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In modern healthcare, medical image segmentation is a critical component that identifies
and localizes the anatomical structures and pathological regions within medical scans
accurately. However, image segmentation is a challenging task based on anatomical
variation, varying image qualities and complex spatial dependencies. These challenges lead
to delayed diagnostic accuracy and treatment planning. The proposed work presented an
APTA-UNet architecture with an advanced mechanism of two modules as AP module and
the TA module to improve spatial and contextual awareness. In the proposed UNet, the
bottleneck structure implemented an attention augmentation with Positional Embedding
named as AP module that is used to distinguish positional relationships and contextual
dependencies across the image. Furthermore, the proposed architecture introduces a
TrioFusion Attention Module named TA module that is used as a residual connection
between the encoder-decoder sides. This TriFusion Attention Module is an integration of
HaloNet Attention, Axial Attention, and Non-Local Attention. This fusion is used to learn
both local and global spatial relationships to enhance the ability to recognize intricate details
and broader spatial dependencies. The experimental result used three medical datasets of
CVC-ClinicDB, COVID-19 CT, and Breast Ultrasound to validate APTA-UNet
performance. It achieves a Dice Similarity Coefficient of 0.949, 0.957, and 0.904 for the
CVC-ClinicDB Lesion, COVID-19 CT, and Breast Ultrasound datasets, respectively,

compared to 0.939, 0.947, and 0.88 for the best performing baseline model.

1. INTRODUCTION

In modern healthcare technologies, the medical imaging
tool plays a most essential part in it [1]. This tool enables the
visualization of anatomical structures and pathological
conditions with higher precision. Despite important
advancements, the effective utilization of these images
remains a challenge based on the absolute complexity and
volume of data generated. This challenge is overcome by
processing a segmentation on it [2]. The segmentation is used
to partition the input data into meaningful regions to enable
clinical analysis and decision-making. Medical imaging
segmentation is used in various applications like brain tumour,
breast cancer, kidney stones, organ delineation, and treatment
planning to enhance prediction accuracy [3].

In recent decades, there are numerous imaging modalities
have been employed across diverse medical domains such as
radiology, cardiology, oncology, and neurology. Several
Techniques like X-ray, computed tomography (CT), magnetic
resonance imaging (MRI), ultrasound and positron emission
tomography (PET) have provided detailed pathological and
physical behaviour in an image [4, 5]. Each modality has a
specific benefit that differs from others X-rays are cost-
effective imaging of dense structures like bones, CT scans give
internal organs cross-sectional views; MRI provides
visualizing the brain’s soft tissues and functions, ultrasound is
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used for real-time imaging capabilities and PET is used for
metabolic and functional imaging in oncology. This process
supports to process of an exact diagnosis and treatment
planning [6].

However, these modalities have several limitations: Manual
understanding is hard and consumes more time [7]. The
complex in nature has noise, artefacts and overlapping
structures that complicate the process of segmentation. To
overcome these issues, some traditional methods like
thresholding, edge detection and region growing are applied
[8]. However, these methods are not good at performance and
often struggle to achieve high accuracy in the presence of
irregular boundaries. These challenges have to be driven by
some reliable approaches to ensure robustness and accuracy in
medical imaging [9].

Based on these considerations, deep learning (DL) has
emerged for medical imaging segmentation [10]. In recent
times, DL has had a better performance in all the sectors which
can handle larger data and complex patterns with better
accuracy [11]. The convolutional neural network (CNNSs)
model is a popular DL method that automatically learns
hierarchical features from raw data to adapt to complex
patterns and variations in medical images. Also, a few
Techniques like U-Net, Generative Adversarial Networks
(GANS) and so on also have special segmenting behaviour
with high accuracy.
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In recent times, there are numerous enhancements have also
been added to a DL model to achieve an effective
segmentation that helps for an earlier disease prediction. In
this work, a novel APTA-UNet segmentation model is
presented using various datasets. This APTA-UNet method
has two main modules, as AP module and the TA Module, that
show its uniqueness from other UNets to attain effectiveness.
The key enhancement modules are given in the following.

i) AP Module: This module improves the capturing of long-
range dependencies and spatial relationships, leading to
more accurate and detailed segmentations.

ii) TA Module: This module enhances feature representation
by capturing diverse spatial dependencies, increasing the
model's ability to handle complex image patterns.

The remaining part of this work contributed to: Section
2 described related works and section 3 presented the proposed
methodology of APTA-UNet. Section 4 described the
experiment result and discussion. Finally, a conclusion
summary is given in section 5.

2. RELATED WORKS

Azad et al. [12] presented a U-Net model that has received
tremendous attention and has backbone, bottleneck or skip
connections with a Transformer architecture. It also addressed
a probabilistic prediction of the segmentation map.

Chen et al. [13] proposed a novel Dense-Res-Inception
Network (DRINet), which comprises a convolutional block
with dense connections, a deconvolutional block with residual
inception modules, and an unspooling block. This model
achieved a higher level of accuracy compared with other
existing models.

Wang et al. [14] presented CNN segmentation for both 2-D
segmentation of multiple organs from fetal MRI and brain
tumour core for training with higher accuracy. Also, Feng et
al. [15] presented a novel Context Pyramid Fusion Network
(CPFNet) designed for multiple global pyramid guidance
(GPG) among the encoder and the decoder initially. It also
provides various data from the global context to construct a
skip-connection.

Huang et al. [16] explored a novel UNet 3+ that has full-
scale skip connections which were minimum details with
maximum semantics from feature maps. It also has deep
supervision to learn the hierarchical representations. This
method minimised the parameters to improve the efficiency of
computation.

Cao et al. [17] developed a Swin-Unet that has a
Transformer for the local-global semantic feature. It used
shifted windows as the encoder and symmetric decoder for
global context and patch expanding layer to perform the up-
sampling operation.

Weng et al. [18] implemented a Neural architecture search
(NAS)-Unet that is stacked by the DownSC and UpSC
process. It is updated by a differential architecture strategy
simultaneously. It attained a good segmentation result on
various datasets.

Yan et al. [19] implemented an Axial Fusion Transformer
UNet (AFTer-UNet) that has convolutional layers and
transformers used for a long-range signal. This model has
minimum parameters with less GPU memory for training
models.

Park et al. [20] presented a Unicorn model that has multiple
time series images which have a bottleneck layer with
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convolution operations to capture the spatiotemporal
variables. This method attained a higher MAE which was 12%
better than previous models.

Huang et al. [21] compared various models of UNet, Res-
UNet, Attention Res-UNet, and nnUNet by assessing their
results in brain tumour, polyp and multi-class heart
segmentation tasks. The nnUNet shows superior overall
performance across the experiments consistently.

Alrfou et al. [22] developed parallel CNN and Transformer
encoders to extract the higher transfer-learning benefits. It is
pre-trained on materials microscopy images with an accuracy
of 79.9% in Dice Similarity Coefficient (DSC), respectively.

Liao et al. [23] explored Lightweight Mamba UNet
(LightM-UNet) that has Residual Vision Mamba to capture
deep semantic features. This model processed a long-range
spatial dependency effectively with a linear computational
complexity.

Al Qurri et al. [24] designed a Three-Level Attention (TLA)
model that has Attention Gate (AG), channel attention and
spatial normalization in it. The AG presented structural
information and attention used for interdependencies between
channels.

Khan et al. [25] experimented with a Hybrid Attention-
Based Residual Unet (HA-RUnet) that has a residual block to
capture low- and high-level features from MRI volumes. This
method was trained on the BraTS-2020 dataset and achieved a
result of DSC of 0.867, 0.813, and 0.787 and also the
sensitivity of 0.93, 0.88, and 0.83, respectively.

3. PROPOSED METHODOLOGY

In the proposed system, the medical image segmentation is
done by a novel APTA-UNet architecture. The proposed UNet
Architecture is given in Figure 1, which has four sections such
as encoder path, bottleneck layer, decoder path and Residual
connections. These layers are used to capture both low-level
and high-level features effectively.

3.1 Encoder path

In the Encoder Path, the initial input image is processed by
a convolutional layer. These layers are used to increase the
filter sizes and decrease the spatial dimensions. These layers
are used to extract low-level features like edges and textures.
The Max pooling layers are used to downsample the feature
maps and reduce computational cost.

3.2 Bottleneck layer

In the UNet Bottleneck layer, the proposed AP Module is
used in it. The AP module is an integration of both the
Attention-Augmentation and positioning embedding process.
The Attention-Augmented Convolutional Module is used to
capture both local and global dependencies [26]. After the
third downsampling block, it operates on the activation maps
obtained where the feature map dimensions are 32>32 with
128 channels. It effectively learns complex spatial
relationships using four attention heads, a kernel size of 3>3
and depths of queries (dk=40) and values (dv=4) respectively.
This module has a feature map that is concatenated with
regular convolutional outputs from the last downsampling
block to improve the data passed to the decoder.
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Figure 1. APTA-UNet architecture

To enhance spatial awareness, a Positional Embedding
Model is supported which is used in bottleneck. These
embeddings are learned using an unsupervised objective
function that is inspired by the skip-gram model. It is used to
reduce an error in first- and second-order proximities
predicting between nodes in the feature graph. The objective
function is expressed as in the following.

LU(PV.G)=Z Z [~loga(pyp.)

VEV UuEN (v)
—Q.Ey p,w) log(U(—PlTLPu’))]

(1

where, py and py denotes the positional embedding of node u
and v, B,(v) denotes the negative sampling distribution, Q
represents the number of negative samples per edge and ¢
indicates a nonlinear activation function.

The embeddings are computed through multiple fully
connected layers, where the t-th layer is defined as:

Py = c(Wenpps™ ) 2)

where, W[, indicates a weight matrix for layer t.

It is added to the feature maps before applying the attention
mechanism, enabling the model to retain and utilize spatial and
structural context.

To address the class imbalance inherent in medical datasets,
an Inverse Class-Weighted Cross-Entropy Loss is employed
that is expressed as:

exp(zy)

¢ exp(zj))

j=1
n,, denotes sample frequency of class y and

CE(z,y) = wy.— log( 3)

1

Jny'

C indicates the total number of classes. This weighting is used

where, w,, =
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to lessen the frequency of classes that contribute more learning
process. The Separate weighting is computed to train and
validate datasets to account for distributional differences.

In this layer, each pixel is considered as a node in a grid.
The grid structure acts as the graph for processing. Each node
(pixel) in the grid is connected to its spatial neighbors which
form an implicit graph where the edges represent the spatial
proximity between pixels. The adjacency matrix for this grid-
based graph is constructed based on the local neighborhood of
each pixel. Specifically, each node is connected to pixels
within a fixed neighborhood. This connection is used to
capture the spatial relationships between pixels.

The objective function used for positional embedding aims
to reduce the error in predicting the relative positional
relationships between neighboring nodes within this grid
structure. This is used for the model to capture spatial
dependencies in medical images. By adapting the skip-gram
model in this manner, the spatial relationships are effectively
learned in grid-based image data. It supports the models to
segment complex anatomical structures with varying shapes
and sizes.

After the bottleneck completion, the enriched feature maps
are attained using attention augmentation. The positional
embeddings and adaptive loss functions ensure precise
segmentation by achieving spatial awareness.

3.3 Decoder path

Here, the bottleneck feature maps are upsampled using
transposed convolutions or bilinear interpolation. These layers
increased the spatial dimensions of the feature maps gradually.

3.4 Residual connections

The Residual Connection is used to allow gradients to flow
easily which helps for training in deeper. For a Residual



Connection among encoder and decoder channels, the novel
TP module is used which is a Trio Fusion of HaloNet
Attention, Axial Attention and Non-Local Attention models.
Each attention mechanism-based residual connection
improves local and global context learning.

In the medical image segmentation process, the TP module
contributes as:
HaloNet is used to ensure sharp boundary detection and
fine-grained features for small lesion segmentation.
Axial Attention models are used for global context
efficiently to enable the network to capture large structural
patterns with lower computational costs.
Non-local Attention is used to refine long-range
dependencies by enabling better segmentation of complex
regions.

3.5 HaloNet attention

This attention model is used to localize self-attention to
attain an efficient feature extraction in smaller spatial
neighborhoods [27]. Defining haloed neighborhoods, it limits
attention to a subset of spatial features to minimise
computational complexity while preserving local details. The
mechanism consists of query block size b and halo size h to
define the region of interest for attention. For example, a query
block of b=8 and halo size h=3 ensures a 14 <14 receptive field.
Also, it modified a bottleneck width multiplier and a 1=l
convolution before global average pooling for better feature
representation.

The attention operation is mathematically expressed as:

T

Q
HaloNetgention (Q, K, V) = Softmax < Jd

where, Q, K and V indicate queries, keys, and values from
local spatial neighborhood.

In segmentation tasks, HaloNet preserves fine-grained
features used to identify boundaries and small lesions by
integrating its output into U-Net's encoder layers.

) AN C)

3.6 Axial attention

This Attention [28] is used to simplify the global attention
computation by dividing it across image axes. It is used to
apply attention along one axis (rows or columns) at a time
instead of attending to all pixels simultaneously. For instance,
row attention (k=1) computes:

Axial (Q,K,V) ft <QKT>V (5)

xia i K, = softmax
attention_row \/a

While keeping column information independent.

Similarly, column attention (k=2) processes information
along columns. This two-pass approach reduces

computational complexity from 0 (N?) in traditional attention
to O(NVN), where N is the number of pixels.

3.7 Non-local attention

This attention model is used to capture long-range
dependencies by enabling every feature map pixel to interact
with all others [29]. Unlike HaloNet or Axial Attention, this
method aggregates a global context directly which is
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expressed as:

Non — local (x) = softmax( (6)

QKT>
V+x
Vd

where, x indicates the input feature map and the residual
connection +x stabilizes training.

3.8 Fusion in TP model

The fusion strategy combines the outputs of HaloNet, Axial
Attention, and Non-Local Attention to influence their
complementary strengths. Outputs from each attention module
are concatenated along the channel axis:

(7

Ffused = Concat(FHaloNet: FAxial: FNonLocal)

denotes attention-

Where, FHaloNet' FAxial' FNonLocal
augmented feature maps.

3.9 Transformation

The concatenated features are passed through a 1x1

convolution to reduce the dimensionality:
Foutput = Conlel(Ffused) + Fresidqual (8)

where, F,.siquq denotes skip connection from the encoder.

The fused features are passed through the decoder, where
their rich local (HaloNet), axis-wise global (Axial) and full
global (Non-Local) context improve segmentation accuracy.
At last, the 1x1 convolutional layer produces the final
segmentation map with each pixel classified into one of the
desired classes.

By integrating these attentions, the APTA-UNet model
robustly addresses class imbalance issues and captures lesion
progression effectively.

4. EXPERIMENTAL RESULTS
4.1 Dataset description

The CVC-ClinicDB Dataset: It is collected from
Barcelona Hospital and includes 612 polyp images
extracted from 31 colonoscopy videos. Each image has
expert-annotated ground truth of it. The original image
resolution is 383>288 pixels [30].

COVID-19 CT Dataset: It was gathered on Kaggle in
2019 and contains CT lung scan images along with
corresponding label data. The original image size is
512>512 pixels, but images can be resized to 256>256 as
needed [30].

Breast Ultrasound Dataset: It was gathered on the
Kaggle dataset that contains 780 PNG images collected in
2018 from 600 women aged 25-75, with an average size of
500>500 pixels. The images are categorized into three
classes: normal, benign, and malignant, with ground truth
annotations included. It supports research in breast
abnormality detection and classification.

For each dataset, the data is split into 80% training and 20%
test sets. To augment the data, the techniques of random
rotation, flipping, zooming, and translation are applied. In



terms of class distribution, the CVC-ClinicDB dataset
contained 450 polyps and 162 non-polyps. The COVID-19 CT
dataset had 120 positive and 380 negative cases and the Breast
Ultrasound dataset included 260 normal, 290 benign, and 230
malignant images. To mitigate class imbalance, an Inverse
Class-Weighted Cross-Entropy Loss is used to balance
performance across all classes.

The proposed APTA-UNET was evaluated across three
datasets, focusing on segmentation tasks in medical imaging
in comparsion with Ground Truth (GT). Metrics used include
DSC, Intersection over Union (loU), Precision, Sensitivity
(Recall), Time, and Parameters. Below is a detailed discussion
of the results.

DSC: It is defined as the intersection between segmented
results to the GT.

loU: It measures the region of intersection between the
predicted and original portions.

Precision: It is the proportion of accurately segmented
positive pixels out of all segmented positive pixels.

Sensitivity (Recall): Sensitivity defines the capability of
the model to correctly detect positive pixels.

Time (Inference Speed): The computational time was
measured for inference on a single image.

Predicted Original
Mask Image

Ground
Truth

Original
Image

@)

Ground Predicted Original
Truth

Parameters: The number of trainable parameters
determines the model's complexity and memory footprint.

Figure 2(a) shows the segmentation results on CVC-
ClinicDB Dataset. The proposed model can absolutely
differentiate lesion regions with blurred boundaries. It
effectively addresses the challenge of segmenting polyps with
colors similar to the background. In addition, accurately
detecting polyp tissues of varying shapes, sizes, and colors.
The regions and boundaries are identified clearly.

The segmentation results on the COVID-19 CT Dataset are
given in Figure 2(b). The proposed model preserves more
image details and produces segmentation outputs that align
closely with the GT images. The segmentation outputs on the
Breast Ultrasound Dataset are given in Figure 2(c).

The Figure 3 shows the training and validation accuracy of
a model over 250 epochs. Initially, the curves show a steady
increase which denotes that the model is learning and
improving its ability to generalize. The validation accuracy
closely follows the training accuracy and shows minimal
overfitting. Overall, the convergence of both curves suggests
that the model is performing consistently well on both training
and validation data and achieves high accuracy levels by the
end of the training process.

Ground Predicted

Mask Image Truth Mask

Figure 2. Segmentation results (a) CVC-ClinicDB Dataset (b) COVID-19 CT Dataset (c) Breast Ultrasound Dataset
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Figure 3. Model accuracy and loss validation result for Model 1-CVVC-ClinicDB Dataset, Model 2-COVID-19 CT Dataset and
Model 3-Breast Ultrasound Dataset

Table 1. CVC-ClinicDB Lesion segmentation (Dataset 1)

Method DSC 1oU  Precision Sensitivity Time (h) Parameters (M)
APTA-UNet 0.949 0.942 0.963 0.974 1.3 24.2
AFTer-UNet [19]  0.921 0.865 0.923 0.952 2.7 35.1
H-DenseUNet [31] 0.913 0.848 0.901 0.924 38 40.5
DenseRes-UNet [32] 0.902 0.819 0.892 0.915 3.4 38.7
U-Net 3+ [16] 0.892 0.808 0.834 0.893 5.2 375
Swin-UNet 0.939 0.935 0.957 0.962 15 40.0
MISSFormer 0.935 0.928 0.952 0.957 1.4 38.5

Table 2. COVID-19 CT segmentation (Dataset 2)

Method DSC 1oU Precision Sensitivity Time (h) Parameters (M)
APTA-UNet 0.957 0.950 0.968 0.978 15 254
AFTer-UNet 0.924 0.872 0.927 0.958 2.9 34.7
H-DenseUNet 0.910 0.843  0.899 0.921 3.6 39.9
DenseRes-UNet 0.899 0.827 0.887 0.913 3.2 38.1

U-Net 3+ 0.886 0.812  0.840 0.895 5.0 37.2
Swin-UNet  0.947 0.941 0.960 0.970 1.6 41.0
MISSFormer  0.940 0.932  0.955 0.970 1.7 36.8

Table 1 gives the CVC-ClinicDB Lesion Segmentation
performance result where the proposed APTA-UNet attained
a better performance when compared to previously proposed
U-Net models. The APTA-UNet achieves the highest DSC
(0.949) and loU (0.942) values. Also, it shows the highest
precision and sensitivity rate of 0.963 & 0.974, respectively. It
proves the robustness of the model for detecting the region of
interest portion with reduced false positives. It consumes only
a runtime of 1.3 hours and a lightweight architecture of 24.2M
parameters which is computationally efficient. The reported
"Time (h)" refers to the inference time per image, not the total
training time or inference time per epoch. It reflects the
average time taken for the model to perform segmentation on
a single image after the model has been trained. Also, other
models like AFTer-UNet, H-DenseUNet, Swin-UNet,
MISSFormer and DenseRes-UNet exhibit lower accuracy
(DSC ranging from 0.902 to 0.935) and require significantly
more time and parameters. The U-Net 3+ achieves the lowest
DSC (0.892), reflecting its limitations. Overall, in the COVID-
19 Lesion dataset, the APTA-UNet sets a new benchmark by
combining high accuracy with computational efficiency.

Table 2 provides the comparative performance of various
UNet methods for the COVID-19 CT liver dataset
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segmentation. Here, the proposed APTA-UNet achieves the
highest effectiveness in all metrics, such as DSC of 0.957, loU
of 0.950, precision of 0.968 and sensitivity of 0.978,
respectively. It shows its ability to accurately identify true
positives while minimizing false negatives. Also, it achieves
this performance with the shortest processing time (1.5 hours)
and a relatively low parameter count of 25.4M which shows
its efficiency. Also, existing models like AFTer-UNet, H-
DenseUNet, and DenseRes-UNet have lower than proposed in
all aspects. This shows all other methods are less effective for
lung segmentation than the proposed APTA-UNet
respectively.

Table 3 represents the performance of different methods for
Breast Ultrasound Dataset segmentation. The proposed
APTA-UNet outperforms with a DSC of 0.904 and an loU of
0.827. It also has a high precision (0.892) and sensitivity
(0.889) which shows its accuracy and its ability to correctly
identify tumor regions. Additionally, it has the lowest
processing time of 0.45 hours with a moderate number of
parameters (31.2M). Also, other traditional methods attained
lower accuracy and also required more time and computational
resources with its less effective performance in this
segmentation task.



Table 3. Breast Ultrasound Dataset segmentation (Dataset 3)

Method DSC  1oU  Precision Sensitivity Time (h) Parameters (M)
APTA-UNet  0.904 0.827 0.892 0.889 0.45 31.2
AFTer-UNet  0.876 0.792 0.864 0.875 0.50 35.1
H-DenseUNet  0.858 0.774 0.852 0.874 0.53 40.5

DenseRes-UNet  0.852 0.769 0.848 0.877 0.52 38.7
U-Net 3+ 0.835 0.750 0.831 0.879 0.48 375
Swin-UNet 0.880 0.805 0.875 0.881 0.5 41.0
MISSFormer  0.880 0.800 0.872 0.879 0.55 38.0

Table 4. Ablation study of TA module

Model Configuration DSC  loU  Precision Sensitivity
HaloNet-only 0.865 0.780 0.845 0.850
Axial-only 0.890 0.810 0.890 0.920
Non-Local-only 0.890 0.825 0.888 0.915
TA 0.949 0.942 0.963 0.974

Table 5. Statistical analysis of APTA-UNet for breast ultrasound, CVC-ClinicDB Lesion, and COVID-19 datasets

Metric APTA-UNet AFTer-UNet H-DenseUNet  U-Net3+  p-value (t-test)  95% Confidence Interval for DSC
Breast Ultrasound

DSC 0.904 +0.005 0.876 +£0.007 0.858 £0.008 0.835 +0.009 0.001 [0.899, 0.909]

loU 0.827 +£0.006 0.792 +£0.007 0.774 £0.008 0.750 +0.009 0.003 [0.819, 0.835]

Precision 0.892 +0.004 0.864 +£0.006 0.852 £0.007 0.831 +0.008 0.002 [0.884, 0.900]

Sensitivity 0.889 +0.005 0.885 +0.006 0.894 £0.007 0.879 +0.007 0.004 [0.875, 0.894]
CVC-ClinicDB

DSC 0.949 £0.004 0.921 +0.005 0.913 +0.006 0.892 +0.005 0.002 [0.944, 0.954]

loU 0.942 +0.003 0.865 +0.004 0.848 £0.005 0.808 +0.005 0.001 [0.938, 0.946]

Precision 0.963 +0.002 0.923 +£0.003 0.901 £0.004 0.834 +0.004 0.000 [0.960, 0.967]

Sensitivity 0.974 £0.003 0.952 +0.004 0.924 +0.005 0.893 +0.005 0.001 [0.970, 0.979]
COVID-19CT

DSC 0.957 +£0.004 0.924 +£0.006 0.910 £0.007 0.886 +0.005 0.001 [0.952, 0.962]

loU 0.950 +0.003 0.872 +£0.004 0.843 £0.005 0.812 +0.005 0.002 [0.945, 0.955]

Precision 0.968 +0.002 0.927 £0.003 0.899 +0.004 0.840 +0.004 0.000 [0.965, 0.972]

Sensitivity 0.978 £0.002 0.958 +0.003 0.921 +0.004 0.895 +0.004 0.001 [0.974, 0.981]

To validate the effectiveness of the TA module, an ablation
study is conducted on the CVC-ClinicDB Lesion dataset to
evaluate the performance of each attention component
independently and in combination. The obtained results are
given in Table 4.

The model using only HaloNet attention achieves the lowest
performance in all metrics. It shows that local spatial
relationships alone are not sufficient for accurate medical
image segmentation. The model using Axial attention alone
improves the performance compared to HaloNet-only.
However, it still does not perform as well as the full TA
approach. The non-local attention captures long-range
dependencies across the entire image; it still underperforms
compared to the full TrioFusion model. Overall, it is observed
that combining multiple attention mechanisms supports
refining the segmentation by using both local and global
spatial relationships.

In addition to the performance metrics, statistical
significance tests are conducted to validate the improvements
achieved by the APTA-UNet model over competing methods.
The paired t-tests are used to compare the segmentation
performance between APTA-UNet and other baseline models.
In addition, 95% confidence intervals (CIs) for the DSC and
loU values are computed to quantify the uncertainty in the
performance estimates. From Table 5, it is observed that the
improvements observed in APTA-UNet over baseline models
are not only substantial but also statistically significant. The
95% CI for APTA-UNet indicate a high level of consistency
in performance with a narrower interval compared to the other

models. The p-values of less than 0.05 indicate that the
performance of APTA-UNet is statistically significantly
higher than the other models.

5. CONCLUSION

The proposed novel APTA-UNet architecture introduces an
advanced AP module and TA modules to attain an accurate
segmentation to improve spatial context learning in medical
image segmentation. This APTA-UNet architecture is
validated using three datasets, such as COVID-19 CT
segmentation, CVC-ClinicDB lesion segmentation and Breast
Ultrasound segmentation. The performance is evaluated using
metrics such as Dice, loU, Precision, Sensitivity, Time, and
Model Parameters. The results show that the proposed APTA-
UNet achieved Dice scores of 94.9%, 95.7%, and 90.4%
across the respective datasets, demonstrating superior
segmentation accuracy compared to other advanced UNet-
based models. The superior accuracy is attributed to the
effective fusion of local and global contextual information
enabled by the TrioFusion Attention mechanisms. This
demonstrates that the proposed architecture is both efficient
and scalable and achieves state-of-the-art performance in
medical image segmentation tasks. Future research will focus
on extending the model to multi-modal MRI scans to address
challenges such as inter-modality data fusion and
computational efficiency. This will be achieved by using
multi-task learning and optimized attention mechanisms for
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improved diagnostic performance.
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