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This paper presents an automated system named GWOESCA-SVM, which integrates the
hybrid Grey Wolf Optimizer-Enhanced Sine Cosine Algorithm (GWOESCA) with Support
Vector Machine (SVM) to differentiate between abnormal and healthy speech samples.
First, the extracted features from speech and Electroglottography (EGG) signals are
integrated. Second, GWOESCA was employed to choose relevant features, reducing
dimensionality and boosting system performance. Third, the selected features were inputted
into the GWOESCA-SVM framework to discern between healthy and pathological voice
samples. The effectiveness of speech and EGG signals in classifying voice pathology,
specifically using voice samples of /a/ for both men and women, was investigated. The
GWOESCA-SVM obtains a maximum classification accuracy of 92.75% for male data,
89.80% for female data and 96.08% for merged data, enhancing robustness in detecting
voice pathologies. A comparative analysis was conducted to validate the effectiveness of

GWOESCA-SVM compared with previous approaches.

1. INTRODUCTION

Speech signals play a pivotal role in human communication,
serving as the primary means of conveying information.
Nevertheless, voice disorders present a barrier to effective
social interaction among individuals. Voice issues are
becoming more common everywhere in the world, with
approximately 18 million people in India reporting voice
problems each year [1]. One in every 12 children has speech,
voice, and language issues, according to the NIDCD [2].
While the precise causes of voice problems remain elusive,
factors such as vocal cord shutting, vocal cord paralysis,
swelling on the vocal cords, brain injury, drug abuse, and
neurological issues are recognized as significant contributors.
[3, 4]. Further to this, some individual may encounter
temporary voice problems due to factors such as tonsils,
respiratory infections, allergies, and adenoids.

Professionals in teaching, singing, acting and law,
extensively use their voices and they have a higher chance of
experiencing voice issues. Around 25% of workers worldwide
are impacted by voice issues [5]. People with voice pathology
may encounter feelings of depression, anxiety and lonely,
leading to various social and personal complications. There are
invasive and non-invasive methods of detecting voice
pathology. Laryngoscopy, stroboscope and laryngeal
electromyography are a few invasive techniques that need
skilled personnel and specific tools to provide an accurate
diagnosis [6, 7]. These surgical procedures can be traumatic
and painful for patients. Therefore, the challenges are
addressed using voice signal processing techniques.

Recently, strategies for addressing vocal pathology
identification challenges have incorporated Machine Learning
(ML), Deep Learning (DL), and their amalgamations [8-12].
In ML techniques, patient speech samples are obtained,
analyzed and characteristics are retrieved. Based on the
features, voice signals are categorized into healthy and
pathological voices. There are problems in ML methods such
as selecting a suitable feature selection algorithm, classifier
and parameter optimization. DL methods automatically
extract features for a better classification rate. However, DL
methods must be trained by large number of samples to
achieve better result. To overcome these drawbacks networks
use metaheuristic algorithms for parameter optimization and
improved performance.

This focuses on developing an automated voice pathology
technique by integrating HNIA and SVM. In the proposed
framework, features extracted from speech and
Electroglottography (EGG) signals are utilized to distinguish
between healthy and pathological wvoice samples, the
contributions are as follows:

(1) A HNIA is proposed by combining GWO and
GWOESCA for feature selection and SVM parameter
optimization.

(2) An automated voice pathology detection system, named
GWOESCA-SVM, by integrating HNIA and ML is introduced.

(3) The introduced framework can compute the salient
features from speech and EGG signals, thus preserving
pathological data within the datasets. SVD is used in several
experiments to verify the developed system's efficacy.

(4) To evaluate and correlate each signal's contribution the
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new developed method uses speech and EGG signals
individually.

2. REVIEW OF PAST APPROACHES

This section presents the methodologies used in the
identification of speech pathology focusing on ML and DL
techniques. The common voice sample features utilized for
voice pathology detection are MFCC [5], lJitter, LPCC [7],
glottal signal features [8], shimmer, Wavelet entropy [9] and
HNR. For categorization, KNN [6], RF [9], SVM [10], DL
[11] and MLP [13] models are preferred.

Mart miez et al. [14] built a voice pathology detection system
using GMM. Four voice attributes such as MFCC, HNR, NNE
and GNER were used as features. This system yielded an
accuracy of 67%. El Emary et al. [15] focused on the
categorization of voice samples into healthy and pathological
samples based on MFCC, jitter, and shimmer. The GMM was
employed to identify affected voices in a small subset of the
SVD database. This subset consisted of 38 healthy and 63
pathological voice samples. This approach reported an
accuracy of 82.37%.

In the study conducted by Souissi and Cherif [16], to

categorize speech samples into healthy and pathology, the
SVM classifier was used and MFCC was used as a feature,
while LDA served as the dimension reduction tool. A total of
40 samples of healthy voices and 70 pathological sounds were
obtained from the SVD database to evaluate the model. This
approach achieved an accuracy of 86%. Amara et al. [17]
reported a high accuracy of 95.5% by applying ML classifier
to analyse specific /a/ vowel sound. The dataset used for
analysis comprised of 45 pathological and 55 healthy voice
samples. The above methods used only a small number of
speech samples for evaluation. NBN was employed to identify
pathological voice samples using MFCC, jitter, shimmer and
F [18]. The results showed a highest classification rate of 90%.

Verde et al. [19] selected four features namely MFCC,
HNR, jitter and shimmer for voice pathology detection. These
features were calculated for each sample, consisting of 685
healthy and 685 pathological voice samples and subsequently
used in four different classifiers to assess their classification
rate. With a classification accuracy of 85.77%, the SVM
classifier had the greatest performance. Lee [13] presented ML
models, MFCC, LPCC, NS, and NK for identification of
abnormal voices using MLP and CNN. A total of 518 samples
consisted of 259 healthy and 259 pathological were obtained,
from the SVD database for experimentation.

Table 1. (a) Overview of recent studies on SVD database (b) Strengths and limitations of existing approaches pertaining to voice

pathology detection
Authors Year Features Classifier Accuracy (%) S\?:,?:,SS Limitations
Mart mez et al 2012 HNR, MFCC, GMM 67 /a/ at normal Lower classification
[14] NNR, GNER pitch rate
El Emary et al. 2014 MFCC, jitter, GMM 82.37 /a/ at normal Small data set was
[15] shimmer pitch used
Souissi and 2015 Temporal SVM 86 /al at normal Needs parameter
Cherif [16] derivatives pitch optimization
Amaraetal. [17] 2016 MFCC GMM 95.5 /al atnormal  Tested on small data
pitch
Dahmani and 2017 MFCC, jitter, NBN 90 /al at normal Only male samples
Guerti [18] shimmer, F pitch were used
Verdeetal. [19] 2018 MFCC, HNR, SVM 85.77 fal at normal  Only speech signals
jitter, shimmer pitch were analysed
Lee [13] 2021 MFCC, LPCC, CNN 82.77 /al at normal More training time
NS, NK pitch
Omeroglu et al. 2022 MFCC, LPCC, SVM 90.10 /a/ at normal Need parameter
[20] pitch, slope pitch tuning
Ksibi etal. [21] 2023 MFCC, ZCR, CNN-RNN 88.83 /al at normal More training time
RMSE pitch
(b)
Approach / Study Key Features / Classifier Strengths Limitations

Mart mez et al. [14],
El Emary et al. [15]

Souissi and Cherif
[16], Verde et al. [19]

Amara et al. [17],
Dahmani and Guerti
(18]

Lee [13], Xie et al.
[22], Islam et al. [23]
Omeroglu et al. [20],
Ksibi et al. [21]
Proposed:
GWOESCA-SVM

MFCC, HNR, GMM

MFCC + Temporal features,
SVM

MFCC, jitter, shimmer;
GMM, NBN

MFCC, CNN / DNN

CNN-RNN; combined
features
MFCC, spectral, ZCR, STE +
EGG; Hybrid optimization

Simple models; low computational cost

Moderate accuracy; good generalization
on small datasets

High accuracy in limited settings;
effective for vowel /a/

Learns complex representations; DL
handles nonlinearity well
Better modeling with temporal fusion;
moderate gains
Integrates speech + EGG signals; auto-
optimized feature selection + SVM
tuning; high accuracy (up to 96.08%)

Low accuracy (67-82%); limited to
speech features; no feature
optimization
Manual parameter tuning; no hybrid
signal use; dimensionality not
reduced
Small datasets; only male data or
speech-only signals considered

Requires large datasets; high training
time; lacks interpretability
Still lacks optimization; performance
varies; not tailored to EGG data
Slightly increased algorithmic
complexity; reliant on signal quality
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Another very recent research work [20] proved the
usefulness of merged features to detect pathological voices.
The authors combined speech and EGG signal elements to
improve accuracy in comparison to prior methods. SVM was
trained using features extracted from both speech and
Electroglottography (EGG), while AlexNet was employed for
further analysis. The results indicated that employing the
combined features as input yielded a higher classification rate
in comparison to solely utilizing EGG or speech signals. Ksibi
et al. [21] created for precise identification of abnormal speech
on the SVD database, a deep learning model based on CNN-
RNN. Signal attributes, MFCC, ZCR, and RMSE were
extracted from the input voice samples and then the features
were fed as input to the CNN-RNN to perform classification.
This approach attained classification rate of 88.83%. Ding et
al. [24] created a model for voice pathology detection using
ResNet. In this model, features were computed from voice
signals, and then fed to deep connected attention-ResNet to
predict voice pathology. Table 1(a) provides a summary of
recent works on SVD database.

To synthesize the strengths and limitations of the major
existing works in the literature, we present a comparative
summary in Table 1(b). This highlights the need for an

integrated and optimized approach, which our proposed
GWOESCA-SVM aims to address effectively.

3. PROPOSED VOICE PATHOLOGY DETECTION
SYSTEM

An optimized framework is created by ML and GWOESCA
to detect voice pathology. Figure 1 illustrates the overall
operations of the proposed system and the stages are listed
below.

Data collection: Involves collecting voice samples, from
the SVD database, including pathological cases.

Feature extraction: Extracted from the speech and EGG
signals.

Feature fusion: To consolidate a cohesive feature matrix,
the extracted features are amalgamated.

Feature selection: GWOESCA is employed to choose the
most effective features.

Classification: The classifier receives its input from the
chosen features. To distinguish healthy and pathological
speech samples, an improved SVM is used.

Training Phase Training Phase
5 <l = c ]
+7 Data Collection —+
[«
Training Data Test Data
[ I
v v ¥ ¥
Feature Speech Signal EEG Signal Speech Signal EEG Signal
Extraction Features Features Features Features
[ Feature Fusion » ? < » @@ < ]
-
Feature HNIA A 4
Selection Selected
Phase Selected Features
Features )
¥ ¥
e 2 L N
Classifier - Trained
Model GWOESCA-SVM Classifier
Training v v
Phase Trained Healthy or
Classifier Pathology
\ J

Figure 1. Pipeline of the developed framework for GWOESCA-SVM system

Table 2. Dataset information of male and female voice samples

Analysis Quantity of Voice Samples
Male Female
Healthy 250 429
Functional dysphonia 45 79
Granuloma 1 1
Hyperfunctional 52 80
Hypofunctional dysphonia 9 5
Laryngitis 62 61
Pathology Leucoplakia 24 44
Psychogene dysphonia 15 48
Rhinkeodem 7 43
Rhinophonie aperta 11 20
Stim polyp 21 31
Voxsenilis 13 25
Total 510 866
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Figure 2. Male healthy and pathological voice signals (a) Speech signals and (b) EGG signals
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Figure 3. Female healthy and pathological voice signals (a) Speech signals and (b) EGG signals [25]

3.1 Data gathering

This study uses voice samples from the SVD database are
used for experimentation [26]. The voice samples were
recorded for three vowel sounds, namely /a/, /i/, /u/, at several
pitch levels including normal, low, high and low-high. The
duration of the samples ranges from 1 to 3 seconds, with a
sampling rate of 50 kHz and a resolution of 16 bits. The
present study included the utilization of a sustained vowel
sound, namely the phoneme /a/, produced at a typical pitch
level. During /a/ sound creation, a person may keep a
consistent frequency and loudness [13, 20]. The data consists
of 250 healthy and 260 pathological male samples of /a/ and
429 healthy and 437 pathological female samples of /a/ (Table
2). Figure 2 and Figure 3 show sample speech and EGG
signals for both male and female, respectively. For enhanced
clarity, signals are segmented into intervals of 0.1 seconds.
The figures show notable differences between male and
female speech signals, as well as in the corresponding EGG
signals and effectiveness in voice pathology detection.
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3.2 Feature extraction

Features namely MFCC, pitch, ZCR, HNR, STE and
spectral features like Spectral centroid (SE), spectral kurtosis,
spectral skewness and spectral slope are separately derived
from both speech and EGG signals.

3.2.1 Mel-frequency Cepstral Coefficients

MFCCs are widely employed in speech recognition owing
to their capacity to convey crucial information about the
signal's structure [14, 16, 20, 21]. The MFCCs are standard
technique for extracting features from speech signal. To
compute MFCCS from the audio signals, several
preprocessing steps are typically used. Primarily, audio signal
a(n) is converted into several frames, ai(n), where i shows the
number of frames. The Discrete Fourier transform of the frame
is represented in Eq. (1):

A;(k) = $M-1 q;(n) h(n)e j2mkn/M )
where, Ai(k) - DFT of the i"" frame, h(n)- hamming window of

1<k<K



M sample length, k-DFT length. The periodogram estimate of
the power spectrum, pi(k) of a;j(n) can be defined by Eq. (2):

P,(k) = —14;(k) |2 @)

The Mel-scale filter bank is computed. To derive MFCCs,

the logarithmic Mel spectrogram is inverted back into the time

domain. The Discrete Cosine Transform is employed to

convert them back into the time domain, effectively removing
pitch contribution.

3.2.2 Pitch

Pitch, which reflects the rate at which vocal cords vibrate
while producing voiced sounds, establishes the fundamental
frequency of the voiced signal. Various approaches exist for
calculating pitch, including spectral-based methods [27] and
autocorrelation-based methods [20]. Here, pitch is estimated
using normalized correlation function with a window length of
53ms.

3.2.3 Spectral centroid

Spectral centroid represents the weighted mean of the signal
frequency components, where each frequency is weighted by
its magnitude. It can be represented as:

TN ()x(n)

Centroid = STt

)

where, x(n)-magnitude of the Fourier transform at bin number
(n), f-center frequency of the bin and n-bin number.

3.2.4 Spectral entropy
Spectral entropy measures the spectral power distribution.
It can be computed in Eq. (4):

Entropy = — ¥}/=}

x(n)log,x(n) “)
3.2.5 Spectral skewness
Spectral skewness measures symmetry around the centroid.

Spectral skewness of the audio signal can be expressed in Eq.

(5):

YMoL(F(n)-centroid)3x(n)
(spread)3 L= x(n)
Tnco f(Wx(n)
SN x ()
M-1 _ 2
Spread _ \/Zn=0 (f(n)—centroid)?x(n)

e x(n)

Skewness =

centroid =

)

3.2.6 Spectral kurtosis
Spectral kurtosis measures the flatness of the spectrum
around its centroid. It is defined by Eq. (6):

SM-L(f(n)—centroid)*x(n)
(spread)* ¥ M1 x(n)

Kurtosis =

(6)

3.2.7 Zero crossing rate
The ZCR of an audio signal can be computed by Eqg. (7) and

Eqg. (8):

7CR = i W_i|sgn(a; () — sgn(a;(n — 1))| ™)
sgn(a;(n)) = {fi,aé;i(?z)ioo ®
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3.2.8 Spectral slope
Spectral slope estimates the amount of decrease of the
spectrum and measured by Eq. (9):

= (fF )= p) e(m)— )
M (F () —up)

Slope = )

where, s -Mean frequency, u,-Mean spectral value

3.2.9 Harmonic noise ratio
The HNR is determined as the maximum of the normalized
autocorrelation within given range. It is represented by Eq.
(10):
HNR = max(autocorrelation) (10)
3.2.10 Short time energy
Mathematically, the STE can be expressed by Eq. (11):

STE = Y=olx(m)w(n — m)]? (11)
where, x-signal, w(n-m)-window
3.3 Feature fusion
Speech features, denoted as SF = {x1,x2,x3......... xP} and

EGG features, represented as EF={yl,yl,y3,....yR}, may
have different lengths. To integrate features extracted from
speech and EGG signals, we employed an early fusion strategy.
Feature vectors were first standardized and, if unequal length,
zero-padding was applied to the shorter vector to match
dimensions. The speech and EGG vectors were then
concatenated to form a combined feature matrix, denoted as
FF = [SF || EF]. This fused feature representation was used as
input for feature selection and classification.

In the current implementation, simple early fusion
technique is adopted, where the extracted features from speech
and EGG signals were concatenated to form a unified feature
matrix. This was chosen for its computational simplicity and
compatibility with the GWOESCA-based feature selection
framework. Furthermore, such direct concatenation may lead
to feature redundancy or imbalanced contribution from each
modality. To mitigate this, (a) applied feature normalization
and dimensional alignment prior to concatenation, and (b)
more importantly, the GWOESCA optimization process is
responsible for selecting only the most discriminative features
from the combined pool. As a result, redundant or less
informative features were automatically excluded during the
optimization phase.

Although alternative fusion strategies such as weighted
fusion or decision-level fusion may offer more explicit control
over the relative contribution of each modality, these
approaches were not adopted in the current study for well-
considered reasons. Weighted fusion typically requires the
assignment or learning of weight coefficients for each feature
stream (e.g., speech vs. EGG), which can introduce additional
hyperparameters, require larger datasets for stable learning,
and pose a risk of overfitting in high-dimensional settings with
moderate sample sizes. In contrast, proposed method employs
a straightforward early fusion strategy through feature-level
concatenation, followed by optimization using the
GWOESCA algorithm, which serves a dual purpose: it selects
only the most discriminative features and eliminates redundant
or weakly informative ones. This approach maintains



computational efficiency, simplifies the model pipeline, and is
well-suited to the hybrid structure of our dataset.

3.4 Feature selection using GWOESCA

In this study, the proposed hybrid optimization algorithm,
GWOESCA, employs a population of 30 agents and allows up
to 500 iterations. In GWO the parameter “a" linearly reduced
from 2 to 0 across iterations to balance between exploration
and exploitation. Coefficients A and C are randomly initialized
in the range [0, 1]. In ESCA, a control parameter D is
introduced to enhance global search capability. Classification
accuracy is used as the fitness function and is evaluated using
10-fold cross-validation during each iteration.

To minimize dimensionality and enhance the classification
rate, a feature selection algorithm is applied to identify the
optimal informative features from the combined feature set.
Here, GWOESCA is suggested for selecting the features
which have high discriminative power between healthy and
pathological voice samples. The GWO component of the
proposed method is directly inspired by the social hierarchy
and hunting behaviors observed in grey wolfs. In nature, grey
wolves exhibit a structured social hierarchy, with alpha, beta,
delta and omega individuals. The hunting behavior of grey
wolves, including the cooperative encircling and attacking the
prey, serves as a model for the optimization process for GWO
[28]. The SCA aspect of the method is rooted in the
mathematical principles of sine and cosine functions, which
have cyclic patterns like many natural phenomena. The
proposed GWOESCA combines the hierarchical leadership
structure of GWO with the cyclic exploration patterns of SCA.
This hybridization enables a balance between exploration and
exploitation, similar to the adaptive strategies employed by
natural systems to thrive in changing environments. By
synergizing these two nature-inspired components, the
proposed algorithm endeavors to attain resilient and effective
optimization performance.

3.4.1 Social hierarchy

In the establishment of the social hierarchy, grey wolves
maintain a prominent position in the food chain and adhere to
defined dominance structure. Within this structure, the most
optimal solution is designated as the leader, alpha (o),
followed by subsequent optimal solutions labeled as beta ()
and delta (8). Different methods are categorized as omega (o).

3.4.2 Encircling the prey

During the hunting process, grey wolf optimizer [28] adopts
a circular formation around the prey. The encircling behavior
of each hunt agent is represented by Egs. (12)-(25).

D =|C.W,(t) - W(t)| (12)
W(t+1)=W,(t)—AD (13)

The vectors 4 and € can be computed as,
A=2.dr1-d (14)
C =212 (15)

where, t-current iteration, V_I/;,—position vector of the prey, W-

position of a grey wolf, and 4, C-coefficients vectors, r1, 12
are random values [0, 1] and a is a linear function of the
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number of iterations, decreasing from 2 to 0 over time. Choose
the top hunt agent Wa, the second-best hunt agent WB' and the

third-best hunt agent Ws.

D, = |C,. W, — W| (16)
Dp=|CoWy—W (17)
Ds = |Co. W5 — W (18)
W, = W, — 4,.(D,) (19)
W, = Wg — A,.(Dp) (20)
Wy = Ws — As. (Ds) 1)
Update position of current hunt agent,
Wt + 1) = Dty (22)

3

Hunting the prey involves both exploration and exploitation.
The exploration phase entails searching the prey within a range
of [-2a, 2a], while the exploitation phase involves attacking the
prey when a condition is met. When " < 1, the wolves are

compelled to initiate the attack. Conversely, when 2> 1, the

wolves are directed to move away from the prey.

SCA, classified as a type of NIA algorithm [29], leverages
sine and cosine formulas to enable both exploration and
exploitation in optimization problems. However, it has a
limitation of poor global search capability. To solve such an
issue, ESCA is proposed. In ESCA, the exploration process is
improved by introducing an additional parameter, D in the
position formula,

-

dy =
{D.rand() x sin(rand()) X |¢; X X, — X| rand < 0.5  (23)
D.rand() X cos(rand()) X |¢; X ¥, — X| rand = 0.5
t el t e2
D=<1—(;) )(1+e2(;) ) (24)
Wy = Wy—4y. (dg) (25)

To maximize fitness function, GWOESCA is used for
feature selection as well as SVM parameter optimization.
Classification accuracy is used as fitness function. Throughout
training, the model is refined on the available date through the
use of the specified fitness function. Based on the input
features it learns to make predictions and the corresponding
labels in the training set. After each training iteration, the
model’s performance is evaluated on the validation set using
the classification accuracy. As a preventive measure
overfitting is monitored early stopping is ensured. Early
stopping entails halting the training process once the
performance on the validation set starts to deteriorate, even if
the performance on the training data continues to advance.

The algorithm, depicted in Algorithm 1, describes the
pseudocode, that is the step-by-step procedure used to
optimize both feature selection and SVM parameters using the
hybrid GWOESCA approach:

Initialization: A population of search agents (grey wolves)



is initialized with random positions representing potential
solutions (i.e., feature subsets + SVM parameters).

Fitness Evaluation: Each agent’s fitness is computed using
classification accuracy via 10-fold cross-validation on the
selected features.

GWO Updates: The agents positions are adjusted
according to the leadership hierarchy (o, B, 8 wolves) using
Grey Wolf Optimizer equations to mimic the social behaviour
of wolves during hunting.

ESCA Refinement: Each solution is further refined using
sine and cosine updates to enhance global exploration and
avoid premature convergence.

Best Solution Selection: The solution yielding the highest
classification accuracy is selected, and the corresponding
features and SVM parameters are retained.

Final Model Training: The final SVM classifier is trained
using the optimal features and parameters for voice pathology
classification.

Algorithm 1: GWOESCA-SVM Optimization
Framework

Input: Combined feature matrix FF = [SF || EF], labels Y
Output: Optimized SVM classifier

1. Initialize: population of search agents (wolves), max_iter,
parameters a, A, C, D
2. While (t < max_iter):

a. Evaluate fitness (classification accuracy via 10-fold CV) for
each agent

b. Identify a (best), B (second-best), & (third-best) solutions

¢. Update positions using GWO equations (Eqs. 12-22)

d. Apply ESCA-based update using sine-cosine perturbations
(Egs. (23-25))

e. Update best fitness and store corresponding features and
SVM parameters
3. Train final SVM on selected features with optimized parameters
4. Return trained classifier

3.5 Classification

Due to the SVM classifier's high generalization abilities, the
chosen features are given as input for classification tasks [30].
To identify the speech samples, the SVM with Radial basis
kernel function is used. The SVM has two parameters, namely
regularization parameter, C and gamma. These two parameters
are usually fixed via experimentation, which can be time-
consuming and may negatively impact the classifier’s
performance. To overcome this issue, the SVM classifier's
parameters are optimized using GWOESCA.

4. SIMULATION RESULTS
4.1 Experimental setup

Using MATLAB 2022a platform on an Intel Core i5 CPU,
2.9GHz, 16GB RAM the entire system is implemented. In this
investigation, an automated GWOESCA-SVM system is used
to distinguish between healthy and pathological voice samples
based on merged features from speech and EGG signals, the
parameters are listed below:

GWOESCA Parameters are as follows:

e Population size: 30 search agents

e Maximum iterations: 500

o Exploration coefficient (a), linearly decreased from 2 to 0

over iterations (as per standard GWO design)
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e Random coefficients (A and C) are drawn from uniform
distribution in [0, 1]

o Sine/Cosine diversity control (D) is adaptively updated to
enhance search in ESCA phase

e Fitness function: Classification accuracy (evaluated
through 10-fold cross-validation)

SVM Tuning Process — parameters are as follows:

o Kernel used is Radial Basis Function (RBF)

e Hyperparameters optimized using Regularization

parameter (C) and Kernel parameter gamma

e Search range: C € [0.01, 100] and gamma € [0.0001, 1]

o These were jointly optimized along with the feature subset

selection during the GWOESCA iterations.

It is important to note that no data augmentation techniques
were applied during this study. As the proposed work relies on
a SVM optimized through feature selection, the model
architecture does not require the volume of training data
typically associated with deep learning models. The feature
optimization performed via GWOESCA mitigates overfitting
by selecting highly discriminative features from a moderate-
sized dataset.

Table 3. Performance metrics

Measures Equation
Classification accuracy A=__TP*HTN
TP+TN+FP+FN
Specificity SP = o
Recall ==
H TP
Precision =
xR
F1-score F1=2X o)
GM GM =vVSPXR
MCR MCR=1-A

4.2 Evaluation metrics

To evaluate the classification performance, 10-fold cross-
validation is employed, wherein the data is divided into 10
smaller sets. Nine sets are utilized for training the system,
leaving the tenth set exclusively for testing purposes. Each set
takes turns as the testing set, and the process is repeated ten
times. As a result, the system’s performance is evaluated based
on the average performance obtained over the 10 iterations.
The utilization of cross-fold validation effectively prevents the
occurrence of data leakage through the experimental
procedure, ensuring the reliability of results. The metrics used
for assessment are listed in Table 3. True positive samples are
those with pathology, whereas True negative samples are those
without pathology.

4.3 Results and discussion

In the developed system, feature selection is conducted to
diminish the quantity of features while preserving maximum
information within the dataset, where GWOESCA is
suggested for selecting pertinent features. The simulation
parameters of GWOESCA are as follows: number of search
agents is set to 30, maximum number of iterations is set at 500
and fitness function used is classification accuracy.
Additionally, GWOESCA is used for tuning the parameters of
SVM. In optimized SVM parameters, ¢ is 0.3 and gamma is
0.001. The healthy and pathological voice signals for male and
female at vowel /a/ are more clearly seen in Figure 4 by



showing a box plot of a few selected characteristics.

Effectiveness of the system is analysed in three cases:
Case 1: Classify the data using speech signal features
Case 2: Categorize the data using EGG signal features and
Case 3: Data classification using combined features

(Speech + EGG)

The performance metrics of introduced system (Table 3) are

calculated and reported in Table 4. In Table 4, first row
consisting of 43-dimensional speech features are extracted
from the male and female samples. Second row has 43-
dimensional EGG features computed from the male and
female samples. Third row features are created by adding
speech and EGG signals features and it has 48-dimensions.
Features are separately computed for male and female samples.
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Figure 4. Distribution of selected features

4.3.1 Analysis based on speech features

For males, the classification accuracy was 81.43%, with
specificity, recall, precision, GM and F1-score ranging
between 81.60% to 84.64%. For females, the accuracy was
slightly lower at 78.82% with similar performance metrics.
When considering both genders, the classifier achieved higher
performance with an accuracy of 88.82%, indicating a slight
improvement across all metrics compared to individual
gender-based classification.

4.3.2 Analysis based on EGG features

The classification performance using EGG features was
slightly lower compared to speech features. For males, the
accuracy was 74.90%, and for females, it was 70.78%, both
exhibiting similar trends in other metrics. When considering
both genders, the accuracy improved to 84.71%, indicating
better performance in gender-agnostic classification compared
to individual gender-based classification.

4.3.3 Analysis based on combined features

Combined speech and EGG features resulted in
significantly improved classification results. The result
analysis indicated that combining both speech and EGG
features resulted in superior classification performance,
especially when considering both genders simultaneously,
highlighting the importance of feature fusion for effective
voice pathology detection. For males, the accuracy surged to
92.75% with excellent performance across all metrics.
Similarly, for females, the accuracy increased to 89.80% with
notable improvements in other performance indicators. The
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classifier achieved remarkable accuracy of 96.08% when
considering both genders, with excellent performance across
all metrics, indicating the performance of the combined feature
set in gender-agnostic classification.

The classifier performed well in detecting voice pathology
disorders, showing high accuracy, specificity, recall, precision,
and Fl-score. These findings suggested that integrating
multiple features can significantly enhance the accuracy and
reliability of voice pathology detection. The classification
model's consistent low MCR across all feature types
underscored its robustness. Moreover, the utilization of
GWOESCA-SVM demonstrated its efficacy in optimizing
classifier performance across different feature sets and gender
categories.

4.4 Performance comparison with standard SVM

To confirm the developed characteristics of GWOESCA, a
typical SVM is used to compare the system's classification
effectiveness. The results are shown in Table 5 without feature
selection and parameter tuning.

4.4.1 Speech features

For males, classification accuracy was 79.22%, with
moderate specificity, recall, precision, GM, F1-score and
MCR. For females, the accuracy was slightly lower compared
to males, with similar performance in specificity, recall,
precision, GM, Fl-score and MCR. Combined features
demonstrated higher accuracy compared to individual genders,
indicating a potential synergistic effect.



Table 4. Classification outcomes obtained by different features and GWOESCA-SVM focused on gender and individual features

Features Type Accuracy (%) Specificity (%) Recall (%) Precision (%) GM (%) Fl-score (%) MCR
Male 83.14 81.60 84.62 82.71 83.09 83.65 0.17
Speech Female 78.82 76.80 80.77 78.36 78.76 79.55 0.21
Male and Female 88.82 89.20 88.46 89.49 88.83 88.97 0.11
Male 74.90 72.80 76.92 74.63 74.83 75.76 0.25
EGG Female 70.78 68.40 73.08 70.63 70.70 71.83 0.29
Male and Female 84.71 88.80 80.77 88.24 84.69 84.34 0.15
Male 92.75 92.40 93.08 92.72 92.74 92.90 0.07
Combined Female 89.80 89.20 90.38 89.69 89.79 90.04 0.10
Male and Female 96.08 96.00 96.15 96.15 96.08 96.15 0.04

Table 5. Performance of the developed system without feature selection and parameter optimization
Features Type Accuracy (%) Specificity (%) Recall (%) Precision (%) GM (%) F1-Score (%) MCR
Male 79.22 77.20 81.15 78.73 79.15 79.92 0.21
Speech Female 74.71 72.40 76.92 74.35 74.63 75.61 0.25
Male and Female 84.35 84.08 84.62 84.68 84.35 84.65 0.16
Male 71.18 69.20 73.08 71.16 71.11 72.11 0.29
EGG Female 66.75 64.16 69.23 66.77 66.65 67.98 0.33
Male and Female 80.78 80.40 81.15 81.15 80.78 81.15 0.19
Male 83.92 77.60 90.00 80.69 83.57 85.09 0.16
Combined Female 81.96 82.00 81.92 82.56 81.96 82.24 0.18
Male and Female 89.22 88.00 90.38 88.68 89.18 89.52 0.11

4.4.2 EGG features

For males, the system attained an accuracy of 71.18%, with
specificity and recall values around 69.20% and 73.08%,
respectively. Other metrics are moderate. For females, lower
performance compared to males, with an accuracy of 66.75%
and similar specificity and recall rates. Combined features
demonstrated improved accuracy compared to individual
genders, achieving 80.78%.

4.4.3 Combined features

Combined male features exhibited increase in accuracy
compared to individual feature types, with 83.92%. However,
the specificity is lower, while recall and precision were higher.
Combined female feature gave a high accuracy of 81.96%,
with balanced specificity and recall rates. Combined male and
female features demonstrated better results compared to
individual genders, with an accuracy of 89.22%.

From the analysis, it can be noted that system without
feature selection and parameter optimization showed moderate
performance across all feature types and genders categories.
However, there is room for improvement, particularly in
optimizing parameters and selecting relevant features, which
could potentially enhance the performance metrics.

Table 6. Performance comparison with other optimization

algorithms
Model Accuracy (%) Fl-score (%) MCR
GWOESCA-SVM 96.08 96.15 0.040
PSO-SVM 91.72 91.60 0.080
GA-SVM 90.45 90.21 0.100

Empirical findings demonstrate that the GWOESCA-SVM
gave an excellent outcome exceeding that of standard SVM
classifier, by registering classification accuracy of 88.82% for
speech features, 84.71% for EGG features and 96.08% for
combined features and for all cases of 10-cross fold validation
with feature selection and parameter optimization. The
efficacy of the introduced framework employing HNIA and
ML has been demonstrated to yield superior results, affirming
that GWOESCA-SVM adeptly discriminates between healthy
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and pathological voice samples. Pictorial representation of the
developed SVM and GWOESCA-SVM is depicted in Figure
5, Figure 6 and Figure 7 for male, female and combined
samples, respectively.

4.5 Performance comparison with other optimization
algorithms

To verify the property of developed GWOESCA-SVM, the
model’s performance was compared with that of the ESCA-
SVM and GWO-SVM is shown in Figure 8. The GWOESCA-
SVM method outperformed both GWO-SCA and ESCA-SVM
in terms of all metrics, indicating its superiority in
classification performance. While GWO-SVM closely
followed GWOESCA-SVM, showing strong performance
across all metrics, the ESCA-SVM demonstrated lower
performance compared to both the GWOESCA-SVM and
GWO-SVM across various metrics.

To further validate the effectiveness of the proposed
GWOESCA-SVM framework, we extended the experimental
comparison by incorporating two additional nature-inspired
optimization-based classifiers, namely, Particle Swarm
Optimization (PSO)-SVM and Genetic Algorithm (GA)-SVM.
These models were implemented using the same dataset and
fusion strategy, with parameter tuning and feature selection
optimized via PSO and GA, respectively. The experimental
setup maintained consistent parameters for fair comparison: a
population size of 30 and a maximum of 500 iterations. The
classification accuracy was used as the fitness function
evaluated using 10-fold cross-validation.

Table 6 presents the classification accuracy, F1-score, and
MCR for all three models. As shown, GWOESCA-SVM
outperformed both PSO-SVM and GA-SVM, achieving a
maximum accuracy of 96.08% and the lowest MCR of 0.04.
While PSO-SVM showed moderate performance, GA-SVM
trailed slightly behind. This indicates that the hybrid
exploration—exploitation behaviour embedded in GWOESCA
is more effective in optimizing both the feature subset and
SVM parameters for this complex, high-dimensional voice
pathology dataset. These results are further visualized in



Figure 9, which graphically compares the key performance
indicators across all three optimization strategies.

Figure 9 presents a comparative view of three optimization-
based classifiers, namely, proposed GWOESCA-SVM, PSO-
SVM, and GA-SVM, evaluated on core performance metrics.
From the graph, depicted in Figure 9, it is evident that
GWOESCA-SVM outperforms the other two techniques
across all indicators. Specifically, it achieves the highest
accuracy (96.08%), along with a near-perfect F1-score
(96.15%), and maintains the lowest MCR (0.04). In contrast,
both PSO-SVM and GA-SVM perform reasonably well, but
with relatively lower precision and slightly higher error rates.
This comparison confirms the superiority of the hybrid
GWOESCA optimization approach, particularly in handling
fused speech and EGG features, which are high-dimensional
and heterogeneous. The result demonstrates that GWOESCA
offers a more balanced and effective search strategy, leading
to better model generalization. These findings strengthen the
claim that the proposed method provides a more robust
solution for voice pathology classification, suitable for real-
world diagnostic applications.

4.6 Comparison with the past approaches

In using HNIA with ML, the project seeks to develop an
automated approach for detecting speech pathology. As
reported in Table 4, the introduced framework, GWOESCA-
SVM has attained a highest classification accuracy for all
cases when compared to standard SVM. Nevertheless, the
performance is remarkably boosted when merged features are
used, features are chosen by GWOESCA and parameters of
the SVM is tuned by GWOESCA. The GWOESCA-SVM
evidences its robustness and generalization capabilities
considering all metrics in discriminating healthy from
pathological voice samples.

Table 7 provides a comparative outcome of the simulation
results for voice pathology detection between the introduced
system and the former methods considering classification
accuracy. To ensure a fair and genuine comparison of findings,
only earlier approaches that utilized SVD data and focus on
the /a/ vowel for investigation are considered. Voice pathology

detection using GMM attained a classification rate of 67% [14].

El Emary et al. [15] categorized voice samples into healthy and
pathological one using SVM, yielded an accuracy of 82.37%.
Voice pathological detection system based on temporal
derivatives and SVM classifier gave an accuracy of 86% [16].
Amara et al. [17] differentiated healthy from pathological
voice samples using MFCC and SVM and obtained 95.5%
accuracy. An accuracy of 90% was attained using NBN
classifier [18]. Verde et al. [19] utilized four signal features
and SVM classifier, attaining a classification accuracy of
85.77%. Mohammed et al. [31] adopted Resnet 34 for
differentiating healthy from pathological samples, yielding a
classification accuracy of 93.72%. Voice pathology
classification approach using MLP achieved a classification
rate of 82,77% [13]. Omeroglu et al. [20] investigated the
power of standard SVM in categorizing voices samples into
healthy and pathological ones and obtained 90.10% accuracy.
Islam et al. [23] used CNN for voice categorization and
yielded classification accuracy of 80.3%. Deep learning
method-based voice detection methods yielded 73.83%
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accuracy [22]. Ksibi et al. [21] designed a hybrid approach by
combining CNN-RNN for voice classification and reached an
accuracy of 88.33%. The relevant features chosen by the
GWOESCA tuned SVM resulted in a highest classification
rate of 92.75% for male speech features, 89.80% for female
features and 96.08% for combined male and female data.

The proposed method outperformed previous models by
classification accuracy for both individual genders and the
combined dataset. Several methods achieved moderate
accuracy, as reported by Ahmed et al. [17], Mohammed et al.
[31], and Hossain et al. [32]. Methods proposed by Mart hez
et al. [14] and Xie et al. [22] showed relatively lower accuracy
compared to the others. The proposed GWOESCA-SVM
method demonstrated significant advancement in accuracy
compared to previous approaches, making it promising
technique for voice pathology detection.

The current experimental design is limited to the
Saarbruecken Voice Database (SVD), which was chosen due
to its high-quality recordings, availability of both speech and
Electroglottography (EGG) signals, and extensive labelling of
multiple pathological classes across gender.

However, the cross-dataset validation plays a critical role in
confirming the robustness and applicability of any machine
learning system in real-world scenarios. Unfortunately, as of
this study, publicly available databases with synchronized
speech and EGG signal recordings are limited, and most
alternatives (e.g.,, MEEI, AVPD) do not provide both
modalities or are restricted in terms of pathological diversity
or demographic distribution. That said, to partially address this
limitation and are as follows:

» We performed extensive 10-fold cross-validation within
the SVD dataset across three different conditions: male-only,
female-only, and combined gender samples, using speech-
only, EGG-only, and hybrid features. This layered evaluation
framework was designed to simulate variability and ensure the
model generalizes across gender and feature types.

+ Additionally, we compared our model’s performance
against several prior state-of-the-art methods (depicted in
Table 7), many of which also relied on the SVD database. This
fair benchmarking allows direct assessment of improvements
brought by the GWOESCA-SVM framework.

Table 7. Performance comparative study of GWOESCA-
SVM with former methods

Contributors Year Accuracy (%)
Mart mez et al. [14] 2012 67.00
El Emary et al.[15] 2014 82.37

Souissi and Cherif [16] 2015 86.00
Amaraetal. [17] 2016 95.50
Dahmani and Guerti [18] 2017 90.00
Hossain et al. [32] 2017 92.80
Verde et al. [19] 2018 85.77
Mohammed et al. [31] 2020 93.72
Lee [13] 2021 82.77
Omeroglu et al. [20] 2022 90.10
Islam et al. [23] 2022 80.30
Xie etal. [22] 2022 73.83
Ksibi et al. [21] 2023 88.83
Male 92.75

Proposed Female 89.80
Combined 96.08




100 100
90 90
80 80
;\; Zg ;\;- 70
z
g 50 ‘S 50
- =
Z 40 T 40
- 2
< 30 @ 30
20 20
10 10
0 — 0
Speech Combined Speech Combined
ESVM  Proposed BSVM mProposed
(a) Accuracy (b) Specificity
100 100
90 90
80 80
70 ]
T 60 % 60
E 50 § 50
g 40 g 40
30 & 30
20 20
10 10
0 0
Speech Combined Speech Combined
uSVM = Proposed uSVM = Proposed
(c) Recall (d) Precision
100 100
90 90
80 80
70 0
- S
g 60 < 60
50 £ 50
= S
S a0 X a0
30 = 30
20 20
10 10
0 0
Speech Combined Speech Combined
SVM  m Proposed " SVM mProposed
(e) GM (f) F1-Score
Figure 5. Performance comparison of the proposed system with standard SVM for male samples
100 100
90 90
80 80
;\;« 70 =\? 70
- 60 E 60
g 50 2 50
2 40 g 40
@ =N
< 30 “ 30
20 20
10 10
0 0

Speech EGG
uSVM  Proposed

Combined

Speech
ESVM ® Proposed

Combined

(a) Accuracy

2728

(b) Specificity




100
920

80
70
60
50
40
30
20
10

0

Speech Combined

Recall (%)

uSVM = Proposed

100
90
80
70
60
50
40
30
20
10

Precision (%)

Speech Combined
“SVM = Proposed

(c) Recall

(d) Precision

100

90
80

GM (%)

70
60
50
40
30
20
10
0 L

Speech EG Combined
SVM = Proposed

100
90
80
70
60
50
40
30
20
10

Fl-score (%)

nnﬂ

Speech Combined
= SVM = Proposed

(e) GM

Figure 6. Performance comparison of the proposed system

(f) F1-Score

with standard SVM for female samples

100

90

Accuracy (%)

80
70
60
50
40
30
20
10

0

Speech Combined
uSVM  Proposed

100
90
80
70
60
50
40
30
20
10

0

Specificity (%)

Speech EGG Combined
uSVM = Proposed

(a) Accuracy

(b) Specificity

100

2
80
70
60
50
40
30
20
10

0

Speech EGG Combined

Recall (%)

wSVM ®Proposed

100
90
80
70
60
50
40
30
20
10

Precision (%)

Speech EGG Combined
" SVM = Proposed

(c) Recall

2729

(d) Precision




100
90
80
70
60
50
40
30
20
10

GM (%)

100

20

F1-score (%)

80
70
60
50
40
30
20
10

0

Speech EGG Combined Speech EGG
#SVM = Proposed uSVM mProposed

Combined

(e) GM (f) F1-score

Figure 7. Performance comparison of the proposed system with standard SVM for mixed samples

o —
e | ——
Specificity =|
| | | | | |

Metrics

84 86 88 90 92 94 96
(%6)

EESCA-SVM 8BGWO-SYM sGWOESCA-SVM

98

Figure 8. Performance compared with other optimization algorithms

1001 96.08 96.15 :
91.72 91.60 90.45 90,21

801

60

mm MCR (%)
401

Performance Metrics (%)

20

GWOESCA-SVM PSO-SVM
Optimization Techniques

B Accuracy (%)
I Fl-score (%)

Figure 9. Comparison of optimization-based classifiers

2730




4.7 Performance variations between genders
This subsection analyses the difference in classification

outcomes between male and female voice samples, based on
both numeric metrics and confusion matrices.
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Figure 10. Confusion matrix for male samples
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Figure 11. Confusion matrix for female sample

To further investigate the performance variations between
genders, we analysed the confusion matrices for male and
female samples, as shown in Figures 10 and 11, respectively.
In the male dataset (Figure 10), the system correctly identified
117 pathological and 115 healthy samples, with only 18
misclassifications. This reflects the relatively higher
uniformity and clarity of acoustic patterns in male voices,
making pathological deviations more detectable. In contrast,
the confusion matrix for female samples (Figure 11) reveals a
slightly lower classification accuracy, with 30 healthy samples
misclassified as pathological and 24 false negatives. This
increase in misclassification can be attributed to the greater
variability in pitch, voice modulation, and EGG signals in
female subjects, which tends to blur the decision boundaries
between healthy and pathological classes. These visual
insights reinforce the numeric performance metrics and
highlight the importance of considering gender-specific signal
characteristics when designing robust voice pathology
detection systems.

4.8 Computational efficiency and practical feasibility
To address the computational efficiency and real-world

applicability, quantitative measurements of training and
inference times for the proposed GWOESCA-SVM model is
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determined. These measurements were conducted on the same
hardware configuration used for all experiments.

(a) Training Time: For the combined feature set (speech +
EGG), the average training time per 10-fold cross-validation
cycle was approximately 135 seconds. This includes time for
feature selection and SVM parameter optimization using
GWOESCA (population = 30, iterations = 500).

(b) Inference Time: Once trained, the average classification
time per test sample was approximately 0.012 seconds,
indicating suitability for near-real-time deployment in
diagnostic tools.

(c) Discussion: While the hybrid nature-inspired
optimization phase introduces some computational overhead
during training, this cost is acceptable given the one-time
offline training requirement. The inference phase remains
lightweight, making the system practical for real-time or

embedded voice assessment scenarios in clinical or
telemedicine environments.
4.9 Robustness to noise and clinical deployment

considerations

(a) Robustness to Noisy or Low-Quality Signals: Although
the SVD used in the proposed study comprises clean, high-
quality recordings, real-world voice data, especially from
clinical or remote environments, is often subject to
background noise, recording artifacts, or variable microphone
quality. While our current system does not explicitly include
noise-handling mechanisms, it maintains a degree of
robustness due to the following:

» The use of multiple feature types (e.g., MFCC, HNR, ZCR,
spectral descriptors) provides redundancy and resilience to
mild signal distortions.

» The GWOESCA optimization process inherently selects
robust features that remain consistent across samples, which
can reduce the impact of noise.

» EGG signals, being physiological rather than acoustic, are
less susceptible to ambient noise, offering a stable
complementary signal source.

(b) Clinical Deployment Feasibility: The proposed
GWOESCA-SVM framework was designed with low
inference cost and lightweight deployment potential in mind.
Once trained, the classifier operates with an average inference
time of 0.012 seconds per sample, as discussed in Section 4.8.
This makes it well-suited for real-time screening applications,
including, (i) Outpatient voice clinics, (ii) Telemedicine
consultations, and (iii) Smartphone-based remote voice
analysis tools.

5. CONCLUSION

This paper undertook an exhaustive and meticulous
examination of speech and EGG signals, aiming to
differentiate between healthy and pathological voices through
binary categorization, exploring their diverse origins and
unique characteristics.

The data samples employed were recording of vowel /a/.
The dataset consisted of healthy records obtained from 250
men and 429 women, while the pathological group comprised
260 pathological men and 437 pathological women whose
recordings are taken at normal pitch. From these recordings,
voice-related data’s are computed using multiple feature
extractions techniques such as MFCC, spectral descriptors,
zero crossing rate and short time energy, were employed.



GWOESCA is proposed to select salient features. Additionally,
GWOESCA is used for tuning the parameters of SVM
classifier.

The maximum classification rate of 96.08% is obtained by
the GWOESCA-SVM with combined features. The second-
best accuracy of 92.75% is attained by using combined men
data. The third best accuracy of 89.80% is achieved using
merged women data. The efficacy of conducting experiments
using mixture of male and female samples proved to be more
successful than using either male or female samples.
Additionally, there is a valuable advantage in incorporating
MFCC with spectral descriptors to enhance categorization task,
as both contribute crucial information. The finding’s revealed
that employing a combination of ML and HNIA was beneficial
in distinguishing between normal and pathological voices. In
future, this study will be focussed on the development of
pathological voice detection systems capable of classifying
both the severity of a certain illness and the voice quality.
Additionally, we plan to validate the proposed GWOESCA-
SVM system on additional datasets to further examine its
generalizability across varied recording conditions and
population groups, as well.
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NOMENCLATURE

CNN Convolutional Neural Network

DFT Discrete Fourier Transform

DL Deep Learning

EGG Electroglottography

ESCA Enhanced Sine Cosine Algorithm

F Frequency

FN False Negative

FP False Positive

GM Geometric Mean

GMM Gaussian Mixture Model

GNER Glottal-to-Noise Excitation Ratio

GWO Grey Wolf Optimizer

HNIA Hybrid Nature Inspired Algorithm

HNR Harmonic-to-Noise Ratio

KNN K-Nearest Neighbors

LDA Linear Discriminant Analysis

LPCC Linear Prediction Cepstral Coefficients

MCR Miss Classification Rate

MFCC Mel-frequency Cepstral Coefficients

ML Machine Learning

MLP Multilayer Perceptron

NBN Nave Bayes Network

NIDCD National _Ins'gitute on Deafness and Other
Communication Disorder

NK Normalized Kurtosis

NNE Normalised Noise Energy

NS Normalized Skewness

RF Random Forest

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SE Spectral Entropy

STE Short Time Energy

SVvD Saarbruecken Voice Database

SVM Support Vector Machine

TN True Negative

TP True Positive

ZCR Zero Crossing Rate
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