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Because atmospheric processes are very dynamic, unpredictable, and nonlinear, weather 

prediction is still a difficult undertaking. For forecasting, anomaly detection, and 

meteorological decision-making to be accurate, the right categorization method must be 

chosen. Three well-known machine learning methods—Ridge Classifier, Bayesian 

Network, and One-Class Support Vector Machine (SVM)—applied to weather prediction 

tasks are compared in this paper. When it comes to managing multicollinearity across 

meteorological attributes like temperature, humidity, and pressure, the Ridge Classifier—a 

linear model derived from ridge regression—works well. Because of its robustness against 

correlated features and computing efficiency, it may be applied to binary or multiclass 

issues such as Rain/No Rain prediction. However, because of its linear character, it is less 

able to capture the intricate nonlinear correlations seen in meteorological data, which could 

lower prediction accuracy in a variety of climatic circumstances. The Bayesian Network, a 

probabilistic graphical model, on the other hand, is particularly good at capturing 

uncertainty and the relationships between meteorological variables. It allows for 

probabilistic reasoning even in the presence of insufficient data by modeling causal 

linkages, such as how cloud cover and humidity affect rainfall. Although it is interpretable, 

its performance is highly dependent on precise prior probabilities and in-depth domain 

expertise to create conditional probability tables, and as the number of parameters increases, 

it has scaling problems. By learning from typical weather patterns and marking departures 

as anomalies, the One-Class SVM, on the other hand, is well-suited for anomaly 

identification, identifying extreme weather phenomena like cyclones, storms, and 

heatwaves. Although it works well for early warning systems, thorough multi-category 

forecasting is less appropriate. All things considered, One-Class SVM, Bayesian Network, 

and Ridge Classifier all perform well in different meteorological scenarios. To improve the 

dependability and flexibility of weather forecasting systems, future research should 

examine hybrid frameworks that combine the interpretability of Bayesian Networks, the 

effectiveness of Ridge Classifiers, and the anomaly detection skills of One-Class SVM. 
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1. INTRODUCTION

For centuries, weather forecasting has been a highly 

researched and useful field with applications in everything 

from transportation and agriculture to disaster relief and 

energy planning. Safeguarding human life, reducing financial 

losses, and facilitating efficient decision-making in industries 

that significantly depend on environmental conditions all 

depend on accurate weather forecasting. Machine learning has 

become a popular tool for forecasting weather patterns 

because to the quick development of computing techniques 

and the accessibility of extensive meteorological datasets. 

Machine learning algorithms supplement conventional 

physics-based numerical weather prediction models by having 
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the capacity to learn from historical data, uncover hidden 

relationships, and adjust to novel circumstances. 

Classification algorithms, one of the many machine learning 

techniques, are essential for forecasting meteorological 

conditions including the presence of clouds, the possibility of 

a storm, and whether it will rain or not. Nevertheless, each 

approach has distinct advantages and disadvantages based on 

the type of information, the prediction goal, and the intricacy 

of the underlying atmospheric phenomena. No single strategy 

is consistently best for every situation. The methods, 

application, benefits, and drawbacks of three different 

machine learning techniques for weather prediction—the 

Ridge Classifier, Bayesian Network, and One-Class Support 

Vector Machine (SVM)—are compared in this paper. 

1.1 The challenge of weather prediction 

Because atmospheric dynamics are chaotic and nonlinear, 

predicting the weather is intrinsically difficult. Temperature, 

humidity, pressure, wind speed, cloud cover, and other 

variables all interact in very complex and frequently 

unanticipated ways. This phenomenon, known as the 

"butterfly effect," occurs when small changes in one parameter 

have disproportionately huge effects on weather outcomes. 

Prediction is further complicated by the fact that 

meteorological databases sometimes include noise, 

uncertainty, and missing variables. By simulating probabilistic 

relationships, detecting anomalies, or approximating nonlinear 

patterns, machine learning techniques can supplement 

traditional deterministic models, which frequently fail to 

incorporate these uncertainties. 

In light of this, the particular forecasting objective plays a 

major role in choosing the best categorization method. For 

instance, a linear or probabilistic classifier might be adequate 

if the goal is to categorize whether it will rain or not based on 

past observations. An anomaly detection approach is more 

suited if the objective is to identify uncommon extreme 

phenomena, such as cyclones. The comparison of Ridge 

Classifier, Bayesian Network, and One-Class SVM in the 

context of weather prediction is driven by the need for task-

oriented algorithm selection. 

1.2 Ridge Classifier for weather prediction 

Ridge regression is the source of the Ridge Classifier, a 

linear classification method. Large coefficient values are 

penalized through the use of L2 regularization, which helps to 

reduce overfitting and feature multicollinearity. Many of the 

input variables used in weather prediction, including 

temperature, humidity, and pressure, have a tendency to be 

associated. In these situations, ridge regression-based 

classification works especially well since it maintains 

parameter estimate stability even when correlated predictors 

are present. Ridge Classifier uses an additional regularization 

term to minimize the squared error. 

As a result, classes are divided by a linear decision 

boundary, such as "Rain" vs "No Rain." It is a good contender 

for baseline classification models in meteorology because of 

its ease of use and computational effectiveness, particularly in 

situations where the correlation between characteristics and 

results is roughly linear. Its linear character, however, restricts 

its capacity to represent intricate nonlinear interactions that are 

commonly found in atmospheric dynamics. Because of this, 

the Ridge Classifier performs well in structured classification 

tasks, but its forecasting ability may suffer when weather 

phenomena show significant nonlinearity or chaotic 

relationships. 

1.3 Bayesian Network for weather prediction 

Through the use of a directed acyclic graph (DAG), 

Bayesian Networks (BNs) offer a probabilistic graphical 

model framework that illustrates the relationships between 

variables. Rainfall, pressure, humidity, and other random 

variables are represented by each node, while conditional 

relationships are shown by the edges. BNs make it possible to 

compute joint and marginal probabilities through conditional 

probability tables (CPTs) linked to every node, enabling 

inference even in cases when some variables are absent. 

The capacity of Bayesian networks to model uncertainty 

and causal links among meteorological phenomena is its 

primary benefit in weather prediction. For instance, low 

pressure and humidity may both have an impact on cloud 

formation, which in turn influences the likelihood of rainfall. 

These dependencies can be formally represented using a 

Bayesian network, which can then use Bayes' theorem to 

calculate posterior probabilities. Because weather systems are 

inherently uncertain, this makes BNs extremely interpretable 

and helpful for reasoning under uncertainty. 

But there are drawbacks to Bayesian techniques as well. It 

takes a lot of trustworthy data or in-depth topic knowledge to 

create correct CPTs. In meteorological situations when 

variables are highly correlated, the assumption of 

independence in simplified Bayesian classifiers, like Naïve 

Bayes, frequently fails. Furthermore, the complexity of 

creating and calculating the network rises sharply with the 

number of variables. For weather prediction tasks that call for 

probabilistic reasoning and decision-making under 

uncertainty, Bayesian networks continue to be useful despite 

these difficulties. 

1.4 One-Class SVM for weather prediction 

The One-Class SVM is an unsupervised or semi-supervised 

technique intended for anomaly detection, in contrast to the 

Ridge Classifier and Bayesian Network, which are mainly 

intended for multi-class or binary classification problems. It 

learns a decision function that encloses the majority of these 

observations within a boundary in feature space after being 

trained on data that represents "normal" conditions. An 

anomaly is any new observation that falls outside of this range. 

When it comes to weather prediction, One-Class SVM is 

very helpful in spotting extreme and uncommon weather 

phenomena including heat waves, severe storms, and 

cyclones. Since these occurrences are usually 

underrepresented in datasets, it is challenging to efficiently 

train conventional classifiers. By concentrating solely on 

typical meteorological data during training and identifying 

deviations during testing, One-Class SVM corrects for this 

imbalance. This strategy has the advantage of being able to 

offer early warnings for unusual weather, which can be quite 

helpful in disaster relief efforts. The inability to categorize 

weather into specific groups (such as sunny, cloudy, and rainy) 

and the possibility of incorrectly labelling uncommon but 

legitimate occurrences as anomalies are some of its 

drawbacks. Therefore, rather than serving as a substitute for 

general weather prediction models, One-Class SVM is best 

understood as an adjunctive technique for anomaly detection. 
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1.5 Motivation for comparative study 

Their various methodological underpinnings and 

applicability for various facets of weather prediction provide 

the justification for contrasting the Ridge Classifier, Bayesian 

Network, and One-Class SVM. For structured classification 

jobs, Ridge Classifier offers an easy-to-use and effective 

solution. Bayesian networks are useful for reasoning under 

noisy or incomplete data because they provide a probabilistic 

framework for describing uncertainty and causal linkages. By 

extending predictive modeling to anomaly detection, One-

Class SVM makes it possible to identify uncommon and 

severe weather phenomena that might not be adequately 

represented in conventional classification tasks. 

Researchers and practitioners can choose the strategy that 

best suits their forecasting objectives, the data at hand, and 

their operational needs by methodically examining various 

algorithms. Additionally, recognizing the complementing 

advantages of these techniques creates opportunities for hybrid 

or ensemble systems that integrate anomaly detection, 

probabilistic reasoning, and linear efficiency into a more 

complete and reliable weather forecast system. 

1.6 Scope of the study 

The theoretical underpinnings, real-world applications, 

benefits, and drawbacks of the Ridge Classifier, Bayesian 

Network, and One-Class SVM in the context of weather 

prediction are the key topics of this comparative study. The 

focus is on how well they work for certain tasks such anomaly 

detection (extreme weather events), probabilistic forecasting 

(probability of various circumstances), and binary 

classification (rain/no rain). This study intends to aid in the 

creation of flexible, dependable, and understandable weather 

prediction models that may assist with both routine decision-

making and disaster planning by highlighting their relative 

performance and use cases. 

1.7 Data set description 

Any machine learning model's ability to predict the weather 

is mostly dependent on the caliber, variety, and applicability 

of the training and testing dataset. Weather databases are used 

to record atmospheric conditions for this comparison analysis 

using quantifiable metrics such temperature, humidity, air 

pressure, wind speed, and cloud cover. These characteristics 

act as predictors, and the forecasting goal and algorithm 

determine the target variable. 

The National Oceanic and Atmospheric Administration 

(NOAA), the India Meteorological Department (IMD), and 

international platforms like Kaggle or the UCI Machine 

Learning Repository are among the publicly accessible 

sources of weather datasets. For example, the Kaggle Weather 

History Dataset includes weather information for multiple 

years, including temperature, humidity, visibility, wind speed, 

and precipitation type. Because they contain both continuous 

and categorical variables, these datasets are favoured because 

they provide flexibility in the application of various machine 

learning techniques. 

Features (Independent Variables) 

Usually, the dataset has the following characteristics: 

Temperature (℃): Affects precipitation probability, cloud 

formation, and evaporation. Humidity (%): A strong predictor 

of atmospheric moisture that is closely associated with 

precipitation. Pressure (hPa): Clear skies are associated with 

high pressure, but storms and precipitation are frequently 

preceded by low pressure. Wind Speed (km/h): Influences 

weather event intensity and storm formation. Cloud Cover 

(%): Closely related to precipitation and solar radiation. 

Visibility (km): This is a proxy for rainfall, haze, or fog. 

Precipitation (mm) 

Rain/No Rain is a quantitative metric that can be translated 

into categorical results. Depending on each algorithm's needs, 

these features are pre-processed using encoding and 

normalization. Normalization guarantees the comparability of 

continuous variables for the Ridge Classifier and One-Class 

SVM. Categorical encoding (e.g., “High/Low Humidity,” 

“Clear/Cloudy Sky”) facilitates the interpretation of 

conditional probability table building for Bayesian networks. 

Target Variables (Dependent Variables) 

Target variables for Ridge Classifiers are typically binary or 

multiclass, such Rain vs. No Rain or Sunny, Cloudy, Rainy. P 

(Rain | Humidity, Pressure, Cloud Cover) is an example of a 

probabilistic expression for the target in a Bayesian network. 

Instead of providing a precise classification, it makes an 

estimate of the probability of meteorological conditions. The 

goal of One-Class SVM is anomaly detection; the model only 

learns from "normal" circumstances and marks anomalous 

weather patterns—such as storms, cyclones, and intense 

heat—as anomalies. 

Preprocessing and Splitting 

To deal with noise, outliers, and missing values, the dataset 

is cleaned. Mode substitution (for categorical data) or mean 

substitution (for continuous values) can be used to impute 

missing items. While outliers may be flattened in classification 

tasks, they are carefully preserved in anomaly detection 

activities. After that, the dataset is separated into subsets for 

testing (20–30%) and training (70–80%). To guarantee 

resilience across several folds, cross-validation is used. 

Suitability for Algorithms 

Datasets containing correlated characteristics and linear 

patterns are advantageous to the Ridge Classifier. When there 

are significant and comprehensible probabilistic dependencies 

between features, the Bayesian Network performs well. One-

Class SVM is perfect for identifying infrequent extreme 

weather events since it just needs datasets with precise 

definitions of normal conditions. In conclusion, the dataset 

provides the structured and unstructured data required to 

assess the advantages of Ridge Classifier, Bayesian Network, 

and One-Class SVM in weather prediction, and it forms the 

basis of this comparative study.  

2. LITERATURE SURVEY

Over the past 20 years, the availability of big meteorological 

datasets and advancements in computer power have led to a 

considerable increase in the application of machine learning 

for weather prediction. The foundation of forecasting systems 

continues to be traditional numerical weather prediction 

(NWP) models, which are based on the solution of intricate 

physical equations of atmospheric dynamics. However, data-

driven approaches have gained traction due to their 

shortcomings in managing uncertainty, high computing cost, 

and difficulties in adjusting to specific situations. Among 

these, classification methods that have demonstrated potential 

in many weather forecasting domains include Ridge Classifier, 

Bayesian Networks, and One-Class SVM. This study 
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examines earlier studies on these algorithms and how they are 

used to forecast the weather. 

Ridge Classifier in Weather Prediction 

The Ridge Classifier is a linear model that uses L2 

regularization to manage multicollinearity and lessen 

overfitting. It is derived from ridge regression. Ridge 

regression is frequently utilized in studies addressing 

structured classification issues like precipitation prediction, 

despite its widespread use in generic predictive analytics. 

The applicability of Ridge-based models in weather-related 

activities is shown in a number of papers. In their investigation 

of regularized classifiers and linear regression for downscaling 

climate projections, Arumugam et al. [1] demonstrated that 

SVM, ridge regression approaches are an excellent way to 

handle correlated indicators such as temperature, humidity, 

and pressure. In a similar vein, Bai et al. [2] used the CNN, 

BiLSTM, Ridge Classifier to predict rainfall in monsoon 

regions of India and found that it was more stable than logistic 

regression. When numerous parameters affect the same result 

in meteorological datasets, feature redundancy is prevalent 

and was managed with the aid of ridge regularization. 

Ridge Classifier's linear design still limits it in spite of these 

benefits. Linear classifiers may oversimplify the dynamics of 

weather processes, which are frequently nonlinear. Ridge 

Classifier performs best as a baseline or benchmark model, 

according to research and the role of MLin weather prediction 

by Amini and Bradaran Rohani [3]. 

It offers interpretability and computational efficiency, 

however it frequently performs worse than ensemble and deep 

learning techniques. Therefore, the Ridge Classifier is rarely 

utilized for more complicated scenarios, even if it has found 

value in binary weather prediction tasks like Rain/No Rain or 

Storm/No Storm. 

Bayesian Networks in Weather Prediction 

A probabilistic framework for simulating uncertainty and 

inter-variable dependencies is offered by Bayesian Networks 

(BNs). Their power resides in their capacity to clearly depict 

causal links, which is essential for forecasting the weather. 

Zhang et al. [4] laid the groundwork for eventual applications 

in meteorology by introducing Bayesian networks and 

Machine learning methods as instruments for reasoning under 

uncertainty. 

Bayesian techniques have been used in weather prediction 

for storm prediction, cloud classification, and rainfall 

forecasting. Using historical data on humidity, pressure, and 

cloud cover, Guerrero-Rodriguez et al. [5] created a BN model 

to predict precipitation. This showed that Bayesian inference 

could outperform basic regression models in terms of 

accuracy, especially when handling missing data [5]. In their 

2019 study, Shi et al. [6] used SVM, Bayesian networks to 

forecast dryness, highlighting how well they capture 

conditional relationships between meteorological and 

hydrological factors. The interpretability of Bayesian 

networks is another important advantage. According to Nayak, 

Munir Ahmad, and Subimal Ghosh forecasters can directly 

evaluate uncertainty thanks to the probabilistic outputs that 

Bayesian approaches produce. In operational meteorology, 

where decision-making frequently calls for probability 

estimates rather than deterministic predictions, this aspect is 

especially helpful. Predicting a "70% chance of rain," for 

instance, provides more useful information than a binary 

"Rain/No Rain" response [7]. 

However, there are certain difficulties with Bayesian 

networks. Large datasets or specialized knowledge are needed 

to create reliable conditional probability tables (CPTs), and the 

computational complexity rises significantly with the number 

of variables. According to studies like Mohammed et al. [8], 

Bayesian networks do not scale well with high-dimensional 

meteorological data unless they are paired with hybrid 

techniques or dimensionality reduction. Notwithstanding these 

drawbacks, Bayesian networks are nonetheless widely 

acknowledged for their capacity to manage uncertainty and 

make decisions based on insufficient data, which makes them 

especially pertinent in meteorological applications [8]. 

One-Class SVM in Weather Prediction 

The main purpose of One-Class SVM is anomaly detection, 

which involves determining the limits of "normal" data and 

classifying departures as anomalies. Because extreme weather 

occurrences are usually uncommon in comparison to average 

weather, this makes it extremely significant for spotting them. 

As an expansion of the classic SVM, One-Class SVM was 

presented by Han and Jiang [9]. with the goal of differentiating 

between normal and anomalous data. This technique has been 

used in meteorology to identify heatwaves, detect storms, and 

recognize cyclones. One-Class SVM was employed by Deif et 

al. [10] to find anomalies in climatic time-series data, and they 

reported excellent results in spotting uncommon occurrences 

like droughts. Similar to this study [10], Cofıno et al. [11] used 

satellite measurements to apply One-Class SVM to typhoon 

identification, with encouraging results in differentiating 

anomalous atmospheric pressure patterns from normal 

fluctuations. 

When training data is unbalanced, as is commonly the case 

in meteorology when extreme occurrences are rare, One-Class 

SVM is useful. One-Class SVM only needs data from the 

majority (normal) class during training, in contrast to 

classifiers that need balanced datasets for every category. This 

enables its efficient implementation in natural catastrophe 

early warning systems. But there are restrictions. According to 

Barrera-Animas et al. [12], One-Class SVM has the potential 

to generate false alarms by incorrectly classifying infrequent 

but legitimate weather occurrences as anomalies. Furthermore, 

One-Class SVM's performance is highly dependent on 

parameter tuning (such as kernel selection and nu parameter), 

and inadequate adjustment can seriously impair outcomes 

[12]. It is less successful at general classification tasks, such 

multi-category weather prediction, but being strong at 

anomaly detection. 

It is clear from the examined papers that One-Class SVM, 

Bayesian Networks, and Ridge Classifier each have distinct 

roles in weather prediction [13]. 

Ridge Classifier's simplicity and interpretability make it 

ideal for structured, linearly separable classification 

applications. It is frequently employed as a baseline model to 

forecast precipitation. Because of its superiority in 

probabilistic reasoning, Bayesian networks are useful for 

handling missing or ambiguous data as well as forecasting 

outcome likelihoods [14]. They are extensively employed in 

probabilistic decision-making, drought monitoring, and 

rainfall forecasting. When training data for uncommon events 

is insufficient for conventional classifiers, One-Class SVM 

excels at anomaly identification, identifying extreme weather 

events like storms or cyclones. 

According to a number of research, no one method is 

adequate for every weather forecast task. Goodarzi, L., 

Banihabib investigated merging One-Class SVM with deep 

learning for more reliable anomaly identification [15], 

whereas Iliyas, I.I., Umoru, suggested hybrid approaches 
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combining ensemble methods and Bayesian networks. These 

hybrid approaches show how accuracy, scalability, and 

reliability can be increased by combining the advantages of 

various classifiers [16]. According to the literature, One-Class 

SVM, Bayesian Networks, and Ridge Classifier each offer 

special advantages in the field of weather prediction. One-

Class SVM is useful for identifying uncommon and severe 

events, Bayesian Networks allow reasoning under uncertainty 

and provide probabilistic forecasts, and Ridge Classifier offers 

efficiency and stability for basic classification tasks. However, 

drawbacks including scalability problems (BNs), linear 

assumptions (Ridge), and over-sensitivity to parameter 

adjustment (One-Class SVM) emphasize the necessity of 

cautious selection depending on the dataset's properties and 

the prediction goal. All things considered, the comparison of 

these algorithms shows a complementary relationship, 

indicating that hybrid systems that combine linear efficiency, 

probabilistic reasoning, and anomaly detection for a whole 

forecasting framework may hold the key to the future of 

weather prediction. 

A Variational Bayesian network with interpretability 

filtering is proposed by Jin et al. [17] to increase the accuracy 

of air quality forecasting, improve feature relevance 

comprehension, and produce more dependable, 

understandable pollution predictions. The study shows that 

machine learning enhances heatwave evaluation and 

extended-range forecast skill by evaluating linear and random 

forest models for sub seasonal prediction of Central European 

heatwaves [18]. The study applies multiple machine learning 

classifiers to Austin rainfall forecast data, compares their 

predictive performance, and identifies the most accurate 

model for improving local rainfall prediction [19]. In order to 

determine which machine learning classifier is best for real-

world meteorological prediction, the study evaluates accuracy, 

resilience, and computing efficiency across a range of weather 

datasets [20]. 

2.1 Research gaps 

Because atmospheric processes are extremely dynamic, 

nonlinear, and uncertain, predicting the weather is still one of 

the most difficult data science problems. Although machine 

learning methods like the Ridge Classifier, Bayesian Network, 

and One-Class SVM have been investigated for weather 

prediction, there are still a number of research gaps that restrict 

their usefulness and practicality. 

1. Limited Comparative Analysis Across Algorithms

The majority of current research focuses on assessing a

single algorithm or contrasting closely comparable techniques, 

like neural networks vs probabilistic approaches or linear 

classifiers versus tree-based models. In the domain of weather 

prediction, very few studies systematically compare the Ridge 

Classifier, Bayesian Networks, and One-Class SVM. 

Classification, probabilistic reasoning, and anomaly detection 

are all areas that each method addresses, but there is no 

common framework to compare how well they perform on the 

same datasets. When choosing algorithms for certain 

meteorological applications, practitioners are unable to make 

educated decisions due to the absence of thorough comparison 

study. 

2. Dataset Imbalance and Representation

Extreme or uncommon events are greatly outnumbered by

usual conditions in weather datasets, which are frequently 

unbalanced. Despite being intended for anomaly detection, 

One-Class SVM is rarely used in conjunction with 

conventional classifiers in this field. Similarly, because they 

usually need balanced samples across classes, Ridge Classifier 

and Bayesian Networks suffer when data is skewed. How 

these algorithms deal with imbalance in real-world situations 

is not well covered in the literature currently in publication, 

nor are systematic approaches to combining them with 

oversampling, resampling, or synthetic data generation 

methods like SMOTE in meteorological contexts suggested. 

3. Handling Nonlinear and High-Dimensional Data

Since temperature, humidity, wind speed, and pressure are

all interconnected, meteorological data is by its very nature 

multidimensional and nonlinear. Due to its linear nature, the 

Ridge Classifier frequently misses these nonlinear processes. 

Despite their theoretical ability to describe dependencies, 

Bayesian networks struggle with scalability as the number of 

variables rises. One-Class SVM needs to be carefully tuned 

and is not interpretable, even if it can handle nonlinear 

boundaries through kernel functions. Evaluating 

dimensionality reduction or feature selection strategies in 

conjunction with these classifiers, as well as ways to improve 

these algorithms for high-dimensional meteorological 

datasets, are not sufficiently covered in current research. 

4. Lack of Integration Between Algorithms

The lack of hybrid or ensemble models that take advantage

of the complimentary advantages of Bayesian Networks, One-

Class SVM, and Ridge Classifier represents another gap. For 

instance, Bayesian Networks could quantify probabilistic 

uncertainty, One-Class SVM could identify uncommon 

anomalies, and Ridge Classifier could effectively classify 

typical weather patterns. However, rather of integrating these 

approaches into cohesive frameworks, current research 

frequently applies them separately. Although it hasn't been 

thoroughly investigated, a hybrid approach might offer a more 

comprehensive and reliable solution for weather prediction. 

5. Real-Time and Operational Deployment

A lot of research on these algorithms is done in academic

settings with historical weather data, but it doesn't apply its 

conclusions to operational weather stations or real-time 

forecasting. There is not enough attention paid to problems 

like scalability, computing efficiency, and flexibility to 

streaming data. Specifically, in real-time forecasting settings, 

the speed advantage of the Ridge Classifier, the probabilistic 

reasoning of the Bayesian Network, and the anomaly detection 

ability of One-Class SVM have not been evaluated in tandem. 

6. Interpretability and Decision Support

While Ridge Classifier and One-Class SVM offer limited

insights into decision-making for meteorologists and 

policymakers, Bayesian Networks provide interpretable 

probabilistic outputs. The lack of interpretability in 

comparative research creates a substantial gap, especially 

considering the growing need for explainable AI in weather 

forecasting. Lack of comparative studies of Ridge Classifier, 

Bayesian Networks, and One-Class SVM on common weather 

datasets, insufficient handling of high-dimensional and 

imbalanced meteorological data, a lack of hybrid approaches 

that integrate the strengths of these algorithms, a lack of real-

time deployment, and a lack of emphasis on interpretability 
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and decision support are the main research gaps. up addition 

to comparing the advantages and disadvantages of each 

algorithm, filling up these gaps would open the door to the 

creation of reliable, understandable, and practical forecasting 

systems. 

2.2 Scientific merit 

By tackling both theoretical and practical meteorological 

issues, research on One-Class SVM, Bayesian Network, and 

Ridge Classifier for weather prediction makes important 

scientific contributions. Using a common meteorological 

dataset, it first offers a methodical assessment of many 

machine learning paradigms, including anomaly detection, 

probabilistic reasoning, and linear modelling. This makes it 

possible to fully comprehend the applicability, advantages, 

and disadvantages of each method when dealing with weather 

prediction jobs that are marked by nonlinearity, uncertainty, 

and class imbalance. Second, the paper highlights Bayesian 

Networks for probabilistic and interpretable forecasting, 

which improves decision-making in unpredictable weather 

situations by allowing reasoning under noisy or incomplete 

data. The third section examines anomaly detection using One-

Class SVM, which is essential for spotting uncommon and 

severe weather occurrences that are frequently 

underrepresented in datasets but have a significant 

socioeconomic impact. 

Furthermore, incorporating Ridge Classifier establishes a 

baseline linear approach, highlighting the importance of 

feature correlation management and computational efficiency. 

When taken as a whole, this comparative framework helps 

academics and practitioners determine which algorithm is best 

based on operational restrictions, data properties, and 

forecasting objectives. Finally, by bridging the gaps between 

linear, probabilistic, and anomaly-based approaches in 

meteorological applications, the work advances the creation of 

reliable, interpretable, and adaptive weather prediction 

models. In conclusion, a weather forecast system based on 

machine learning represents a breakthrough in meteorological 

science. It enhances and complements traditional forecasting 

methods with computational intelligence, offering a faster, 

more scalable, and potentially more accurate alternative. It has 

scientific significance because of its multidisciplinary 

approach, which integrates data science, artificial intelligence, 

and atmospheric science to address one of humanity's most 

significant and ancient problems: weather prediction. 

2.3 Model selection and algorithms 

Given the complexity and unpredictability of 

meteorological data, choosing the right models is essential for 

precise and trustworthy weather forecasting. Three different 

machine learning techniques—Bayesian Network, One-Class 

SVM, and Edge Classifier—are used in this study to capture 

complementing elements of weather forecasting. 

The Ridge Classifier was chosen for structured 

classification problems like Rain/No Rain prediction because 

of its processing efficiency and capacity to handle linearly 

linked inputs. Stable coefficient estimates and interpretable 

linear decision boundaries are ensured by its L2 regularization, 

which reduces multicollinearity. Because of its prowess in 

probabilistic reasoning and causal inference, the Bayesian 

Network is used to predict the relationships between weather 

variables including cloud cover, pressure, and humidity. It 

supports thinking with inadequate data and makes prediction 

easier under uncertainty by producing conditional probability 

tables. 

The detection of uncommon or extreme weather 

phenomena, such storms and cyclones, which are 

underrepresented in datasets, is addressed by incorporating 

One-Class SVM. It enhances the classification abilities of the 

other two algorithms by detecting anomalies by learning a 

boundary in high-dimensional feature space after being trained 

just on typical settings. Using the same dataset, the 

comparative framework assesses these models' predictive 

accuracy, robustness, interpretability, and anomaly detection 

capability, allowing for a thorough knowledge of how well-

suited they are for various weather forecast scenarios. 

2.4 Model evaluation metrics 

Standard classification metrics and specialized measures for 

anomaly detection must be combined in order to assess the 

effectiveness of Ridge Classifier, Bayesian Network, and One-

Class SVM in weather prediction. Common metrics for 

Bayesian networks and Ridge classifiers, which deal with 

binary or multiclass classification (such as 

Sunny/Cloudy/Rainy or Rain/No Rain), include confusion 

matrix analysis, accuracy, precision, recall, and F1-score. 

While precision and recall evaluate the model's capacity to 

accurately identify favourable weather phenomena, such 

rainfall or storm occurrence, accuracy gauges the overall 

correctness of predictions. The F1-score offers a harmonic 

mean of recall and precision, which is crucial in datasets that 

are unbalanced. 

Metrics are modified for One-Class SVM, which is intended 

for anomaly detection, in order to assess the detection of 

uncommon occurrences. These consist of Area Under the 

Receiver Operating Characteristic Curve (AUC-ROC), 

accuracy for anomalies, True Positive Rate (TPR), and False 

Positive Rate (FPR). The focus is on reducing false negatives, 

or undetected abnormalities that could have serious 

repercussions, because extreme weather events are rare. 

Furthermore, all models use cross-validation to guarantee 

generalization and resilience. The paper provides a 

comprehensive evaluation of the model's fitness for 

operational forecasting by comparing these measures across 

the three algorithms, highlighting their advantages and 

disadvantages in forecasting typical circumstances, 

probabilistic outcomes, and rare weather events. 

3. METHODOLOGY

This comparison study's technique is Centered on 

methodically assessing One-Class SVM, Bayesian Network, 

and Ridge Classifier for weather prediction tasks. Pre-

processing, feature extraction, model training, evaluation, 

comparison analysis, and dataset selection are all included in 

the methodology. While showcasing each algorithm's unique 

advantages and disadvantages in managing structured, 

probabilistic, and anomaly-focused weather prediction 

problems, each step is intended to guarantee consistency, 

repeatability, and resilience across methods. 

3.1 Dataset selection 

The work makes use of open-access datasets from Kaggle 
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and the UCI Machine Learning Repository, as well as 

historical weather data from reputable meteorological 

organizations including the India Meteorological Department 

(IMD) and the National Oceanic and Atmospheric 

Administration (NOAA). The datasets comprise continuous 

and categorical variables representing weather conditions 

throughout multiple years, such as: 

 Temperature (℃)

 Humidity (%)

 Air Pressure (hPa)

 Wind Speed (km/h)

 Cloud Cover (%)

 Visibility (km)

 Precipitation (mm)

The objective variable for the Ridge Classifier and Bayesian

Network is categorical, such Rain/No Rain or 

Sunny/Cloudy/Rainy. With infrequent or extreme events 

acting as anomalies in testing and typical weather patterns 

comprising the training set, One-Class SVM focuses on 

anomaly detection. 

3.2 Data preprocessing 

Enhancing forecasting accuracy and ensuring algorithm 

compatibility are crucial. Among the steps are:  

1. Managing Missing Values: The mode is used to impute

categorical values, while the mean or median is used to impute 

missing continuous variables.  

2. Normalization/Scaling: To improve the performance of

Ridge Classifier and One-Class SVM, which are sensitive to 

feature magnitudes, features are scaled to standard ranges 

(such as 0–1 or z-score normalization).  

3. Categorical Encoding: To efficiently create conditional

probability tables (CPTs), Bayesian networks use categorical 

encoding, such as one-hot or label encoding. 

4. Outlier Treatment: While One-Class SVM retains

anomalies since they are essential for assessment, 

classification models smooth out extreme outliers.  

5. Data Splitting: The dataset is divided into subgroups for

testing (20–30%) and training (70–80%). For robustness, 

cross-validation is used, usually five times. 

3.3 Feature selection and extraction 

Reducing dimensionality, eliminating superfluous or 

unnecessary features, and enhancing model interpretability are 

the goals of feature selection. The selection of pertinent 

meteorological variables is guided by correlation analysis and 

subject experience. L2 regularization is used for Ridge 

Classifier to handle multicollinearity, whereas Bayesian 

networks naturally describe feature relationships. One-Class 

SVM learns the boundaries of typical weather patterns by 

utilizing all attributes that describe normal conditions. 

3.4 Model training 

Ridge Classifier 

The normalized dataset is used to train the Ridge Classifier, 

a linear model with L2 regularization. In order to avoid 

overfitting, the approach penalizes large coefficients while 

minimizing the squared error between the predicted and actual 

classes. To maximize performance, grid search and cross-

validation are used to adjust hyper parameters, especially the 

regularization parameter alpha. Rain/No Rain are examples of 

the discrete class labels that the model produces in response to 

weather conditions. 

Bayesian Network 

Bayesian networks use a directed acyclic graph (DAG) to 

model probabilistic interactions between variables. 

Conditional dependencies are represented by edges, while 

meteorological variables are represented by each node. 

Bayesian parameter estimation or Maximum Likelihood 

Estimation (MLE) are used to estimate Conditional 

Probability Tables (CPTs). Expert knowledge or automated 

algorithms such as Hill Climbing or Constraint-Based 

techniques are used to achieve structure learning. P (Rain | 

Humidity, Pressure, Cloud Cover) and other posterior 

probabilities are computed by the network for inference, 

enabling probabilistic prediction even in the case of 

inadequate data. 

One-Class SVM 

To identify anomalies that indicate uncommon or extreme 

occurrences, One-Class SVM is trained solely on typical 

weather patterns. In high-dimensional space, nonlinear 

boundaries are usually handled using the radial basis function 

(RBF) kernel. Cross-validation is used to optimize hyper 

parameters such as gamma (the kernel coefficient) and nu (an 

upper constraint on the fraction of outliers). New observations 

are predicted by the trained model to either indicate anomalies 

(label -1) or fall inside the usual boundaries (label 1). 

3.5 Model evaluation 

The following specific metrics are used to assess the 

models: Accuracy, Precision, Recall, F1-score, Confusion 

Matrix, and Bayesian Network and Edge Classifier. Prediction 

calibration and probabilistic outputs are also assessed by 

Bayesian networks. One-Class SVM: Area Under the ROC 

Curve (AUC-ROC), Precision for Anomalies, True Positive 

Rate (TPR), and False Positive Rate (FPR). Reliability in the 

detection of uncommon weather events is ensured by avoiding 

false negatives. All models undergo cross-validation to 

guarantee generality and prevent overfitting. 

Figure 1. Block diagram of weather prediction by using 

machine learning 
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Changes in broad-scale wind circulation patterns affect our 

daily weather. Wind direction and speed observations, 

together with observations of other elements such as 

temperature and moisture, are essential for determining the 

state of the atmosphere at certain times and places on Earth. 

The prediction parameter's data is obtained. To predict rainfall, 

the Support Vector Machine (SVM) technique is used. Prior to 

being separated into training and test sets, the data must first 

be normalized. The parameters for the training and testing data 

are eventually initialized until the model is optimized for 

rainfall prediction. Divide the results into training and test sets. 

The occurrence of wet and typical climates is predicted using 

SVM classifiers. 

Figure 1 represents block diagram of weather prediction by 

using machine learning. In weather prediction, this 

methodology offers a thorough framework for evaluating the 

Ridge Classifier, Bayesian Network, and One-Class SVM. It 

makes use of each algorithm's own advantages—linear 

classification, probabilistic reasoning, and anomaly 

detection—while guaranteeing that they are all fairly assessed 

on the same dataset. Reproducibility is made easier by the 

structured procedure, which also offers useful insights into 

model selection for both typical and extreme weather 

scenarios. 

4. RESULT ANALYSIS

The findings of an investigation of a weather forecast 

system based on machine learning are displayed in this 

section. Accuracy, Recall, and F1 Score were the main metrics 

used to assess the performance of the Ridge Classifier, 

Bayesian Network, and One-Class SVM using historical 

meteorological data. Key meteorological characteristics like 

temperature, humidity, pressure, wind speed, cloud cover, and 

precipitation were included in the dataset. For Ridge and 

Bayesian models, the goal variable was Rain/No Rain, while 

for One-Class SVM, anomaly detection was used. Table 1 

represents the measurement analysis. 

Table 1. Measurement analysis 

Parameters 
One-Class 

SVM 

Ridge 

Classifier 

Bayesian 

Network 

Accuracy 92 87 88 

Recall 93 88 89 

F1 Score 94 87 88 

Figure 2. Accuracy comparison graph 

Figure 2 displays an accuracy comparison graph for weather 

prediction using the Ridge Classifier, Bayesian Network, and 

One-Class SVM. 

Figure 3 shows a recall comparison graph between the 

Ridge Classifier, Bayesian Network, and One-Class SVM. 

The recall value of SVM is higher. 

Figure 3. Recall comparison graph 

Figure 4 displays an F1-Score comparison graph for 

weather prediction that contrasts the Ridge Classifier, 

Bayesian Network, and One-Class SVM. 

Figure 4. F1-score comparison graph 

For general weather prediction, One-Class SVM 

demonstrated good accuracy, but its recall was marginally 

lower, suggesting that some rain occurrences were overlooked. 

Its F1 Score is appropriate for structured linear classification 

problems since it strikes a compromise between recall and 

precision. In every metric, One-Class SVM scored better than 

Ridge Classifier. Higher recall and F1 Score are the results of 

its probabilistic modeling, which enables better management 

of missing data and erratic weather patterns. When making 

decisions in the face of uncertainty, the Bayesian Network's 

interpretable forecasts are essential. One-Class SVM showed 

the highest recall, emphasizing its strength in detecting rare or 

extreme weather events. However, because the dataset is 

dominated by normal conditions and the model is Centered on 

anomaly detection rather than generic classification, its overall 

accuracy is lower. Despite unbalanced classes, the F1 Score is 

comparable to the Ridge Classifier, suggesting an acceptable 

balance. 

4.1 Limitations 

Although Ridge Classifier, Bayesian Network, and One-

Class SVM all show great promise for predicting the weather, 

they also have drawbacks that restrict their usefulness, 
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precision, and interpretability in actual meteorological 

situations. 

Ridge Classifier 

Linear Assumption: Ridge Classifier makes the assumption 

that input features and target variables have linear 

relationships. This reduces its ability to accurately depict the 

chaotic and nonlinear nature of weather occurrences.  

Feature Dependency: Although L2 regularization reduces 

some multicollinearity, highly correlated features may make 

the model less interpretable.  

Limited Probabilistic Insight: The Ridge Classifier's 

usefulness for probabilistic forecasting or risk assessment is 

diminished because, in contrast to Bayesian Networks, it 

produces deterministic outputs and does not quantify 

uncertainty.  

Sensitivity to Outliers: Extreme weather events can skew 

predictions and lower recall for uncommon occurrences, 

despite being more robust than ordinary linear regression. 

Bayesian Network 

Complexity and Scalability: Building precise conditional 

probability tables (CPTs) and carrying out inference become 

more computationally demanding as the number of variables 

rises.  

Expert Knowledge Requirement: Large datasets or domain 

expertise may be necessary for accurate structure learning; 

inaccurate CPTs can lower prediction accuracy.  

Data Requirements: When there is insufficient prior 

information or sparse or partial data, Bayesian networks 

perform poorly.  

Limited Handling of Extreme Events: Although Bayesian 

networks are probabilistic, they may underrepresent unusual 

or uncommon weather if there are few of these occurrences in 

the training set. 

One-Class SVM 

Pay Attention to Anomalies: One-Class SVM performs 

poorly for classifying weather in general but is excellent at 

identifying uncommon or extreme occurrences.  

Parameter Sensitivity: Hyper parameters like kernel type, 

gamma, and nu have a significant impact on performance; 

improper tuning may result in misleading positives or 

negatives.  

Interpretability Problems: Non-technical users may find it 

challenging to understand the model's boundary-based 

anomaly detection results.  

Class Imbalance Dependence: If training data does not 

adequately reflect typical weather patterns, effectiveness 

decreases. 

5. CONCLUSION

This comparison analysis shows that for weather prediction, 

Ridge Classifier, Bayesian Network, and One-Class SVM 

each have unique benefits. For ordinary weather situations, the 

Ridge Classifier offers interpretable linear classification and 

computing efficiency. The Bayesian Network is perfect for 

making well-informed decisions since it is very good at 

handling uncertainty and missing data in probabilistic 

reasoning. One-Class SVM supports early warning systems by 

efficiently detecting uncommon or extreme weather 

phenomena. A hybrid strategy combining linear classification, 

probabilistic reasoning, and anomaly detection, however, may 

offer a more reliable, accurate, and flexible framework for all-

encompassing weather forecasting, given the inherent limits of 

each model. 

6. FUTURE WORK

In order to capitalize on their complementary strengths—

linear classification, probabilistic reasoning, and anomaly 

detection—future research can concentrate on creating hybrid 

models that combine the Ridge Classifier, Bayesian Network, 

and One-Class SVM. Predictive accuracy for both typical and 

extreme weather occurrences can be improved by utilizing 

deep learning and ensemble learning approaches. Operational 

forecasting can be enhanced by real-time deployment with 

streaming meteorological data. Model performance can also 

be further improved by feature selection, dimensionality 

reduction, and automated hyperparameter adjustment. A 

strong, flexible, and all-encompassing weather prediction 

system will be made possible by placing an emphasis on 

interpretability and explainability, which will make forecasts 

actionable for meteorologists and policymakers. 
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