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Cities need decision-ready tools to convert satellite heat evidence into enforceable planning
rules in tropical coastal contexts. This study quantifies how land-cover composition shapes
land surface temperature (LST) in North Jakarta’s Penjaringan District and translates findings
into policy metrics. Methodology: We mapped land cover (Google Earth object-based image
analysis) and retrieved LST from Landsat (2005-2024). Variables were aggregated on a 150
%150 m grid (n = 242) and related via ordinary least squares to estimate class-specific effects.
Results & Conclusions: Built-up area expanded (+113%) while mangroves increased (+77%);
cool LST classes collapsed and warm classes proliferated. Regression yields a stable hierarchy:
built-up is the strongest warming driver; mangroves provide the strongest natural cooling;
water and other vegetation also cool. On a per-fraction basis, mangrove cooling effectiveness
is ~59% of built-up warming. These results establish quantitative, planning-scale evidence that
nature-based assets can materially blunt urban heating in a dense coastal setting. Implications:
We operationalize the evidence into four auditable indicators—Minimum Green-Space per
Block, Canopy Connectivity Index, Per-Parcel Pervious Ratio, and a Cooling-Deficit Limit—
and an adaptation-zoning workflow targeting persistent hotspots, impervious corridors, and
coastal buffers. The metrics fit routine permitting and support annual, satellite-based audits,
offering a replicable path to climate-resilient urban development.

1. INTRODUCTION

their climatic and ecological services [7, 8].
Advances in Earth observation now support planning-scale

Tropical coastal megacities are experiencing rapid land
conversion that reconfigures surface energy balances and
intensifies surface urban heat, observable in land surface
temperature (LST) patterns [1, 2]. For planners, the central
question is not merely whether heat is rising, but which land-
cover configurations most effectively moderate LST and how
that evidence can be translated into enforceable planning
instruments and monitoring routines [3, 4].

Jakarta exemplifies these dynamics. In the northern coastal
Penjaringan District, large-scale development and reclamation
have altered land—water interfaces over the past two decades
amid documented regional warming signals [5]. Within this
setting, mangrove ecosystems are strategic assets—buffering
coasts [6], storing blue carbon [7], and sustaining biodiversity
[8]—yet remain under urbanization pressure that can erode
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diagnostics of land cover and LST [9], enabling cities to relate
spatial composition to thermal outcomes with consistency
over time [10]. Nevertheless, in tropical coastal contexts, the
literature rarely provides comparative, decision-ready
estimates of cooling effectiveness across distinct land covers
(e.g., mangroves, other vegetation, water bodies, ponds) [11]
that planners can embed in zoning, development control, and
investment prioritization [2, 3].

This study responds to that gap for Penjaringan (North
Jakarta). Using high-resolution Google Earth imagery with
Object-Based Image Analysis (OBIA) [12], and Landsat-
based thermal retrievals [10], we quantify spatiotemporal
LULC-LST relationships (2005-2024) and derive empirical
coefficients that rank class-level cooling. Crucially, we
translate these findings into a policy framework—adaptation
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priorities and auditable indicators aligned with SDG 11
(sustainable, resilient cities) and SDG 13 (climate action)
[13]—to support integration of green—blue infrastructure
(including mangroves) within statutory planning and routine
performance monitoring [4].

Contributions. (i) An empirically grounded ranking of land-
cover cooling effectiveness in a tropical coastal megacity; (ii)
a planning-ready conversion of these results into indicators
suitable for zoning and development control [4]; and (iii) an
alignment pathway that connects satellite monitoring with
SDG-oriented urban cooling policy and investment decisions
[13].

2. METHODS
2.1 Study area

The study focuses on Penjaringan District (North Jakarta),
a rapidly urbanizing coastal fringe comprising reclaimed
islands, dense settlements, traditional aquaculture ponds, open
water, and the Muara Angke—Kapuk mangrove system (Figure
1). The area typifies Southeast Asian megacity trade-offs
where development pressure intersects with ecosystem
conservation and climate adaptation needs.

;\

Indonesia Country [l OKI Jakarta Province
North Jakarta City Tangerang Regency
Penjaringan District [___| Research Location

Figure 1. Research area
2.2 Data source

We combined high-resolution optical imagery and thermal
satellite data to quantify land cover and land surface
temperature (LST) over time:

Land cover (2 m): Google Earth Pro, years 2005,

2010, 2015, 2020, 2024, with on-screen
digitizing/visual interpretation as reference for OBIA
[14].

Thermal/optical (30 m): Landsat 7 ETM+ (Band 6
thermal; 2005-2010) and Landsat 8 OLI/TIRS (Band
10 thermal; 2015, 2020, 2024). Post-2003 ETM+
scenes used SLC-off gap-filling; cross-sensor time-
series handling followed established Landsat
guidance for comparability [10].

2.3 Pre-processing

All scenes underwent geometric/radiometric correction;
atmospheric correction was applied as appropriate to ensure
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time-series consistency before LST retrieval and index
computation [10]. ETM+ SLC-off artifacts were gap-filled
using multi-date compositing to improve spatial continuity for
analysis and visualization [10].

2.4 LST retrieval

We retrieved LST from ETM+ Band 6 and TIRS Band 10
using a standard single-channel workflow—radiance —
brightness temperature — NDVI-based emissivity correction
— LST (°C) [15]. Outputs were resampled to 30 m and
harmonized across years for comparison at planning scales
[10].

2.5 Land-cover mapping (OBIA)

Land cover was mapped with Object-Based Image Analysis
(OBIA) in eCognition, combining spectral, textural, and
shape/context features [12]. Land cover classification was
performed using eCognition Developer software (Figure 2).
The initial stage involved image segmentation using the
Multiresolution Segmentation algorithm with parameters scale
= 50, shape = 0.5, and compactness = 0.5. This segmentation
scale was chosen because the resulting segments were able to
distinguish different land cover objects quite well. In the
classification process, training samples were created from
each land cover class. The segmented objects were then
classified using the Nearest Neighbor Classification algorithm
based on the average spectral value of each band and basic
shape features. The OBIA methods used can vary because they
are adjusted to the researcher's needs, such as the scale of the
research area, level of detail, and others (Figure 3).

Ea Classification
Algorithm : Classification

Method : Nearest Neighbor

| Insert Image File and Use Geocoding |

Segmentation
Algorithm : Multiresolution Segmentation
Shape 0.5 - Compaciness 0.5 [

v

| Object/Polygon Segments | I

v
-

| Create Training Samples

Land Cover Classification Results |

Accuracy Validation with Kappa |
Coeflicient

Figure 2. Land classification flow with OBIA in this study

Figure 3. Stages of OBIA: (a) Segmentation, (b) Detail of
segment, (c) Classification



Six classes were delineated to align with planning-relevant
decisions—Built-up, Mangrove, Water body, Pond, Open
land, Non-mangrove vegetation—and temporal stacks (2005,
2010, 2015, 2020, 2024) supported change detection [9]. We
define some of our land cover classes (Table 1).

Table 1. Definition of land cover types

Definition
A type of tropical vegetation that
grows along the coast or river
estuaries, influenced by the ebb and
flow of seawater, and has a muddy
substrate. It has a dark green canopy
and dense texture with a high
vegetation spectrum.
Land covered by permanent or semi-
permanent buildings so that rainwater
does not fall directly onto the surface,
visible in the form of settlements,
public facilities, roads, industry, and
others.

Land that has very little or no
vegetation cover or buildings, such as
fields, initial clearing of agricultural
land, former fires or logging, is
brownish in color (open land, open
fields, etc.).

Natural and artificial waters that are
permanent or semi-permanent, such
as seas, rivers, reservoirs, wetland
rice fields that contain water, and
others.

Artificial aquaculture areas, generally
located in coastal areas, consist of
deliberately controlled pools of water
designed to support aquatic
organisms. They are characterized by
geometrically shaped,
compartmentalized, and unnatural
pools of water.

Terrestrial vegetation other than
mangroves includes urban trees,
shrubs, and others.

Land Cover Types

Mangrove

Built-Up Land

Open Land

Water Body

Pond

Non-Mangrove
Vegetation

2.6 Spatial aggregation and indicators

To link Earth observation with planning units, we
summarized all variables on a 150 m <150 m grid (n = 242),
computing (a) mean LST (°C) and (b) area of each land-cover
class per cell to support block/neighborhood-scale diagnostics
used by municipal planners [3, 4]. This study uses a spatial
analysis unit in the form of a 150 m %150 m grid for several
reasons. First, the resolution of Landsat 8 imagery (30 m)
allows one grid to contain 25 LST pixels, resulting in a more
stable average value, in line with previous studies that applied
smoothing using a 5 x5 pixel window. Second, the grid size
is a multiple of the original image resolution, making it
consistent, easy to replicate, and suitable for LST-based spatial
analysis. In addition, empirical studies show that the
relationship between LST and urban morphology tends to be
stable at a scale of +150 m, so this size is considered ideal for
capturing local variability and analyzing the relationship
between land cover and surface temperature.

In this study, land-cover maps derived from OBIA
classification were overlaid with a 150 <150 m grid. For each
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grid cell, the absolute area (in hectares) of each land-cover
type—Dbuilt-up, mangrove, water body, aquaculture pond, non-
mangrove vegetation, and open land—was calculated. These
area values were directly used as independent variables and
statistically related to the mean LST of each grid cell, without
converting them into proportional or fractional values.

2.7 Statistical analysis

We estimated ordinary least squares regressions with LST
as the dependent variable and class fractions as predictors to
quantify the influence of each land-cover type on LST [2, 16]:

Y = ao + al.Xl + az.XZ + ... + an.Xn (1)
where, Y is the dependent variable (LST), Xi, Xz,...,Xn
represent the independent variables (e.g., built-up area,
vegetation, water bodies, ponds, other land cover types), and
ao, ai,...,an are the regression coefficients [2, 16]. This analysis
quantified the influence of each land cover type on LST,

providing insight into how land conversion impacts local
thermal conditions.

2.8 Translation to planning metrics

Rather than emphasizing raw magnitudes in the main text,
we use the signs and relative ordering of coefficients to derive
operational planning elements—(i) adaptation priorities
(restorative greening; albedo—permeability management;
coastal buffers) and (ii) auditable indicators (minimum green-
space per block, canopy connectivity, per-parcel pervious
ratio, neighborhood cooling-deficit limit)}—that can be
monitored from the same EO streams [1, 3, 4].

3. RESULT AND DISCUSSION
3.1 Land-cover dynamics in a coastal megacity fringe

3.1.1 Urban intensification and loss of evapotranspiring
surfaces

Penjaringan’s coastal fringe reflects the typical trade-off of
fast-growing tropical megacities: built-up area nearly doubled
from 716.1 ha (2005) to 1,525.1 ha (2024; +113%) (Table 1;
Figure 4). Over the same period, water bodies declined from
2,046.8 t0 1,520.4 ha (—25.7%) and ponds from 520.6 to 194.6
ha (—62.6%) (Table 1; Figure 4). Annualised rates underscore
the structural shift: built-up expanded by ~42.6 ha-yr!, while
water bodies and ponds contracted by ~27.7 ha-yr* and 17.2
ha-yr!, respectively, amounting to a net —-852.4 ha reduction
in aquatic/pond surfaces across two decades (Table 2). These
conversions replace evapotranspiring, heat-buffering surfaces
with impervious materials that absorb and store heat, a well-
documented pathway for surface warming during urban
expansion [17, 18].

Table 2 presents the area of each land cover class during the
period 2005-2024, indicating changes in land use composition
in the study area. To better understand the dynamics of change,
Table 3 displays the total area change and annual rate of
change (ha/year) of each land cover class between 2005 and
2024. This presentation allows analysis based not only on the
magnitude of change, but also on the speed and direction of
the trend of change.



Table 2. Area of land cover types in 2005-2024 at research sites

Area (Ha)
Land Cover 2005 2010 2015 2020 2024
Built-up Area 716.10 940.20 1,211.60 1,340.50 1,525.10
Mangrove 183.70 230.00 247.20 283.50 324.60
Water Body 2,046.80 2,054.80 1,474.90 1,606.50 1,520.40
Pond 520.60 325.60 223.00 197.30 194.60
Open Land 211.10 74.60 638.50 303.40 164.90
Non Mangrove Veg. 570.00 623.20 453.00 517.10 518.80
Table 3. Annual rate of change (2005-2024)
Area (Ha
Land Cover 2005 (Ha) 2024 Area Change (A Area) Annual(ﬁ:/tse(;fr)Change
Built-up Area 716.10 940.20 +809.00 +42.58
Mangrove 183.70 230.00 +140.90 +7.41
Water Body 2,046.80 2,054.80 -526.40 -27.70
Pond 520.60 325.60 -326.00 -17.16
Open Land 211.10 74.60 -46.20 -2.43
Non Mangrove Veg. 570.00 623.20 -51.20 -2.69

Functionally, the loss of open-water/pond area reduces
latent-heat flux and heat capacity at block scale, weakening
daytime evaporative cooling and dampening nocturnal heat
release (Table 2) [18]. Conversely, enlarging built-up fractions
raise sensible-heat flux, thermal storage, and radiative trapping
in compact corridors/blocks with low permeability, pushing
local LST baselines upward (Figure 4) [17]. For planning,
these quantified shifts flag priority geographies for
permeability upgrades and strategic retention of
water/vegetation to blunt added warming from new
impervious cover, keeping cooling services close to densifying
tracts (Table 2; Figure 5) [18].

I Mangrove
- Water Body
Il suit-Up Land
. Pond

I Open Land
=%

Non Mangrove Vegetation

Figure 4. Land cover changes in 2005-2024 at the research
site
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We validated the OBIA maps against independent reference
points visually interpreted from Google Earth Pro (~2 m) using
stratified random sampling by class in each observation year
(2005, 2010, 2015, 2020, 2024). We used a sample of 50
points per class for a total of 300 accuracy test points.
Accuracy was summarised by overall accuracy (OA), Cohen’s
K, and per-class F1 (precision/recall). Table 4 provides the
results of the accuracy test with kappa coefficients consisting
of OA, Cohen's k, and per-class F1.

3.1.2 The mangrove “paradox”: resilience under pressure
Against this trend, mangrove cover expanded by ~77%
(183.7 — 324.6 ha), an atypical yet policy-salient outcome for
a dense coastal metropolis (Table 2; Figure 5). When protected
and restored, mangroves function as multi-benefit
infrastructure—buffering coasts, reducing wave energy and
stabilising edges along urban shorelines [6], storing blue
carbon with high long-term sequestration potential, supporting
mitigation co-benefits [7], and sustaining local ecosystem
services in Angke-Kapuk and similar urban mangrove
mosaics, including recreation and water-quality functions [8].
The observed rebound is consistent with targeted restoration
and shoreline management that preserve moisture availability
and canopy structure, enabling latent-heat dominated cooling
relative to adjacent built tracts (Table 2; Figure 5) [7].

3.1.3 Planning meaning: cooling demand and anchor assets for
GBI

The land-cover shifts imply rising cooling demand in
densifying blocks, where baseline LST increases necessitate
stronger marginal cooling from each intervention (Table 2)
[3]. In parallel, mangroves can be leveraged as anchor assets
within green—blue infrastructure networks, providing edge-
focused cooling that does not compete with inland
development footprints  (Figure 5) [13]. Aligning
conservation/expansion with urban-form controls (albedo—
permeability upgrades) and water-surface retention creates a
coherent pathway to SDG-oriented climate resilience, linking
diagnostics to zoning and permitting triggers (Table 2, Figure

5) [3].



Table 4. Results of land cover classification accuracy tests

Year 2005 2010 2015 2020 2025
OA 83.06% 90.46% 87.67% 88% 93.69%
Cohen’s k 0.762394 0.865753 0.836733 0.835831 0.91265
Per-Class F1
Built-Up Land 0.6977 0.9048 0.8862 0.8478 0.9565
Mangrove 0.9286 0.9677 0.8485 0.8571 0.9674
Water 0.9318 0.9395 0.9479 0.9264 0.9345
Pond 0.5817 0.7797 0.8571 0.8800 0.9285
Open land 0.7090 0.5600 0.7692 0.6977 0.7333
Non-Mangrove Vegetation 0.9083 0.9535 0.8070 0.9459 0.9275

3.1.4 Comparative context and likely mechanisms

Penjaringan’s trajectory mirrors coastal urbanisation
patterns where conversion of evapotranspiring surfaces
(water/ponds/vegetation) into impervious materials elevates
heat storage and daytime LST, while fragmented green space
limits advective/evaporative cooling [17]. Regional evidence
further associates urban sprawl configurations with intensified
SUHI signatures, reinforcing the temperature response to
built-up expansion [19]. Within this context, the 77%
mangrove expansion is policy-salient: protected/restored
mangroves buffer coastal edges and supply cooling co-benefits
without displacing inland development, making them prime
candidates for edge-anchored GBI strategies (Table 2, Figure
5) [7]. Mechanistically, dense canopy, higher leaf-area index,
and sustained moisture availability increase latent-heat
exchange and reduce surface radiometric temperatures relative
to built-up tracts, aligning observed cooling with vegetation
physiology and surface-energy balance theory [18]. This
biophysical logic supports an edge-focused conservation
approach where urban form meets coastal systems, keeping
cooling services proximate to heat-exposed neighbourhoods
(Figure 5) [1].

3.2 Thermal transformation and loss of refugia
3.2.1 Warming signal and widening extremes

Table 5. LST value at the research site

LST Min LST Max LST Mean

= 3:;‘
0
)
> ** :
e ! - Very Low Temperature
- " :] Low Temperature
[ ] Medium Temperature
- [] High Temperature
e mme .|l Very High Temperature

Figure 5. LST changes in 2005-2024 at the research site

Table 6. LST classification in 2005-2024 at the research site

Years LST Area (Ha)
(&) (&O)] (&)
e oL XL L (\lesss 2005 2010 2015 2020 2024
2010 1030 30.40 23.20 VOV 350310 186310 21240 4240 030
3858 gégg gg'gg gggg Low 64650 1,690.70 1,987.20 174350 1,393.80
o o oy 2o.00 Medium 240  676.80 181640 123430 754.90
: ' : High 000 1130 22590 115050 1,442.00
Ver
Multi-temporal LST analysis indicates a systematic Hig?]/ 0.00 0.00 0.00 7110 650.90

warming across the period: the mean increased from 20.2°C
(2005) to 27.7°C (2024) (+7.5°C), the minimum from 17.1°C
to 23.6°C (+6.5°C), and the maximum from 27.0°C to 36.0°C
(+9.0°C), widening the annual range from 9.9°C to 12.4°C
(Table 5, Figure 6) [5, 20]. Most notably, “very low” LST
zones contracted from ~84.7% of the landscape (3,593.1 ha of
~4,242 ha) to ~0.01% (0.3 ha), while “high/very high” zones
expanded to ~49.3% by 2024 (2,092.9 ha) (Table 6), signaling
a shift from refuge-rich mosaics toward more uniformly warm
surfaces consistent with long-term warming signals and
surface-UHI amplification in Jakarta and comparable cities [5,
20].
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3.2.2 Implications for passive cooling and ecosystem exposure

The contraction of low-temperature classes reduces
neighborhood-scale passive-cooling options (shading and
evapotranspiration from vegetation and open water) and raises
exposure for heat-sensitive ecosystems (Table 6) [21]. In
planning terms, the baseline has shifted upward: interventions
must now deliver higher marginal cooling merely to restore
prior thermal states before producing net improvements,
which aligns with evidence that green—blue surfaces suppress
LST while impervious expansion elevates it via increased
sensible-heat flux and thermal storage [22].



3.2.3 Policy translation—decision-ready thresholds

To keep computation off the policy critical path, we express
the analytics as auditable indicators derived from the same EO
streams used here:
Cooling-Deficit Limit. A block’s LST should not
exceed the district’s seasonal baseline by more than
A °C; exceedance triggers greening and surface-
permeability requirements (Tables 5-6) [3]. Here, A
denotes the allowable exceedance above the district’s
seasonal LST baseline; its numeric value is specified
by the planning authority and may be updated as
monitoring matures.
Restorative Priority. Blocks that (i) persist in
High/Very High classes in > 2 of the last 3 epochs
(Table 6) and (ii) fall below a minimum green-space
share advance to restorative greening [4].
Albedo—Permeability Upgrade. Corridors/blocks
with sustained high LST and high imperviousness
(Figure 5; land-cover summaries) must meet
minimum pervious-surface ratios at permitting [3].
Annual EO Audit. Repeat the LST-class analysis to
track the recovery of Very Low/Low classes and
verify intervention performance year-on-year [23].

These thresholds are compatible with planning-scale
monitoring and development-control workflows, enabling
direct linkages from satellite-derived thermal evidence to
zoning, permitting, and investment prioritisation.

3.2.4 Sensitivity of class thresholds and temporal context
Because Table 6 relies on thresholds, small shifts in class
cut-offs or interannual anomalies can move marginal pixels
across categories; therefore we emphasise multi-epoch
persistence (e.g., remaining High/Very High in > 2 of the last
3 epochs) over single-year status—the same logic embedded
in the Restorative Priority rule—so planning targets structural
heat patterns rather than year-specific noise (Tables 5-6,
Figure 6) [1]. Cross-sensor Landsat time-series comparability
and handling of ETM+ SLC-off artifacts are addressed in
preprocessing to maintain trend reliability [10]. Where
seasonal composites are available, applying the same classing
to wet/dry seasons can refine intervention timing while
preserving consistent indicators and audit thresholds [24].

3.3 Cooling effectiveness hierarchy (regression evidence)

3.3.1 Stable ordering of class effects

Grid-level OLS modelling at 150 <150 m (n = 242) yields
a consistent hierarchy of class-specific effects on LST (Table
7): Built-up exerts the strongest warming, while mangroves
provide the strongest natural cooling, followed by water
bodies, non-mangrove vegetation, and ponds (Table 7).
Interpreted as °C per unit land-cover fraction within a grid cell,
these coefficients are directly comparable across classes and
thus decision-ready for planning arithmetic, aligning with
broader evidence that surface composition governs thermal
outcomes in cities [1, 2].

Model performance and basic diagnostics (reported here in
full): overall R==0.951, all predictors significant at p < 0.001,
residuals show no conspicuous trend against fitted values on
visual inspection, and signs/magnitudes are consistent with
physical expectations (warming for imperviousness; cooling
for vegetated/blue classes) [1, 2].

Table 7 shows the influence of land-cover types on Land
Surface Temperature (LST) using single-year data from 2024.
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The analysis was conducted on n = 242 grid cells (150 %150
m) with complete land-cover and LST information. Table 5
was conducted using a single-year dataset (year 2024 only.
The year 2024 was selected because the contrast in LST values
among land-cover classes is most pronounced, allowing
clearer interpretation of land-cover influence on LST. The
sample size of n = 242 represents grid cells (150 <150 m) with
complete and consistent land-cover and LST data within the
study area.

Table 7. Regression coefficients

Predictor Unstandarized Coefficients

(Fraction) B Std. Error _ -value
(Constant) 28.086 0.94 <0.001
X1 (Built Area) 1.619 0.69 <0.001
X2 (Mangrove) -0.960 0.95 <0.001
X3 (Open Land) 1.139 0.69 <0.001
X4 (Water Body) -0.478 0.70 <0.001
X5 (Pond) -0.275 0.72 <0.001
X6 (Non Mangrove
Vegetation) -0.469 0.59 <0.001

Notes: coefficients are interpreted at the analysis scale (150 m grid);
signs/order are stable, supporting policy translation based on the hierarchy
even when point magnitudes are kept lightweight in narrative

Multiple linear regression analysis (Table 7) shows that
built-up and bare land variables have a significant positive
effect on increasing land surface temperature (LST), while
vegetation cover (mangrove and non-mangrove) and water
bodies and ponds contribute to temperature reduction. These
results confirm the differences in ecological function between
land cover types, with built-up areas accelerating the warming
process, while vegetation and water play a cooling role [25].
To strengthen these findings, a Pearson correlation analysis
was also conducted (Table 8) which presents the direction and
strength of the relationship between each variable and LST in
a bivariate manner.

Table 8. Cross-sectional correlations between LST and land-
cover fractions (2024)

(T:rri';gong Pearson (r)  P-Value Direction
X1 (Built Area) +0.829 <0.001 Warming
X2 (Mangrove) -0.675 <0.001 Cooling
X3 (Open Land) +0.495 <0.001 Warming
X4 (Water Body) -0.737 <0.001 Cooling

X5 (Pond) -0.558 <0.001 Cooling

X6 (Non
Mangrove -0.776 <0.001 Cooling
Vegetation)

The correlation results show a pattern consistent with the
regression, where built-up land (r = +0.829; p < 0.001) and
open land (r = +0.495; p < 0.001) are positively related to LST,
while vegetation, water bodies, and ponds have a significant
negative correlation (r ranging from —0.558 to —0.776; p <
0.001). Thus, the second table is presented as a complement to
confirm the direction of the relationship that has been shown
in the regression model, while also showing the magnitude of
the cooling contribution of vegetation, especially mangroves,
to temperature control in coastal areas [26].

This analysis reflects a simple bivariate relationship
between each land cover type and LST without considering
other variables. Meanwhile, the results of multiple linear



regression provide a more complex picture because they
simultaneously consider the contribution of each predictor
variable. This confirms that although simple correlations
between vegetation and water bodies have been shown to have
a cooling effect, multiple regression shows that the
contribution of this temperature reduction remains significant
even after the influence of other variables is controlled [22].
The combination of these two analyses provides a more
complete understanding that increasing built-up land
exacerbates the phenomenon of surface warming, while
vegetation, especially mangroves, plays a crucial role in
maintaining the thermal balance of coastal areas.

This trend can be further clarified through a simple model
showing the relationship between LST vs built-up land and
LST vs mangroves in Figure 6.

Scatter Plot (LST vs Built Area) and (LST vs
Mangrove), 2024; grid 150x150 m; n=242
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Figure 6. Scatter plot LST vs built area

The regression analysis results show a positive relationship
between LST values and built-up land area (y = 0.2392x —
6.0431; R=2= 0.6013). This means that increases in built-up
land area tend to be followed by increases in land surface
temperature. The coefficient of determination (R value of
0.60 indicates that approximately 60% of the variation in LST
can be explained by changes in built-up land area. This finding
confirms that built-up areas contribute significantly to
increasing surface temperatures, in line with the urban heat
island phenomenon [27].

In contrast, the regression results between LST and
mangrove area showed a negative relationship (y = -0.1913 x
+5.9305; R== 0.4555). This means that increasing mangrove
area is associated with a decrease in land surface temperature.
The R=value of 0.45 indicates that approximately 45% of the
variation in LST can be explained by mangrove area. This
finding supports the role of mangrove ecosystems as natural
coolers capable of lowering surface temperatures through
shading and evapotranspiration [28]. Overall, these two
findings show that land cover changes in coastal areas have
significant implications for surface temperature dynamics,
where the dominance of built-up land increases the risk of
warming, while the presence of mangroves serves as an
important mitigating factor.

3.3.2 Magnitude for planning arithmetic (kept lightweight)
For scenario testing, multiply each coefficient by the
proposed change in class fraction and sum the terms to
estimate the net block-scale ALST [1, 2]. On a per-fraction
basis, mangrove cooling 59% of built-up warming
(Ip_mangrove| / p_built-up = 0.960/1.619 = 0.59), indicating
substantial offset potential where conservation/restoration is
feasible (Table 7). The value ‘~59% cooling effectiveness’
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refers only to the per-unit-area effect (—0.960/1.619) derived
from the regression coefficients. However, in absolute terms,
built-up areas cover 1,525.1 ha, while mangroves cover only
324.6 ha. When multiplying the coefficients by actual area
(area-weighted impact), total cooling by mangroves amounts
to —311.6°C/ha, which is only about 12.6% of the total
warming effect from built-up areas (2,468.3°C/ha). Then the
value ‘59%’ refers to the cooling potential per unit area, not
the total contribution at the landscape scale. This accords with
the role of mangroves as multi-benefit green—blue
infrastructure in coastal cities [29].

3.3.3 How we use the hierarchy

To avoid over-emphasising point estimates, we use the
signs and ordering to guide siting (where to intervene first) and
sizing (how much of each class to target), while the full
coefficients and basic diagnostics are provided above for
transparency (Table 7). This directly enables planning tools
such as restorative greening in built-dominated cells, coastal
buffers anchored by mangroves, and permeability/albedo
upgrades in persistent warm corridors, within standard
development-control workflows [30, 31].

3.3.4 Worked example: block-scale ALST arithmetic

A redevelopment adds +0.10 built-up in a 150 > 150 m
block but restores +0.02 mangrove and +0.03 water. Using
Table 5:

ALST =~ (1.619 x 0.10) — (0.960 x 0.02)
—(0.478 x 0.03)
= 40.128°C(approx.)

Two takeaways: (i) modest green—blue additions can
materially blunt added warming, and (ii) the relative ordering
is often sufficient for siting/sizing decisions, while exact
coefficients remain available for audit and replication [1, 2, 7].

3.3.5 Robustness and limits (for prudent use)

Three boundary conditions matter in planning deployment:
(i) coefficients are average effects at 150 m; micro-site
morphology and roughness/height can cause local departures
[17, 18]; (ii) effects reflect the observed composition envelope
of Penjaringan—extreme scenarios outside this envelope merit
caution [1, 2]; (iii) directional stability (signs/order) across
epochs underpins policy use even when precise magnitudes
are de-emphasised in the text [1, 2].

3.4 Design and planning translation

Evidence above is translated into three implementation
channels that connect thermal diagnostics with development
control and investment decisions.

3.4.1 Targeting principles

Restorative greening is directed to blocks that persist as
hotspots—cells remaining in High/Very High LST classes in
> 2 of the last 3 epochs—and also exhibit low existing green
share, so added evapotranspiration capacity is placed where
thermal stress is chronically highest (Figure 6; Table 6). This
targeting reflects the well-established pattern that transitions
toward built surfaces elevate LST by replacing moisture-
available, vegetated or water surfaces with impervious
materials that suppress latent-heat flux (Table 2; Figure 5)
[32].



In parallel, albedo—permeability upgrades are prioritised
along compact impervious corridors and large blocks, where
material properties and limited infiltration jointly amplify
sensible-heat storage; minimum pervious-surface ratios and
higher-reflectance finishes can therefore be enforced at the
permitting stage (Table 2; Figure 5) [33, 34].

Along the coastal edge, buffers that protect and, where
feasible, expand mangroves at built-up margins act as anchor
assets within the green-blue network, leveraging thermal
moderation [35], coastal protection [6], and blue-carbon
storage [7] (Figure 4). Taken together, these targeting rules
convert the LULC-LST diagnostics into place-specific actions
that concentrate cooling where deficits are largest, upgrade
materials where heat accumulates, and secure edge-based
nature-based solutions under coastal urbanisation pressures.

3.4.2 Auditable indicators

To embed thermal outcomes in routine planning, four
indicators can be updated annually from the same EO streams
used here. First, a Minimum green-space per block (%)
prioritised where block LST exceeds a neighbourhood
threshold derived from the Table 3 class distributions links
directly to evidence that greener blocks exhibit lower LST via
shading and evapotranspiration [36], and that expanding green
share in built-dominated tracts yields measurable surface-
cooling dividends [35]. Table 9 is the threshold
recommendation for the first indicator.

Table 9. Recommended threshold range for the first indicator

. Operational Formula Recommended
Indicator  “pefinition Method Threshold
Minimum Percentage of %Green = Minimum : >

Green vegetated (Vegetated um - =
- 20%
Open surface within Area/Total . )
(Optimal : >
Space per  one urban block  Block Area) 3006)
Block or analysis grid %100 0

Table 10. Recommended threshold range for the second

indicator
©
— | c % °©
g 5 S8 5%
53 == - <
2 © < Es Eq
2 2% 53 §E
O D
04
Degree of
spatial Connectivity =
Canopy connectivity Patch Cohesion
Connectivity between Index or >0.50
Index vegetated Connectance
patches within Index

the landscape

LST regression shows cooling effect emerges when
vegetation exceeds 20% of a block and 30% aligns with
Indonesian National Spatial Planning Regulation (PP No.
26/2007) and urban climate studies. Second, a Canopy
Connectivity Index measuring functional links among parks,
street trees, and riparian strips within a set distance supports
advective/evaporative cooling by sustaining continuous
vegetated corridors, consistent with findings that more
connected green space moderates the urban thermal
environment across seasons [37], and acts as a thermal
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regulator at district scale [38]. Table 10 is the threshold
recommendation for the second indicator.

Values above 0.5 indicate functional ecological
connectivity and effective cooling continuity and supported by
landscape ecology literature. Third, a Per-parcel Pervious
Ratio (minimum share of pervious/vegetated surfaces
enforced at permitting) addresses the material and hydrologic
controls on heat storage and sensible-heat flux, reflecting
multi-city results that higher imperviousness elevates LST
while greener/pervious configurations suppress it [39], with
metropolitan evidence from Kuala Lumpur reinforcing the
sensitivity of LST to built-green surface composition in
permitting-scale decisions [40]. Table 11 is the threshold
recommendation for the third indicator.

Table 11. Recommended threshold range for the third

indicator
—- 2
S g s 8o 2 2
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P area / total >30%)
development lot as
g parcel
part of the building area) x
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High imperviousness increases land surface temperature
(LST) and sensible heat flux. Empirical studies show LST
rises with built-up density and decreases with pervious/green
surfaces. A minimum of 20-30% aligns with cooling
thresholds and international planning practices. Fourth, a
Cooling-Deficit Limit (A °C)—the allowable deviation of
block-level LST from the district seasonal baseline—provides
a trigger for stronger greening/permeability requirements once
exceeded, aligning with planning-scale LULC-LST
diagnostics that translate satellite thermal evidence into
development control thresholds [41], and with regression-
based planning applications that use EO-derived indicators for
zoning and approvals [42]. Collectively, these indicators
anchor zoning conditions and investment prioritisation in
observed LULC-LST relationships at decision scales,
enabling auditable, annually updatable benchmarks for urban
cooling policy [43]. Table 12 is the threshold recommendation
for the fourth indicator.

Table 12. Recommended threshold range for the fourth

indicator
Indicator Operational Formula  Recommended
Definition Method Threshold
Temperature gap
Cooling between actual A=LST
Deficit LST and expected  Actual — A>1.5°C
LST under LST indicates
Threshold . - - -
S optimal Predicted cooling deficit
(A°C) -
vegetation Ideal
conditions




This threshold is based on regression coefficients which
built up area increases LST by +1.619°C per ha, while
mangrove cools -0.960°C/ha, then a 1.5°C gap reflects
insufficient ecosystem cooling.

3.4.3 Scenario arithmetic

Net thermal change at block or neighbourhood scale can be
estimated directly from the regression by combining proposed
class-fraction deltas with their coefficients (ALST = X BiAXj),
allowing planners to test alternatives without bespoke
modelling each cycle [1, 2].

Warming from added built-up fraction can be
counterbalanced by conserving or restoring mangroves, water,
and other vegetation according to the observed hierarchy in
Table 5. For illustration, adding +0.10 built-up while restoring
+0.02 mangrove and +0.03 water gives: ALST =~ (1.619 %
0.10) — (0.960 %0.02) — (0.478 x0.03) = +0.128°C (approx.),
showing how modest green—blue additions can materially
blunt added warming at block scale (Table 7).

Two caveats guide prudent use: coefficients represent
average effects at 150 m, so micro-site morphology and
material choices (albedo/permeability) can cause local
departures and should be addressed through corridor upgrades
[17, 18]; and reliable estimates are obtained when scenarios
remain within the composition envelope observed in
Penjaringan’s record, keeping results traceable to documented
local responses [1, 2].

3.4.4 Implementation sequencing and governance hooks

We adopt a two-step sequence aligned with routine planning
cycles. Target & condition. Apply the Cooling-Deficit Limit
together with a persistence rule (cells remaining in High/Very
High classes in > 2 of the last 3 epochs) to shortlist restorative
blocks/corridors, and—along the coastal edge—prioritise
mangrove frontages where local drivers of change and
anthropogenic pressures (e.g., clearing decisions) have
historically governed gains and losses in canopy and extent
(Table 6; Figure 5) [44].

For shortlisted areas, embed Per-parcel Pervious Ratios and
Minimum green-space per block in permits to reduce sensible-
heat storage and raise evapotranspiration, while consolidating
mangrove buffers as climate-adaptation infrastructure where
built margins meet tidal waters (Figure 5) [45, 46]. These
controls  complement  evidence that strategically
vegetated/pervious parcels deliver distributed infiltration and
runoff-delay benefits at district scale, strengthening thermal
and hydrologic performance in compact fabrics [47]. Delivery
should be co-produced with local stewardship groups and

community  organisations that have  demonstrated
effectiveness in Indonesia’s coastal cities, improving
compliance, maintenance, and ecological outcomes for

mangrove projects [48-50]. Where municipalities repurpose
vacant or under-used land, pairing regeneration with green-
infrastructure economics enhances feasibility and long-term
operations and maintenance [51].

3.5 Policy and planning implications

The LST-land cover relationships derived here translate
into operational planning metrics at decision scales using the
150 %150 m grid summaries and the class coefficients in Table
5 to target and size cooling actions by block or corridor [1, 2].
In practice, the coefficients serve as prioritisation indicators:
expand green corridors and riparian strips where built fractions
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dominate and advective/evaporative exchange is limited
(Table 2; Figure 5) [51]; protect and restore mangroves as
edge-anchored green—blue infrastructure delivering strong
cooling with co-benefits (Tables 2, 7; Figure 5) [52]; and
increase surface permeability/albedo in compact fabrics to
curb sensible-heat storage (Tables 2, 7) [53]. Given the
observed ordering of effects, these signals can be converted
into area-based cooling targets at block or neighbourhood
scale—i.e., required AX in built, mangrove, vegetation, and
water—anchored to the model’s °C-per-fraction coefficients
(Table 7) [54, 55].

A zoning translation follows from the hotspot analysis
(Table 6; Figure 6). (i) Restorative zones: persistently warm
blocks (High/Very High in > 2 of the last 3 epochs) advance
to greening to expand canopy and improve connectivity within
the urban fabric [18]. (ii) Albedo—permeability management
zones: dense built-up areas adopt minimum pervious-surface
shares and higher-reflectance finishes at permitting to reduce
storage and raise latent flux [17]. (iii) Coastal/semi-coastal
buffer zones: shore-adjacent tracts secure and, where feasible,
expand mangrove belts as multi-benefit thermal and resilience
infrastructure at the built edge [56].

These metrics can be embedded in statutory instruments
(e.g., RDTR/RTRK, zoning ordinances) as auditable
indicators tied to observed LST: a minimum green-space per
block, canopy-connectivity thresholds, a per-parcel pervious-
surface ratio, and a Cooling-Deficit Limit that caps block-level
LST deviation from the district seasonal baseline (Tables 5-6;
Table 5) [57]. Targets can be set with the study’s arithmetic—
e.g., where a block exceeds the baseline, the required mix of
AX (mangrove/vegetation/water vs. built) is sized so that
YBiAX; < 0 at the 150 m scale, keeping calculations traceable
to local coefficients (Table 7) [1].

Because the indicators are remotely monitorable, annual
compliance and progress checks can be run from the same
Earth-observation streams used here—harmonised Landsat
LST time series and global mangrove/urban mapping—to
maintain methodological continuity across years [58, 59].
Coupling these audits with routine plan reviews enables mid-
course corrections (e.g., tightening pervious-ratio thresholds
where High-class persistence remains, or redirecting
restorative greening to new hotspots) and provides an evidence
base for reallocating budgets toward the best thermal returns
[60, 61]. This science-to-policy pipeline supports explicit
trade-off analysis (e.g., add green space vs. reduce impervious
cover) and supplies the technical justification for investments
that yield thermal and public-health co-benefits at city scale
[3, 4].

The framework advances SDG 11 by improving spatial
quality and equitable access to green space—conditions
repeatedly associated with cooler urban surfaces [62]—and
operationalises SDG 13 by mainstreaming climate adaptation
into land-use planning through measurable, spatially explicit
indicators [63, 64]. In coastal settings, securing and restoring
mangroves aligns development with low-carbon, climate-
resilient pathways via blue-carbon storage and multifunctional
ecosystem services at the urban shoreline.

4. CONCLUSION

This study demonstrates that land-cover change in the
Penjaringan coastal fringe has materially reconfigured the
surface thermal regime and that these dynamics can be



translated into auditable, decision-scale planning metrics.
Built-up area nearly doubled between 2005 and 2024
(+113%), while water bodies (-25.7%) and ponds (—62.6%)
contracted; in contrast, mangroves expanded by ~77% (Table
2; Figure 5). Over the same period, LST means and extremes
rose (mean: 20.2°C — 27.7°C), with “very low” LST classes
collapsing from ~84.7% of the landscape to ~0.01% and
“high/very high” classes reaching ~49.3% by 2024 (Tables 5-
-6; Figure 6). Grid-level regression at 150 m (n = 242)
achieved strong fit (R=2= 0.951) and a stable hierarchy of
effects: built-up warms most (+1.619°C per unit fraction),
while mangroves cool most among natural classes (—0.960),
followed by water (-0.478), non-mangrove vegetation (—
0.469), with open land warming (+1.139) (Table 7). On a per-
fraction basis, mangrove cooling is ~59% of built-up warming,
providing clear arithmetic for offsetting scenarios at
block/neighbourhood scales (Table 7).

These results are policy-relevant in three ways. First, they
convert satellite diagnostics into targeting rules—restorative
greening for persistent hotspots with low green share, albedo—
permeability upgrades in compact impervious corridors, and
coastal buffers that secure/fexpand mangroves at built
margins—so cooling is concentrated where deficits are largest.
Second, they define four annually updatable indicators that
link zoning and permitting to measurable outcomes: minimum
green-space per block, canopy connectivity, per-parcel
pervious ratio, and a Cooling-Deficit Limit referenced to the
district’s seasonal LST baseline. Third, they provide
lightweight scenario arithmetic (ALST = X B;AX;) that keeps
computation off the policy critical path while retaining
traceability to locally estimated coefficients (Table 7).

Two limitations should guide interpretation. Effects are
estimated as averages at 150 m and may not capture micro-site
departures driven by 3D form, material albedo, or roughness;
and the indicators rely on thresholded LST classes, so multi-
epoch persistence (> 2 of the last 3 epochs) is preferred over
single-year status to minimise sensitivity to marginal class
shifts (Tables 5-6). The coefficients are most reliable within
the observed composition envelope of Penjaringan;
extrapolation to extreme, unobserved mixes warrants caution
(Table 7).

Future work that remains consistent with the evidence
presented here includes: seasonal stratification of the same
indicators to refine intervention timing; explicit incorporation
of 3D morphological and material variables alongside class
fractions; operational calibration of the Cooling-Deficit Limit
to local baselines; and continued annual EO audits using
harmonised time series to evaluate whether upgraded corridors
exit persistent high-LST classes and whether restorative
blocks recover low-temperature classes (Tables 5-6; Figures
5-6). Overall, the study offers a replicable, audit-ready
pathway for embedding LST-land-cover relationships into
statutory planning and routine monitoring to advance urban
cooling and climate resilience at decision scales.
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