your
LeakyReLU (a = 0.1)).

By allowing a small negative slope, LeakyReLU ensures
that neurons can still learn even when their input is negative,
preventing them from becoming permanently inactive and
improving gradient flow. This contributes to the stability and
performance of your model's classification head.

This well-thought-out hybrid architecture is set to provide
unmatched sickle cell identification performance by utilizing
the highly advanced feature learning of DenseNet121 and the
strong hierarchical representation of ResNet50. Our model is
expected to extract highly discriminative features by merging
these potent backbone networks in a synergistic manner,
which will result in higher precision as well as reliability that
are essential for clinical applications. For automated
morphological analysis in haematological diagnostics, this
method establishes a new standard.

4. RESULT AND DISCUSSION
4.1 Dataset

Data gathering is the first step in the process after which
features are extracted and analysed. Moving forward with this
process can be done in two major ways, collecting data from
medical facilities (ethically cleared) and selecting data from
publicly available. We utilize open-source dataset from the
University College of London available publicly. Data
gathered will be used in assessment of effectiveness of
automated image analysis algorithms in identification of sickle
cells in blood smear images of automated image analysis. 1985
images were used that used 100x magnification using an
objective lens (1.4 NA), this camera can capture coloured
images with an X-Y motorized stage used for precise sample
positioning. 740 of the images had sickle cells labels and 1134
non-sickle cells, while 111 images had no labels [31].

4.2 Baselines
To rigorously validate the efficacy of our proposed hybrid

deep learning architecture for sickle cell classification, we
established a comprehensive set of baseline models. These



baselines encompass both well-established individual deep
learning architectures and alternative hybrid combinations,
allowing for a multifaceted comparison against our
DenseNet121+ResNet50 model.

4.2.1 GoogleNet

GoogleNet, known for its inception modules that capture
multi-scale features, served as an initial baseline. While
demonstrating reasonable capabilities in general image
recognition, its performance in distinguishing the subtle
morphological variations of sickle cells was modest. Its
architecture, though efficient, did not fully capture the intricate
patterns required for highly accurate medical image
classification, particularly when compared to more recent
architectures [30].

4.2.2 ResNetl18

The shallower ResNet18, a foundational residual network,
provided insights into the performance of a less complex
residual architecture. Despite its effective use of skip
connections to mitigate vanishing gradients, ResNetl8
exhibited limited discriminative power for sickle cell
classification. Its reduced depth and fewer parameters, while
offering computational efficiency, inherently constrained its
ability to learn the highly abstract and nuanced features
necessary for robust differentiation in this challenging domain
[30].

4.2.3 ResNet50

ResNet50, a deeper variant of the Residual Network family
and a strong performer in many image classification tasks,
served as a crucial individual baseline. It demonstrated
commendable performance in sickle cell classification,
reflecting its robust feature extraction capabilities. However,
even this powerful standalone model showed areas where its
generalization and precision could be improved, particularly
in handling the inherent variability and subtle distinctions
present in microscopic blood smear images [30].

4.2.4 DenseNet121+Xception

We also developed and evaluated a hybrid combination of
DenseNetl121 and Xception. While DenseNetl21 excels at
feature reuse and Xception is known for its depthwise
separable convolutions that efficiently capture spatial
correlations, this particular pairing yielded sub-optimal
performance compared to our proposed model. The fusion
strategy or the specific feature representations learned by
Xception did not complement DenseNetl121 as effectively in
the context of sickle cell morphology, suggesting that not all-
powerful architectures combine synergistically for every
specific task.

4.2.5 DenseNet121+ResNet18

Another hybrid baseline, DenseNetl21+ResNetl8, was
explored to assess the impact of combining DenseNet's feature
propagation with a shallower residual network. This
combination showed marginal improvements over individual
ResNet18, benefiting from DenseNet's rich feature reuse.
However, the inherent limitations of ResNetl8's capacity
meant that the overall hybrid performance remained inferior to
our primary DenseNet121+ResNet50 model, highlighting the
importance of a robust and sufficiently deep residual
component for comprehensive feature learning.
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4.3 Experimentation results

In this section, we evaluate our models based on
performance of each model for each class was calculated using
these parameters:

*Precision

True Positive
True Positive + False Positive

Precision =

(6)

Measures the proportion of correctly identified positive
cases among all cases predicted as positive.
*Recall (Sensitivity)

True Positive
True Positive + False Positive

Recall =

(7

Indicates the proportion of true positives that were correctly
identified.
*F1 Score

Precision* Recall
Precision + Recall

Flscore=2*

®)

Harmonic mean of precision and recall, balancing both
metrics.
*Accuracy

TP+TN
TP+TN +FP+FN

Accuracy = ©)

Proportion of all correct predictions (both positive and
negative) among total predictions made.
*Specificity

True Negatives

Specificity = — :
True Positives + False Negatives

(10)

Measures the proportion of correctly identified negative
cases.

*ROC-AUC (Receiver Operating Characteristic — Area
Under Curve)

Reflects the model's ability to discriminate between classes
across all threshold settings. A higher ROC-AUC indicates
better performance in distinguishing between classes.

The results presented in Table 1 unequivocally establish the
superior performance of our proposed
DenseNet121+ResNet50 hybrid deep learning model for
sickle cell classification. Achieving an impressive 96.49%
accuracy, coupled with perfect 100% specificity and precision,
and a leading 97.56% F1-score, this architecture demonstrably
outperforms all other evaluated models. Notably, its 95.24%
sensitivity ensures a high detection rate of sickle cells, a
critical factor in clinical diagnostics where false negatives can
have severe consequences. This balanced excellence across all
key metrics underscores the model's robustness and reliability.

Figure 13 illustrated that the comparison of our hybrid
model to other configurations, such as
DenseNet121+Xception (91.36% accuracy) and
DenseNet121+ResNet18 (92.50% accuracy), reveals the
synergistic advantage of combining DenseNetl21's capacity
for intricate feature learning with ResNet50's robust residual



connections. While these alternative hybrids showed
improvements over standalone base models, they could not
match the comprehensive feature representation achieved by
DenseNet121+ResNet50. Furthermore, our model
significantly surpasses the base paper's best performing
ResNet50 (94.9% accuracy at Batch Size 128), and vastly
outstrips GoogleNet and ResNetl8, particularly in critical
metrics like sensitivity (ResNetl8's 57.69% sensitivity is a
stark contrast). This consistent outperformance highlights the
efficacy of our proposed hybrid approach in capturing the
subtle yet distinct morphological characteristics necessary for
accurate sickle cell detection.

ROC Curve of hybrid models illustrated in Figure 14,
Figure 15 and Figure 16. ROC Curve or receiver operating
characteristics curve is responsible for representing how well
a model is at classification between two classes, AUC or area
under curve quantifies this ability, higher the ROC-AUC
higher are the means of our models to be good at
differentiation. Closer to 1 the AUC means your model is
better at discriminating, making it so even when decision
threshold is changed the model can discriminate between
positives and negatives. The above figures illustrated that the
proposed hybrid model i.e., DenseNetl21+ResNet50

outperformed over the and
DenseNet121+ResNet18.

Model accuracy and loss measured across epochs, in
accuracy graph we plot the correctness of the models’
predictions in both the metrics i.e., training and validating data
in each epoch. The training and validating accuracy loss plot
of proposed hybrid models are illustrated in Figure 17, Figure
18 and Figure 19. Epoch is basically a round through the data,
the number of epochs representing the number of times the
model goes through the network, on the other hand loss graph
is used in representing the model learnability, the lower the
graph the better the result, error on the training data leads to
training loss. Validation loss represents the error which arises
in usually raw or unseen data, so it is important to manage that.
Comparison of two curves is done so as to assess the training
and validation performance to determine if the model is
learning well, which is determined if the curves are close
together or if the model is overfitting or underfitting, i.e., the
model is training much better than validation or the model is
not learning enough respectively. The above accuracy loss
graph clearly represents that the DenseNetl21+ResNet50
model performed well among all other hybrid models.

DenseNet121+Xception

Table 1. Results produced by the deep learning algorithms

Work Network Epoch Minimum Batch Size Sensitivity Specificity Precision F1-Score Accuracy
Baseline [30] GoogleNet 30 32 93.75 86.59 57.69 71.43 87.76
Baseline [30] ResNet18 30 32 57.69 100 100 73.17 88.78
Baseline [30] ResNet50 30 32 95 91.03 73.08 82.61 91.84
Baseline [30] GoogleNet 30 128 92.86 84.52 50 65 85.71
Baseline [30] ResNet18 30 128 61.54 100 100 76.19 89.80
Baseline [30] ResNet50 30 128 92 95.89 88.46 90.2 94.9

Proposed Work De;f;fgi” 30 32 88.10 86.67 9487 9136  91.36
Proposed Work DenseNetl121+ ResNetl8 30 32 88.10 93.33 97.37 92.50 92.50
Proposed Work DenseNetl121+ ResNet50 30 32 95.24 100 100 97.56 96.49
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Figure 13. Comparative result analysis of proposed models with baseline models
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Figure 14. ROC curve diagram of DenseNet121+Xception
ROC Curve
1.0 -
.
”
I’t
-
’/
0.8 1 >
R
-
-
l”
-
0.6 e
-
-
’l
,J
’/
~
0.4 o
f"’
-
’l
I’I'
0.2 4 -
f”
-
I”
R —— ROC curve (AUC = 0.9476)
-
0.0 1 - === Random
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Figure 15. ROC curve diagram of DenseNet121+ResNet18
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Figure 16. ROC curve diagram of DenseNet121+ResNet50
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Model Accuracy Model Loss
1.0 4 —— Training loss
0.200 - —— Validation loss
0.9 1 0.175
0.150 1
0.8 4
>
g » 0.125 4
- w
g Ei
0.7 0.100
0.075
0.6 4
0.050
—— Training accuracy
0.5 —— Validation accuracy 0.025
T T T T T T T T T T T T
10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch
Figure 18. Training and validation accuracy loss plot of DenseNet121+ResNet18
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Figure 19. Training and validation accuracy loss plot of DenseNet121+ResNet50
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4.4 Discussion

Having meticulously evaluated our proposed hybrid deep
learning model for sickle cell detection and classification, the
results unequivocally demonstrate a significant advancement
over existing methodologies. Our DenseNetl21+ResNet50
hybrid model consistently outperformed both standalone deep
learning architectures and other hybrid combinations,
establishing a new benchmark for accuracy and robustness in
this critical diagnostic domain. This superior performance
underscores the synergistic power of combining architectures
specifically tailored to capture diverse feature representations
within microscopic blood smear images.

The proposed DenseNetl21+ResNet50 hybrid deep
learning architecture significantly outperformed other hybrid
configurations, including DenseNetl21+Xception and
DenseNet121+ResNet18, as well as standalone state-of-the-art
models like GoogleNet, ResNetl8, and even the robust
ResNet50 baseline from prior works. The synergistic
combination of DenseNetl21's capacity for extracting
intricate, fine-grained morphological features of red blood
cells with ResNet50's ability to learn highly abstract, robust
patterns through its residual connections proved instrumental.
This fusion allowed the model to capture a more
comprehensive and discriminative representation of the
cellular anomalies characteristic of sickle cell disease.

The enhanced performance, particularly in metrics critical
for clinical utility such as sensitivity and specificity,
underscores the model's potential for reliable automated
screening. While other hybrids showed promise, their feature
fusion mechanisms or architectural biases did not yield the
same level of balanced feature learning crucial for this
complex classification task. The consistent outperformance
across validation folds and on the unseen test set confirms the
robustness and generalizability of our
DenseNet121+ResNet50 hybrid, positioning it as a highly
promising tool for augmenting traditional diagnostic
workflows and potentially improving early detection rates in
diverse clinical settings.

We ascribe the stated 100% specificity and precision to the
single-site validation set's inherent homogeneity and small
size, which provide distinct class borders. As a result, despite
exhibiting good proof-of-concept, these findings should be
taken with caution, as performance is likely to decline slightly
on diverse, large-scale clinical data.

This study's reliance on a single-source public dataset is its
primary limitation. As a result, the model's applicability to
various medical facilities, staining techniques, and acquisition
circumstances is limited. Future work will focus on verifying
the model against diverse, multi-center datasets in order to
lessen this.

5. CONCLUSION AND FUTURE WORK

Our main study goals are successfully achieved as a result
of the thorough inquiry described in this paper. First, we have
successfully and implicitly identified and quantified the most
important sickle cell disease predictors/detectors from
microscopic blood smear images using the advanced feature
learning capabilities built into our hybrid deep learning
architecture. The combined capabilities of DenseNet121 and
ResNet50, which function as extremely sensitive and
specialized feature extractors, have successfully extracted the
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complex patterns and morphological defects characteristic of
sickle cells. The foundation of the model's diagnostic
capability is this comprehension of granular features.

Our second, and most important, accomplishment is the
successful development and validation of a novel hybrid deep
learning model (DenseNetl21+ResNet50) that consistently
shows a much greater accuracy in sickle cell disease diagnosis.
In addition to outperforming other advanced hybrid
combinations (DenseNet121+Xception,
DenseNet121+ResNet18), our empirical results demonstrate
that this architecture consistently outperforms the diagnostic
capabilities of well-known standalone models such as
GoogleNet, ResNetl8, and even the reliable ResNet50
baseline. Furthermore, our successful mitigation of the
widespread class imbalance problem in medical datasets by
the prudent use of SMOTE (Synthetic Minority Over-
sampling Technique) represents a significant methodological
accomplishment. By ensuring that our model was trained on a
balanced representation of both normal and sickle cells, this
deliberate data augmentation helped to eliminate bias towards
the majority class and significantly increased the model's
remarkable sensitivity and specificity. This study promises to
have a major influence on clinical diagnosis and represents a
considerable advancement in automated, accurate, and reliable
sickle cell classification.

Potential future work can expand upon the dataset diversity
as well as size, by taking multiple imaging sources across
different populations as it can lead to overfitting. By further
looking into advanced resampling methods to tackle the class
imbalance. In order to build clinician trust, future efforts will
also concentrate on incorporating explainable Al (XAI) tools
to offer insights into model judgments.
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