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In modern healthcare, medical image segmentation is a critical component that identifies 

and localizes the anatomical structures and pathological regions within medical scans 

accurately. However, image segmentation is a challenging task based on anatomical 

variation, varying image qualities and complex spatial dependencies. These challenges lead 

to delayed diagnostic accuracy and treatment planning. The proposed work presented an 

APTA-UNet architecture with an advanced mechanism of two modules as AP module and 

the TA module to improve spatial and contextual awareness. In the proposed UNet, the 

bottleneck structure implemented an attention augmentation with Positional Embedding 

named as AP module that is used to distinguish positional relationships and contextual 

dependencies across the image. Furthermore, the proposed architecture introduces a 

TrioFusion Attention Module named TA module that is used as a residual connection 

between the encoder-decoder sides. This TriFusion Attention Module is an integration of 

HaloNet Attention, Axial Attention, and Non-Local Attention. This fusion is used to learn 

both local and global spatial relationships to enhance the ability to recognize intricate details 

and broader spatial dependencies. The experimental result used three medical datasets of 

CVC-ClinicDB, COVID-19 CT, and Breast Ultrasound to validate APTA-UNet 

performance. It achieves a Dice Similarity Coefficient of 0.949, 0.957, and 0.904 for the 

CVC-ClinicDB Lesion, COVID-19 CT, and Breast Ultrasound datasets, respectively, 

compared to 0.939, 0.947, and 0.88 for the best performing baseline model.  
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1. INTRODUCTION

In modern healthcare technologies, the medical imaging 

tool plays a most essential part in it [1]. This tool enables the 

visualization of anatomical structures and pathological 

conditions with higher precision. Despite important 

advancements, the effective utilization of these images 

remains a challenge based on the absolute complexity and 

volume of data generated. This challenge is overcome by 

processing a segmentation on it [2]. The segmentation is used 

to partition the input data into meaningful regions to enable 

clinical analysis and decision-making. Medical imaging 

segmentation is used in various applications like brain tumour, 

breast cancer, kidney stones, organ delineation, and treatment 

planning to enhance prediction accuracy [3]. 

In recent decades, there are numerous imaging modalities 

have been employed across diverse medical domains such as 

radiology, cardiology, oncology, and neurology. Several 

Techniques like X-ray, computed tomography (CT), magnetic 

resonance imaging (MRI), ultrasound and positron emission 

tomography (PET) have provided detailed pathological and 

physical behaviour in an image [4, 5]. Each modality has a 

specific benefit that differs from others X-rays are cost-

effective imaging of dense structures like bones, CT scans give 

internal organs cross-sectional views; MRI provides 

visualizing the brain’s soft tissues and functions, ultrasound is 

used for real-time imaging capabilities and PET is used for 

metabolic and functional imaging in oncology. This process 

supports to process of an exact diagnosis and treatment 

planning [6].  

However, these modalities have several limitations: Manual 

understanding is hard and consumes more time [7]. The 

complex in nature has noise, artefacts and overlapping 

structures that complicate the process of segmentation. To 

overcome these issues, some traditional methods like 

thresholding, edge detection and region growing are applied 

[8]. However, these methods are not good at performance and 

often struggle to achieve high accuracy in the presence of 

irregular boundaries. These challenges have to be driven by 

some reliable approaches to ensure robustness and accuracy in 

medical imaging [9]. 

Based on these considerations, deep learning (DL) has 

emerged for medical imaging segmentation [10]. In recent 

times, DL has had a better performance in all the sectors which 

can handle larger data and complex patterns with better 

accuracy [11]. The convolutional neural network (CNNs) 

model is a popular DL method that automatically learns 

hierarchical features from raw data to adapt to complex 

patterns and variations in medical images. Also, a few 

Techniques like U-Net, Generative Adversarial Networks 

(GANs) and so on also have special segmenting behaviour 

with high accuracy. 
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In recent times, there are numerous enhancements have also 

been added to a DL model to achieve an effective 

segmentation that helps for an earlier disease prediction. In 

this work, a novel APTA-UNet segmentation model is 

presented using various datasets. This APTA-UNet method 

has two main modules, as AP module and the TA Module, that 

show its uniqueness from other UNets to attain effectiveness. 

The key enhancement modules are given in the following. 

i) AP Module: This module improves the capturing of long-

range dependencies and spatial relationships, leading to

more accurate and detailed segmentations.

ii) TA Module: This module enhances feature representation

by capturing diverse spatial dependencies, increasing the

model's ability to handle complex image patterns.

The remaining part of this work contributed to: Section

2 described related works and section 3 presented the proposed 

methodology of APTA-UNet. Section 4 described the 

experiment result and discussion. Finally, a conclusion 

summary is given in section 5.  

2. RELATED WORKS

Azad et al. [12] presented a U-Net model that has received 

tremendous attention and has backbone, bottleneck or skip 

connections with a Transformer architecture. It also addressed 

a probabilistic prediction of the segmentation map.  

Chen et al. [13] proposed a novel Dense-Res-Inception 

Network (DRINet), which comprises a convolutional block 

with dense connections, a deconvolutional block with residual 

inception modules, and an unspooling block. This model 

achieved a higher level of accuracy compared with other 

existing models. 

Wang et al. [14] presented CNN segmentation for both 2-D 

segmentation of multiple organs from fetal MRI and brain 

tumour core for training with higher accuracy. Also, Feng et 

al. [15] presented a novel Context Pyramid Fusion Network 

(CPFNet) designed for multiple global pyramid guidance 

(GPG) among the encoder and the decoder initially. It also 

provides various data from the global context to construct a 

skip-connection. 

Huang et al. [16] explored a novel UNet 3+ that has full-

scale skip connections which were minimum details with 

maximum semantics from feature maps. It also has deep 

supervision to learn the hierarchical representations. This 

method minimised the parameters to improve the efficiency of 

computation. 

Cao et al. [17] developed a Swin-Unet that has a 

Transformer for the local-global semantic feature. It used 

shifted windows as the encoder and symmetric decoder for 

global context and patch expanding layer to perform the up-

sampling operation.   

Weng et al. [18] implemented a Neural architecture search 

(NAS)-Unet that is stacked by the DownSC and UpSC 

process. It is updated by a differential architecture strategy 

simultaneously. It attained a good segmentation result on 

various datasets. 

Yan et al. [19] implemented an Axial Fusion Transformer 

UNet (AFTer-UNet) that has convolutional layers and 

transformers used for a long-range signal. This model has 

minimum parameters with less GPU memory for training 

models. 

Park et al. [20] presented a Unicorn model that has multiple 

time series images which have a bottleneck layer with 

convolution operations to capture the spatiotemporal 

variables. This method attained a higher MAE which was 12% 

better than previous models. 

Huang et al. [21] compared various models of UNet, Res-

UNet, Attention Res-UNet, and nnUNet by assessing their 

results in brain tumour, polyp and multi-class heart 

segmentation tasks. The nnUNet shows superior overall 

performance across the experiments consistently. 

Alrfou et al. [22] developed parallel CNN and Transformer 

encoders to extract the higher transfer-learning benefits. It is 

pre-trained on materials microscopy images with an accuracy 

of 79.9% in Dice Similarity Coefficient (DSC), respectively. 

Liao et al. [23] explored Lightweight Mamba UNet 

(LightM-UNet) that has Residual Vision Mamba to capture 

deep semantic features. This model processed a long-range 

spatial dependency effectively with a linear computational 

complexity. 

Al Qurri et al. [24] designed a Three-Level Attention (TLA) 

model that has Attention Gate (AG), channel attention and 

spatial normalization in it. The AG presented structural 

information and attention used for interdependencies between 

channels. 

Khan et al. [25] experimented with a Hybrid Attention-

Based Residual Unet (HA-RUnet) that has a residual block to 

capture low- and high-level features from MRI volumes. This 

method was trained on the BraTS-2020 dataset and achieved a 

result of DSC of 0.867, 0.813, and 0.787 and also the 

sensitivity of 0.93, 0.88, and 0.83, respectively. 

3. PROPOSED METHODOLOGY

In the proposed system, the medical image segmentation is 

done by a novel APTA-UNet architecture. The proposed UNet 

Architecture is given in Figure 1, which has four sections such 

as encoder path, bottleneck layer, decoder path and Residual 

connections. These layers are used to capture both low-level 

and high-level features effectively.  

3.1 Encoder path 

In the Encoder Path, the initial input image is processed by 

a convolutional layer. These layers are used to increase the 

filter sizes and decrease the spatial dimensions. These layers 

are used to extract low-level features like edges and textures. 

The Max pooling layers are used to downsample the feature 

maps and reduce computational cost. 

3.2 Bottleneck layer 

In the UNet Bottleneck layer, the proposed AP Module is 

used in it. The AP module is an integration of both the 

Attention-Augmentation and positioning embedding process. 

The Attention-Augmented Convolutional Module is used to 

capture both local and global dependencies [26]. After the 

third downsampling block, it operates on the activation maps 

obtained where the feature map dimensions are 32×32 with 

128 channels. It effectively learns complex spatial 

relationships using four attention heads, a kernel size of 3×3 

and depths of queries (dk=40) and values (dv=4) respectively. 

This module has a feature map that is concatenated with 

regular convolutional outputs from the last downsampling 

block to improve the data passed to the decoder. 
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Figure 1. APTA-UNet architecture 

To enhance spatial awareness, a Positional Embedding 

Model is supported which is used in bottleneck. These 

embeddings are learned using an unsupervised objective 

function that is inspired by the skip-gram model. It is used to 

reduce an error in first- and second-order proximities 

predicting between nodes in the feature graph. The objective 

function is expressed as in the following. 

𝐿𝑈(𝑃𝑣 , 𝐺) = ∑ ∑ [−𝑙𝑜𝑔𝜎(𝑝𝑣
𝑇𝑝𝑢)

𝑢∈𝑁(𝑣)𝑣∈𝑉

− 𝑄. 𝐸𝑢′~𝑃𝑛(𝑣) log(𝜎(−𝑝𝑢
𝑇𝑝𝑢′))]

(1) 

where, pv and pu denotes the positional embedding of node u 

and v, 𝑃𝑛(𝑣)  denotes the negative sampling distribution, Q

represents the number of negative samples per edge and σ 

indicates a nonlinear activation function. 

The embeddings are computed through multiple fully 

connected layers, where the t-th layer is defined as: 

𝑝𝑣
𝑡 = 𝜎(𝑊𝑒𝑚𝑏

𝑡 𝑝𝑣
𝑡−1) (2) 

where, 𝑊𝑒𝑚𝑏
𝑡  indicates a weight matrix for layer t. 

It is added to the feature maps before applying the attention 

mechanism, enabling the model to retain and utilize spatial and 

structural context. 

To address the class imbalance inherent in medical datasets, 

an Inverse Class-Weighted Cross-Entropy Loss is employed 

that is expressed as: 

𝐶𝐸(𝑧, 𝑦) = 𝑤𝑦 . − log (
𝑒𝑥𝑝(𝑧𝑦)

∑ 𝑒𝑥𝑝(𝑧𝑗)𝐶
𝑗=1

) (3) 

where, 𝑤𝑦 =
1

√𝑛𝑦
, 𝑛𝑦 denotes sample frequency of class y and

C indicates the total number of classes. This weighting is used

to lessen the frequency of classes that contribute more learning 

process. The Separate weighting is computed to train and 

validate datasets to account for distributional differences.  

In this layer, each pixel is considered as a node in a grid. 

The grid structure acts as the graph for processing. Each node 

(pixel) in the grid is connected to its spatial neighbors which 

form an implicit graph where the edges represent the spatial 

proximity between pixels. The adjacency matrix for this grid-

based graph is constructed based on the local neighborhood of 

each pixel. Specifically, each node is connected to pixels 

within a fixed neighborhood. This connection is used to 

capture the spatial relationships between pixels. 

The objective function used for positional embedding aims 

to reduce the error in predicting the relative positional 

relationships between neighboring nodes within this grid 

structure. This is used for the model to capture spatial 

dependencies in medical images. By adapting the skip-gram 

model in this manner, the spatial relationships are effectively 

learned in grid-based image data. It supports the models to 

segment complex anatomical structures with varying shapes 

and sizes. 

After the bottleneck completion, the enriched feature maps 

are attained using attention augmentation. The positional 

embeddings and adaptive loss functions ensure precise 

segmentation by achieving spatial awareness.  

3.3 Decoder path 

Here, the bottleneck feature maps are upsampled using 

transposed convolutions or bilinear interpolation. These layers 

increased the spatial dimensions of the feature maps gradually. 

3.4 Residual connections 

The Residual Connection is used to allow gradients to flow 

easily which helps for training in deeper. For a Residual 
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Connection among encoder and decoder channels, the novel 

TP module is used which is a Trio Fusion of HaloNet 

Attention, Axial Attention and Non-Local Attention models. 

Each attention mechanism-based residual connection 

improves local and global context learning. 

In the medical image segmentation process, the TP module 

contributes as:  

• HaloNet is used to ensure sharp boundary detection and

fine-grained features for small lesion segmentation.

• Axial Attention models are used for global context

efficiently to enable the network to capture large structural

patterns with lower computational costs.

• Non-local Attention is used to refine long-range

dependencies by enabling better segmentation of complex

regions.

3.5 HaloNet attention 

This attention model is used to localize self-attention to 

attain an efficient feature extraction in smaller spatial 

neighborhoods [27]. Defining haloed neighborhoods, it limits 

attention to a subset of spatial features to minimise 

computational complexity while preserving local details. The 

mechanism consists of query block size b and halo size h to 

define the region of interest for attention. For example, a query 

block of b=8 and halo size h=3 ensures a 14×14 receptive field. 

Also, it modified a bottleneck width multiplier and a 1×1 

convolution before global average pooling for better feature 

representation. 

The attention operation is mathematically expressed as: 

𝐻𝑎𝑙𝑜𝑁𝑒𝑡𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
) 𝑉 (4) 

where, Q, K and V indicate queries, keys, and values from 

local spatial neighborhood.  

In segmentation tasks, HaloNet preserves fine-grained 

features used to identify boundaries and small lesions by 

integrating its output into U-Net's encoder layers. 

3.6 Axial attention 

This Attention [28] is used to simplify the global attention 

computation by dividing it across image axes. It is used to 

apply attention along one axis (rows or columns) at a time 

instead of attending to all pixels simultaneously. For instance, 

row attention (k=1) computes: 

𝐴𝑥𝑖𝑎𝑙𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑟𝑜𝑤(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
) 𝑉 (5) 

While keeping column information independent. 

Similarly, column attention (k=2) processes information 

along columns. This two-pass approach reduces 

computational complexity from 𝑂(𝑁2) in traditional attention

to 𝑂(𝑁√𝑁), where N is the number of pixels. 

3.7 Non-local attention 

This attention model is used to capture long-range 

dependencies by enabling every feature map pixel to interact 

with all others [29]. Unlike HaloNet or Axial Attention, this 

method aggregates a global context directly which is 

expressed as: 

𝑁𝑜𝑛 − 𝑙𝑜𝑐𝑎𝑙 (𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
) 𝑉 + 𝑥 (6) 

where, x indicates the input feature map and the residual 

connection +x stabilizes training. 

3.8 Fusion in TP model 

The fusion strategy combines the outputs of HaloNet, Axial 

Attention, and Non-Local Attention to influence their 

complementary strengths. Outputs from each attention module 

are concatenated along the channel axis: 

𝐹𝑓𝑢𝑠𝑒𝑑 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝐻𝑎𝑙𝑜𝑁𝑒𝑡 , 𝐹𝐴𝑥𝑖𝑎𝑙 , 𝐹𝑁𝑜𝑛𝐿𝑜𝑐𝑎𝑙) (7) 

where, 𝐹𝐻𝑎𝑙𝑜𝑁𝑒𝑡 , 𝐹𝐴𝑥𝑖𝑎𝑙 , 𝐹𝑁𝑜𝑛𝐿𝑜𝑐𝑎𝑙  denotes attention-

augmented feature maps. 

3.9 Transformation 

The concatenated features are passed through a 1×1 

convolution to reduce the dimensionality: 

𝐹𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑣1×1(𝐹𝑓𝑢𝑠𝑒𝑑) + 𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (8) 

where, 𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  denotes skip connection from the encoder.

The fused features are passed through the decoder, where 

their rich local (HaloNet), axis-wise global (Axial) and full 

global (Non-Local) context improve segmentation accuracy. 

At last, the 1x1 convolutional layer produces the final 

segmentation map with each pixel classified into one of the 

desired classes.  

By integrating these attentions, the APTA-UNet model 

robustly addresses class imbalance issues and captures lesion 

progression effectively.  

4. EXPERIMENTAL RESULTS

4.1 Dataset description 

• The CVC-ClinicDB Dataset: It is collected from

Barcelona Hospital and includes 612 polyp images

extracted from 31 colonoscopy videos. Each image has

expert-annotated ground truth of it. The original image

resolution is 383×288 pixels [30].

• COVID-19 CT Dataset: It was gathered on Kaggle in

2019 and contains CT lung scan images along with

corresponding label data. The original image size is

512×512 pixels, but images can be resized to 256×256 as

needed [30].

• Breast Ultrasound Dataset: It was gathered on the

Kaggle dataset that contains 780 PNG images collected in

2018 from 600 women aged 25-75, with an average size of

500×500 pixels. The images are categorized into three

classes: normal, benign, and malignant, with ground truth

annotations included. It supports research in breast

abnormality detection and classification.

For each dataset, the data is split into 80% training and 20%

test sets. To augment the data, the techniques of random 

rotation, flipping, zooming, and translation are applied. In 
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terms of class distribution, the CVC-ClinicDB dataset 

contained 450 polyps and 162 non-polyps. The COVID-19 CT 

dataset had 120 positive and 380 negative cases and the Breast 

Ultrasound dataset included 260 normal, 290 benign, and 230 

malignant images. To mitigate class imbalance, an Inverse 

Class-Weighted Cross-Entropy Loss is used to balance 

performance across all classes. 

The proposed APTA-UNET was evaluated across three 

datasets, focusing on segmentation tasks in medical imaging 

in comparsion with Ground Truth (GT). Metrics used include 

DSC, Intersection over Union (IoU), Precision, Sensitivity 

(Recall), Time, and Parameters. Below is a detailed discussion 

of the results. 

DSC: It is defined as the intersection between segmented 

results to the GT. 

IoU: It measures the region of intersection between the 

predicted and original portions. 

Precision: It is the proportion of accurately segmented 

positive pixels out of all segmented positive pixels. 

Sensitivity (Recall): Sensitivity defines the capability of 

the model to correctly detect positive pixels. 

Time (Inference Speed): The computational time was 

measured for inference on a single image. 

Parameters: The number of trainable parameters 

determines the model's complexity and memory footprint. 

Figure 2(a) shows the segmentation results on CVC-

ClinicDB Dataset. The proposed model can absolutely 

differentiate lesion regions with blurred boundaries. It 

effectively addresses the challenge of segmenting polyps with 

colors similar to the background. In addition, accurately 

detecting polyp tissues of varying shapes, sizes, and colors. 

The regions and boundaries are identified clearly. 

The segmentation results on the COVID-19 CT Dataset are 

given in Figure 2(b). The proposed model preserves more 

image details and produces segmentation outputs that align 

closely with the GT images. The segmentation outputs on the 

Breast Ultrasound Dataset are given in Figure 2(c). 

The Figure 3 shows the training and validation accuracy of 

a model over 250 epochs. Initially, the curves show a steady 

increase which denotes that the model is learning and 

improving its ability to generalize. The validation accuracy 

closely follows the training accuracy and shows minimal 

overfitting. Overall, the convergence of both curves suggests 

that the model is performing consistently well on both training 

and validation data and achieves high accuracy levels by the 

end of the training process. 

(a)  (b)  (c) 

Figure 2. Segmentation results (a) CVC-ClinicDB Dataset (b) COVID-19 CT Dataset (c) Breast Ultrasound Dataset 
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Figure 3. Model accuracy and loss validation result for Model 1-CVC-ClinicDB Dataset, Model 2-COVID-19 CT Dataset and 

Model 3-Breast Ultrasound Dataset 

Table 1. CVC-ClinicDB Lesion segmentation (Dataset 1) 

Method DSC IoU Precision Sensitivity Time (h) Parameters (M) 

APTA-UNet 0.949 0.942 0.963 0.974 1.3 24.2 

AFTer-UNet [19] 0.921 0.865 0.923 0.952 2.7 35.1 

H-DenseUNet [31] 0.913 0.848 0.901 0.924 3.8 40.5 

DenseRes-UNet [32] 0.902 0.819 0.892 0.915 3.4 38.7 

U-Net 3+ [16] 0.892 0.808 0.834 0.893 5.2 37.5 

Swin-UNet 0.939 0.935 0.957 0.962 1.5 40.0 

MISSFormer 0.935 0.928 0.952 0.957 1.4 38.5 

Table 2. COVID-19 CT segmentation (Dataset 2) 

Method DSC IoU Precision Sensitivity Time (h) Parameters (M) 

APTA-UNet 0.957 0.950 0.968 0.978 1.5 25.4 

AFTer-UNet 0.924 0.872 0.927 0.958 2.9 34.7 

H-DenseUNet 0.910 0.843 0.899 0.921 3.6 39.9 

DenseRes-UNet 0.899 0.827 0.887 0.913 3.2 38.1 

U-Net 3+ 0.886 0.812 0.840 0.895 5.0 37.2 

Swin-UNet 0.947 0.941 0.960 0.970 1.6 41.0 

MISSFormer 0.940 0.932 0.955 0.970 1.7 36.8 

Table 1 gives the CVC-ClinicDB Lesion Segmentation 

performance result where the proposed APTA-UNet attained 

a better performance when compared to previously proposed 

U-Net models. The APTA-UNet achieves the highest DSC

(0.949) and IoU (0.942) values. Also, it shows the highest

precision and sensitivity rate of 0.963 & 0.974, respectively. It

proves the robustness of the model for detecting the region of

interest portion with reduced false positives. It consumes only

a runtime of 1.3 hours and a lightweight architecture of 24.2M

parameters which is computationally efficient. The reported

"Time (h)" refers to the inference time per image, not the total

training time or inference time per epoch. It reflects the

average time taken for the model to perform segmentation on

a single image after the model has been trained. Also, other

models like AFTer-UNet, H-DenseUNet, Swin-UNet,

MISSFormer and DenseRes-UNet exhibit lower accuracy

(DSC ranging from 0.902 to 0.935) and require significantly

more time and parameters. The U-Net 3+ achieves the lowest

DSC (0.892), reflecting its limitations. Overall, in the COVID-

19 Lesion dataset, the APTA-UNet sets a new benchmark by

combining high accuracy with computational efficiency.

Table 2 provides the comparative performance of various 

UNet methods for the COVID-19 CT liver dataset 

segmentation. Here, the proposed APTA-UNet achieves the 

highest effectiveness in all metrics, such as DSC of 0.957, IoU 

of 0.950, precision of 0.968 and sensitivity of 0.978, 

respectively. It shows its ability to accurately identify true 

positives while minimizing false negatives. Also, it achieves 

this performance with the shortest processing time (1.5 hours) 

and a relatively low parameter count of 25.4M which shows 

its efficiency. Also, existing models like AFTer-UNet, H-

DenseUNet, and DenseRes-UNet have lower than proposed in 

all aspects. This shows all other methods are less effective for 

lung segmentation than the proposed APTA-UNet 

respectively. 

Table 3 represents the performance of different methods for 

Breast Ultrasound Dataset segmentation. The proposed 

APTA-UNet outperforms with a DSC of 0.904 and an IoU of 

0.827. It also has a high precision (0.892) and sensitivity 

(0.889) which shows its accuracy and its ability to correctly 

identify tumor regions. Additionally, it has the lowest 

processing time of 0.45 hours with a moderate number of 

parameters (31.2M). Also, other traditional methods attained 

lower accuracy and also required more time and computational 

resources with its less effective performance in this 

segmentation task. 

2792



Table 3. Breast Ultrasound Dataset segmentation (Dataset 3) 

Method DSC IoU Precision Sensitivity Time (h) Parameters (M) 

APTA-UNet 0.904 0.827 0.892 0.889 0.45 31.2 

AFTer-UNet 0.876 0.792 0.864 0.875 0.50 35.1 

H-DenseUNet 0.858 0.774 0.852 0.874 0.53 40.5 

DenseRes-UNet 0.852 0.769 0.848 0.877 0.52 38.7 

U-Net 3+ 0.835 0.750 0.831 0.879 0.48 37.5 

Swin-UNet 0.880 0.805 0.875 0.881 0.5 41.0 

MISSFormer 0.880 0.800 0.872 0.879 0.55 38.0 

Table 4. Ablation study of TA module 

Model Configuration DSC IoU Precision Sensitivity 

HaloNet-only 0.865 0.780 0.845 0.850 

Axial-only 0.890 0.810 0.890 0.920 

Non-Local-only 0.890 0.825 0.888 0.915 

TA 0.949 0.942 0.963 0.974 

Table 5. Statistical analysis of APTA-UNet for breast ultrasound, CVC-ClinicDB Lesion, and COVID-19 datasets 

Metric APTA-UNet AFTer-UNet H-DenseUNet U-Net 3+ p-value (t-test) 95% Confidence Interval for DSC 

Breast Ultrasound 

DSC 0.904 ± 0.005 0.876 ± 0.007 0.858 ± 0.008 0.835 ± 0.009 0.001 [0.899, 0.909] 

IoU 0.827 ± 0.006 0.792 ± 0.007 0.774 ± 0.008 0.750 ± 0.009 0.003 [0.819, 0.835] 

Precision 0.892 ± 0.004 0.864 ± 0.006 0.852 ± 0.007 0.831 ± 0.008 0.002 [0.884, 0.900] 

Sensitivity 0.889 ± 0.005 0.885 ± 0.006 0.894 ± 0.007 0.879 ± 0.007 0.004 [0.875, 0.894] 

CVC-ClinicDB 

DSC 0.949 ± 0.004 0.921 ± 0.005 0.913 ± 0.006 0.892 ± 0.005 0.002 [0.944, 0.954] 

IoU 0.942 ± 0.003 0.865 ± 0.004 0.848 ± 0.005 0.808 ± 0.005 0.001 [0.938, 0.946] 

Precision 0.963 ± 0.002 0.923 ± 0.003 0.901 ± 0.004 0.834 ± 0.004 0.000 [0.960, 0.967] 

Sensitivity 0.974 ± 0.003 0.952 ± 0.004 0.924 ± 0.005 0.893 ± 0.005 0.001 [0.970, 0.979] 

COVID-19 CT  

DSC 0.957 ± 0.004 0.924 ± 0.006 0.910 ± 0.007 0.886 ± 0.005 0.001 [0.952, 0.962] 

IoU 0.950 ± 0.003 0.872 ± 0.004 0.843 ± 0.005 0.812 ± 0.005 0.002 [0.945, 0.955] 

Precision 0.968 ± 0.002 0.927 ± 0.003 0.899 ± 0.004 0.840 ± 0.004 0.000 [0.965, 0.972] 

Sensitivity 0.978 ± 0.002 0.958 ± 0.003 0.921 ± 0.004 0.895 ± 0.004 0.001 [0.974, 0.981] 

To validate the effectiveness of the TA module, an ablation 

study is conducted on the CVC-ClinicDB Lesion dataset to 

evaluate the performance of each attention component 

independently and in combination. The obtained results are 

given in Table 4.  

The model using only HaloNet attention achieves the lowest 

performance in all metrics. It shows that local spatial 

relationships alone are not sufficient for accurate medical 

image segmentation. The model using Axial attention alone 

improves the performance compared to HaloNet-only. 

However, it still does not perform as well as the full TA 

approach. The non-local attention captures long-range 

dependencies across the entire image; it still underperforms 

compared to the full TrioFusion model. Overall, it is observed 

that combining multiple attention mechanisms supports 

refining the segmentation by using both local and global 

spatial relationships. 

In addition to the performance metrics, statistical 

significance tests are conducted to validate the improvements 

achieved by the APTA-UNet model over competing methods. 

The paired t-tests are used to compare the segmentation 

performance between APTA-UNet and other baseline models. 

In addition, 95% confidence intervals (CIs) for the DSC and 

IoU values are computed to quantify the uncertainty in the 

performance estimates. From Table 5, it is observed that the 

improvements observed in APTA-UNet over baseline models 

are not only substantial but also statistically significant. The 

95% CI for APTA-UNet indicate a high level of consistency 

in performance with a narrower interval compared to the other 

models. The p-values of less than 0.05 indicate that the 

performance of APTA-UNet is statistically significantly 

higher than the other models. 

5. CONCLUSION

The proposed novel APTA-UNet architecture introduces an 

advanced AP module and TA modules to attain an accurate 

segmentation to improve spatial context learning in medical 

image segmentation. This APTA-UNet architecture is 

validated using three datasets, such as COVID-19 CT 

segmentation, CVC-ClinicDB lesion segmentation and Breast 

Ultrasound segmentation. The performance is evaluated using 

metrics such as Dice, IoU, Precision, Sensitivity, Time, and 

Model Parameters. The results show that the proposed APTA-

UNet achieved Dice scores of 94.9%, 95.7%, and 90.4% 

across the respective datasets, demonstrating superior 

segmentation accuracy compared to other advanced UNet-

based models. The superior accuracy is attributed to the 

effective fusion of local and global contextual information 

enabled by the TrioFusion Attention mechanisms. This 

demonstrates that the proposed architecture is both efficient 

and scalable and achieves state-of-the-art performance in 

medical image segmentation tasks. Future research will focus 

on extending the model to multi-modal MRI scans to address 

challenges such as inter-modality data fusion and 

computational efficiency. This will be achieved by using 

multi-task learning and optimized attention mechanisms for 
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improved diagnostic performance. 
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