%/ IETA

International Information and
Engineering Technology Association

Traitement du Signal
Vol. 42, No. 5, October, 2025, pp. 2809-2818

Journal homepage: http://iieta.org/journals/ts

Quantum Edge Detection in Digital Imaging: A Novel Approach Using Quantum

Exponential Entropy

Ahmed Elaraby*?"©, Mohamed EISheikh®?

Check for
updates

! Department of Cybersecurity, College of Engineering and Information Technology, Buraydah Private Colleges,

Buraydah 51418, Saudi Arabia

2 Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena 83523, Egypt
% Department of Basic Science, Cairo University, Cairo 12613, Egypt

Corresponding Author Email: ahmed.elaraby@svu.edu.eg

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420531

ABSTRACT

Received: 29 July 2025

Revised: 26 August 2025
Accepted: 23 September 2025
Available online: 31 October 2025

Keywords:

quantum image processing, edge detection,
medical images, quantum representation,
entropy

Quantum image processing is for the application of quantum computing and algorithms to
the solution of various problems. Classical edge detection algorithms are generally effective
but are prone to performing poorly in the handling of large sets of data and high-resolution
pictures, which could degrade performance. Quantum computing can significantly increase
efficiency and hasten breakthroughs in various sectors, thus making it an appealing solution
for complex image processing problems. Automated methods for the processing and
analysis of medical pictures can significantly benefit medics in the therapeutic and
diagnostic process. Here, the difficult problem of edge detection in medical pictures is
specifically addressed through the introduction of new multilevel solutions based on
quantum image representations of the one-dimensional histograms of the distributions of
gray levels. Our methods use the quantum exponential entropy approach to the
determination of the quantum information in image histograms, allowing us to recognize
and study subtle details within medical pictures on the quantum level. To establish the
efficiency of the approaches presented, we approach comparative analysis in comparison to
the classic techniques through the application of the varied sets of medical pictures.
Experiment results show unequivocal proof for the efficiency of our approaches, illustrating
the possibility for our new multilevel techniques based on quantum image representations
and the quantum exponential entropy approach to the determination of the quantum
information in image histograms to outclass the currently used techniques of edge detection
in medical pictures. Through the enhancement of the precision and the efficiency of the
detection of the edges, our work fosters the additional ongoing research in the topic of the
automated technigues of quantum medical image analysis.

1. INTRODUCTION

the reasons outlined, the classical operators either overlook
subtle edges or confuse noise artifacts for important

Edge detection is the foundation of image processing,
important in the detection of object boundaries and properties.
It is of greatest value in medical image data, where proper
identification of edges assists in the discrimination of
anatomical structures and lesions in order to supplement object
recognition, object separation, and three-dimensional
reconstruction of body organs [1, 2]. Even though there is
continued demand in properly detecting edges in noisy
medical images, the process itself is still a significant barrier.
The vast majority of medical image sets are marred by various
types of noise—such as electronic sensor noise, speckles in

ultrasound modalities, and low contrast—that mask true edges.

Classical edge detection operators such as high-filter-based
Sobel, Prewitt, Roberts, the Laplacian of Gaussian (LoG), and
the Canny edge detector are typically noise-contaminated.
They are susceptible to noise effects owing to the fact that
noise contributes appreciable high-frequency variation in
intensity, which is indistinguishable from true edges [3, 4]. For

2809

boundaries, therefore being limited in noisy image situations.
It is here where the emphasis on better edge detection
operators able to discern true edges from noise has been called
for [5, 6].

One of the successful methods for improving edge detection
in noise-dominated conditions is entropy-based thresholding,
where the detection of edges is viewed as a binary splitting
issue—discernment of edges from non-edges—under the
guidance of information theory axioms. Differently than
conventional methods, which are largely based on the use of
the image's neighborhood gradient information, entropy-based
approaches utilize the spatial properties of the image intensity
histogram to determine the optimum threshold to best split the
image and maximize the information-based quantity between
partitions. Shannon entropy, the very first measure of
information quantity, has been used for broad-based global
thresholding. An intriguing case is the algorithm proposed by
Kapur et al. [ 7], which uses the joint entropy of the background
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and foreground regions to select the threshold that best
partitions the image with maximum information value. Along
the same line of reasoning, researchers made generalized
entropy models to better fit different image statistical
properties. Tsallis entropy—a non-extensive measure of
entropy subjected to the parameter g—has in particular been
observed to possess benefits in the description of long-range
intensity correlations and used to improve thresholding
performance of images wherever the noise is of the
textured/correlated type [8, 9].

Though generalized entropy measures are superior in edge
detection for noisy images, they tend to involve the adjustment
of a free parameter for every particular case, which could
restrict their usefulness. Hill entropy—a generalized measure
in its own right, which is based on Hill’s diversity measure in
ecology—falls into the same category. It is parameter-
dependent, like other entropies, and is capable of
approximating various entropy types, the Shannon entropy
being the limit in particular circumstances [10, 11]. These
entropy expressions have been investigated for various
potential applications like image segmentation and edge
detection. For example, Balochian and Baloochian [12] put
forward a hybrid thresholding method which combines
Shannon and Tsallis entropy to enhance the detection of edges
in noisy medical pictures. Their algorithm proved to be less
susceptible to noise than the common edge detectors [13].

Extending the concept further, in 2017, Elaraby and Moratal
developed the two-stage threshold algorithm based on
generalized Hill entropy for the specific application of edge
detection in noisy medical imagery [1]. According to the first
phase of the approach, the image is segmented into
background and objects (foreground) through a maximization
of the Hill entropy of the image histogram to reach a global
threshold. Separating the large structures is helped by the
initial step. Local thresholds are independently estimated in
the background and the foreground by the entropy-based
criterion in the second phase [1, 14].

The approach integrates the first global threshold and the
two locally sharpened thresholds to generate two binary edge
maps, symbolizing the object boundaries and the background
transitions, respectively, which are summed to give the
ultimate edge map. The approach allows the detection of fine
edges which would otherwise be omitted by the single global
threshold. From the experiment, they published that the
approach exceeded the classic Canny detector and
outperformed even a Tsallis entropy-based approach in noisy
conditions, exhibiting superior continuity and accuracy of
edges [15].

With the success of this classical two-phase Hill entropy
algorithm in dealing with noise, it is then to speculate on its
promise in the quantum computing paradigms. It is possible to
drastically speed up computations through the use of quantum
parallelism and amplitude-based computations. In quantum
image processing, whole images are encoded as quantum
states so the whole image can be subject to parallel
manipulation through quantum superposition [16, 17]. For
instance, the Flexible Representation of Quantum Images
(FRQI) embeds pixel intensity in the form of the amplitude of
the quantum state while pixel locations are mapped to the basis
states. This form allows the whole of the pixel values to be
subject to the same quantum operation (unitary transform)
simultaneously [18, 19].

Quantum edge detection algorithms already exhibit
respectable speed advantages over classical counterparts. Yan
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et al. [17] put forward the quantum Sobel operator, QSobel, in
terms of the FRQI and attained exponential complexity
reductions in the gradient calculation in all the pixels in
parallel. It minimized the runtime from classical O(N) to
O((log N)2) in the quantum scenario [17]. Even better still,
Yao et al. [20] outlined the quantum approach of edge
detection in using only the single-qubit operation, regardless
of image dimensions, and brought out the promise of quantum
computing for real-time large-set image handling [20]. It
would seem to fall within the realm of possibility to map the
two-phase Hill entropy measure to the quantum computational
model. If then entropy-based thresholding and segmentations
could be implemented in quantum regimes, the entire image
intensity distribution could be subject to handling in parallel
and the sets of threshold applied in logarithmic- or even
constant-order time. It would prove of particular use in high-
resolution 3D- or real-time medical imaging [21].

Coupling of Hill entropy and quantum computing is also
possible due to the analogy between quantum probability
amplitudes and information-theoretic quantities. A quantum
entropy threshold algorithm would then be able to take
advantage of quantum-state evaluation to simultaneously
measure entropy or related cost functions for multiple
threshold candidates, then accelerate optimal threshold
choosing.

In summary, converting the classical Hill entropy edge
detection method into a quantum model offers the potential to
combine robust noise handling and theoretical rigor with the
computational speed of quantum systems. This work proposes
such a quantum algorithm, detailing the quantum image
representation, formulation of Hill entropy in quantum terms,
and the steps for implementing two-phase thresholding on a
quantum computer. This approach is particularly well-suited
for large-scale medical imaging and real-time analysis, where
classical methods often struggle to balance noise resilience
and processing speed [22].

Edge detection is a fundamental operation in classical image
processing, aiming to identify significant discontinuities in
pixel intensity that represent object boundaries. Traditional
methods such as Sobel, Prewitt, and Canny rely on spatial
derivatives to detect edges. However, these algorithms become
computationally expensive when processing large-scale or
high-resolution images.Quantum image processing (QIP)
emerges as a promising paradigm by leveraging quantum
mechanical principles to represent and manipulate images
more efficiently. One of the earliest and most cited models is
the Flexible Representation of Quantum Images (FRQI),
where a grayscale image of size 2"x2" can be encoded into a
quantum state using 2" qubits and amplitude encoding [23].

Another extension of the above is the Novel Enhanced
Quantum Representation (NEQR), which retains the pixel
locations and grayscale values in the form of basis states,
which offer a robust and direct image-retrieval mechanism
[24]. Such representations allow quantum algorithms to
perform image transformations, image enhancements, and
edge detection in fewer computational steps than classical
algorithms [25]. Moreover, quantum gates such as Hadamard,
CNOT, and Pauli-X are used to manipulate qubits for the
performance of pixel-wise operations, sharpening of edges,
and measurements. The theoretical advantage also opens up
the possibility of the use of classical optimization techniques,
such as the hill climbing algorithm, in quantum circuits to find
the optimum threshold values or boundary detection in the
superposed state space.



2. RELATED WORKS

Numerous efforts have explored the application of quantum
computing to edge detection. Researchers presented a method
that applied the Flexible Representation of Quantum Images
(FRQI) to perform edge detection in the quantum domain,
showing that standard edge operators could be implemented
using quantum gate operations on amplitude-encoded image
data [23]. Another research gave the form of the quantum
Sobel filter implemented by quantum Boolean logic,
highlighting the advantage of the parallel calculation of edges
in quantum computers. More recently, Zhang et al. [24] and
Sundani et al. [25] detailed the design of the NEQR-based
system for edge detection and image sharpening, showing
improved fidelity and quantum noise robustness. Even if these
efforts show the potential of quantum-enhanced image
manipulation, they are inclined to act on static filters or rely
heavily on binary logical gate sets. On the contrary, the
contribution in the present paper advocates the merging of hill
climbing optimization and quantum image representations for
the dynamic searching of the optimum edge boundaries,
hypothesizing the hybrid model for adaptation to the
complexity of the image under consideration while being
quantum-economical.

2.1 Classical edge detection methods

Edge detection is also among the earliest subjects of image-
processing research for which numerous various algorithms
and operators have been created. Perhaps two of the earliest
are the Sobel and Prewitt operators of the late 1960s, which
estimate the local intensity gradient by means of small
convolutional masks. The Sobel operator, for example,
employs two 3x3 kernels to approximate the horizontal and
vertical derivatives of an image, with the gradient magnitude
indicating edge presence. Although these gradient-based
methods are efficient and straightforward, they tend to amplify
high-frequency noise along with true edges. Similarly, the
Roberts cross operator, which uses compact 2x2 kernels to
detect diagonal changes, is lightweight in computation but
highly susceptible to noise due to its limited neighborhood
scope. The Prewitt operator, resembling the Sobel method but
using uniform weights in its kernel, also estimates gradients
and requires pre-processing steps such as smoothing to
mitigate noise effects [26, 27].

To overcome the limitations of first-order methods, second-
order derivative techniques were introduced, notably the
Laplacian of Gaussian (LoG) detector, also known as the
Marr-Hildreth algorithm. This method begins with Gaussian
smoothing to suppress noise, followed by the application of a
Laplacian filter to detect rapid intensity changes. Edges are
identified at the zero-crossings of the LoG response. While
more robust to noise than basic gradient operators due to the
smoothing step, LoG often produces thick edge lines and relies
on subsequent thresholding and thinning. The effectiveness of
this method heavily depends on selecting an appropriate
standard deviation for the Gaussian kernel: insufficient
smoothing retains noise, whereas excessive smoothing can
obscure important details [28].

Among the classic approaches, the Canny edge detector is
arguably the gold standard. In 1986, John Canny proposed the
algorithm, which made key constraints for edge detection—to
best maximize the reliability of detection, to accurately
localize edges, and to inhibit repeated edge output—using the
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calculus of variations to find the best smoothing filter. The
Canny detector algorithm encompasses multiple steps: the
application of Gaussian smoothing, the calculation of the
gradient (more typically through Sobel operators), the
application of non-maximum suppression to thin the lines of
edges, and double-threshold hysteresis to join the edge
segments while removing noise artifacts. For the entire
pipeline, the method of the Canny thus produces smooth,
continuous edges while coping decently with noise robustness.
However, the method is still susceptible to underperformance
in extremely noisy or low-contrast conditions and is
vulnerable to proper parameter adjustment, particularly for
smoothing settings and thresholds [5].

In short, traditional edge detection operators such as Sobel,
Prewitt, Roberts, and LoG are quick in strengthening edges but
tend to interpret abrupt intensity changes due to noise as
genuine edges, and thus they behave like high-pass filters.
Even the Canny algorithm, which is better than the above
techniques in terms of the addition of extra smoothing and
adaptive thresholding, is also tied to the paradigm of linear
filtering. Under heavy noise conditions, these techniques tend
to either neglect edges in order to prevent false alarms or make
errors in noise being interpreted as edge information. To
overcome these drawbacks, there are some attempts to look
into data-driven and adaptive techniques such as entropy-
based and fuzzy logic-based techniques, which are discussed
in the following sections.

2.2 Entropy-based edge detection and thresholding

Entropy-based approaches to edge detection are image-
segmentation- and information-theory-based, where the aim is
to maximize the value of information gained through an image.
Kapur et al. [7] contributed to the literature by introducing a
new entropy thresholding based on Shannon entropy. Here, in
the approach, the histogram of grayscale image is divided by
the potential threshold T in the two disjoint sets—evidently
observable by the user as background and foreground. The
entropy sum, Hiotai(ry=Hback+Hrore, Of the two subregions is then
obtained, and the threshold maximizing the sum is adopted to
be the optimum. Although originally motivated for binary
partition of images, the approach is portable to edge detection
by allotting the first of the two sets (typically the minority) to
the edge pixels and the second to the non-edge pixels. Shannon
entropy-based thresholding is extremely successful when the
image histogram is bimodal but may fail if the distributions of
edges and the non-edges are severely overlapping, or if higher-
order statistical interrelations are significant [29, 30].

To counter the lack of Shannon entropy in adequately
representing complex image properties, generalized entropy
expressions have also been employed by researchers. Tsallis
entropy is another popular representative, which is Shannon’s
measure generalized by the addition of a tunable parameter q >
0. When the value of q approaches 1, Tsallis entropy is close
to Shannon entropy. The parameter q adjusts the sensitivity to
different parts of the probability distribution to better respond
to rare events or noise in the form of outliers—a good attribute
when handling long-range dependent images or non-Gaussian
noise. For the purpose of thresholding, maximizing Tsallis
entropy in the grayscale histogram can give better
segmentations, particularly in cases where Shannon entropy is
of little use for segment discrimination between different
classes. However, the main issue here is in picking the
appropriate q for each image [31].



Researchers have had to resort to generalized entropy
measures in order to address the complexity of image data,
capturing finer statistical details which are overlooked by the
simpler schemes. Tsallis entropy is such an entropy measure
which is an extension of Shannon entropy and is regulated by
an adjustable parameter q>0. For q—1, Tsallis entropy
approaches Shannon entropy. The parameter q regulates the
weight which is assigned to different parts of the probability
distribution; e.g., for some values of q, Tsallis entropy is
particularly sensitive to the tail probabilities and is therefore
suited best for image data which includes spikes/long-range
dependencies. When applied to image thresholding,
maximizing the Tsallis entropy over the image histogram in
some cases obtains a better split between object and
background where the assumptions of Shannon's entropy are
violated. However, the great challenge which is presented in
the use of Tsallis entropy is determining the optimum value of
q for the specific image in all instances [32].

These other generalized measures of entropy also gained
application in image segmentation, some of which are Renyi
entropy, Kapur’s extended entropy, fuzzy entropy, and
Kaniadakis entropy. All of these also bring along the
parameter to be adjusted in order to obtain the trade-off
between the information release and noise removal. Hill
entropy, which is based on Hill’s measure of diversity, is
another family of measures of entropy to interpolate between
different statistics descriptors. It brings the intensity count of
simple number-based measure to the continuum up to Shannon
entropy and measures of concentration like Simpson’s index.
Even though less frequent in the use in the past in image
processing literature, Hill entropy also gained application
recently to treat the drawback of the consideration of the
dominant and rare intensity values. The common pitfall of the
entropy models is the needed parameter choice, but if the
appropriate optimization method like cross-validation or
auxiliary criterion is employed, they can significantly enhance

the performance of the threshold-based edge detection [33, 34].

There are various empirical research which have pointed out
the effectiveness of entropy-based thresholding for finding
edges in noisy conditions. For example, Heshmat et al.
proposed the hybrid approach of Shannon and Tsallis entropy.
By the merging of the classical and generalized measures of
entropy, their method corrects for bias between rare and
common pixel intensities, yielding better robustness to salt-

and-pepper noise in medical scans, such as scans of blood cells.

Their method also keeps computational overhead low by
minimizing space for best-possible thresholds to search. Other
studies looked at multi-phase entropy models to determine
multiple thresholds for multi-level segmentations. The
methods give broader edge bands, which are further
improvable. Furthermore, fuzzy entropy methods, such as the
fuzzy divergence approach of Chaira and Ray, correct for the
intrinsic uncertainty of pixel classification in the vicinity of
edges. The methods first transform the image to the fuzzy
space and then apply an entropy-based condition to threshold.
The fuzzy entropy models are particularly excellent in dealing
with fuzzy edge regions where membership of the pixels is in
doubt [35, 36].

The paper of Elaraby and Moratal [1] is of specific interest
for the work herein, for they had outlined a two-stage
thresholding method utilizing generalized Hill entropy. It
starts off its approach by choosing an optimum value of the
global threshold T1 in maximizing the Hill entropy of the
whole image histogram, thus generally partitioning the image
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into object and background regions. Local background and
object area thresholds T2 and T3 are then determined by
maximizing Hill entropy in the background and object
subregions, respectively. The resulting edge map is then
generated by integrating the edges thus obtained across all
three threshold values, therefore encompassing broad-based,
in addition to fine details-based, changes in intensity. The
hierarchical method is seen to be particularly well-adapted to
the detection of faint edges, which are otherwise generally
neglected by the classical methods.

Comparative evaluations demonstrated that this method
outperformed both Tsallis-based thresholding and the Canny
edge detector, particularly under noisy conditions, thereby
highlighting the potential of multi-level, adaptive entropy
frameworks for robust edge detection in complex imagery [37,
38].

2.3 Quantum image processing and quantum edge
detection

Quantum Image Processing (QIP) has emerged from the
convergence of quantum computing and classical image
processing, driven by the goal of harnessing quantum
computational speed for enhanced efficiency in image data
manipulation [39-43]. Central to QIP is the encoding of
images into quantum memory, with multiple quantum image
representation (QIR) frameworks proposed to optimize
processing in quantum systems:
¢ Flexible Representation of Quantum Images (FRQI):

This method encodes a 2" x2" -sized image into a quantum
state using 2n qubits for spatial coordinates and one qubit
for pixel intensity. Each basis state in this model
corresponds to a pixel’s position, with its amplitude
encoding grayscale or color values. By exploiting quantum
superposition, FRQI stores all pixel values simultaneously
in a single quantum state |I). A key strength lies in quantum
parallelism: operations such as global rotations can act on
all pixels concurrently, enabling tasks like bulk intensity
adjustments. However, retrieving individual pixel values
necessitates measurement, collapsing the quantum state.
Consequently, FRQI-based algorithms must prioritize
operations within the quantum phase space to avoid state
collapse [19].

Novel Enhanced Quantum Representation (NEQR): It
refines FRQI by encoding pixel intensities as discrete
binary values within qubit basis states. For an 8-bit
grayscale image, NEQR allocates 8 qubits for intensity and
2n qubits for coordinates. The resultant quantum state
lv,x,1(y,x)) represents a superposition of basis states, where
I(y,x) denotes the binary intensity at coordinates (y,x).
Unlike FRQI’s amplitude-dependent encoding, NEQR
stores intensity values in orthogonal states, enabling
unambiguous pixel retrieval through direct measurement
of intensity qubits. This explicit encoding simplifies
intensity comparisons and algorithmic design. While
NEQR requires more qubits than FRQI for equivalent
images, it achieves quadratic acceleration in state
preparation and circumvents the complexities of
amplitude-based encoding [44, 45].

The advancement of quantum algorithms for image
processing tasks, particularly edge detection, has been
propelled by innovations in quantum image representations.
Another work pioneered this domain by demonstrating edge
detection on a quantum processor through their Quantum



Probability Image Encoding (QPIE) method. Their approach
employed quantum operations to identify abrupt intensity
transitions, achieving edge extraction in constant time
irrespective of image dimensions. Subsequent work by Heo et
al. [46] introduced QSobel, a quantum Sobel operator
leveraging the Flexible Representation of Quantum Images
(FRQI). By exploiting quantum parallelism, QSobel computes
gradients across all pixel positions simultaneously via
quantum arithmetic, reducing computational complexity to
O(n?) for 2"x2" images, a significant improvement over the
classical O(4") complexity. Further developments extended
this paradigm to Prewitt, Robinson, and Haar wavelet-based
quantum edge detectors, where convolution and frequency-
domain operations are executed through tailored quantum
circuits. For instance, Zhang et al. [47] implemented an eight-
directional Robinson compass mask on quantum-encoded
images, utilizing superposition to evaluate all orientations
concurrently and applying quantum thresholding gates to
classify edges. These methodologies universally capitalize on
quantum state representations to perform filtering and
differentiation  operations with enhanced efficiency,
harnessing the inherent parallelism of quantum systems [17,
48, 491].

Beyond gradient-based methods, quantum thresholding and
segmentation techniques integrated with entropy principles
have gained traction. Pramanik et al. [50] addressed breast
tumor edge detection as a multilevel thresholding optimization
problem, deploying a quantum-inspired genetic algorithm
grounded in Tsallis entropy maximization. Their hybrid
quantum-classical framework identified optimal thresholds to
segment mammogram images, yielding superior PSNR/SSIM
metrics compared to conventional approaches. Similarly, Yao
et al. [20] had created a quantum edge detection mechanism

incorporating Hill entropy in the new enhanced quantum
representation (NEQR) scheme. The method they employed
constituted the application of hybrid neural-quantum filter to
suppress noise in encoded medical data and then entropy-
based thresholding for the dissection of the background and
foreground regions. The method achieved 97.5% accuracy in
edge detection and enhanced the PSNR, which establishes the
efficiency of the entropy measure generalizations in quantum
image processing. Such findings indicate the paradigm-
shifting potential of the integration of quantum computing and
entropy-based measures for medical image use cases [49-51].

Subsequent quantum image processing advancements
looked into adaptive and hybrid solutions for maximizing the
performance of edge detection. Shukla and Vedula [52] put
forward an adaptive quantum edge detection approach evolved
based on the usage of Quantum Pixel Imaging (QPI), which
encompasses the application of dynamic threshold
optimization techniques for maximizing the detection
accuracy in various conditions of an image. The approach
outperformed the static quantum filters in adaptability but
required heavy quantum computing resources. In the ensuing
direction [52], Shannon [53] developed a hybrid classical-
quantum framework using an enhanced version of the FRQI
representation. Their model successfully integrated classical
preprocessing with quantum logic to achieve effective edge
extraction in grayscale images. These two contributions
underscore a shift in the field towards more flexible,
optimization-driven, and hardware-aware quantum image
processing frameworks, which aligns closely with the
objectives of the current study [53]. Table 1 shows a
comparison between different quantum image representation
techniques.

Table 1. Comparison between different quantum image representation techniques

Study Representation Technique

Strengths Limitations

FRQI (Flexible Representation of
Quantum Images)
NEQR (Novel Enhanced

General quantum
image processing
Quantum Boolean

[19]

[23] Quantum Representation) Edge Detection
Quantum Sobel+ Edge

[24] NEQR+Quantum Gates Filtering

[44]  QPI (Quantum Pixel Imaging) Edge Detection

[46] Enhanced FROQI Hybrid Classical-

Quantum Model

Foundational flexible encoding model-
basis for further developments
Direct pixel value encoding-more
accurate than FRQI

High fidelity-improved noise resistance
Adaptive Quantum Dynamic edge adaptation- optimization-

Integrates classical and quantum
processing in simulation

Not suitable for high-resolution
grayscale images
Does not support color images-
sensitive to noise
Based on static filters-lacks
adaptability
Computationally complex-requires
advanced quantum hardware
Experimental only-not tested on real
quantum systems

based detection

3. PROPOSED METHODOLOGY

Entropy is the measure of uncertainty proposed by Shannon
in information theory to measure information in a source
which obeys the law of probability [54]. It is subsequent to
Shannon introducing information theory that there is vast
literature on invoking the concept in some of its applications
which is why Pal and Pal propose another measure in the form
of exponential entropy [55]. The traditional exponential
entropy is for the histogram of the gray-levels of an image
which carries the information of the distribution of the
frequency of the pixel intensities [55, 56]. The quantum
Exponential entropy, however, requires an appropriate
quantum representation of the image to reflect the information
quantum in nature. Shannon entropy is defined as:
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Hp) == piin(p) (M
i=1
Exponential entropy given by:
n
eH(p) = ) pielt @

i=1

As there are some merits put forward by for handling
exponential entropy in lieu of Shannon’s entropy, which is
extremely renowned, we observe the measure of the self-info
of an event with probability p; being thought of as log(1/p;),
which is a function decreasing in p;. The same decreasing
character alternately can be maintained by taking the function



to be in terms of (1-p;) in place of being in terms of (1/p;). Also,

for the uniform probability distribution P = (%,%, ,%)
exponential entropy has a fixed upper bound
11 1
lim H(=, o s) == 1 3)
n—oo nn n

which is not the case for Shannon’s entropy.
The additive characteristic, central in Shannon’s theory, of
the function for self-information for independent events may

not be of significant practical effect (impact) in some instances.

Otherwise, such as in the case of the probability law, the
double function for self-information would be product rather
than sum of the function for the self-information of two
independent instances.

The above thoughts suggest the self-information in the
exponential form of (1-p;) and introduce another measure in
exponential entropy form. The measure of entropy is of great
significance, particularly for image processing, since an image
can be considered an information source with the probability
law being the image histogram.

Based on the definition of exponential entropy, the entropy
of Object pixels and the entropy of Back ground pixels can
respectively be presented by the following definitions:

t .

eHop) = ) Etel P @
K : Di

eHB(p) = Z P—;e(l_ﬁ) (%)

i=t+1

The exponential entropy eH(t) is also parametric in the
threshold value (t) of background and object. It is presented in
the form of the sum of the individual entropy such that the
pseudo-additive property is attainable for statistically
independent setups. We try to optimize the information
measure between two classes (background and object). For the
function eH(t) being in the maximum value, the value of the
luminance level t maximizing the function is considered to be
the optimum threshold value. It is attainable for an inexpensive
computational cost.

t°Pt = Argmax [eH®(t) + eHB(1)] (6)

In quantum image processing, there are different quantum
image representations. Here, we specifically use the flexible
representation of quantum images (FRQI). The representation
of the FRQI is able to provide an adaptable and flexible form
of representing classical images in the form of quantum
systems. It is possible to map pixel intensity and space to a
quantum state so that we can perform quantum operations and
measurements over image information. We can exploit
quantum advantages in information processing and take
advantage of tasks like thresholding and edge detection using
the FRQI representation. Apart from this, employing FRQI
with quantum exponential entropy allows us to exploit the
quantum representation of the information contained in images
as well as the qualitative measure based on entropy. Through
the use of the two in combination, we are able to benefit from
a different type of approach of image thresholding and edge
detection, which could benefit in the form of better
performance and higher accuracy. The approach of the FRQI
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is capable of representing the digital image in the form of the
quantum system. In particular, the image histogram is capable
of being presented in the form of the entangled state of the
composite quantum system. For a grayscale image which
contains 256 gray levels, we are in need of 256 angles 6; to
encode the i level of the intensity. These are used in creating
the vector through the use of the principle of superposition
providing in the following equation:

[1(6,)) = cos6;|0) + sin6;|1), (7

where, 9i=§ p; represents the probability of the i intensity

level, |0) and |1) are the spin dawn and up. The quantum state
of G is.

11(Cp) =

tl'+1Si<t]'

1cH) ®

with

b;

Zt]""l Si<t]' bi

bi )

The density matrix (density operator) corresponding to the
quantum state of class C; can be written as:

P I(CHNIC)I
<th_1si<cj COS(PL‘)

th_lsi<cj Sing;

cosQ; , Z

tj_1<i<t; tj_1<i<t;

sing; ) (10)
The density matrix p; contains valuable information about
differences and probability distributions among intensity
levels within class C;, specified by thresholds ¢;_; and t;. This
is very useful information for thresholding operations.
Quantum exponential entropy quantifies how much
quantum information is present in class ;. It is given by:

QE,(C)) = trace p;e1=#) (11)

Here, a is an arbitrarily real parameter never equal to 1. The
quantum exponential entropy is an extension of classical
exponential entropy, and it is itself an extension of Shannon
entropy. Due to the additivity principle, we can calculate total
information contained in system S (the image), including
information from each subsystem and inter-subsystem
quantum correlations Cj, j=1, ---, k+1, which is calculated by:

k+1

QEL(S) = ) QHEL(C))

j=1

(12)

The objective of the thresholding approach is to identify the
optimal subsystems, =T, < -+ < Ty, that maximizes the
total entropy, thereby producing the highest-quality image
segmentation into k+1 subsystems Cy, -+*, Cy41.

T* = Argmax QEq(S), T € {Gmins - Imazx}* (13)
Edge detection identifies the boundaries between regions in

an image that have distinct levels of brightness or color. To
carry out the operation of edge detection, the spatial filter mask



is specified by the definition of the matrix w of order mxn.
Spatial filtering is attained by the simple shifting of the filter
mask w of order mxn point to point in an image. If we suppose
that m=2a + land n=2b + 1, where the nonnegative integers a
and b specify the mask size, then the minimum size of the
meaningful mask is 3 x 3. Moving the window through the
whole binary image, the entropy of the probability of each
central pixel of the window is computed. If the probability of
central pixel p, = 1 then the entropy of the pixel is zeros.
Thus, if the level of the gray of all the pixels underneath the
mask are homogenous then p, = 1and H = 0. In such case,
if the difference between the gray levels of pixels in the local
mask is minimal, then the central pixel belongs to a
homogeneous area and as such will not be digitized as an edge
pixel. But if the difference between the gray levels in the
neighborhood window is significant, it can be assumed that the
central pixel is on an edge area of the image.

After finding out global optimal threshold, set each pixel
from the image as background or object. Then, traverse a small
window of size five by five (or three by three) over the image.
For each central pixel within the window:

* Construct a local histogram that models the distribution
for pixel intensities within that window and normalize it for
achieving the local probability distribution.

* Split this local distribution across the world threshold into
two distributions, and calculate each local's exponential
entropy by utilizing the same formula utilized in the global
step.

» Flag the central pixel as an edge if there is both
background and object pixels in the window, and if the overall
local entropy is beyond a tiny threshold value (reflecting a
mixed or ambiguous neighborhood), or if both local
probabilities of classes are non-zero and significant instead of
being nearly zero.

* This process links global QEE thresholding with local
spatial consistency so that the technique can pick up on thin
edges that a global decision itself may overlook.

Executable pseudo-code:

Input:

I < grayscale image
topt < global threshold obtained from QEE
w < window size (default = 3)

Output:

E < binary edge map (0 for non-edge, 1 for edge)

Procedure:

1. Initialize E < zerosiikeq)
2. For each pixel (r, ¢) in I:
3. Extract W < local window around (r, ¢) of size w Xw
4. Compute local histogram hjo. from W
5. Normalize to obtain pioc[i] < hiocfij / (WX W)
6. Compute probabilities:
Pg < sum of pio[i] fori <t opt
Po ~—1- PB
7. If (Ps==10)or (Po==0):
E[r, c] < 0 #no edge
Else:
8. Normalize local distributions:
pBloc[i] = Ploc[i] / PB, fori < topt
poloc[i] = Ploc[i] / Po, fori> topt
9. Compute local entropies:

eHg < EXP_ENTROPY(pBioc)
eHo — EXP_ENTROPY (pOioc)
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10. If(eHs+eHo) = t: # T :small threshold
E[r,c] < 1 # mark as edge
Else:
E[r,c] <0
11. Return E

4. EXPERIMENTAL RESULTS ANALYSIS

To investigate the effectiveness of new algorithms, we
validate them using different sets of benchmark images. This
section also describes the image sets.

4.1 Images sets

The images sets include natural images, aerial images and
medical images which are commonly used as benchmarks for
edge detection.

4.2 Experimental results

In this section, four algorithms’ results are shown for
images sets natural images, aerial images and medical images
that used experimental which are commonly used as
benchmarks for edge detection.

Figure 1 shows various images of dataset including natural,
aerial and medical images. Figure 2 investigates the capacity
of quantum exponential entropy edge detection of tested
images. Figure 3 investigates the capacity of Canny edge
detection of tested images. Figure 4 investigates the capacity
of LoG edge detection of tested images. Figure 5 investigates
the capacity of Sobel edge detection of tested images.

The resulting images indicate that the proposed approach is
better than others on the different image sets based on
suggestive compression as object boundary for every image is
clearer.

Figure 1. Examples of natural, aerial and medical images

To evaluate the performance of the proposed methods, we
utilized samples of natural, aerial, and medical images. The
comparison involved our quantum-based approach alongside
three benchmark methods: Canny, LoG, and Sobel. In total,
four edge detection methods were assessed to determine their
effectiveness and performance. Numerical experiments were
conducted using MATLAB, revealing that the Hill entropy



threshold effectively localizes specific objects within the edge
maps.

Figures 2-5 present the edge detection results from the
competing methods across nine selected images for visual
examination and comparison. The results indicate that the
quantum-based method produces the most defined contours,
while the Sobel method yields the least satisfactory results.
Additionally, the Canny and LoG methods provide contours
that are approximately similar in quality.

Figure 2. Results of proposed quantum exponential entropy
approach

Figure 3. Results of canny algorithm

Figure 4. Results of LoG algorithm
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Figure 5. Results of sobel algorithm

5. CONCLUSION

In the present paper, we present the first original approach
to quantum edge detection in quantum image representations.
Considering the image's one-dimensional histogram as a
quantum system along with the proper quantum
representations, we suggest an original approach to the
detection of edges. Quantum exponential entropy is a key
measure of the quantity of quantum information in histogram
representations. For the verification level of our approach, we
conduct the first comparison study, comparing our approach
to established methods like the Canny, LoG, and Sobel
approaches. Based on a set of ten representative images, our
numerical findings clearly indicate the benefits of our
quantum-based approach. Our findings indicate the promise of
quantum image representations for the further evolution of
edge detection approaches. The application of quantum
principles and of the quantum exponential entropy adds novel
insight and novel dimensions to the detection of edges in
medical images. Through the exploration of new avenues, our
related approaches exhibit excellent efficiency and contribute
to the further evolution of image analysis and image
processing. It is the first pioneering study of quantum image
representations for the detection of edges, and there is
immense potential for further research. Future research studies
could examine further types of quantum image representations
and entropies, and also apply our approach in combination
with further quantum methodologies, such as qubit-based
representations, quantum Fourier transformation. The
application of the use of the integration of our approach in
combination with further quantum methodologies could yield
further possibilities for the detection of edges and for the
analysis of medical images, and adding novel dimensions to
the field. The avenues for research we propose have countless
possibilities for further evolution, expanding the scope of use
of these approaches, both theoretically and practically.
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