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Cities need decision-ready tools to convert satellite heat evidence into enforceable planning 

rules in tropical coastal contexts. This study quantifies how land-cover composition shapes 

land surface temperature (LST) in North Jakarta’s Penjaringan District and translates findings 

into policy metrics. Methodology: We mapped land cover (Google Earth object-based image 

analysis) and retrieved LST from Landsat (2005–2024). Variables were aggregated on a 150 

× 150 m grid (n = 242) and related via ordinary least squares to estimate class-specific effects. 

Results & Conclusions: Built-up area expanded (+113%) while mangroves increased (+77%); 

cool LST classes collapsed and warm classes proliferated. Regression yields a stable hierarchy: 

built-up is the strongest warming driver; mangroves provide the strongest natural cooling; 

water and other vegetation also cool. On a per-fraction basis, mangrove cooling effectiveness 

is ~59% of built-up warming. These results establish quantitative, planning-scale evidence that 

nature-based assets can materially blunt urban heating in a dense coastal setting. Implications: 

We operationalize the evidence into four auditable indicators—Minimum Green-Space per 

Block, Canopy Connectivity Index, Per-Parcel Pervious Ratio, and a Cooling-Deficit Limit—

and an adaptation-zoning workflow targeting persistent hotspots, impervious corridors, and 

coastal buffers. The metrics fit routine permitting and support annual, satellite-based audits, 

offering a replicable path to climate-resilient urban development. 
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1. INTRODUCTION

Tropical coastal megacities are experiencing rapid land 

conversion that reconfigures surface energy balances and 

intensifies surface urban heat, observable in land surface 

temperature (LST) patterns [1, 2]. For planners, the central 

question is not merely whether heat is rising, but which land-

cover configurations most effectively moderate LST and how 

that evidence can be translated into enforceable planning 

instruments and monitoring routines [3, 4].  

Jakarta exemplifies these dynamics. In the northern coastal 

Penjaringan District, large-scale development and reclamation 

have altered land–water interfaces over the past two decades 

amid documented regional warming signals [5]. Within this 

setting, mangrove ecosystems are strategic assets—buffering 

coasts [6], storing blue carbon [7], and sustaining biodiversity 

[8]—yet remain under urbanization pressure that can erode 

their climatic and ecological services [7, 8]. 

Advances in Earth observation now support planning-scale 

diagnostics of land cover and LST [9], enabling cities to relate 

spatial composition to thermal outcomes with consistency 

over time [10]. Nevertheless, in tropical coastal contexts, the 

literature rarely provides comparative, decision-ready 

estimates of cooling effectiveness across distinct land covers 

(e.g., mangroves, other vegetation, water bodies, ponds) [11] 

that planners can embed in zoning, development control, and 

investment prioritization [2, 3]. 

This study responds to that gap for Penjaringan (North 

Jakarta). Using high-resolution Google Earth imagery with 

Object-Based Image Analysis (OBIA) [12], and Landsat-

based thermal retrievals [10], we quantify spatiotemporal 

LULC–LST relationships (2005–2024) and derive empirical 

coefficients that rank class-level cooling. Crucially, we 

translate these findings into a policy framework—adaptation 
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priorities and auditable indicators aligned with SDG 11 

(sustainable, resilient cities) and SDG 13 (climate action) 

[13]—to support integration of green–blue infrastructure 

(including mangroves) within statutory planning and routine 

performance monitoring [4]. 

Contributions. (i) An empirically grounded ranking of land-

cover cooling effectiveness in a tropical coastal megacity; (ii) 

a planning-ready conversion of these results into indicators 

suitable for zoning and development control [4]; and (iii) an 

alignment pathway that connects satellite monitoring with 

SDG-oriented urban cooling policy and investment decisions 

[13]. 

 

 

2. METHODS 

 

2.1 Study area 

 

The study focuses on Penjaringan District (North Jakarta), 

a rapidly urbanizing coastal fringe comprising reclaimed 

islands, dense settlements, traditional aquaculture ponds, open 

water, and the Muara Angke–Kapuk mangrove system (Figure 

1). The area typifies Southeast Asian megacity trade-offs 

where development pressure intersects with ecosystem 

conservation and climate adaptation needs. 

 

 
 

Figure 1. Research area 

 

2.2 Data source 

 

We combined high-resolution optical imagery and thermal 

satellite data to quantify land cover and land surface 

temperature (LST) over time: 

• Land cover (2 m): Google Earth Pro, years 2005, 

2010, 2015, 2020, 2024, with on-screen 

digitizing/visual interpretation as reference for OBIA 

[14]. 

• Thermal/optical (30 m): Landsat 7 ETM+ (Band 6 

thermal; 2005–2010) and Landsat 8 OLI/TIRS (Band 

10 thermal; 2015, 2020, 2024). Post-2003 ETM+ 

scenes used SLC-off gap-filling; cross-sensor time-

series handling followed established Landsat 

guidance for comparability [10]. 

 

2.3 Pre-processing 

 

All scenes underwent geometric/radiometric correction; 

atmospheric correction was applied as appropriate to ensure 

time-series consistency before LST retrieval and index 

computation [10]. ETM+ SLC-off artifacts were gap-filled 

using multi-date compositing to improve spatial continuity for 

analysis and visualization [10]. 

 

2.4 LST retrieval 

 

We retrieved LST from ETM+ Band 6 and TIRS Band 10 

using a standard single-channel workflow—radiance → 

brightness temperature → NDVI-based emissivity correction 

→ LST (℃) [15]. Outputs were resampled to 30 m and 

harmonized across years for comparison at planning scales 

[10]. 

 

2.5 Land-cover mapping (OBIA) 

 

Land cover was mapped with Object-Based Image Analysis 

(OBIA) in eCognition, combining spectral, textural, and 

shape/context features [12]. Land cover classification was 

performed using eCognition Developer software (Figure 2). 

The initial stage involved image segmentation using the 

Multiresolution Segmentation algorithm with parameters scale 

= 50, shape = 0.5, and compactness = 0.5. This segmentation 

scale was chosen because the resulting segments were able to 

distinguish different land cover objects quite well. In the 

classification process, training samples were created from 

each land cover class. The segmented objects were then 

classified using the Nearest Neighbor Classification algorithm 

based on the average spectral value of each band and basic 

shape features. The OBIA methods used can vary because they 

are adjusted to the researcher's needs, such as the scale of the 

research area, level of detail, and others (Figure 3). 

 

 
 

Figure 2. Land classification flow with OBIA in this study 

 

 
 

Figure 3. Stages of OBIA: (a) Segmentation, (b) Detail of 

segment, (c) Classification 
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Six classes were delineated to align with planning-relevant 

decisions—Built-up, Mangrove, Water body, Pond, Open 

land, Non-mangrove vegetation—and temporal stacks (2005, 

2010, 2015, 2020, 2024) supported change detection [9]. We 

define some of our land cover classes (Table 1).  

 

Table 1. Definition of land cover types 

 
Land Cover Types Definition 

Mangrove 

A type of tropical vegetation that 

grows along the coast or river 

estuaries, influenced by the ebb and 

flow of seawater, and has a muddy 

substrate. It has a dark green canopy 

and dense texture with a high 

vegetation spectrum. 

Built-Up Land 

Land covered by permanent or semi-

permanent buildings so that rainwater 

does not fall directly onto the surface, 

visible in the form of settlements, 

public facilities, roads, industry, and 

others. 

Open Land 

Land that has very little or no 

vegetation cover or buildings, such as 

fields, initial clearing of agricultural 

land, former fires or logging, is 

brownish in color (open land, open 

fields, etc.). 

Water Body 

Natural and artificial waters that are 

permanent or semi-permanent, such 

as seas, rivers, reservoirs, wetland 

rice fields that contain water, and 

others. 

Pond 

Artificial aquaculture areas, generally 

located in coastal areas, consist of 

deliberately controlled pools of water 

designed to support aquatic 

organisms. They are characterized by 

geometrically shaped, 

compartmentalized, and unnatural 

pools of water. 

Non-Mangrove 

Vegetation 

Terrestrial vegetation other than 

mangroves includes urban trees, 

shrubs, and others. 

 

2.6 Spatial aggregation and indicators 

 

To link Earth observation with planning units, we 

summarized all variables on a 150 m × 150 m grid (n = 242), 

computing (a) mean LST (℃) and (b) area of each land-cover 

class per cell to support block/neighborhood-scale diagnostics 

used by municipal planners [3, 4]. This study uses a spatial 

analysis unit in the form of a 150 m × 150 m grid for several 

reasons. First, the resolution of Landsat 8 imagery (30 m) 

allows one grid to contain 25 LST pixels, resulting in a more 

stable average value, in line with previous studies that applied 

smoothing using a 5 × 5 pixel window. Second, the grid size 

is a multiple of the original image resolution, making it 

consistent, easy to replicate, and suitable for LST-based spatial 

analysis. In addition, empirical studies show that the 

relationship between LST and urban morphology tends to be 

stable at a scale of  ± 150 m, so this size is considered ideal for 

capturing local variability and analyzing the relationship 

between land cover and surface temperature. 

In this study, land-cover maps derived from OBIA 

classification were overlaid with a 150 × 150 m grid. For each 

grid cell, the absolute area (in hectares) of each land-cover 

type—built-up, mangrove, water body, aquaculture pond, non-

mangrove vegetation, and open land—was calculated. These 

area values were directly used as independent variables and 

statistically related to the mean LST of each grid cell, without 

converting them into proportional or fractional values. 

 

2.7 Statistical analysis 

 

We estimated ordinary least squares regressions with LST 

as the dependent variable and class fractions as predictors to 

quantify the influence of each land-cover type on LST [2, 16]: 

 

𝑌 =  𝑎0  +  𝑎1. 𝑋1  +  𝑎2. 𝑋2  +  … +  𝑎𝑛 . 𝑋𝑛 (1) 

 

where, Y is the dependent variable (LST), X1, X2,...,Xn 

represent the independent variables (e.g., built-up area, 

vegetation, water bodies, ponds, other land cover types), and 

a0, a1,...,an are the regression coefficients [2, 16]. This analysis 

quantified the influence of each land cover type on LST, 

providing insight into how land conversion impacts local 

thermal conditions. 

 

2.8 Translation to planning metrics  

 

Rather than emphasizing raw magnitudes in the main text, 

we use the signs and relative ordering of coefficients to derive 

operational planning elements—(i) adaptation priorities 

(restorative greening; albedo–permeability management; 

coastal buffers) and (ii) auditable indicators (minimum green-

space per block, canopy connectivity, per-parcel pervious 

ratio, neighborhood cooling-deficit limit)—that can be 

monitored from the same EO streams [1, 3, 4]. 

 

 

3. RESULT AND DISCUSSION 

 

3.1 Land-cover dynamics in a coastal megacity fringe 

 

3.1.1 Urban intensification and loss of evapotranspiring 

surfaces 

Penjaringan’s coastal fringe reflects the typical trade-off of 

fast-growing tropical megacities: built-up area nearly doubled 

from 716.1 ha (2005) to 1,525.1 ha (2024; +113%) (Table 1; 

Figure 4). Over the same period, water bodies declined from 

2,046.8 to 1,520.4 ha (–25.7%) and ponds from 520.6 to 194.6 

ha (–62.6%) (Table 1; Figure 4). Annualised rates underscore 

the structural shift: built-up expanded by ~42.6 ha·yr⁻¹, while 

water bodies and ponds contracted by ~27.7 ha·yr⁻¹ and 17.2 

ha·yr⁻¹, respectively, amounting to a net –852.4 ha reduction 

in aquatic/pond surfaces across two decades (Table 2). These 

conversions replace evapotranspiring, heat-buffering surfaces 

with impervious materials that absorb and store heat, a well-

documented pathway for surface warming during urban 

expansion [17, 18].  

Table 2 presents the area of each land cover class during the 

period 2005–2024, indicating changes in land use composition 

in the study area. To better understand the dynamics of change, 

Table 3 displays the total area change and annual rate of 

change (ha/year) of each land cover class between 2005 and 

2024. This presentation allows analysis based not only on the 

magnitude of change, but also on the speed and direction of 

the trend of change. 
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Table 2. Area of land cover types in 2005-2024 at research sites 

 

Land Cover 
Area (Ha) 

2005 2010 2015 2020 2024 

Built-up Area 716.10 940.20 1,211.60 1,340.50 1,525.10 

Mangrove 183.70 230.00 247.20 283.50 324.60 

Water Body 2,046.80 2,054.80 1,474.90 1,606.50 1,520.40 

Pond 520.60 325.60 223.00 197.30 194.60 

Open Land 211.10 74.60 638.50 303.40 164.90 

Non Mangrove Veg. 570.00 623.20 453.00 517.10 518.80 

 

Table 3. Annual rate of change (2005-2024) 

 

Land Cover 
Area (Ha) 

Area Change (∆ Area) 
Annual Rate of Change 

(Ha/year) 2005 2024 

Built-up Area 716.10 940.20 +809.00 +42.58 

Mangrove 183.70 230.00 +140.90 +7.41 

Water Body 2,046.80 2,054.80 -526.40 -27.70 

Pond 520.60 325.60 -326.00 -17.16 

Open Land 211.10 74.60 -46.20 -2.43 

Non Mangrove Veg. 570.00 623.20 -51.20 -2.69 

 
Functionally, the loss of open-water/pond area reduces 

latent-heat flux and heat capacity at block scale, weakening 

daytime evaporative cooling and dampening nocturnal heat 

release (Table 2) [18]. Conversely, enlarging built-up fractions 

raise sensible-heat flux, thermal storage, and radiative trapping 

in compact corridors/blocks with low permeability, pushing 

local LST baselines upward (Figure 4) [17]. For planning, 

these quantified shifts flag priority geographies for 

permeability upgrades and strategic retention of 

water/vegetation to blunt added warming from new 

impervious cover, keeping cooling services close to densifying 

tracts (Table 2; Figure 5) [18]. 

 

 
 

Figure 4. Land cover changes in 2005-2024 at the research 

site 

 

We validated the OBIA maps against independent reference 

points visually interpreted from Google Earth Pro (~2 m) using 

stratified random sampling by class in each observation year 

(2005, 2010, 2015, 2020, 2024). We used a sample of 50 

points per class for a total of 300 accuracy test points. 

Accuracy was summarised by overall accuracy (OA), Cohen’s 

κ, and per-class F1 (precision/recall). Table 4 provides the 

results of the accuracy test with kappa coefficients consisting 

of OA, Cohen's k, and per-class F1. 

 

3.1.2 The mangrove “paradox”: resilience under pressure 

Against this trend, mangrove cover expanded by ~77% 

(183.7 → 324.6 ha), an atypical yet policy-salient outcome for 

a dense coastal metropolis (Table 2; Figure 5). When protected 

and restored, mangroves function as multi-benefit 

infrastructure—buffering coasts, reducing wave energy and 

stabilising edges along urban shorelines [6], storing blue 

carbon with high long-term sequestration potential, supporting 

mitigation co-benefits [7], and sustaining local ecosystem 

services in Angke–Kapuk and similar urban mangrove 

mosaics, including recreation and water-quality functions [8]. 

The observed rebound is consistent with targeted restoration 

and shoreline management that preserve moisture availability 

and canopy structure, enabling latent-heat dominated cooling 

relative to adjacent built tracts (Table 2; Figure 5) [7]. 

 

3.1.3 Planning meaning: cooling demand and anchor assets for 

GBI 

The land-cover shifts imply rising cooling demand in 

densifying blocks, where baseline LST increases necessitate 

stronger marginal cooling from each intervention (Table 2) 

[3]. In parallel, mangroves can be leveraged as anchor assets 

within green–blue infrastructure networks, providing edge-

focused cooling that does not compete with inland 

development footprints (Figure 5) [13]. Aligning 

conservation/expansion with urban-form controls (albedo–

permeability upgrades) and water-surface retention creates a 

coherent pathway to SDG-oriented climate resilience, linking 

diagnostics to zoning and permitting triggers (Table 2, Figure 

5) [3]. 
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Table 4. Results of land cover classification accuracy tests 

 
Year 2005 2010 2015 2020 2025 

OA 83.06% 90.46% 87.67% 88% 93.69% 

Cohen’s k 0.762394 0.865753 0.836733 0.835831 0.91265 

Per-Class F1 

Built-Up Land 0.6977 0.9048 0.8862 0.8478 0.9565 

Mangrove 0.9286 0.9677 0.8485 0.8571 0.9674 

Water 0.9318 0.9395 0.9479 0.9264 0.9345 

Pond 0.5817 0.7797 0.8571 0.8800 0.9285 

Open land 0.7090 0.5600 0.7692 0.6977 0.7333 

Non-Mangrove Vegetation 0.9083 0.9535 0.8070 0.9459 0.9275 

3.1.4 Comparative context and likely mechanisms 

Penjaringan’s trajectory mirrors coastal urbanisation 

patterns where conversion of evapotranspiring surfaces 

(water/ponds/vegetation) into impervious materials elevates 

heat storage and daytime LST, while fragmented green space 

limits advective/evaporative cooling [17]. Regional evidence 

further associates urban sprawl configurations with intensified 

SUHI signatures, reinforcing the temperature response to 

built-up expansion [19]. Within this context, the 77% 

mangrove expansion is policy-salient: protected/restored 

mangroves buffer coastal edges and supply cooling co-benefits 

without displacing inland development, making them prime 

candidates for edge-anchored GBI strategies (Table 2, Figure 

5) [7]. Mechanistically, dense canopy, higher leaf-area index, 

and sustained moisture availability increase latent-heat 

exchange and reduce surface radiometric temperatures relative 

to built-up tracts, aligning observed cooling with vegetation 

physiology and surface-energy balance theory [18]. This 

biophysical logic supports an edge-focused conservation 

approach where urban form meets coastal systems, keeping 

cooling services proximate to heat-exposed neighbourhoods 

(Figure 5) [1]. 

 

3.2 Thermal transformation and loss of refugia 

 

3.2.1 Warming signal and widening extremes 

 

Table 5. LST value at the research site 

 

Years 
LST Min 

(℃) 

LST Max 

(℃) 

LST Mean 

(℃) 

2005 17.10 27.00 20.20 

2010 19.30 30.40 23.20 

2015 21.80 30.40 24.90 

2020 20.20 34.00 26.06 

2024 23.60 36.00 27.70 

 

Multi-temporal LST analysis indicates a systematic 

warming across the period: the mean increased from 20.2℃ 

(2005) to 27.7℃ (2024) (+7.5℃), the minimum from 17.1℃ 

to 23.6℃ (+6.5℃), and the maximum from 27.0℃ to 36.0℃ 

(+9.0℃), widening the annual range from 9.9℃ to 12.4℃ 

(Table 5, Figure 6) [5, 20]. Most notably, “very low” LST 

zones contracted from ~84.7% of the landscape (3,593.1 ha of 

~4,242 ha) to ~0.01% (0.3 ha), while “high/very high” zones 

expanded to ~49.3% by 2024 (2,092.9 ha) (Table 6), signaling 

a shift from refuge-rich mosaics toward more uniformly warm 

surfaces consistent with long-term warming signals and 

surface-UHI amplification in Jakarta and comparable cities [5, 

20]. 

 

 
 

Figure 5. LST changes in 2005-2024 at the research site 

 

Table 6. LST classification in 2005-2024 at the research site 

 
LST 

Class 

Area (Ha) 

2005 2010 2015 2020 2024 

Very 

Low 
3,593.10 1,863.10 212.40 42.40 0.30 

Low 646.50 1,690.70 1,987.20 1,743.50 1,393.80 

Medium 2.40 676.80 1,816.40 1,234.30 754.90 

High  0.00 11.30 225.90 1,150.50 1,442.00 

Very 

High 
0.00 0.00 0.00 71.10 650.90 

 

3.2.2 Implications for passive cooling and ecosystem exposure 

The contraction of low-temperature classes reduces 

neighborhood-scale passive-cooling options (shading and 

evapotranspiration from vegetation and open water) and raises 

exposure for heat-sensitive ecosystems (Table 6) [21]. In 

planning terms, the baseline has shifted upward: interventions 

must now deliver higher marginal cooling merely to restore 

prior thermal states before producing net improvements, 

which aligns with evidence that green–blue surfaces suppress 

LST while impervious expansion elevates it via increased 

sensible-heat flux and thermal storage [22]. 
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3.2.3 Policy translation—decision-ready thresholds 

To keep computation off the policy critical path, we express 

the analytics as auditable indicators derived from the same EO 

streams used here: 

• Cooling-Deficit Limit. A block’s LST should not 

exceed the district’s seasonal baseline by more than 

Δ ℃; exceedance triggers greening and surface-

permeability requirements (Tables 5-6) [3]. Here, Δ 

denotes the allowable exceedance above the district’s 

seasonal LST baseline; its numeric value is specified 

by the planning authority and may be updated as 

monitoring matures. 

• Restorative Priority. Blocks that (i) persist in 

High/Very High classes in ≥ 2 of the last 3 epochs 

(Table 6) and (ii) fall below a minimum green-space 

share advance to restorative greening [4]. 

• Albedo–Permeability Upgrade. Corridors/blocks 

with sustained high LST and high imperviousness 

(Figure 5; land-cover summaries) must meet 

minimum pervious-surface ratios at permitting [3]. 

• Annual EO Audit. Repeat the LST-class analysis to 

track the recovery of Very Low/Low classes and 

verify intervention performance year-on-year [23]. 

These thresholds are compatible with planning-scale 

monitoring and development-control workflows, enabling 

direct linkages from satellite-derived thermal evidence to 

zoning, permitting, and investment prioritisation. 

 

3.2.4 Sensitivity of class thresholds and temporal context 

Because Table 6 relies on thresholds, small shifts in class 

cut-offs or interannual anomalies can move marginal pixels 

across categories; therefore we emphasise multi-epoch 

persistence (e.g., remaining High/Very High in ≥ 2 of the last 

3 epochs) over single-year status—the same logic embedded 

in the Restorative Priority rule—so planning targets structural 

heat patterns rather than year-specific noise (Tables 5-6, 

Figure 6) [1]. Cross-sensor Landsat time-series comparability 

and handling of ETM+ SLC-off artifacts are addressed in 

preprocessing to maintain trend reliability [10]. Where 

seasonal composites are available, applying the same classing 

to wet/dry seasons can refine intervention timing while 

preserving consistent indicators and audit thresholds [24]. 

 

3.3 Cooling effectiveness hierarchy (regression evidence) 

 

3.3.1 Stable ordering of class effects 

Grid-level OLS modelling at 150 × 150 m (n = 242) yields 

a consistent hierarchy of class-specific effects on LST (Table 

7): Built-up exerts the strongest warming, while mangroves 

provide the strongest natural cooling, followed by water 

bodies, non-mangrove vegetation, and ponds (Table 7). 

Interpreted as ℃ per unit land-cover fraction within a grid cell, 

these coefficients are directly comparable across classes and 

thus decision-ready for planning arithmetic, aligning with 

broader evidence that surface composition governs thermal 

outcomes in cities [1, 2].  

Model performance and basic diagnostics (reported here in 

full): overall R² = 0.951, all predictors significant at p < 0.001, 

residuals show no conspicuous trend against fitted values on 

visual inspection, and signs/magnitudes are consistent with 

physical expectations (warming for imperviousness; cooling 

for vegetated/blue classes) [1, 2]. 

Table 7 shows the influence of land-cover types on Land 

Surface Temperature (LST) using single-year data from 2024. 

The analysis was conducted on n = 242 grid cells (150 × 150 

m) with complete land-cover and LST information. Table 5 

was conducted using a single-year dataset (year 2024 only. 

The year 2024 was selected because the contrast in LST values 

among land-cover classes is most pronounced, allowing 

clearer interpretation of land-cover influence on LST. The 

sample size of n = 242 represents grid cells (150 × 150 m) with 

complete and consistent land-cover and LST data within the 

study area. 

 

Table 7. Regression coefficients 

 
Predictor 

(Fraction) 

Unstandarized Coefficients 
P-Value 

B Std. Error 

(Constant) 28.086 0.94 <0.001 

X1 (Built Area) 1.619 0.69 <0.001 

X2 (Mangrove) -0.960 0.95 <0.001 

X3 (Open Land) 1.139 0.69 <0.001 

X4 (Water Body) -0.478 0.70 <0.001 

X5 (Pond) -0.275 0.72 <0.001 

X6 (Non Mangrove 

Vegetation) 
-0.469 0.59 <0.001 

Notes: coefficients are interpreted at the analysis scale (150 m grid); 

signs/order are stable, supporting policy translation based on the hierarchy 

even when point magnitudes are kept lightweight in narrative 

 

Multiple linear regression analysis (Table 7) shows that 

built-up and bare land variables have a significant positive 

effect on increasing land surface temperature (LST), while 

vegetation cover (mangrove and non-mangrove) and water 

bodies and ponds contribute to temperature reduction. These 

results confirm the differences in ecological function between 

land cover types, with built-up areas accelerating the warming 

process, while vegetation and water play a cooling role [25]. 

To strengthen these findings, a Pearson correlation analysis 

was also conducted (Table 8) which presents the direction and 

strength of the relationship between each variable and LST in 

a bivariate manner. 

 

Table 8. Cross-sectional correlations between LST and land-

cover fractions (2024) 

 
Predictor 

(Fraction) 
Pearson (r) P-Value Direction 

X1 (Built Area) +0.829 <0.001 Warming 

X2 (Mangrove) -0.675 <0.001 Cooling 

X3 (Open Land) +0.495 <0.001 Warming 

X4 (Water Body) -0.737 <0.001 Cooling 

X5 (Pond) -0.558 <0.001 Cooling 

X6 (Non 

Mangrove 

Vegetation) 

-0.776 <0.001 Cooling 

 

The correlation results show a pattern consistent with the 

regression, where built-up land (r = +0.829; p < 0.001) and 

open land (r = +0.495; p < 0.001) are positively related to LST, 

while vegetation, water bodies, and ponds have a significant 

negative correlation (r ranging from –0.558 to –0.776; p < 

0.001). Thus, the second table is presented as a complement to 

confirm the direction of the relationship that has been shown 

in the regression model, while also showing the magnitude of 

the cooling contribution of vegetation, especially mangroves, 

to temperature control in coastal areas [26]. 

This analysis reflects a simple bivariate relationship 

between each land cover type and LST without considering 

other variables. Meanwhile, the results of multiple linear 
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regression provide a more complex picture because they 

simultaneously consider the contribution of each predictor 

variable. This confirms that although simple correlations 

between vegetation and water bodies have been shown to have 

a cooling effect, multiple regression shows that the 

contribution of this temperature reduction remains significant 

even after the influence of other variables is controlled [22]. 

The combination of these two analyses provides a more 

complete understanding that increasing built-up land 

exacerbates the phenomenon of surface warming, while 

vegetation, especially mangroves, plays a crucial role in 

maintaining the thermal balance of coastal areas. 

This trend can be further clarified through a simple model 

showing the relationship between LST vs built-up land and 

LST vs mangroves in Figure 6. 

 

 
 

Figure 6. Scatter plot LST vs built area 

 

The regression analysis results show a positive relationship 

between LST values and built-up land area (y = 0.2392x – 

6.0431; R² = 0.6013). This means that increases in built-up 

land area tend to be followed by increases in land surface 

temperature. The coefficient of determination (R²) value of 

0.60 indicates that approximately 60% of the variation in LST 

can be explained by changes in built-up land area. This finding 

confirms that built-up areas contribute significantly to 

increasing surface temperatures, in line with the urban heat 

island phenomenon [27]. 

In contrast, the regression results between LST and 

mangrove area showed a negative relationship (y = –0.1913 × 

+5.9305; R² = 0.4555). This means that increasing mangrove 

area is associated with a decrease in land surface temperature. 

The R² value of 0.45 indicates that approximately 45% of the 

variation in LST can be explained by mangrove area. This 

finding supports the role of mangrove ecosystems as natural 

coolers capable of lowering surface temperatures through 

shading and evapotranspiration [28]. Overall, these two 

findings show that land cover changes in coastal areas have 

significant implications for surface temperature dynamics, 

where the dominance of built-up land increases the risk of 

warming, while the presence of mangroves serves as an 

important mitigating factor. 

 

3.3.2 Magnitude for planning arithmetic (kept lightweight) 

For scenario testing, multiply each coefficient by the 

proposed change in class fraction and sum the terms to 

estimate the net block-scale ΔLST [1, 2]. On a per-fraction 

basis, mangrove cooling ≈ 59% of built-up warming 

(|β_mangrove| / β_built-up ≈ 0.960/1.619 ≈ 0.59), indicating 

substantial offset potential where conservation/restoration is 

feasible (Table 7). The value ‘≈59% cooling effectiveness’ 

refers only to the per-unit-area effect (−0.960/1.619) derived 

from the regression coefficients. However, in absolute terms, 

built-up areas cover 1,525.1 ha, while mangroves cover only 

324.6 ha. When multiplying the coefficients by actual area 

(area-weighted impact), total cooling by mangroves amounts 

to −311.6℃/ha, which is only about 12.6% of the total 

warming effect from built-up areas (2,468.3℃/ha). Then the 

value ‘59%’ refers to the cooling potential per unit area, not 

the total contribution at the landscape scale. This accords with 

the role of mangroves as multi-benefit green–blue 

infrastructure in coastal cities [29].  

 

3.3.3 How we use the hierarchy 

To avoid over-emphasising point estimates, we use the 

signs and ordering to guide siting (where to intervene first) and 

sizing (how much of each class to target), while the full 

coefficients and basic diagnostics are provided above for 

transparency (Table 7). This directly enables planning tools 

such as restorative greening in built-dominated cells, coastal 

buffers anchored by mangroves, and permeability/albedo 

upgrades in persistent warm corridors, within standard 

development-control workflows [30, 31]. 

 

3.3.4 Worked example: block-scale ΔLST arithmetic 

A redevelopment adds +0.10 built-up in a 150 × 150 m 

block but restores +0.02 mangrove and +0.03 water. Using 

Table 5: 

 

𝛥𝐿𝑆𝑇 ≈ (1.619 × 0.10) − (0.960 × 0.02)
− (0.478 × 0.03)
= +0.128℃(𝑎𝑝𝑝𝑟𝑜𝑥. ) 

 

 

Two takeaways: (i) modest green–blue additions can 

materially blunt added warming, and (ii) the relative ordering 

is often sufficient for siting/sizing decisions, while exact 

coefficients remain available for audit and replication [1, 2, 7]. 

 

3.3.5 Robustness and limits (for prudent use) 

Three boundary conditions matter in planning deployment: 

(i) coefficients are average effects at 150 m; micro-site 

morphology and roughness/height can cause local departures 

[17, 18]; (ii) effects reflect the observed composition envelope 

of Penjaringan—extreme scenarios outside this envelope merit 

caution [1, 2]; (iii) directional stability (signs/order) across 

epochs underpins policy use even when precise magnitudes 

are de-emphasised in the text [1, 2]. 

 

3.4 Design and planning translation 

 

Evidence above is translated into three implementation 

channels that connect thermal diagnostics with development 

control and investment decisions. 

 

3.4.1 Targeting principles 

Restorative greening is directed to blocks that persist as 

hotspots—cells remaining in High/Very High LST classes in 

≥ 2 of the last 3 epochs—and also exhibit low existing green 

share, so added evapotranspiration capacity is placed where 

thermal stress is chronically highest (Figure 6; Table 6). This 

targeting reflects the well-established pattern that transitions 

toward built surfaces elevate LST by replacing moisture-

available, vegetated or water surfaces with impervious 

materials that suppress latent-heat flux (Table 2; Figure 5) 

[32]. 
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In parallel, albedo–permeability upgrades are prioritised 

along compact impervious corridors and large blocks, where 

material properties and limited infiltration jointly amplify 

sensible-heat storage; minimum pervious-surface ratios and 

higher-reflectance finishes can therefore be enforced at the 

permitting stage (Table 2; Figure 5) [33, 34]. 

Along the coastal edge, buffers that protect and, where 

feasible, expand mangroves at built-up margins act as anchor 

assets within the green–blue network, leveraging thermal 

moderation [35], coastal protection [6], and blue-carbon 

storage [7] (Figure 4). Taken together, these targeting rules 

convert the LULC–LST diagnostics into place-specific actions 

that concentrate cooling where deficits are largest, upgrade 

materials where heat accumulates, and secure edge-based 

nature-based solutions under coastal urbanisation pressures. 

 

3.4.2 Auditable indicators 

To embed thermal outcomes in routine planning, four 

indicators can be updated annually from the same EO streams 

used here. First, a Minimum green-space per block (%) 

prioritised where block LST exceeds a neighbourhood 

threshold derived from the Table 3 class distributions links 

directly to evidence that greener blocks exhibit lower LST via 

shading and evapotranspiration [36], and that expanding green 

share in built-dominated tracts yields measurable surface-

cooling dividends [35]. Table 9 is the threshold 

recommendation for the first indicator. 

 

Table 9. Recommended threshold range for the first indicator 

 

Indicator 
Operational 

Definition 

Formula 

Method 

Recommended 

Threshold 

Minimum 

Green 

Open 

Space per 

Block 

Percentage of 

vegetated 

surface within 

one urban block 

or analysis grid 

%Green = 

(Vegetated 

Area/Total 

Block Area) 

× 100 

Minimum : ≥ 

20%  

(Optimal : ≥ 

30%) 

 

Table 10. Recommended threshold range for the second 

indicator 
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Canopy 

Connectivity 

Index 

Degree of 

spatial 

connectivity 

between 

vegetated 

patches within 

the landscape 

Connectivity = 

Patch Cohesion 

Index or 

Connectance 

Index 

≥ 0.50 

 

LST regression shows cooling effect emerges when 

vegetation exceeds 20% of a block and 30% aligns with 

Indonesian National Spatial Planning Regulation (PP No. 

26/2007) and urban climate studies. Second, a Canopy 

Connectivity Index measuring functional links among parks, 

street trees, and riparian strips within a set distance supports 

advective/evaporative cooling by sustaining continuous 

vegetated corridors, consistent with findings that more 

connected green space moderates the urban thermal 

environment across seasons [37], and acts as a thermal 

regulator at district scale [38]. Table 10 is the threshold 

recommendation for the second indicator. 

Values above 0.5 indicate functional ecological 

connectivity and effective cooling continuity and supported by 

landscape ecology literature. Third, a Per-parcel Pervious 

Ratio (minimum share of pervious/vegetated surfaces 

enforced at permitting) addresses the material and hydrologic 

controls on heat storage and sensible-heat flux, reflecting 

multi-city results that higher imperviousness elevates LST 

while greener/pervious configurations suppress it [39], with 

metropolitan evidence from Kuala Lumpur reinforcing the 

sensitivity of LST to built–green surface composition in 

permitting-scale decisions [40]. Table 11 is the threshold 

recommendation for the third indicator. 

 

Table 11. Recommended threshold range for the third 

indicator 
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Per-Parcel 

Pervious 

Ratio 

Minimum proportion 

of pervious or 

vegetated surfaces 

that must be 

maintained within 

each land parcel or 

development lot as 

part of the building 

permitting process 

Pervious 

Ratio (%) 

= 

(Pervious 

or 

vegetated 

area / total 

parcel 

area) × 

100 

Minimum : 

≥ 20%  

(Preferred : 

≥ 30%) 

 

High imperviousness increases land surface temperature 

(LST) and sensible heat flux. Empirical studies show LST 

rises with built-up density and decreases with pervious/green 

surfaces. A minimum of 20–30% aligns with cooling 

thresholds and international planning practices. Fourth, a 

Cooling-Deficit Limit (Δ ℃)—the allowable deviation of 

block-level LST from the district seasonal baseline—provides 

a trigger for stronger greening/permeability requirements once 

exceeded, aligning with planning-scale LULC–LST 

diagnostics that translate satellite thermal evidence into 

development control thresholds [41], and with regression-

based planning applications that use EO-derived indicators for 

zoning and approvals [42]. Collectively, these indicators 

anchor zoning conditions and investment prioritisation in 

observed LULC–LST relationships at decision scales, 

enabling auditable, annually updatable benchmarks for urban 

cooling policy [43]. Table 12 is the threshold recommendation 

for the fourth indicator. 

 

Table 12. Recommended threshold range for the fourth 

indicator 

 

Indicator 
Operational 

Definition 

Formula 

Method 

Recommended 

Threshold 

Cooling 

Deficit 

Threshold 

(∆℃) 

Temperature gap 

between actual 

LST and expected 

LST under 

optimal 

vegetation 

conditions 

∆ = LST 

Actual – 

LST 

Predicted 

Ideal 

∆ ≥ 1.5℃ 

indicates 

cooling deficit 
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This threshold is based on regression coefficients which 

built up area increases LST by +1.619℃ per ha, while 

mangrove cools -0.960℃/ha, then a 1.5℃ gap reflects 

insufficient ecosystem cooling. 

 

3.4.3 Scenario arithmetic 

Net thermal change at block or neighbourhood scale can be 

estimated directly from the regression by combining proposed 

class-fraction deltas with their coefficients (ΔLST ≈ Σ βᵢΔXᵢ), 

allowing planners to test alternatives without bespoke 

modelling each cycle [1, 2]. 

Warming from added built-up fraction can be 

counterbalanced by conserving or restoring mangroves, water, 

and other vegetation according to the observed hierarchy in 

Table 5. For illustration, adding +0.10 built-up while restoring 

+0.02 mangrove and +0.03 water gives: ΔLST ≈ (1.619 × 

0.10) − (0.960 × 0.02) − (0.478 × 0.03) = +0.128℃ (approx.), 

showing how modest green–blue additions can materially 

blunt added warming at block scale (Table 7). 

Two caveats guide prudent use: coefficients represent 

average effects at 150 m, so micro-site morphology and 

material choices (albedo/permeability) can cause local 

departures and should be addressed through corridor upgrades 

[17, 18]; and reliable estimates are obtained when scenarios 

remain within the composition envelope observed in 

Penjaringan’s record, keeping results traceable to documented 

local responses [1, 2]. 

 

3.4.4 Implementation sequencing and governance hooks 

We adopt a two-step sequence aligned with routine planning 

cycles. Target & condition. Apply the Cooling-Deficit Limit 

together with a persistence rule (cells remaining in High/Very 

High classes in ≥ 2 of the last 3 epochs) to shortlist restorative 

blocks/corridors, and—along the coastal edge—prioritise 

mangrove frontages where local drivers of change and 

anthropogenic pressures (e.g., clearing decisions) have 

historically governed gains and losses in canopy and extent 

(Table 6; Figure 5) [44]. 

For shortlisted areas, embed Per-parcel Pervious Ratios and 

Minimum green-space per block in permits to reduce sensible-

heat storage and raise evapotranspiration, while consolidating 

mangrove buffers as climate-adaptation infrastructure where 

built margins meet tidal waters (Figure 5) [45, 46]. These 

controls complement evidence that strategically 

vegetated/pervious parcels deliver distributed infiltration and 

runoff-delay benefits at district scale, strengthening thermal 

and hydrologic performance in compact fabrics [47]. Delivery 

should be co-produced with local stewardship groups and 

community organisations that have demonstrated 

effectiveness in Indonesia’s coastal cities, improving 

compliance, maintenance, and ecological outcomes for 

mangrove projects [48-50]. Where municipalities repurpose 

vacant or under-used land, pairing regeneration with green-

infrastructure economics enhances feasibility and long-term 

operations and maintenance [51]. 

 

3.5 Policy and planning implications 

 

The LST–land cover relationships derived here translate 

into operational planning metrics at decision scales using the 

150 × 150 m grid summaries and the class coefficients in Table 

5 to target and size cooling actions by block or corridor [1, 2]. 

In practice, the coefficients serve as prioritisation indicators: 

expand green corridors and riparian strips where built fractions 

dominate and advective/evaporative exchange is limited 

(Table 2; Figure 5) [51]; protect and restore mangroves as 

edge-anchored green–blue infrastructure delivering strong 

cooling with co-benefits (Tables 2, 7; Figure 5) [52]; and 

increase surface permeability/albedo in compact fabrics to 

curb sensible-heat storage (Tables 2, 7) [53]. Given the 

observed ordering of effects, these signals can be converted 

into area-based cooling targets at block or neighbourhood 

scale—i.e., required ΔX in built, mangrove, vegetation, and 

water—anchored to the model’s ℃-per-fraction coefficients 

(Table 7) [54, 55]. 

A zoning translation follows from the hotspot analysis 

(Table 6; Figure 6). (i) Restorative zones: persistently warm 

blocks (High/Very High in ≥ 2 of the last 3 epochs) advance 

to greening to expand canopy and improve connectivity within 

the urban fabric [18]. (ii) Albedo–permeability management 

zones: dense built-up areas adopt minimum pervious-surface 

shares and higher-reflectance finishes at permitting to reduce 

storage and raise latent flux [17]. (iii) Coastal/semi-coastal 

buffer zones: shore-adjacent tracts secure and, where feasible, 

expand mangrove belts as multi-benefit thermal and resilience 

infrastructure at the built edge [56]. 

These metrics can be embedded in statutory instruments 

(e.g., RDTR/RTRK, zoning ordinances) as auditable 

indicators tied to observed LST: a minimum green-space per 

block, canopy-connectivity thresholds, a per-parcel pervious-

surface ratio, and a Cooling-Deficit Limit that caps block-level 

LST deviation from the district seasonal baseline (Tables 5-6; 

Table 5) [57]. Targets can be set with the study’s arithmetic—

e.g., where a block exceeds the baseline, the required mix of 

ΔX (mangrove/vegetation/water vs. built) is sized so that 

ΣβᵢΔXᵢ ≤ 0 at the 150 m scale, keeping calculations traceable 

to local coefficients (Table 7) [1]. 

Because the indicators are remotely monitorable, annual 

compliance and progress checks can be run from the same 

Earth-observation streams used here—harmonised Landsat 

LST time series and global mangrove/urban mapping—to 

maintain methodological continuity across years [58, 59]. 

Coupling these audits with routine plan reviews enables mid-

course corrections (e.g., tightening pervious-ratio thresholds 

where High-class persistence remains, or redirecting 

restorative greening to new hotspots) and provides an evidence 

base for reallocating budgets toward the best thermal returns 

[60, 61]. This science-to-policy pipeline supports explicit 

trade-off analysis (e.g., add green space vs. reduce impervious 

cover) and supplies the technical justification for investments 

that yield thermal and public-health co-benefits at city scale 

[3, 4]. 

The framework advances SDG 11 by improving spatial 

quality and equitable access to green space—conditions 

repeatedly associated with cooler urban surfaces [62]—and 

operationalises SDG 13 by mainstreaming climate adaptation 

into land-use planning through measurable, spatially explicit 

indicators [63, 64]. In coastal settings, securing and restoring 

mangroves aligns development with low-carbon, climate-

resilient pathways via blue-carbon storage and multifunctional 

ecosystem services at the urban shoreline. 

 

 

4. CONCLUSION 

 

This study demonstrates that land‐cover change in the 

Penjaringan coastal fringe has materially reconfigured the 

surface thermal regime and that these dynamics can be 
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translated into auditable, decision‐scale planning metrics. 

Built-up area nearly doubled between 2005 and 2024 

(+113%), while water bodies (–25.7%) and ponds (–62.6%) 

contracted; in contrast, mangroves expanded by ~77% (Table 

2; Figure 5). Over the same period, LST means and extremes 

rose (mean: 20.2℃ → 27.7℃), with “very low” LST classes 

collapsing from ~84.7% of the landscape to ~0.01% and 

“high/very high” classes reaching ~49.3% by 2024 (Tables 5-

-6; Figure 6). Grid-level regression at 150 m (n = 242) 

achieved strong fit (R² = 0.951) and a stable hierarchy of 

effects: built-up warms most (+1.619℃ per unit fraction), 

while mangroves cool most among natural classes (–0.960), 

followed by water (–0.478), non-mangrove vegetation (–

0.469), with open land warming (+1.139) (Table 7). On a per-

fraction basis, mangrove cooling is ~59% of built-up warming, 

providing clear arithmetic for offsetting scenarios at 

block/neighbourhood scales (Table 7). 

These results are policy-relevant in three ways. First, they 

convert satellite diagnostics into targeting rules—restorative 

greening for persistent hotspots with low green share, albedo–

permeability upgrades in compact impervious corridors, and 

coastal buffers that secure/expand mangroves at built 

margins—so cooling is concentrated where deficits are largest. 

Second, they define four annually updatable indicators that 

link zoning and permitting to measurable outcomes: minimum 

green-space per block, canopy connectivity, per-parcel 

pervious ratio, and a Cooling-Deficit Limit referenced to the 

district’s seasonal LST baseline. Third, they provide 

lightweight scenario arithmetic (ΔLST ≈ Σ βᵢΔXᵢ) that keeps 

computation off the policy critical path while retaining 

traceability to locally estimated coefficients (Table 7). 

Two limitations should guide interpretation. Effects are 

estimated as averages at 150 m and may not capture micro-site 

departures driven by 3D form, material albedo, or roughness; 

and the indicators rely on thresholded LST classes, so multi-

epoch persistence (≥ 2 of the last 3 epochs) is preferred over 

single-year status to minimise sensitivity to marginal class 

shifts (Tables 5-6). The coefficients are most reliable within 

the observed composition envelope of Penjaringan; 

extrapolation to extreme, unobserved mixes warrants caution 

(Table 7). 

Future work that remains consistent with the evidence 

presented here includes: seasonal stratification of the same 

indicators to refine intervention timing; explicit incorporation 

of 3D morphological and material variables alongside class 

fractions; operational calibration of the Cooling-Deficit Limit 

to local baselines; and continued annual EO audits using 

harmonised time series to evaluate whether upgraded corridors 

exit persistent high-LST classes and whether restorative 

blocks recover low-temperature classes (Tables 5-6; Figures 

5-6). Overall, the study offers a replicable, audit-ready 

pathway for embedding LST–land-cover relationships into 

statutory planning and routine monitoring to advance urban 

cooling and climate resilience at decision scales. 
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