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Defense needs of countries are increasing due to developing technologies. RADAR and 

SONAR systems used in military and civil applications are effective for detecting objects in 

specific areas. These systems broadcast radio or sound waves at various frequencies and 

wavelengths and determine object positions and sizes from reflected signals. However, such 

diffusion reveals the source’s location, especially in military use, making it a target for 

guided munitions with passive radar. In contrast, locating subsonic objects via Sound Source 

Localization (SSL) enables their detection without becoming the target, offering strategic 

defense value. This paper introduces a novel method based on geometric analysis for 

estimating the position of a stationary sound source. Artificial Neural Networks (ANNs) 

were employed to benchmark the performance of the proposed localization approach. Both 

the proposed method and the ANN model were evaluated using experimental data collected 

in an indoor environment. The experiments were conducted in a realistic domestic acoustic 

environment, where acoustic signals were recorded using three electret microphones and a 

National Instruments data acquisition system. The performance of both methods was 

assessed using multiple evaluation metrics. Experimental results demonstrate that the 

proposed approach outperforms the ANN model, offering a more accurate and reliable 

solution for SSL. 

Keywords: 

acoustic source localization, loop closure 

equation, microphone array, time delay 

estimation, vector loops 

1. INTRODUCTION

In modern societies, a wide range of devices, materials, and 

equipment constantly produce sounds that are perceived 

through pressure variations in the ear. The human brain has an 

extraordinary capacity to identify and locate these sound 

sources, a process referred to as sound localization in 

neuroscience. Inspired by this natural ability, researchers have 

long sought to replicate it in artificial systems. The task of 

determining the position of an acoustic source using 

microphones is widely known as Sound Source Localization 

(SSL). 

With the continuous advancement of technology, national 

defense requirements have grown increasingly complex. 

Traditional detection systems such as RADAR and SONAR 

have long been employed in both military and civilian 

applications to identify objects within a specific area. These 

systems operate by transmitting radio or sound waves at 

various frequencies and wavelengths, then estimating an 

object’s position and size from the reflected signals. While 

highly effective, this active emission approach has a critical 

drawback in military contexts: it exposes the emitter’s location, 

making it vulnerable to passive detection and precision-guided 

attacks. In contrast, SSL offers a passive alternative, capable 

of tracking objects moving at subsonic speeds without 

revealing the observer’s position. This makes SSL a promising 

technology for advancing defense systems and enhancing 

national security. Beyond defense, SSL has also attracted 

substantial attention due to its broad range of applications, 

including hearing aids, robotics, navigation, speaker tracking, 

remote sensing, and security-related systems such as 

surveillance, gunshot detection, and artillery localization. 

Most existing SSL studies have relied on professional grade 

large microphone arrays (e.g., 4–56 Brüel & Kjær or 

Eigenmike microphones). These studies were typically 

conducted in acoustically controlled environments such as 

anechoic or semi-anechoic chambers [1-5]. While these 

studies have advanced SSL, their reliance on expensive 

hardware and ideal conditions limits their applicability in 

everyday environments. Additionally, there is a lack of 

research on low-cost and simple setups with only a few 

nonlinearly placed microphones in real-world environments, 

characterized by naturally occurring noise and reverberation 

which cause performance degradation in most existing 

systems. Despite significant progress in SSL, recent surveys 

highlight, challenges persist, including artificial intelligence-

based models' heavy reliance on training data and the difficulty 

of achieving reliable and robust localization in realistic, 

dynamic acoustic environments [6, 7]. Therefore, there is a 

critical gap between the controlled, professional grade setups 
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dominating the literature and the need for cost-effective, 

robust SSL methods that function reliably in everyday 

environments. This study directly addresses this gap by 

introducing a low-cost, practical SSL approach and validating 

it in realistic domestic conditions. 

Our contribution is twofold: first, we propose a new SSL 

method that can be implemented with three low-cost 

MAX9814 microphones and a National Instruments (NI) 

USB-6216 interface; second, we provide a direct comparison 

of the proposed method and an Artificial Neural Network 

(ANN) model using our own data recorded in realistic 

domestic environments. The economic advantage of our 

approach is significant. At the component level, the cost of our 

three microphones is orders of magnitude lower than that of a 

single microphone module in professional arrays such as 

Eigenmike or Brüel & Kjær systems. While we used an NI 

USB-6216 interface in this study for its proven reliability and 

performance, our localization method is algorithmically 

independent of this specific hardware. This means that for 

applications where budget is the primary constraint, the 

method can work with lower-cost data acquisition solutions, 

potentially reducing the total system cost further compared to 

our current setup. Overall, the total cost of our reference setup 

remains more than an order of magnitude lower than that of 

professional systems. The use of inexpensive, widely available 

microphones highlights the feasibility of the method for 

practical, low-budget implementations. By combining 

methodological novelty with clear economic advantages, this 

study demonstrates a practical and cost-effective approach to 

SSL that can benefit real-world applications requiring both 

accuracy and affordability. 

The structure of this paper is as follows: Section 2 provides 

a brief literature review of similar studies on SSL. Section 3 is 

divided into subsections explaining the experimental setup and 

acoustic characterization, data preparation, the proposed 

method, and the ANN used for performance comparison. The 

obtained results are presented, thoroughly compared, and 

discussed in detail in Section 4. Section 5 addresses the study's 

limitations and suggests future work. Finally, Section 6 

concludes the paper by summarizing the key findings and 

outlining opportunities for future research. 

 

 

2. LITERATURE REVIEW 

 

Numerous theoretical and experimental studies have 

explored various microphone array geometries and 

configurations for SSL. Microphones are fundamental 

components of SSL systems, and both their arrangement and 

number critically affect localization accuracy. Since SSL 

relies on analyzing signal variations across sensors, at least 

two microphones are typically required, although single-

microphone approaches have also been reported [8-10]. Given 

this fundamental role of array design, many studies have 

investigated SSL performance under different recording 

conditions. 

Localization in reverberant or noisy environments is 

particularly challenging, so many studies have been conducted 

in anechoic or semi-anechoic conditions. These investigations 

typically have relied on complex setups involving more than 

three microphones and professional-grade recording 

equipment. For example, Poschadel et al. [1] used deep 

learning-based localization with a 32-channel Eigenmike array 

and motion capture system under ITU-R BS.1116-3 compliant 

conditions. Jung and Ih [2] designed compact tetrahedral, 

hexahedral, and octahedral arrays of Brüel & Kjær 

microphones and tested them in anechoic chambers. Similarly, 

Padois et al. [3] investigated SSL using a spherical array of 

Brüel & Kjær microphones in a semi-anechoic chamber, while 

Ma et al. [4] validated their indoor localization method in a 

controlled reverberation chamber with 15 Brüel & Kjær 

microphones. Chen et al. [5] evaluated their hybrid approach 

in a semi-anechoic chamber using a 56-channel spiral array 

with 40 actively used Brüel & Kjær microphones. 

Several studies have focused on traditional methods. For 

instance, Flood and Elvanter [11] used Time Difference of 

Arrival (TDOA) for multiple-source localization, while Xiong 

et al. [12] extended TDOA to non-line-of-sight scenarios using 

a neurodynamic solution. Zhang et al. [13] combined TDOA 

and Frequency Difference of Arrival (FDOA) for underwater 

applications. Padois et al. [14] and Lee et al. [15] applied 

generalized cross-correlation techniques, including GCC-

PHAT, with spherical and two-microphone arrays. 

Firoozabadi et al. [16] integrated generalized eigenvalue 

decomposition with adaptive GCC-PHAT/Maximum 

Likelihood (ML) in a T-shaped circular array, while 

Villadangos et al. [17] and Zou and Liu [18] enhanced Time 

of Arrival (TOA) measurements for ultrasonic and acoustic 

localization. Subspace-based approaches, such as MUSIC and 

ESPRIT [19-21], have also been widely used, including 

ESPRIT combined with Direct Augmentation and Spatial 

Smoothing for more sources than sensors [20]. Finally, Yang 

et al. [22] proposed a bat algorithm-based 3D-MUSIC 

algorithm for fast SSL and it outperformed conventional 3D-

MUSIC in semi-anechoic tests.  

Beyond these, alternative methods have been developed. 

Lai et al. [23] developed an advanced Steered Response Power 

(SRP) method using a 16-microphone planar array in a 

reverberant room. Feng et al. [24] proposed a framework to 

eliminate quantization errors in classification-based SSL with 

circular and linear 4-microphone arrays. Fischer et al. [25] 

evaluated sparse array geometries, showing open-box arrays 

perform best, while coprime arrays perform worst. Heydari 

and Mahabadi [26] demonstrated that multiple parallel 

distributed arrays improve localization accuracy. 

In recent years, artificial intelligence-based models have 

gained increasing attention. Toma et al. [27] proposed a three 

stage Convolutional Neural Network (CNN) with a fusion 

layer for speaker localization with a four-microphone linear 

array. Similarly, Zhu and Wan [28] developed a GCC-PHAT-

based CNN model and validated its performance with 

simulated data. Tan et al. [29] introduced a hybrid CNN-

Regression (CNN-R) model, while Hu et al. [30] presented a 

residual network with channel attention for localization tasks. 

Correia et al. [31] designed a deep feedforward neural network 

for energy-based SSL, evaluating it across scenarios with 3, 6, 

9, 12, and 15 microphones arranged in a circle under ideal, 

noise-free conditions. The network was trained on noise-free 

data and tested against varying noise levels. Yang et al. [32] 

proposed a Recurrent Neural Network (RNN) approach for 

Direction of Arrival (DOA) estimation, achieving lower errors 

than conventional methods like beamforming and MUSIC. 

These studies highlight the increasing role of AI in improving 

the accuracy and robustness of SSL. 

Despite these advancements, several limitations remain. 

Khan et al. [6] reviewed developments, challenges, and 

applications in SSL and emphasized that achieving accurate 

and precise localization in complex and dynamic acoustic 
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environments is still a major challenge. Xu et al. [7] 

highlighted that modern deep learning-based methods fail to 

demonstrate sufficiently robust performance under noise and 

reverberation, struggle with real-time requirements, and 

depend heavily on large training datasets. These findings 

confirm that while progress has been substantial, the 

robustness and reliability of SSL techniques in realistic 

conditions remain limited. 

In this study, a novel sound source localization method 

based on geometric analysis is proposed. The acoustic data 

were experimentally recorded using three microphones 

arranged at 120° intervals in a moderately noisy, reverberant 

indoor environment. The signals captured by the microphone 

array were saved for analysis, and the performance of the 

proposed method was evaluated using this dataset. The 

primary objective of this study is to estimate the position of a 

stationary sound source based on experimental data using the 

proposed geometric approach. Additionally, an ANN model 

was trained using the same dataset, and its performance was 

compared with that of the proposed method. 

 

 

3. MODEL DEVELOPMENT 

 

In this section, we present in subsections the experimental 

setup and environmental characterization, data preparation 

and filtering, proposed method for SSL along with the ANN 

architecture used to benchmark its performance. 

 

3.1 Experimental setup and acoustic characterization 

 

To ensure the validity of the proposed method, both the 

experimental setup and the acoustic environment were 

carefully characterized. The experiments were conducted in a 

real-world indoor environment with echoic and noise-prone 

conditions, and the acoustic data-hand claps were collected. 

The setup consisted of three electret microphones, each 

equipped with a MAX9814 microphone amplifier, positioned 

at an angle of 120 degrees to each other and placed at an arm 

length of 50 cm. MAX9814 is a microphone amplifier with 3 

adjustment options for gain and AR (attack/release) pins and 

is built on automatic gain control. The center of the gray 

platform, shown in Figure 1, was defined as the point (0, 0). 

The positions of the microphones were determined in meters 

as (-0.25√3, -0.25), (0, 0.50), (0.25√3, -0.25) respectively. A 

NI USB-6216 data acquisition card was used for recording. 

Additionally, a protractor created with MATLAB® and a tape 

measure were employed to accurately place the sound source 

at specific angles and distances. 

 

 
 

Figure 1. A schematic view of the experimental setup 

 

The experiments were performed in a residential room with 

dimensions of approximately 5 m × 4 m × 2.5 m. All 

recordings used for analysis were carried out under real-world 

conditions, where the acoustic environment included everyday 

household noise, outdoor traffic, or continuous fan noise from 

a computer and a ventilator. To better characterize the 

influence of these interferences, two reference cases were 

considered: one set of recordings conducted at night under 

nearly silent conditions, and another set conducted under 

typical everyday conditions. As shown in Figure 2, the 

nighttime recordings are almost free of external disturbances 

and primarily contain the microphones’ inherent 

thermal/electronic noise. This reference confirmed that the 

microphones themselves introduce negligible noise, and 

highlighted that the variations observed in daytime recordings 

mainly originate from realistic environmental interferences. 

These results demonstrate that the experimental data reflect 

practical everyday conditions, as intended for evaluating SSL 

performance in real-world scenarios. 

 

 
 

Figure 2. Comparison of recordings captured in a quiet 

nighttime environment and in a daytime environment 

 

To further analyze the recording environment, noise and 

signal properties of the microphones, harmonic noise 

components, and reverberation time were evaluated. The Root 

Mean Square (RMS) noise levels of the microphones were 

approximately 0.022 V, while the RMS signal amplitudes 

during hand-claps ranged between 0.065–0.089 V, yielding 

signal-to-noise ratios (SNR) between 8.9 dB and 12 dB. The 

noise floor was estimated at around −33 dB, and the gain 

mismatch between microphones was measured as 0.56 dB, 

which is acceptable for source localization tasks. DC offsets 

were negligible (≈ −0.018 V), and clipping was minimal (≤ 5 

counts), confirming reliable acquisition without significant 

distortion. Low-frequency interferences at 50, 100, and 150 Hz 

were well below the signal level (all < −60 dB), and the high-

frequency noise floor above 10 kHz was measured at about 

−92 dB. Reverberation time (RT60), estimated via the 

Schroeder method with T30 analysis, yielded values of 1.288 

s, 1.193 s, and 1.595 s across the three microphones, with an 

average of 1.36 s. These results demonstrate that the 

experiments were carried out in a moderately reverberant 

residential environment, representative of real-life acoustic 

conditions in which SSL systems are expected to operate. 

 

3.2 Data preparation 

 

In the experimental setup, acoustic signals were recorded at 

various source angles and distances using the NI USB-6216 

data acquisition card, which was connected to MATLAB® via 

the Data Acquisition Toolbox. The sampling rate was set to 48 

kHz. Experiments were conducted at room temperature (≈ 

20℃) and atmospheric pressure, with 343 m/s assumed as the 

reference speed of sound in air. 
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Hand clap sounds were employed as acoustic stimuli in a 

domestic environment. Using a protractor and a tape measure, 

the sound source (a human subject) was positioned at multiple 

angles and distances relative to the origin. At each position, 

the subject produced a hand clap, and the resulting acoustic 

data were recorded for further analysis. Data were recorded for 

scenarios where the sound source was positioned at different 

angles and distance values between 0 and 360 degrees relative 

to the origin. As shown in Figure 1, the coordinate system was 

defined such that Microphone 2 pointed in the +y direction, 

Microphone 1 in the –x and –y directions, and Microphone 3 

in the +x and –y directions. The center of the platform was 

aligned with the protractor’s origin, which served as the 

reference for all measurements. 

To minimize the effect of environmental noise and 

irrelevant frequency components, 5th-order band-pass 

Butterworth filter (100–8000 Hz) was applied to the raw 

recordings. Low-frequency components (e.g., room hum) and 

high-frequency components (e.g., electronic noise) were 

attenuated.  

Since the recordings were obtained in a home environment, 

potential factors such as background noise or slight 

inaccuracies in positioning could affect data quality. To 

mitigate this, ten recordings were taken for each source 

position, and the one with the clearest signal onset and highest 

signal-to-noise ratio was selected. In total, 1551 recordings 

were collected at various angles and distances for subsequent 

SSL analysis. 

 

3.3 Proposed model 

 

In this section, we present the proposed method for SSL. 

Accurate localization relies on the acoustic signals received by 

the microphones, and the method estimates the source position 

by exploiting the time delays between these signals. The 

following subsections provide details on the time delay 

estimation and the geometric analysis underlying the approach. 

 

3.3.1 Time delay estimation 

SSL commonly relies on Time Delay Estimation (TDE) due 

to its proven effectiveness in determining the direction of 

acoustic sources. When a sound is emitted, it arrives at each 

microphone in an array at slightly different times and with 

varying waveform characteristics, depending on their spatial 

positions. These time differences provide crucial information 

for estimating the source location. 

In this study, time delays between microphone signals were 

computed using the finddelay() function in MATLAB®. This 

function employs a cross-correlation-based algorithm to 

determine the delay between two signals. Cross-correlation 

measures the similarity between two signals by assessing how 

well they match when one is shifted in time relative to the other. 

The algorithm computes this similarity by summing the 

products of the two signals at various time shifts. The cross-

correlation function 𝑅𝑥𝑦 for two discrete time signals x[n] and 

y[n] is defined by Eq. (1) as [33]: 

 

𝑅𝑥𝑦[𝑘] = ∑ 𝑥[𝑛] ∗ 𝑦[𝑛 + 𝑘]

∞

𝑛=−∞

 (1) 

 

where, 𝑘 is the lag index and the sum is taken over all time 

indices 𝑛. The 𝑘 value, where 𝑅𝑥𝑦[𝑘] is the highest, gives the 

delay between two signals in terms of the number of samples. 

Time delay estimated in samples was converted into seconds 

using the sampling period. The conversion of the delay in 

samples to the delay in seconds is defined as follows with Eq. 

(2) as: 

 

𝐷𝑒𝑙𝑎𝑦 𝑖𝑛 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 = 𝑚 ∗ 𝑇𝑠 (2) 

 

where, 𝑇𝑠 denotes sampling period.  

 

3.3.2 Geometric analysis 

In this section, a novel method based on geometric analysis 

is proposed for two-dimensional sound source localization. 

The proposed method utilizes distance measurements in 

meters instead of time-delay estimates in seconds. The time 

delays calculated in seconds in the previous section were 

converted into distance values using the assumed speed of 

sound. This conversion was defined in Eq. (3) as follows 

 

𝑑_𝑐 = 𝐷𝑒𝑙𝑎𝑦 𝑖𝑛 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 ∗ 𝑐 (3) 

 

where, 𝑐 is the speed of sound in air and 𝑑_𝑐 is distance in 

meter calculated by using 𝑐 . These distance differences for 

microphone pairs are referred to as 𝑑12, 𝑑13, 𝑑32  in the 

following sections.  

The position of any point can be defined with respect to a 

given reference. Based on this principle, the proposed method 

assumes that the location of a stationary sound source can be 

estimated with geometric techniques using two dimensional 

vectors. As illustrated in Figure 3, the position of point S 

relative to the origin O is represented by the position vector 𝑅⃗ .  

 
Figure 3. A position of a point 

 

In polar form, this vector can be expressed as given by Eq. 

(4). 

 

𝑅⃗ = |𝑂𝑆|(𝑐𝑜𝑠𝜃𝑖̂ + 𝑠𝑖𝑛𝜃𝑗̂) (4) 

 

where, 𝑖̂  and 𝑗̂  are unit vectors. Alternatively, in Cartesian 

coordinates, the position vector is given by Eq. (5) as: 

 

𝑅⃗ = 𝑥𝑖̂ + 𝑦𝑗̂ (5) 

 

where, 𝑥  and 𝑦  are the distances. Equivalently, the position 

can be represented in the complex plane as given by Eq. (6). 

 

𝑅 = 𝑥 + 𝑖𝑦 (6) 
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where, 𝑖 denotes the unit imaginary number. 

The proposed method models the position vectors of the 

sound source as forming closed-loop polynomials, analogous 

to loop closure equations. This formulation enables a novel 

geometric framework for SSL. As illustrated in Figure 4, the 

static vectors representing the position of the sound source 

form vector loops, and the equations that describe the closure 

of these loops are referred to as loop closure equations. The 

proposed method for SSL was performed by setting up 

equations similar to loop closure equations. 

 

 
Figure 4. Vector loops of the experimental environment 

 

In Figure 4, the point marked with the purple x represents 

the origin. Microphone1, Microphone2, Microphone3 and 

Sound Source was denoted as Mic1, Mic2, Mic3, Source 

respectively. The microphones positions were given in 

(𝑥𝑚, 𝑦𝑛) coordinates, and their distances from the origin are 

equal, shown as 𝑟 . The distances from the origin and 

microphones to the sound source were represented as 𝑅, 𝑙1, 𝑙2 

and 𝑙3 . The angles of the distances from the origin and 

microphones to the source with respect to the horizontal is 

defined as θ, α, β, γ, respectively. These angle values were 

measured counterclockwise to be positive. 

The coordinate system was defined with the x- and y-axes 

shown in Figure 1, with point O was selected as the origin. The 

vector from point O to Mic1 was denoted as 𝑂𝑀𝑖𝑐1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  and 

similarly, the other vectors were defined in the same manner. 

According to these assumptions, the vector loops were 

specified as given by Eqs. (7)-(9) as: 

 

𝑂𝑀𝑖𝑐1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑀𝑖𝑐1𝑆𝑜𝑢𝑟𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑂𝑆𝑜𝑢𝑟𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (7) 

 

𝑂𝑀𝑖𝑐2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑀𝑖𝑐2𝑆𝑜𝑢𝑟𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑂𝑆𝑜𝑢𝑟𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (8) 

 

𝑂𝑀𝑖𝑐3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑀𝑖𝑐3𝑆𝑜𝑢𝑟𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑂𝑆𝑜𝑢𝑟𝑐𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (9) 

 

Using the parameters illustrated in Figure 4 and applying 

Euler’s formula, these vector loops were expressed in 

parametric form as presented in Eqs. (10)-(12). 

 

𝑟𝑒𝑖(
7𝜋
6

) + 𝑙1𝑒
𝑖𝛼 = 𝑅𝑒𝑖𝜃 (10) 

𝑟𝑒𝑖(
𝜋
2
) + 𝑙2𝑒

𝑖𝛽 = 𝑅𝑒𝑖𝜃 (11) 

 

𝑟𝑒𝑖(
11𝜋
6

) + 𝑙3𝑒
𝑖𝛾 = 𝑅𝑒𝑖𝜃  (12) 

 

where, 𝑟 is the length of the microphone arms, 𝑙𝑖 is defined as 

the distance of the sound source to the 𝑖𝑡ℎ microphone and 𝑅 

is the distance of sound source to the origin point.  

To extend this framework, a virtual mirror was assumed 

along the x-axis. As shown in Figure 5, the black vectors 

represent the real vector loops from Figure 4, whereas the red 

vectors illustrate their mirrored counterparts. Each real vector 

loop in Figure 4 has a corresponding mirrored loop in Figure 

5, forming a symmetric representation of the system. The 

original vector loops and their mirror images have identical 

magnitudes; however, in the mirror image representation, 

angles with respect to the horizontal axis are measured 

clockwise and considered negative. 

 

 
 

Figure 5. Mirror image of vector loops of the experimental 

environment 

 

Similar to those previously derived from the real vectors, 

the complex conjugates of the loop closure equations given in 

Eqs. (10)-(12) were obtained from the mirror image and 

defined by Eqs. (13)-(15). 

 

𝑟𝑒−𝑖(
7𝜋
6

) + 𝑙1𝑒
−𝑖𝛼 = 𝑅𝑒−𝑖𝜃  (13) 

 

𝑟𝑒−𝑖(
𝜋
2
) + 𝑙2𝑒

−𝑖𝛽 = 𝑅𝑒−𝑖𝜃  (14) 

 

𝑟𝑒−𝑖(
11𝜋
6

) + 𝑙3𝑒
−𝑖𝛾 = 𝑅𝑒−𝑖𝜃 (15) 

 

By analytically solving the loop closure equations and their 

conjugates, the distance 𝑅 from the origin to the source was 

expressed in terms of different microphone parameters, as 

shown in Eqs. (16)-(18). 

 

𝑅 = √𝑟2 + 2𝑟𝑙1 𝑐𝑜𝑠 (
7𝜋

6
− 𝛼) + 𝑙1

2
 (16) 
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𝑅 = √𝑟2 + 2𝑟𝑙2𝑠𝑖𝑛 (𝛽) + 𝑙2
2
 (17) 

 

𝑅 = √𝑟2 + 2𝑟𝑙3𝑐𝑜𝑠 (
11𝜋

6
− 𝛾) + 𝑙3

2
 (18) 

 

In addition to the loop closure equations, the Cosine 

Theorem was applied in Figure 4 and according to the Cosine 

Theorem, the distances 𝑙1, 𝑙2, 𝑙3  and 𝑅  were obtained. The 

inter microphone distance differences were then written in 

terms of 𝑙1, 𝑙2, 𝑙3 as in Eqs. (19)-(21). 

 

𝑑12 = 𝑙1 − 𝑙2 (19) 

 

𝑑13 = 𝑙3 − 𝑙1 (20) 

 

𝑑32 = 𝑙3 − 𝑙2 (21) 

 

The distances 𝑙1, 𝑙2, 𝑙3 were also calculated with Euclidean 

distance, as given in Eqs. (22)-(24), where the sound source 

position is determined as (𝑅 ∗ cos(𝜃) , 𝑅 ∗ sin(𝜃)). 
 

𝑙1 = √(𝑅 𝑐𝑜𝑠(𝜃) − 𝑥1)
2 + (𝑅 𝑠𝑖𝑛(𝜃) − 𝑦1)

2 (22) 

 

𝑙2 = √(𝑅 𝑐𝑜𝑠(𝜃) − 𝑥2)
2 + (𝑅 𝑠𝑖𝑛(𝜃) − 𝑦2)

2 (23) 

 

𝑙3 = √(𝑅 𝑐𝑜𝑠(𝜃) − 𝑥3)
2 + (𝑅 𝑠𝑖𝑛(𝜃) − 𝑦3)

2 (24) 

 

where, 𝑅 is the distance from the origin to the source, 𝜃 is the 

positive angle between 𝑅 and the horizontal axis and 𝑥𝑖, 𝑦𝑖  are 

the cartesian coordinates of the 𝑖𝑡ℎ microphone.  

The time delays were also expressed in terms of the newly 

calculated 𝑙1, 𝑙2, 𝑙3 values as shown in Eqs (25)-(27). 

 

𝑑12 = √(𝑅 𝑐𝑜𝑠(𝜃) − 𝑥1)
2 + (𝑅 𝑠𝑖𝑛(𝜃) − 𝑦1)

2 

−√(𝑅 𝑐𝑜𝑠(𝜃) − 𝑥2)
2 + (𝑅 𝑠𝑖𝑛(𝜃) − 𝑦2)

2 
(25) 

 

𝑑13 = √(𝑅 𝑐𝑜𝑠(𝜃) − 𝑥3)
2 + (𝑅 𝑠𝑖𝑛(𝜃) − 𝑦3)

2 

−√(𝑅 𝑐𝑜𝑠(𝜃) − 𝑥1)
2 + (𝑅 𝑠𝑖𝑛(𝜃) − 𝑦1)

2 
(26) 

 

𝑑32 = √(𝑅 𝑐𝑜𝑠(𝜃) − 𝑥3)
2 + (𝑅 𝑠𝑖𝑛(𝜃) − 𝑦3)

2 

−√(𝑅 𝑐𝑜𝑠(𝜃) − 𝑥2)
2 + (𝑅 𝑠𝑖𝑛(𝜃) − 𝑦2)

2 
(27) 

 

To solve these nonlinear equations, the fsolve() function in 

MATLAB® was employed. The solution process was 

performed in multiple stages: subsets of the equations were 

first solved to obtain preliminary estimates, which were 

subsequently refined by solving the complete system. 

The Levenberg–Marquardt algorithm was selected as the 

numerical solver within fsolve(). This hybrid optimization 

technique combines the advantages of gradient descent and 

Gauss–Newton methods, enabling stable convergence when 

far from the initial estimate and faster convergence near the 

solution. The algorithm’s damping parameter ensures 

robustness by dynamically adjusting the step size. In this study, 

the maximum number of iterations was limited to 1000, and 

both function and step tolerances were set to 10-12. With these 

settings, the nonlinear systems were solved successfully, 

yielding the source position estimates. 

To validate the proposed method, an ANN was trained using 

the same dataset, providing a comparative benchmark against 

the analytical results. 

 

3.4 Artificial Neural Network (ANN) model 

 

In this section, ANN model used for performance 

comparison was explained. In this study, a feedforward 

artificial neural network architecture was employed to 

estimate the direction and distance of a sound source based on 

time delay measurements between microphones. The dataset 

comprised a total of 1551 recordings. These samples were 

grouped in sets of three, from which one instance was 

randomly selected as the test data, while the remaining two 

were used for training. This sampling strategy resulted in 1034 

training samples and 517 test samples. The ANN was trained 

exclusively using the training dataset, and its performance was 

evaluated on the separate test dataset to ensure unbiased 

assessment. In the neural network model developed for this 

study, the inputs consist of the true time delays between 

microphone pairs, expressed in meters, and the Cartesian 

coordinates of the microphones. As outputs, the network was 

trained to estimate the radial distance from the origin to the 

sound source and the positive horizontal angle relative to the 

x-axis. Based on these predicted values, the two-dimensional 

Cartesian coordinates (x,y) of the sound source were 

subsequently computed. 

The implemented ANN featured a feedforward structure 

with three hidden layers. These hidden layers comprised 18, 

27, and 10 neurons respectively. The activation functions 

selected for the hidden layers were the logarithmic sigmoid 

function for the first layer, the radial basis function for the 

second layer, and the linear function for the third layer. Several 

alternative architectures and hyperparameter settings were 

explored during preliminary tests, and the selected network 

(with three hidden layers of 18, 27, and 10 neurons) 

consistently yielded the best performance among the tested 

options. However, given the virtually infinite range of possible 

configurations, it cannot be claimed with certainty that this 

architecture represents the global optimum. Rather, it reflects 

the most effective structure identified within the practical 

constraints of this study. 

The Levenberg–Marquardt backpropagation algorithm was 

utilized as the training algorithm due to its proven efficiency 

in nonlinear regression problems. Prior to training, all input 

and output features were normalized to enhance training 

convergence and ensure consistent network behavior. The 

normalization process was applied uniformly across both 

training and testing datasets. The ANN was then trained and 

evaluated exclusively using these normalized data values to 

ensure compatibility and generalization. 

The obtained results using proposed method and ANN are 

given in the next section. 

 

 

4. RESULTS AND DISCUSSIONS 
 

In this study, the performance of the developed model in 

predicting angle, distance, and position was evaluated using 

multiple error metrics. A total of 1551 data samples were 

utilized, with 1034 allocated for training and 517 reserved for 

testing. The obtained results compare the prediction 

performance of the proposed method with an ANN-based 

model on the test dataset, as presented in the following 

subsections. To assess the methods' performance, the 
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following metrics were employed: Euclidean Distance Error, 

Root Mean Square Error (RMSE), Mean Percentage Error 

(MPE), Mean Absolute Percentage Error (MAPE), Mean 

Absolute Error (MAE), and Variance Accounted For (VAF). 

Among the evaluation metrics used in this study, only the 

formulation of VAF is presented below, as the others are 

widely used and well known in the literature. VAF is used to 

evaluate the proportion of variance in the actual data explained 

by the predicted data. When the predicted and actual values 

are identical, the VAF yields 100%; as the differences between 

them increase, the VAF value decreases. It is computed as 

follows [34] with Eq. (28).  

 

𝑉𝐴𝐹𝑖 = (1 −
𝑣𝑎𝑟(𝑦𝑖 − 𝑦̂𝑖)

𝑣𝑎𝑟(𝑦𝑖)
) ∗ 100 (28) 

 

where, 𝑦𝑖  and 𝑦̂𝑖  are actual and predicted values for the 𝑖𝑡ℎ 

component. 

Figure 6 demonstrates the SSL capability of the proposed 

method. Figure 6(a) displays the signals received by the 

microphones when the sound source is positioned at 284° and 

0.72 meters from the origin. The corresponding localization 

result, presented in Figure 6(b), shows the estimated position 

at -76.0771° (equivalent to 283.9229° when converted to a 0-

360° scale) and 0.7187 meters, with a Euclidean positioning 

error of merely 0.0016 meters. 

 

 
(a) Signals reaching the microphones 

 

 
(b) Result obtained using these signals 

 

Figure 6. Microphone signals and result 

 

In Figure 6(b), the truth and estimated positions are marked 

by a red circle and blue square, respectively, visually 

confirming the method's precision. 

For a systematic performance comparison, both the 

proposed method and ANNs were employed to estimate the 

following parameters of the sound source relative to the 

microphone array origin: 

• Angular position (θ): The angle between the sound source 

and the reference axis (i.e., the positive x-axis) of the 

microphone array, measured in the horizontal plane. 

• Radial distance (R): The Euclidean distance between the 

sound source and the origin of the microphone array. 

• Cartesian coordinates (x, y): The 2D position of the sound 

source, calculated from the estimated angular position and 

radial distance. 

While performance metrics (Euclidean Distance Error, 

RMSE, MAE, MPE, MAPE, and VAF) were computed for 

both training and test datasets, only the test results are 

presented here to ensure unbiased evaluation. The comparative 

analysis of these metrics, detailed in Tables 1-5, reveals 

critical insights into each method's localization accuracy and 

robustness. 

 

4.1 Angular estimation performance 

 

Table 1 summarizes the angular estimation errors, in 

degrees, based on the test dataset. The proposed method 

achieved RMSE of 1.0365°, which is considerably lower than 

the RMSE of 4.5898° obtained by the ANN model. This 

remarkable difference indicates the high accuracy of the 

proposed method in estimating angular direction. Furthermore, 

the proposed method achieved a lower MAE of 0.6004° which 

indicates that its predictions are significantly more stable and 

closer to the actual values.  

In terms of relative error metrics, the proposed method once 

again outperformed the ANN model. The MAPE was limited 

to 0.7659%, which was significantly lower than the 6.6176% 

observed in the ANN model. Similarly, the MPE was found to 

be 0.0914%, indicating that systematic bias in the predictions 

of the proposed method is nearly negligible. 

Lastly, the VAF value reached 99.99%, demonstrating that 

the model has strong alignment with the ground truth in angle 

estimation tasks. 

 

Table 1. Angular estimation error metrics on test data 

 
Models RMSE MPE MAPE MAE VAF 

Proposed 

Method 
1.0365 0.0914 0.7659 0.6004 99.9927 

ANN 4.5898 5.6705 6.6176 0.7935 99.8553 

 

4.2 Distance estimation performance 

 

Table 2 presents the error metrics related to the predicted 

distance values on the test dataset. The proposed method 

yielded a RMSE of 0.0080 meters, indicating a lower level of 

error compared to the ANN model, which reported 0.0122 

meters. Although the ANN slightly outperforms the proposed 

method in terms of MAE in angle estimation (0.0058° vs. 

0.0063°), this difference is minimal. Regarding percentage-

based error metrics, the ANN achieves a lower MAPE 

(1.2099%) than the proposed method (1.4971%), but exhibits 

a higher MPE (0.2287%) compared to the proposed method’s 

more balanced and nearly unbiased result (-0.3064%). This 

suggests that, on average, the ANN tends to slightly 

overestimate, whereas the proposed method provides a more 

centered estimation around the ground truth. 

VAF reached 99.9586%, demonstrating a high level of 

consistency and reliability in the model’s distance prediction 

capability. 

In summary, while the ANN provides marginal 

improvements in average angular and percentage-based errors, 
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the proposed method offers more robust and reliable 

performance in terms of absolute spatial accuracy and model 

generalization. 

 

Table 2. Distance estimation error metrics on test data 

 
Models RMSE MPE MAPE MAE VAF 

Proposed 

Method 
0.0080 -0.3064 1.4971 0.0063 99.9586 

ANN 0.0122 0.2287 1.2099 0.0058 99.9019 

 

4.3 Estimation performance of the x coordinate 

 

Table 3 presents the error metrics related to the estimation 

of the x coordinate of the source position. The proposed 

method achieves the lowest RMSE of 0.0073 meters and the 

highest VAF value of 99.9821%, indicating superior overall 

accuracy and model fit. Although the ANN demonstrates a 

slightly better MAE of 0.0051 degrees compared to 0.0056 

degrees for the proposed method, this marginal difference in 

MAE is outweighed by the proposed method’s significantly 

lower RMSE and higher VAF.  

These results suggest that the proposed method provides 

more reliable and consistent predictions, particularly in 

capturing the overall distribution and minimizing larger errors, 

whereas the ANN may offer slightly better average-case 

performance. Therefore, in terms of robust and precise 

estimation of the x-coordinate, the proposed approach 

demonstrates a clear advantage over the ANN model. 

 

Table 3. Estimation performance of x coordinate on test data 

 
Models RMSE MAE VAF 

Proposed Method 0.0073 0.0056 99.9821 

ANN 0.0112 0.0051 99.9573 

 

4.4 Estimation performance of the y coordinate 

 

Table 4 summarizes the estimation errors for the y-axis 

coordinate of the source location. The proposed method 

consistently outperformed the ANN model in all evaluation 

metrics. Notably, the RMSE was measured as 0.0070 meters, 

which is nearly half the corresponding error observed in the 

ANN model. This result highlights the superior reliability of 

the proposed method in two-dimensional position estimation 

tasks. 

 

Table 4. Estimation performance of y coordinate on test data 

 
Models RMSE MAE VAF 

Proposed Method 0.0070 0.0052 99.9678 

ANN 0.0139 0.0070 99.8742 

 

4.5 Euclidean distance error 

 

Finally, the overall positional accuracy of both models was 

evaluated using the Euclidean Distance Error. As presented in 

Table 5, the proposed method produced lower average errors 

for both the training and test datasets compared to the ANN 

model. These results indicate that the proposed method has a 

strong generalization ability and maintains consistent 

performance across different data subsets. 

All these findings, when evaluated together, demonstrate 

that the proposed method achieves lower error rates and higher 

data compatibility compared to the ANN model in both angle 

and location estimations. Among the evaluated error metrics, 

the Euclidean distance error stands out as the most critical 

indicator to evaluate the overall localization performance. 

Unlike component based metrics such as angular or percentage 

errors, the Euclidean distance directly quantifies the spatial 

deviation between the estimated and true positions. Therefore, 

it provides a comprehensive measure of localization accuracy. 

In this context, the proposed method outperforms the ANN, 

producing significantly lower Euclidean error, which 

highlights its superior ability in precise position estimation. 

This result is particularly important for real-world applications 

where minimizing absolute spatial error is essential. 

 

Table 5. Euclidean distance errors for training and test 

datasets 

 

Models 

Euclidean Distance 

Error (m) 

Train Data 

Euclidean Distance 

Error (m) 

Test Data 

Proposed 

Method 
0.0088 0.0085 

ANN 0.0093 0.0096 

 
 

5. LIMITATIONS AND FUTURE WORK 

 

The present study has several limitations that should be 

acknowledged. First, the experimental data were collected 

exclusively in domestic indoor environment with naturally 

occurring noise and reverberation. While these conditions 

provide a realistic representation of everyday scenarios, the 

dataset does not include outdoor environments, industrial 

spaces, or other complex acoustic contexts. As a result, the 

generalizability of the findings to broader conditions cannot be 

fully ensured. 

Second, the proposed geometric analysis method has certain 

constraints. It relies on three microphones arranged in a 

triangular configuration, which provides the minimum spatial 

diversity necessary for unique 2D localization. Moreover, in 

environments with strong reverberation, overlapping sound 

sources, or rapidly changing acoustic conditions, the 

robustness of the proposed method may degrade compared to 

controlled scenarios. 

Furthermore, although the proposed method demonstrated 

real-time feasibility in MATLAB®, with an average 

processing time of approximately 98 ms for a 3-second input 

signal (3.3% of the recording duration) on an Intel i7-6700HQ 

CPU with 16 GB RAM, several practical limitations should be 

acknowledged. First, the current implementation was tested 

only on a general-purpose laptop processor, and performance 

may vary when deployed on resource-constrained embedded 

platforms such as ARM processors or FPGAs. Second, 

hardware compatibility and optimization for low-power 

devices were not investigated in this study. Third, the proposed 

geometric method was specifically designed for a triangular 

configuration of three microphones, which ensures the 

minimum spatial diversity for 2D localization. Extending the 

method to larger or irregular microphone arrays would require 

additional adaptations in the algorithm and may increase 

computational complexity. These considerations highlight the 

need for further validation and optimization to ensure robust 

applicability in real-world embedded systems. 

Third, the ANN baseline used for comparison also has 

limitations that influenced its performance. The 

underperformance of the ANN model in this specific study can 
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be primarily attributed to two factors. First, the scale of the 

dataset: while the available 1,034 training and 517 test samples 

were sufficient to validate the proposed geometric method, 

they are relatively limited for data-driven models like ANNs, 

which typically require much larger and more diverse datasets 

to achieve robust generalization. This likely contributed to 

overfitting on the training set and reduced accuracy on unseen 

data. Second, although several ANN architectures were 

explored and the best-performing configuration was selected, 

the nearly infinite hyperparameter search space (e.g., neuron 

counts, activation functions, learning rates) makes it infeasible 

to guarantee a globally optimal solution within the scope of 

this study. Consequently, the observed performance gap does 

not necessarily indicate a fundamental weakness of neural 

networks for SSL, but rather reflects the practical challenges 

of applying them effectively with limited data and 

computational resources. Future work will therefore focus on 

expanding the dataset and conducting a more comprehensive 

architecture and hyperparameter search to enable a fairer and 

more definitive comparison. 

Future work will focus on addressing these limitations, 

including optimizing the algorithm for embedded real-time 

platforms and ensuring scalability for larger microphone 

arrays. Expanding the dataset to include outdoor and industrial 

scenarios, as well as more complex noise conditions, will 

provide further insights into the method’s generalizability. 

Additionally, extending the evaluation to alternative 

microphone configurations, including irregular or larger 

arrays, will help to better assess scalability. Finally, combining 

the proposed geometric approach with machine learning or 

adaptive signal processing techniques may improve robustness 

and accuracy in challenging acoustic environments. 
 

 

6. CONCLUSIONS 

 

In this study, a new geometric method was proposed to 

estimate the angular direction, radial distance, and two-

dimensional position of an acoustic source using a limited 

number of input features. The performance of the proposed 

method was thoroughly evaluated and compared against a 

traditional ANN model using a dataset of 1551 samples. 

The experimental results consistently demonstrated the 

superior performance of the proposed method over the ANN 

baseline. Specifically, our approach achieved a significantly 

lower angular RMSE of 1.0365° compared to the ANN's 

4.5898°, while also proving more accurate in distance 

estimation and coordinate prediction. The observed 

performance gap can be primarily attributed to the ANN's 

reliance on large datasets and its sensitivity to hyperparameter 

tuning, which hinder its generalization capabilities under the 

limited-data conditions of this study. In contrast, our proposed 

geometric method showed greater robustness and 

interpretability, achieving consistent and accurate results with 

a small dataset and an affordable hardware setup. The 

successful implementation of the entire system using 

consumer-grade hardware in a domestic setting further 

highlights the practicality and feasibility of our approach for 

real-world sound localization applications without the need for 

expensive equipment or controlled laboratory conditions. 

Overall, the findings suggest that the proposed method 

provides a reliable and practical solution for SSL. 

Future studies will aim to extend the approach to three-

dimensional localization and real-time operation. To achieve 

3D localization, additional recordings that cover different 

elevation angles will be collected. For real-time use, the 

algorithm will need to be optimized and tested on embedded 

platforms such as ARM-based processors or FPGAs, with 

particular attention to computational efficiency. Moreover, the 

robustness of the method will be examined in more complex 

acoustic environments, including reverberant rooms and 

scenarios with multiple sources, through the use of larger and 

more diverse datasets. These efforts are expected to support 

the broader applicability and scalability of the method in real-

world conditions. 
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NOMENCLATURE 

 

c speed of sound 

dab distance difference between Microphone a and 

Microphone b 

la distance from the Microphone a to the sound source 

r distance from the origin to the microphones 

R distances from the origin to the sound source 

Ts sampling period 

 

Greek symbols 

 

 angle between the distance from Microphone 1 to the 

source and the horizontal axis 

 angle between the distance from Microphone 2 to the 

source and the horizontal axis 

γ angle between the distance from Microphone 3 to the 

source and the horizontal axis 

θ angle between the distance from the origin to the 

source and the horizontal axis 

 

Subscripts 

 

a, b indices representing microphone numbers (1, 2 or 3) 

s second (time unit) 
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