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Because atmospheric processes are very dynamic, unpredictable, and nonlinear, weather
prediction is still a difficult undertaking. For forecasting, anomaly detection, and
meteorological decision-making to be accurate, the right categorization method must be
chosen. Three well-known machine learning methods—Ridge Classifier, Bayesian
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Network, and One-Class Support Vector Machine (SVM)—applied to weather prediction
tasks are compared in this paper. When it comes to managing multicollinearity across
meteorological attributes like temperature, humidity, and pressure, the Ridge Classifier—a
linear model derived from ridge regression—works well. Because of its robustness against
correlated features and computing efficiency, it may be applied to binary or multiclass
issues such as Rain/No Rain prediction. However, because of its linear character, it is less
able to capture the intricate nonlinear correlations seen in meteorological data, which could
lower prediction accuracy in a variety of climatic circumstances. The Bayesian Network, a
probabilistic graphical model, on the other hand, is particularly good at capturing
uncertainty and the relationships between meteorological variables. It allows for
probabilistic reasoning even in the presence of insufficient data by modeling causal
linkages, such as how cloud cover and humidity affect rainfall. Although it is interpretable,
its performance is highly dependent on precise prior probabilities and in-depth domain
expertise to create conditional probability tables, and as the number of parameters increases,
it has scaling problems. By learning from typical weather patterns and marking departures
as anomalies, the One-Class SVM, on the other hand, is well-suited for anomaly
identification, identifying extreme weather phenomena like cyclones, storms, and
heatwaves. Although it works well for early warning systems, thorough multi-category
forecasting is less appropriate. All things considered, One-Class SVM, Bayesian Network,
and Ridge Classifier all perform well in different meteorological scenarios. To improve the
dependability and flexibility of weather forecasting systems, future research should
examine hybrid frameworks that combine the interpretability of Bayesian Networks, the
effectiveness of Ridge Classifiers, and the anomaly detection skills of One-Class SVM.
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1. INTRODUCTION

For centuries, weather forecasting has been a highly
researched and useful field with applications in everything
from transportation and agriculture to disaster relief and
energy planning. Safeguarding human life, reducing financial
losses, and facilitating efficient decision-making in industries
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that significantly depend on environmental conditions all
depend on accurate weather forecasting. Machine learning has
become a popular tool for forecasting weather patterns
because to the quick development of computing techniques
and the accessibility of extensive meteorological datasets.
Machine learning algorithms supplement conventional
physics-based numerical weather prediction models by having
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the capacity to learn from historical data, uncover hidden
relationships, and adjust to novel circumstances.

Classification algorithms, one of the many machine learning
techniques, are essential for forecasting meteorological
conditions including the presence of clouds, the possibility of
a storm, and whether it will rain or not. Nevertheless, each
approach has distinct advantages and disadvantages based on
the type of information, the prediction goal, and the intricacy
of the underlying atmospheric phenomena. No single strategy
is consistently best for every situation. The methods,
application, benefits, and drawbacks of three different
machine learning techniques for weather prediction—the
Ridge Classifier, Bayesian Network, and One-Class Support
Vector Machine (SVM)—are compared in this paper.

1.1 The challenge of weather prediction

Because atmospheric dynamics are chaotic and nonlinear,
predicting the weather is intrinsically difficult. Temperature,
humidity, pressure, wind speed, cloud cover, and other
variables all interact in very complex and frequently
unanticipated ways. This phenomenon, known as the
"butterfly effect,” occurs when small changes in one parameter
have disproportionately huge effects on weather outcomes.
Prediction is further complicated by the fact that
meteorological  databases sometimes include noise,
uncertainty, and missing variables. By simulating probabilistic
relationships, detecting anomalies, or approximating nonlinear
patterns, machine learning techniques can supplement
traditional deterministic models, which frequently fail to
incorporate these uncertainties.

In light of this, the particular forecasting objective plays a
major role in choosing the best categorization method. For
instance, a linear or probabilistic classifier might be adequate
if the goal is to categorize whether it will rain or not based on
past observations. An anomaly detection approach is more
suited if the objective is to identify uncommon extreme
phenomena, such as cyclones. The comparison of Ridge
Classifier, Bayesian Network, and One-Class SVM in the
context of weather prediction is driven by the need for task-
oriented algorithm selection.

1.2 Ridge Classifier for weather prediction

Ridge regression is the source of the Ridge Classifier, a
linear classification method. Large coefficient values are
penalized through the use of L2 regularization, which helps to
reduce overfitting and feature multicollinearity. Many of the
input variables used in weather prediction, including
temperature, humidity, and pressure, have a tendency to be
associated. In these situations, ridge regression-based
classification works especially well since it maintains
parameter estimate stability even when correlated predictors
are present. Ridge Classifier uses an additional regularization
term to minimize the squared error.

As a result, classes are divided by a linear decision
boundary, such as "Rain" vs "No Rain." It is a good contender
for baseline classification models in meteorology because of
its ease of use and computational effectiveness, particularly in
situations where the correlation between characteristics and
results is roughly linear. Its linear character, however, restricts
its capacity to represent intricate nonlinear interactions that are
commonly found in atmospheric dynamics. Because of this,
the Ridge Classifier performs well in structured classification
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tasks, but its forecasting ability may suffer when weather
phenomena show significant nonlinearity or chaotic
relationships.

1.3 Bayesian Network for weather prediction

Through the use of a directed acyclic graph (DAG),
Bayesian Networks (BNs) offer a probabilistic graphical
model framework that illustrates the relationships between
variables. Rainfall, pressure, humidity, and other random
variables are represented by each node, while conditional
relationships are shown by the edges. BNs make it possible to
compute joint and marginal probabilities through conditional
probability tables (CPTs) linked to every node, enabling
inference even in cases when some variables are absent.

The capacity of Bayesian networks to model uncertainty
and causal links among meteorological phenomena is its
primary benefit in weather prediction. For instance, low
pressure and humidity may both have an impact on cloud
formation, which in turn influences the likelihood of rainfall.
These dependencies can be formally represented using a
Bayesian network, which can then use Bayes' theorem to
calculate posterior probabilities. Because weather systems are
inherently uncertain, this makes BNs extremely interpretable
and helpful for reasoning under uncertainty.

But there are drawbacks to Bayesian techniques as well. It
takes a lot of trustworthy data or in-depth topic knowledge to
create correct CPTs. In meteorological situations when
variables are highly correlated, the assumption of
independence in simplified Bayesian classifiers, like Nawe
Bayes, frequently fails. Furthermore, the complexity of
creating and calculating the network rises sharply with the
number of variables. For weather prediction tasks that call for
probabilistic  reasoning and  decision-making  under
uncertainty, Bayesian networks continue to be useful despite
these difficulties.

1.4 One-Class SVM for weather prediction

The One-Class SVM is an unsupervised or semi-supervised
technique intended for anomaly detection, in contrast to the
Ridge Classifier and Bayesian Network, which are mainly
intended for multi-class or binary classification problems. It
learns a decision function that encloses the majority of these
observations within a boundary in feature space after being
trained on data that represents "normal” conditions. An
anomaly is any new observation that falls outside of this range.

When it comes to weather prediction, One-Class SVM is
very helpful in spotting extreme and uncommon weather
phenomena including heat waves, severe storms, and
cyclones.  Since  these  occurrences are  usually
underrepresented in datasets, it is challenging to efficiently
train conventional classifiers. By concentrating solely on
typical meteorological data during training and identifying
deviations during testing, One-Class SVM corrects for this
imbalance. This strategy has the advantage of being able to
offer early warnings for unusual weather, which can be quite
helpful in disaster relief efforts. The inability to categorize
weather into specific groups (such as sunny, cloudy, and rainy)
and the possibility of incorrectly labelling uncommon but
legitimate occurrences as anomalies are some of its
drawbacks. Therefore, rather than serving as a substitute for
general weather prediction models, One-Class SVM is best
understood as an adjunctive technique for anomaly detection.



1.5 Motivation for comparative study

Their various methodological underpinnings and
applicability for various facets of weather prediction provide
the justification for contrasting the Ridge Classifier, Bayesian
Network, and One-Class SVM. For structured classification
jobs, Ridge Classifier offers an easy-to-use and effective
solution. Bayesian networks are useful for reasoning under
noisy or incomplete data because they provide a probabilistic
framework for describing uncertainty and causal linkages. By
extending predictive modeling to anomaly detection, One-
Class SVM makes it possible to identify uncommon and
severe weather phenomena that might not be adequately
represented in conventional classification tasks.

Researchers and practitioners can choose the strategy that
best suits their forecasting objectives, the data at hand, and
their operational needs by methodically examining various
algorithms. Additionally, recognizing the complementing
advantages of these techniques creates opportunities for hybrid
or ensemble systems that integrate anomaly detection,
probabilistic reasoning, and linear efficiency into a more
complete and reliable weather forecast system.

1.6 Scope of the study

The theoretical underpinnings, real-world applications,
benefits, and drawbacks of the Ridge Classifier, Bayesian
Network, and One-Class SVM in the context of weather
prediction are the key topics of this comparative study. The
focus is on how well they work for certain tasks such anomaly
detection (extreme weather events), probabilistic forecasting
(probability of wvarious circumstances), and binary
classification (rain/no rain). This study intends to aid in the
creation of flexible, dependable, and understandable weather
prediction models that may assist with both routine decision-
making and disaster planning by highlighting their relative
performance and use cases.

1.7 Data set description

Any machine learning model's ability to predict the weather
is mostly dependent on the caliber, variety, and applicability
of the training and testing dataset. Weather databases are used
to record atmospheric conditions for this comparison analysis
using quantifiable metrics such temperature, humidity, air
pressure, wind speed, and cloud cover. These characteristics
act as predictors, and the forecasting goal and algorithm
determine the target variable.

The National Oceanic and Atmospheric Administration
(NOAA), the India Meteorological Department (IMD), and
international platforms like Kaggle or the UCI Machine
Learning Repository are among the publicly accessible
sources of weather datasets. For example, the Kaggle Weather
History Dataset includes weather information for multiple
years, including temperature, humidity, visibility, wind speed,
and precipitation type. Because they contain both continuous
and categorical variables, these datasets are favoured because
they provide flexibility in the application of various machine
learning techniques.

Features (Independent Variables)

Usually, the dataset has the following characteristics:
Temperature (°C): Affects precipitation probability, cloud
formation, and evaporation. Humidity (%): A strong predictor
of atmospheric moisture that is closely associated with

2367

precipitation. Pressure (hPa): Clear skies are associated with
high pressure, but storms and precipitation are frequently
preceded by low pressure. Wind Speed (km/h): Influences
weather event intensity and storm formation. Cloud Cover
(%): Closely related to precipitation and solar radiation.
Visibility (km): This is a proxy for rainfall, haze, or fog.
Precipitation (mm)

Rain/No Rain is a quantitative metric that can be translated
into categorical results. Depending on each algorithm's needs,
these features are pre-processed using encoding and
normalization. Normalization guarantees the comparability of
continuous variables for the Ridge Classifier and One-Class
SVM. Categorical encoding (e.g., “High/Low Humidity,”
“Clear/Cloudy Sky”) facilitates the interpretation of
conditional probability table building for Bayesian networks.
Target Variables (Dependent Variables)

Target variables for Ridge Classifiers are typically binary or
multiclass, such Rain vs. No Rain or Sunny, Cloudy, Rainy. P
(Rain | Humidity, Pressure, Cloud Cover) is an example of a
probabilistic expression for the target in a Bayesian network.
Instead of providing a precise classification, it makes an
estimate of the probability of meteorological conditions. The
goal of One-Class SVM is anomaly detection; the model only
learns from "normal™ circumstances and marks anomalous
weather patterns—such as storms, cyclones, and intense
heat—as anomalies.

Preprocessing and Splitting

To deal with noise, outliers, and missing values, the dataset
is cleaned. Mode substitution (for categorical data) or mean
substitution (for continuous values) can be used to impute
missing items. While outliers may be flattened in classification
tasks, they are carefully preserved in anomaly detection
activities. After that, the dataset is separated into subsets for
testing (20-30%) and training (70-80%). To guarantee
resilience across several folds, cross-validation is used.
Suitability for Algorithms

Datasets containing correlated characteristics and linear
patterns are advantageous to the Ridge Classifier. When there
are significant and comprehensible probabilistic dependencies
between features, the Bayesian Network performs well. One-
Class SVM is perfect for identifying infrequent extreme
weather events since it just needs datasets with precise
definitions of normal conditions. In conclusion, the dataset
provides the structured and unstructured data required to
assess the advantages of Ridge Classifier, Bayesian Network,
and One-Class SVM in weather prediction, and it forms the
basis of this comparative study.

2. LITERATURE SURVEY

Over the past 20 years, the availability of big meteorological
datasets and advancements in computer power have led to a
considerable increase in the application of machine learning
for weather prediction. The foundation of forecasting systems
continues to be traditional numerical weather prediction
(NWP) models, which are based on the solution of intricate
physical equations of atmospheric dynamics. However, data-
driven approaches have gained traction due to their
shortcomings in managing uncertainty, high computing cost,
and difficulties in adjusting to specific situations. Among
these, classification methods that have demonstrated potential
in many weather forecasting domains include Ridge Classifier,
Bayesian Networks, and One-Class SVM. This study



examines earlier studies on these algorithms and how they are
used to forecast the weather.
Ridge Classifier in Weather Prediction

The Ridge Classifier is a linear model that uses L2
regularization to manage multicollinearity and lessen
overfitting. It is derived from ridge regression. Ridge
regression is frequently utilized in studies addressing
structured classification issues like precipitation prediction,
despite its widespread use in generic predictive analytics.

The applicability of Ridge-based models in weather-related
activities is shown in a number of papers. In their investigation
of regularized classifiers and linear regression for downscaling
climate projections, Arumugam et al. [1] demonstrated that
SVM, ridge regression approaches are an excellent way to
handle correlated indicators such as temperature, humidity,
and pressure. In a similar vein, Bai et al. [2] used the CNN,
BiLSTM, Ridge Classifier to predict rainfall in monsoon
regions of India and found that it was more stable than logistic
regression. When numerous parameters affect the same result
in meteorological datasets, feature redundancy is prevalent
and was managed with the aid of ridge regularization.

Ridge Classifier's linear design still limits it in spite of these
benefits. Linear classifiers may oversimplify the dynamics of
weather processes, which are frequently nonlinear. Ridge
Classifier performs best as a baseline or benchmark model,
according to research and the role of MLin weather prediction
by Amini and Bradaran Rohani [3].

It offers interpretability and computational efficiency,
however it frequently performs worse than ensemble and deep
learning techniques. Therefore, the Ridge Classifier is rarely
utilized for more complicated scenarios, even if it has found
value in binary weather prediction tasks like Rain/No Rain or
Storm/No Storm.

Bayesian Networks in Weather Prediction

A probabilistic framework for simulating uncertainty and
inter-variable dependencies is offered by Bayesian Networks
(BNs). Their power resides in their capacity to clearly depict
causal links, which is essential for forecasting the weather.
Zhang et al. [4] laid the groundwork for eventual applications
in meteorology by introducing Bayesian networks and
Machine learning methods as instruments for reasoning under
uncertainty.

Bayesian technigues have been used in weather prediction
for storm prediction, cloud classification, and rainfall
forecasting. Using historical data on humidity, pressure, and
cloud cover, Guerrero-Rodriguez et al. [5] created a BN model
to predict precipitation. This showed that Bayesian inference
could outperform basic regression models in terms of
accuracy, especially when handling missing data [5]. In their
2019 study, Shi et al. [6] used SVM, Bayesian networks to
forecast dryness, highlighting how well they capture
conditional relationships between meteorological and
hydrological factors. The interpretability of Bayesian
networks is another important advantage. According to Nayak,
Munir Ahmad, and Subimal Ghosh forecasters can directly
evaluate uncertainty thanks to the probabilistic outputs that
Bayesian approaches produce. In operational meteorology,
where decision-making frequently calls for probability
estimates rather than deterministic predictions, this aspect is
especially helpful. Predicting a "70% chance of rain," for
instance, provides more useful information than a binary
"Rain/No Rain" response [7].

However, there are certain difficulties with Bayesian
networks. Large datasets or specialized knowledge are needed
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to create reliable conditional probability tables (CPTs), and the
computational complexity rises significantly with the number
of variables. According to studies like Mohammed et al. [8],
Bayesian networks do not scale well with high-dimensional
meteorological data unless they are paired with hybrid
techniques or dimensionality reduction. Notwithstanding these
drawbacks, Bayesian networks are nonetheless widely
acknowledged for their capacity to manage uncertainty and
make decisions based on insufficient data, which makes them
especially pertinent in meteorological applications [8].
One-Class SVM in Weather Prediction

The main purpose of One-Class SVM is anomaly detection,
which involves determining the limits of "normal™ data and
classifying departures as anomalies. Because extreme weather
occurrences are usually uncommon in comparison to average
weather, this makes it extremely significant for spotting them.
As an expansion of the classic SVM, One-Class SVM was
presented by Han and Jiang [9]. with the goal of differentiating
between normal and anomalous data. This technique has been
used in meteorology to identify heatwaves, detect storms, and
recognize cyclones. One-Class SVM was employed by Deif et
al. [10] to find anomalies in climatic time-series data, and they
reported excellent results in spotting uncommon occurrences
like droughts. Similar to this study [10], Cofino et al. [11] used
satellite measurements to apply One-Class SVM to typhoon
identification, with encouraging results in differentiating
anomalous atmospheric pressure patterns from normal
fluctuations.

When training data is unbalanced, as is commonly the case
in meteorology when extreme occurrences are rare, One-Class
SVM is useful. One-Class SVM only needs data from the
majority (normal) class during training, in contrast to
classifiers that need balanced datasets for every category. This
enables its efficient implementation in natural catastrophe
early warning systems. But there are restrictions. According to
Barrera-Animas et al. [12], One-Class SVM has the potential
to generate false alarms by incorrectly classifying infrequent
but legitimate weather occurrences as anomalies. Furthermore,
One-Class SVM's performance is highly dependent on
parameter tuning (such as kernel selection and nu parameter),
and inadequate adjustment can seriously impair outcomes
[12]. It is less successful at general classification tasks, such
multi-category weather prediction, but being strong at
anomaly detection.

It is clear from the examined papers that One-Class SVM,
Bayesian Networks, and Ridge Classifier each have distinct
roles in weather prediction [13].

Ridge Classifier's simplicity and interpretability make it
ideal for structured, linearly separable classification
applications. It is frequently employed as a baseline model to
forecast precipitation. Because of its superiority in
probabilistic reasoning, Bayesian networks are useful for
handling missing or ambiguous data as well as forecasting
outcome likelihoods [14]. They are extensively employed in
probabilistic decision-making, drought monitoring, and
rainfall forecasting. When training data for uncommon events
is insufficient for conventional classifiers, One-Class SVM
excels at anomaly identification, identifying extreme weather
events like storms or cyclones.

According to a number of research, no one method is
adequate for every weather forecast task. Goodarzi, L.,
Banihabib investigated merging One-Class SVM with deep
learning for more reliable anomaly identification [15],
whereas lliyas, I.I., Umoru, suggested hybrid approaches



combining ensemble methods and Bayesian networks. These
hybrid approaches show how accuracy, scalability, and
reliability can be increased by combining the advantages of
various classifiers [16]. According to the literature, One-Class
SVM, Bayesian Networks, and Ridge Classifier each offer
special advantages in the field of weather prediction. One-
Class SVM is useful for identifying uncommon and severe
events, Bayesian Networks allow reasoning under uncertainty
and provide probabilistic forecasts, and Ridge Classifier offers
efficiency and stability for basic classification tasks. However,
drawbacks including scalability problems (BNs), linear
assumptions (Ridge), and over-sensitivity to parameter
adjustment (One-Class SVM) emphasize the necessity of
cautious selection depending on the dataset's properties and
the prediction goal. All things considered, the comparison of
these algorithms shows a complementary relationship,
indicating that hybrid systems that combine linear efficiency,
probabilistic reasoning, and anomaly detection for a whole
forecasting framework may hold the key to the future of
weather prediction.

A Variational Bayesian network with interpretability
filtering is proposed by Jin et al. [17] to increase the accuracy
of air quality forecasting, improve feature relevance
comprehension, and  produce  more  dependable,
understandable pollution predictions. The study shows that
machine learning enhances heatwave evaluation and
extended-range forecast skill by evaluating linear and random
forest models for sub seasonal prediction of Central European
heatwaves [18]. The study applies multiple machine learning
classifiers to Austin rainfall forecast data, compares their
predictive performance, and identifies the most accurate
model for improving local rainfall prediction [19]. In order to
determine which machine learning classifier is best for real-
world meteorological prediction, the study evaluates accuracy,
resilience, and computing efficiency across a range of weather
datasets [20].

2.1 Research gaps

Because atmospheric processes are extremely dynamic,
nonlinear, and uncertain, predicting the weather is still one of
the most difficult data science problems. Although machine
learning methods like the Ridge Classifier, Bayesian Network,
and One-Class SVM have been investigated for weather
prediction, there are still a number of research gaps that restrict
their usefulness and practicality.

1. Limited Comparative Analysis Across Algorithms

The majority of current research focuses on assessing a
single algorithm or contrasting closely comparable techniques,
like neural networks vs probabilistic approaches or linear
classifiers versus tree-based models. In the domain of weather
prediction, very few studies systematically compare the Ridge
Classifier, Bayesian Networks, and One-Class SVM.
Classification, probabilistic reasoning, and anomaly detection
are all areas that each method addresses, but there is no
common framework to compare how well they perform on the
same datasets. When choosing algorithms for certain
meteorological applications, practitioners are unable to make
educated decisions due to the absence of thorough comparison
study.

2. Dataset Imbalance and Representation
Extreme or uncommon events are greatly outnumbered by
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usual conditions in weather datasets, which are frequently
unbalanced. Despite being intended for anomaly detection,
One-Class SVM is rarely used in conjunction with
conventional classifiers in this field. Similarly, because they
usually need balanced samples across classes, Ridge Classifier
and Bayesian Networks suffer when data is skewed. How
these algorithms deal with imbalance in real-world situations
is not well covered in the literature currently in publication,
nor are systematic approaches to combining them with
oversampling, resampling, or synthetic data generation
methods like SMOTE in meteorological contexts suggested.

3. Handling Nonlinear and High-Dimensional Data

Since temperature, humidity, wind speed, and pressure are
all interconnected, meteorological data is by its very nature
multidimensional and nonlinear. Due to its linear nature, the
Ridge Classifier frequently misses these nonlinear processes.
Despite their theoretical ability to describe dependencies,
Bayesian networks struggle with scalability as the number of
variables rises. One-Class SVM needs to be carefully tuned
and is not interpretable, even if it can handle nonlinear
boundaries  through  kernel  functions.  Evaluating
dimensionality reduction or feature selection strategies in
conjunction with these classifiers, as well as ways to improve
these algorithms for high-dimensional meteorological
datasets, are not sufficiently covered in current research.

4. Lack of Integration Between Algorithms

The lack of hybrid or ensemble models that take advantage
of the complimentary advantages of Bayesian Networks, One-
Class SVM, and Ridge Classifier represents another gap. For
instance, Bayesian Networks could quantify probabilistic
uncertainty, One-Class SVM could identify uncommon
anomalies, and Ridge Classifier could effectively classify
typical weather patterns. However, rather of integrating these
approaches into cohesive frameworks, current research
frequently applies them separately. Although it hasn't been
thoroughly investigated, a hybrid approach might offer a more
comprehensive and reliable solution for weather prediction.

5. Real-Time and Operational Deployment

A lot of research on these algorithms is done in academic
settings with historical weather data, but it doesn't apply its
conclusions to operational weather stations or real-time
forecasting. There is not enough attention paid to problems
like scalability, computing efficiency, and flexibility to
streaming data. Specifically, in real-time forecasting settings,
the speed advantage of the Ridge Classifier, the probabilistic
reasoning of the Bayesian Network, and the anomaly detection
ability of One-Class SVM have not been evaluated in tandem.

6. Interpretability and Decision Support

While Ridge Classifier and One-Class SVM offer limited
insights into decision-making for meteorologists and
policymakers, Bayesian Networks provide interpretable
probabilistic outputs. The lack of interpretability in
comparative research creates a substantial gap, especially
considering the growing need for explainable Al in weather
forecasting. Lack of comparative studies of Ridge Classifier,
Bayesian Networks, and One-Class SVM on common weather
datasets, insufficient handling of high-dimensional and
imbalanced meteorological data, a lack of hybrid approaches
that integrate the strengths of these algorithms, a lack of real-
time deployment, and a lack of emphasis on interpretability



and decision support are the main research gaps. up addition
to comparing the advantages and disadvantages of each
algorithm, filling up these gaps would open the door to the
creation of reliable, understandable, and practical forecasting
systems.

2.2 Scientific merit

By tackling both theoretical and practical meteorological
issues, research on One-Class SVM, Bayesian Network, and
Ridge Classifier for weather prediction makes important
scientific contributions. Using a common meteorological
dataset, it first offers a methodical assessment of many
machine learning paradigms, including anomaly detection,
probabilistic reasoning, and linear modelling. This makes it
possible to fully comprehend the applicability, advantages,
and disadvantages of each method when dealing with weather
prediction jobs that are marked by nonlinearity, uncertainty,
and class imbalance. Second, the paper highlights Bayesian
Networks for probabilistic and interpretable forecasting,
which improves decision-making in unpredictable weather
situations by allowing reasoning under noisy or incomplete
data. The third section examines anomaly detection using One-
Class SVM, which is essential for spotting uncommon and
severe  weather  occurrences that are frequently
underrepresented in datasets but have a significant
socioeconomic impact.

Furthermore, incorporating Ridge Classifier establishes a
baseline linear approach, highlighting the importance of
feature correlation management and computational efficiency.
When taken as a whole, this comparative framework helps
academics and practitioners determine which algorithm is best
based on operational restrictions, data properties, and
forecasting objectives. Finally, by bridging the gaps between
linear, probabilistic, and anomaly-based approaches in
meteorological applications, the work advances the creation of
reliable, interpretable, and adaptive weather prediction
models. In conclusion, a weather forecast system based on
machine learning represents a breakthrough in meteorological
science. It enhances and complements traditional forecasting
methods with computational intelligence, offering a faster,
more scalable, and potentially more accurate alternative. It has
scientific significance because of its multidisciplinary
approach, which integrates data science, artificial intelligence,
and atmospheric science to address one of humanity's most
significant and ancient problems: weather prediction.

2.3 Model selection and algorithms

Given the complexity and unpredictability of
meteorological data, choosing the right models is essential for
precise and trustworthy weather forecasting. Three different
machine learning techniques—Bayesian Network, One-Class
SVM, and Edge Classifier—are used in this study to capture
complementing elements of weather forecasting.

The Ridge Classifier was chosen for structured
classification problems like Rain/No Rain prediction because
of its processing efficiency and capacity to handle linearly
linked inputs. Stable coefficient estimates and interpretable
linear decision boundaries are ensured by its L2 regularization,
which reduces multicollinearity. Because of its prowess in
probabilistic reasoning and causal inference, the Bayesian
Network is used to predict the relationships between weather
variables including cloud cover, pressure, and humidity. It
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supports thinking with inadequate data and makes prediction
easier under uncertainty by producing conditional probability
tables.

The detection of uncommon or extreme weather
phenomena, such storms and cyclones, which are
underrepresented in datasets, is addressed by incorporating
One-Class SVM. It enhances the classification abilities of the
other two algorithms by detecting anomalies by learning a
boundary in high-dimensional feature space after being trained
just on typical settings. Using the same dataset, the
comparative framework assesses these models' predictive
accuracy, robustness, interpretability, and anomaly detection
capability, allowing for a thorough knowledge of how well-
suited they are for various weather forecast scenarios.

2.4 Model evaluation metrics

Standard classification metrics and specialized measures for
anomaly detection must be combined in order to assess the
effectiveness of Ridge Classifier, Bayesian Network, and One-
Class SVM in weather prediction. Common metrics for
Bayesian networks and Ridge classifiers, which deal with
binary or multiclass classification (such as
Sunny/Cloudy/Rainy or Rain/No Rain), include confusion
matrix analysis, accuracy, precision, recall, and F1-score.
While precision and recall evaluate the model's capacity to
accurately identify favourable weather phenomena, such
rainfall or storm occurrence, accuracy gauges the overall
correctness of predictions. The Fl-score offers a harmonic
mean of recall and precision, which is crucial in datasets that
are unbalanced.

Metrics are modified for One-Class SVM, which is intended
for anomaly detection, in order to assess the detection of
uncommon occurrences. These consist of Area Under the
Receiver Operating Characteristic Curve (AUC-ROC),
accuracy for anomalies, True Positive Rate (TPR), and False
Positive Rate (FPR). The focus is on reducing false negatives,
or undetected abnormalities that could have serious
repercussions, because extreme weather events are rare.
Furthermore, all models use cross-validation to guarantee
generalization and resilience. The paper provides a
comprehensive evaluation of the model's fitness for
operational forecasting by comparing these measures across
the three algorithms, highlighting their advantages and
disadvantages in forecasting typical circumstances,
probabilistic outcomes, and rare weather events.

3. METHODOLOGY

This comparison study's technique is Centered on
methodically assessing One-Class SVM, Bayesian Network,
and Ridge Classifier for weather prediction tasks. Pre-
processing, feature extraction, model training, evaluation,
comparison analysis, and dataset selection are all included in
the methodology. While showcasing each algorithm's unique
advantages and disadvantages in managing structured,
probabilistic, and anomaly-focused weather prediction
problems, each step is intended to guarantee consistency,
repeatability, and resilience across methods.

3.1 Dataset selection

The work makes use of open-access datasets from Kaggle



and the UCI Machine Learning Repository, as well as
historical weather data from reputable meteorological
organizations including the India Meteorological Department
(IMD) and the National Oceanic and Atmospheric
Administration (NOAA). The datasets comprise continuous
and categorical variables representing weather conditions
throughout multiple years, such as:

e Temperature (°C)

e Humidity (%)

e Air Pressure (hPa)

e Wind Speed (km/h)

* Cloud Cover (%)

*  Visibility (km)

* Precipitation (mm)

The objective variable for the Ridge Classifier and Bayesian
Network is categorical, such Rain/No Rain or
Sunny/Cloudy/Rainy. With infrequent or extreme events
acting as anomalies in testing and typical weather patterns
comprising the training set, One-Class SVM focuses on
anomaly detection.

3.2 Data preprocessing

Enhancing forecasting accuracy and ensuring algorithm
compatibility are crucial. Among the steps are:

1. Managing Missing Values: The mode is used to impute
categorical values, while the mean or median is used to impute
missing continuous variables.

2. Normalization/Scaling: To improve the performance of
Ridge Classifier and One-Class SVM, which are sensitive to
feature magnitudes, features are scaled to standard ranges
(such as 0-1 or z-score normalization).

3. Categorical Encoding: To efficiently create conditional
probability tables (CPTs), Bayesian networks use categorical
encoding, such as one-hot or label encoding.

4. Outlier Treatment: While One-Class SVM retains
anomalies since they are essential for assessment,
classification models smooth out extreme outliers.

5. Data Splitting: The dataset is divided into subgroups for
testing (20-30%) and training (70-80%). For robustness,
cross-validation is used, usually five times.

3.3 Feature selection and extraction

Reducing dimensionality, eliminating superfluous or
unnecessary features, and enhancing model interpretability are
the goals of feature selection. The selection of pertinent
meteorological variables is guided by correlation analysis and
subject experience. L2 regularization is used for Ridge
Classifier to handle multicollinearity, whereas Bayesian
networks naturally describe feature relationships. One-Class
SVM learns the boundaries of typical weather patterns by
utilizing all attributes that describe normal conditions.

3.4 Model training

Ridge Classifier

The normalized dataset is used to train the Ridge Classifier,
a linear model with L2 regularization. In order to avoid
overfitting, the approach penalizes large coefficients while
minimizing the squared error between the predicted and actual
classes. To maximize performance, grid search and cross-
validation are used to adjust hyper parameters, especially the
regularization parameter alpha. Rain/No Rain are examples of
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the discrete class labels that the model produces in response to
weather conditions.
Bayesian Network

Bayesian networks use a directed acyclic graph (DAG) to
model  probabilistic interactions  between  variables.
Conditional dependencies are represented by edges, while
meteorological variables are represented by each node.
Bayesian parameter estimation or Maximum Likelihood
Estimation (MLE) are used to estimate Conditional
Probability Tables (CPTs). Expert knowledge or automated
algorithms such as Hill Climbing or Constraint-Based
techniques are used to achieve structure learning. P (Rain |
Humidity, Pressure, Cloud Cover) and other posterior
probabilities are computed by the network for inference,
enabling probabilistic prediction even in the case of
inadequate data.
One-Class SVM

To identify anomalies that indicate uncommon or extreme
occurrences, One-Class SVM s trained solely on typical
weather patterns. In high-dimensional space, nonlinear
boundaries are usually handled using the radial basis function
(RBF) kernel. Cross-validation is used to optimize hyper
parameters such as gamma (the kernel coefficient) and nu (an
upper constraint on the fraction of outliers). New observations
are predicted by the trained model to either indicate anomalies
(label -1) or fall inside the usual boundaries (label 1).

3.5 Model evaluation

The following specific metrics are used to assess the
models: Accuracy, Precision, Recall, F1-score, Confusion
Matrix, and Bayesian Network and Edge Classifier. Prediction
calibration and probabilistic outputs are also assessed by
Bayesian networks. One-Class SVM: Area Under the ROC
Curve (AUC-ROC), Precision for Anomalies, True Positive
Rate (TPR), and False Positive Rate (FPR). Reliability in the
detection of uncommon weather events is ensured by avoiding
false negatives. All models undergo cross-validation to
guarantee generality and prevent overfitting.

Input Data

Pre-processing
Humidity Wi T emper ature
Speed

Paratmeter Data ‘

l l

| Traiming Data | I Testing Data |

Figure 1. Block diagram of weather prediction by using
machine learning



Changes in broad-scale wind circulation patterns affect our
daily weather. Wind direction and speed observations,
together with observations of other elements such as
temperature and moisture, are essential for determining the
state of the atmosphere at certain times and places on Earth.
The prediction parameter's data is obtained. To predict rainfall,
the Support Vector Machine (SVM) technique is used. Prior to
being separated into training and test sets, the data must first
be normalized. The parameters for the training and testing data
are eventually initialized until the model is optimized for
rainfall prediction. Divide the results into training and test sets.
The occurrence of wet and typical climates is predicted using
SVM classifiers.

Figure 1 represents block diagram of weather prediction by
using machine learning. In weather prediction, this
methodology offers a thorough framework for evaluating the
Ridge Classifier, Bayesian Network, and One-Class SVM. It
makes use of each algorithm's own advantages—Iinear
classification, probabilistic  reasoning, and anomaly
detection—while guaranteeing that they are all fairly assessed
on the same dataset. Reproducibility is made easier by the
structured procedure, which also offers useful insights into
model selection for both typical and extreme weather
scenarios.

4. RESULT ANALYSIS

The findings of an investigation of a weather forecast
system based on machine learning are displayed in this
section. Accuracy, Recall, and F1 Score were the main metrics
used to assess the performance of the Ridge Classifier,
Bayesian Network, and One-Class SVM using historical
meteorological data. Key meteorological characteristics like
temperature, humidity, pressure, wind speed, cloud cover, and
precipitation were included in the dataset. For Ridge and
Bayesian models, the goal variable was Rain/No Rain, while
for One-Class SVM, anomaly detection was used. Table 1
represents the measurement analysis.

Table 1. Measurement analysis

Parameters One-Class Rid_g'_e Bayesian
SVM Classifier Network
Accuracy 92 87 88
Recall 93 88 89
F1 Score 94 87 88
Accuracy
93
92
91
a0 Plot Area

One Class SV Redge Classifier Bayseian Classifier

Figure 2. Accuracy comparison graph

Figure 2 displays an accuracy comparison graph for weather
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prediction using the Ridge Classifier, Bayesian Network, and
One-Class SVM.

Figure 3 shows a recall comparison graph between the
Ridge Classifier, Bayesian Network, and One-Class SVM.
The recall value of SVM is higher.

Recall
94
93
92
91
a0
89
B8
BY
85
85
One Class SV Redge Classifier Bayseian Classifier

Figure 3. Recall comparison graph
Figure 4 displays an F1-Score comparison graph for
weather prediction that contrasts the Ridge Classifier,
Bayesian Network, and One-Class SVM.

F1 Score

One Class SV

96
94
a2

30

Redge Classifier Bayseian Classifier

Figure 4. F1-score comparison graph

For general weather prediction, One-Class SVM
demonstrated good accuracy, but its recall was marginally
lower, suggesting that some rain occurrences were overlooked.
Its F1 Score is appropriate for structured linear classification
problems since it strikes a compromise between recall and
precision. In every metric, One-Class SVM scored better than
Ridge Classifier. Higher recall and F1 Score are the results of
its probabilistic modeling, which enables better management
of missing data and erratic weather patterns. When making
decisions in the face of uncertainty, the Bayesian Network's
interpretable forecasts are essential. One-Class SVM showed
the highest recall, emphasizing its strength in detecting rare or
extreme weather events. However, because the dataset is
dominated by normal conditions and the model is Centered on
anomaly detection rather than generic classification, its overall
accuracy is lower. Despite unbalanced classes, the F1 Score is
comparable to the Ridge Classifier, suggesting an acceptable
balance.

4.1 Limitations
Although Ridge Classifier, Bayesian Network, and One-

Class SVM all show great promise for predicting the weather,
they also have drawbacks that restrict their usefulness,



precision, and in actual
situations.
Ridge Classifier

Linear Assumption: Ridge Classifier makes the assumption
that input features and target variables have linear
relationships. This reduces its ability to accurately depict the
chaotic and nonlinear nature of weather occurrences.

Feature Dependency: Although L2 regularization reduces
some multicollinearity, highly correlated features may make
the model less interpretable.

Limited Probabilistic Insight: The Ridge Classifier's
usefulness for probabilistic forecasting or risk assessment is
diminished because, in contrast to Bayesian Networks, it
produces deterministic outputs and does not quantify
uncertainty.

Sensitivity to Outliers: Extreme weather events can skew
predictions and lower recall for uncommon occurrences,
despite being more robust than ordinary linear regression.
Bayesian Network

Complexity and Scalability: Building precise conditional
probability tables (CPTs) and carrying out inference become
more computationally demanding as the number of variables
rises.

Expert Knowledge Requirement: Large datasets or domain
expertise may be necessary for accurate structure learning;
inaccurate CPTs can lower prediction accuracy.

Data Requirements: When there is insufficient prior
information or sparse or partial data, Bayesian networks
perform poorly.

Limited Handling of Extreme Events: Although Bayesian
networks are probabilistic, they may underrepresent unusual
or uncommon weather if there are few of these occurrences in
the training set.

One-Class SVM

Pay Attention to Anomalies: One-Class SVM performs
poorly for classifying weather in general but is excellent at
identifying uncommon or extreme occurrences.

Parameter Sensitivity: Hyper parameters like kernel type,
gamma, and nu have a significant impact on performance;
improper tuning may result in misleading positives or
negatives.

Interpretability Problems: Non-technical users may find it
challenging to understand the model's boundary-based
anomaly detection results.

Class Imbalance Dependence: If training data does not
adequately reflect typical weather patterns, effectiveness
decreases.

interpretability meteorological

5. CONCLUSION

This comparison analysis shows that for weather prediction,
Ridge Classifier, Bayesian Network, and One-Class SVM
each have unique benefits. For ordinary weather situations, the
Ridge Classifier offers interpretable linear classification and
computing efficiency. The Bayesian Network is perfect for
making well-informed decisions since it is very good at
handling uncertainty and missing data in probabilistic
reasoning. One-Class SVM supports early warning systems by
efficiently detecting uncommon or extreme weather
phenomena. A hybrid strategy combining linear classification,
probabilistic reasoning, and anomaly detection, however, may
offer a more reliable, accurate, and flexible framework for all-
encompassing weather forecasting, given the inherent limits of
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each model.

6. FUTURE WORK

In order to capitalize on their complementary strengths—
linear classification, probabilistic reasoning, and anomaly
detection—future research can concentrate on creating hybrid
models that combine the Ridge Classifier, Bayesian Network,
and One-Class SVM. Predictive accuracy for both typical and
extreme weather occurrences can be improved by utilizing
deep learning and ensemble learning approaches. Operational
forecasting can be enhanced by real-time deployment with
streaming meteorological data. Model performance can also
be further improved by feature selection, dimensionality
reduction, and automated hyperparameter adjustment. A
strong, flexible, and all-encompassing weather prediction
system will be made possible by placing an emphasis on
interpretability and explainability, which will make forecasts
actionable for meteorologists and policymakers.
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