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Quantum image processing is for the application of quantum computing and algorithms to 

the solution of various problems. Classical edge detection algorithms are generally effective 

but are prone to performing poorly in the handling of large sets of data and high-resolution 

pictures, which could degrade performance. Quantum computing can significantly increase 

efficiency and hasten breakthroughs in various sectors, thus making it an appealing solution 

for complex image processing problems. Automated methods for the processing and 

analysis of medical pictures can significantly benefit medics in the therapeutic and 

diagnostic process. Here, the difficult problem of edge detection in medical pictures is 

specifically addressed through the introduction of new multilevel solutions based on 

quantum image representations of the one-dimensional histograms of the distributions of 

gray levels. Our methods use the quantum exponential entropy approach to the 

determination of the quantum information in image histograms, allowing us to recognize 

and study subtle details within medical pictures on the quantum level. To establish the 

efficiency of the approaches presented, we approach comparative analysis in comparison to 

the classic techniques through the application of the varied sets of medical pictures. 

Experiment results show unequivocal proof for the efficiency of our approaches, illustrating 

the possibility for our new multilevel techniques based on quantum image representations 

and the quantum exponential entropy approach to the determination of the quantum 

information in image histograms to outclass the currently used techniques of edge detection 

in medical pictures. Through the enhancement of the precision and the efficiency of the 

detection of the edges, our work fosters the additional ongoing research in the topic of the 

automated techniques of quantum medical image analysis. 
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1. INTRODUCTION

Edge detection is the foundation of image processing, 

important in the detection of object boundaries and properties. 

It is of greatest value in medical image data, where proper 

identification of edges assists in the discrimination of 

anatomical structures and lesions in order to supplement object 

recognition, object separation, and three-dimensional 

reconstruction of body organs [1, 2]. Even though there is 

continued demand in properly detecting edges in noisy 

medical images, the process itself is still a significant barrier. 

The vast majority of medical image sets are marred by various 

types of noise—such as electronic sensor noise, speckles in 

ultrasound modalities, and low contrast—that mask true edges. 

Classical edge detection operators such as high-filter-based 

Sobel, Prewitt, Roberts, the Laplacian of Gaussian (LoG), and 

the Canny edge detector are typically noise-contaminated. 

They are susceptible to noise effects owing to the fact that 

noise contributes appreciable high-frequency variation in 

intensity, which is indistinguishable from true edges [3, 4]. For 

the reasons outlined, the classical operators either overlook 

subtle edges or confuse noise artifacts for important 

boundaries, therefore being limited in noisy image situations. 

It is here where the emphasis on better edge detection 

operators able to discern true edges from noise has been called 

for [5, 6]. 

One of the successful methods for improving edge detection 

in noise-dominated conditions is entropy-based thresholding, 

where the detection of edges is viewed as a binary splitting 

issue—discernment of edges from non-edges—under the 

guidance of information theory axioms. Differently than 

conventional methods, which are largely based on the use of 

the image's neighborhood gradient information, entropy-based 

approaches utilize the spatial properties of the image intensity 

histogram to determine the optimum threshold to best split the 

image and maximize the information-based quantity between 

partitions. Shannon entropy, the very first measure of 

information quantity, has been used for broad-based global 

thresholding. An intriguing case is the algorithm proposed by 

Kapur et al. [7], which uses the joint entropy of the background 
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and foreground regions to select the threshold that best 

partitions the image with maximum information value. Along 

the same line of reasoning, researchers made generalized 

entropy models to better fit different image statistical 

properties. Tsallis entropy—a non-extensive measure of 

entropy subjected to the parameter q—has in particular been 

observed to possess benefits in the description of long-range 

intensity correlations and used to improve thresholding 

performance of images wherever the noise is of the 

textured/correlated type [8, 9]. 

Though generalized entropy measures are superior in edge 

detection for noisy images, they tend to involve the adjustment 

of a free parameter for every particular case, which could 

restrict their usefulness. Hill entropy—a generalized measure 

in its own right, which is based on Hill’s diversity measure in 

ecology—falls into the same category. It is parameter-

dependent, like other entropies, and is capable of 

approximating various entropy types, the Shannon entropy 

being the limit in particular circumstances [10, 11]. These 

entropy expressions have been investigated for various 

potential applications like image segmentation and edge 

detection. For example, Balochian and Baloochian [12] put 

forward a hybrid thresholding method which combines 

Shannon and Tsallis entropy to enhance the detection of edges 

in noisy medical pictures. Their algorithm proved to be less 

susceptible to noise than the common edge detectors [13]. 

Extending the concept further, in 2017, Elaraby and Moratal 

developed the two-stage threshold algorithm based on 

generalized Hill entropy for the specific application of edge 

detection in noisy medical imagery [1]. According to the first 

phase of the approach, the image is segmented into 

background and objects (foreground) through a maximization 

of the Hill entropy of the image histogram to reach a global 

threshold. Separating the large structures is helped by the 

initial step. Local thresholds are independently estimated in 

the background and the foreground by the entropy-based 

criterion in the second phase [1, 14]. 

The approach integrates the first global threshold and the 

two locally sharpened thresholds to generate two binary edge 

maps, symbolizing the object boundaries and the background 

transitions, respectively, which are summed to give the 

ultimate edge map. The approach allows the detection of fine 

edges which would otherwise be omitted by the single global 

threshold. From the experiment, they published that the 

approach exceeded the classic Canny detector and 

outperformed even a Tsallis entropy-based approach in noisy 

conditions, exhibiting superior continuity and accuracy of 

edges [15]. 

With the success of this classical two-phase Hill entropy 

algorithm in dealing with noise, it is then to speculate on its 

promise in the quantum computing paradigms. It is possible to 

drastically speed up computations through the use of quantum 

parallelism and amplitude-based computations. In quantum 

image processing, whole images are encoded as quantum 

states so the whole image can be subject to parallel 

manipulation through quantum superposition [16, 17]. For 

instance, the Flexible Representation of Quantum Images 

(FRQI) embeds pixel intensity in the form of the amplitude of 

the quantum state while pixel locations are mapped to the basis 

states. This form allows the whole of the pixel values to be 

subject to the same quantum operation (unitary transform) 

simultaneously [18, 19]. 

Quantum edge detection algorithms already exhibit 

respectable speed advantages over classical counterparts. Yan 

et al. [17] put forward the quantum Sobel operator, QSobel, in 

terms of the FRQI and attained exponential complexity 

reductions in the gradient calculation in all the pixels in 

parallel. It minimized the runtime from classical O(N) to 

O((log N)2) in the quantum scenario [17]. Even better still, 

Yao et al. [20] outlined the quantum approach of edge 

detection in using only the single-qubit operation, regardless 

of image dimensions, and brought out the promise of quantum 

computing for real-time large-set image handling [20]. It 

would seem to fall within the realm of possibility to map the 

two-phase Hill entropy measure to the quantum computational 

model. If then entropy-based thresholding and segmentations 

could be implemented in quantum regimes, the entire image 

intensity distribution could be subject to handling in parallel 

and the sets of threshold applied in logarithmic- or even 

constant-order time. It would prove of particular use in high-

resolution 3D- or real-time medical imaging [21]. 

Coupling of Hill entropy and quantum computing is also 

possible due to the analogy between quantum probability 

amplitudes and information-theoretic quantities. A quantum 

entropy threshold algorithm would then be able to take 

advantage of quantum-state evaluation to simultaneously 

measure entropy or related cost functions for multiple 

threshold candidates, then accelerate optimal threshold 

choosing. 

In summary, converting the classical Hill entropy edge 

detection method into a quantum model offers the potential to 

combine robust noise handling and theoretical rigor with the 

computational speed of quantum systems. This work proposes 

such a quantum algorithm, detailing the quantum image 

representation, formulation of Hill entropy in quantum terms, 

and the steps for implementing two-phase thresholding on a 

quantum computer. This approach is particularly well-suited 

for large-scale medical imaging and real-time analysis, where 

classical methods often struggle to balance noise resilience 

and processing speed [22]. 

Edge detection is a fundamental operation in classical image 

processing, aiming to identify significant discontinuities in 

pixel intensity that represent object boundaries. Traditional 

methods such as Sobel, Prewitt, and Canny rely on spatial 

derivatives to detect edges. However, these algorithms become 

computationally expensive when processing large-scale or 

high-resolution images.Quantum image processing (QIP) 

emerges as a promising paradigm by leveraging quantum 

mechanical principles to represent and manipulate images 

more efficiently. One of the earliest and most cited models is 

the Flexible Representation of Quantum Images (FRQI), 

where a grayscale image of size 2ⁿ×2ⁿ can be encoded into a 

quantum state using 2n qubits and amplitude encoding [23]. 

Another extension of the above is the Novel Enhanced 

Quantum Representation (NEQR), which retains the pixel 

locations and grayscale values in the form of basis states, 

which offer a robust and direct image-retrieval mechanism 

[24]. Such representations allow quantum algorithms to 

perform image transformations, image enhancements, and 

edge detection in fewer computational steps than classical 

algorithms [25]. Moreover, quantum gates such as Hadamard, 

CNOT, and Pauli-X are used to manipulate qubits for the 

performance of pixel-wise operations, sharpening of edges, 

and measurements. The theoretical advantage also opens up 

the possibility of the use of classical optimization techniques, 

such as the hill climbing algorithm, in quantum circuits to find 

the optimum threshold values or boundary detection in the 

superposed state space. 
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2. RELATED WORKS

Numerous efforts have explored the application of quantum 

computing to edge detection. Researchers presented a method 

that applied the Flexible Representation of Quantum Images 

(FRQI) to perform edge detection in the quantum domain, 

showing that standard edge operators could be implemented 

using quantum gate operations on amplitude-encoded image 

data [23]. Another research gave the form of the quantum 

Sobel filter implemented by quantum Boolean logic, 

highlighting the advantage of the parallel calculation of edges 

in quantum computers. More recently, Zhang et al. [24] and 

Sundani et al. [25] detailed the design of the NEQR-based 

system for edge detection and image sharpening, showing 

improved fidelity and quantum noise robustness. Even if these 

efforts show the potential of quantum-enhanced image 

manipulation, they are inclined to act on static filters or rely 

heavily on binary logical gate sets. On the contrary, the 

contribution in the present paper advocates the merging of hill 

climbing optimization and quantum image representations for 

the dynamic searching of the optimum edge boundaries, 

hypothesizing the hybrid model for adaptation to the 

complexity of the image under consideration while being 

quantum-economical. 

2.1 Classical edge detection methods 

Edge detection is also among the earliest subjects of image-

processing research for which numerous various algorithms 

and operators have been created. Perhaps two of the earliest 

are the Sobel and Prewitt operators of the late 1960s, which 

estimate the local intensity gradient by means of small 

convolutional masks. The Sobel operator, for example, 

employs two 3×3 kernels to approximate the horizontal and 

vertical derivatives of an image, with the gradient magnitude 

indicating edge presence. Although these gradient-based 

methods are efficient and straightforward, they tend to amplify 

high-frequency noise along with true edges. Similarly, the 

Roberts cross operator, which uses compact 2×2 kernels to 

detect diagonal changes, is lightweight in computation but 

highly susceptible to noise due to its limited neighborhood 

scope. The Prewitt operator, resembling the Sobel method but 

using uniform weights in its kernel, also estimates gradients 

and requires pre-processing steps such as smoothing to 

mitigate noise effects [26, 27]. 

To overcome the limitations of first-order methods, second-

order derivative techniques were introduced, notably the 

Laplacian of Gaussian (LoG) detector, also known as the 

Marr-Hildreth algorithm. This method begins with Gaussian 

smoothing to suppress noise, followed by the application of a 

Laplacian filter to detect rapid intensity changes. Edges are 

identified at the zero-crossings of the LoG response. While 

more robust to noise than basic gradient operators due to the 

smoothing step, LoG often produces thick edge lines and relies 

on subsequent thresholding and thinning. The effectiveness of 

this method heavily depends on selecting an appropriate 

standard deviation for the Gaussian kernel: insufficient 

smoothing retains noise, whereas excessive smoothing can 

obscure important details [28]. 

Among the classic approaches, the Canny edge detector is 

arguably the gold standard. In 1986, John Canny proposed the 

algorithm, which made key constraints for edge detection—to 

best maximize the reliability of detection, to accurately 

localize edges, and to inhibit repeated edge output—using the 

calculus of variations to find the best smoothing filter. The 

Canny detector algorithm encompasses multiple steps: the 

application of Gaussian smoothing, the calculation of the 

gradient (more typically through Sobel operators), the 

application of non-maximum suppression to thin the lines of 

edges, and double-threshold hysteresis to join the edge 

segments while removing noise artifacts. For the entire 

pipeline, the method of the Canny thus produces smooth, 

continuous edges while coping decently with noise robustness. 

However, the method is still susceptible to underperformance 

in extremely noisy or low-contrast conditions and is 

vulnerable to proper parameter adjustment, particularly for 

smoothing settings and thresholds [5]. 

In short, traditional edge detection operators such as Sobel, 

Prewitt, Roberts, and LoG are quick in strengthening edges but 

tend to interpret abrupt intensity changes due to noise as 

genuine edges, and thus they behave like high-pass filters. 

Even the Canny algorithm, which is better than the above 

techniques in terms of the addition of extra smoothing and 

adaptive thresholding, is also tied to the paradigm of linear 

filtering. Under heavy noise conditions, these techniques tend 

to either neglect edges in order to prevent false alarms or make 

errors in noise being interpreted as edge information. To 

overcome these drawbacks, there are some attempts to look 

into data-driven and adaptive techniques such as entropy-

based and fuzzy logic-based techniques, which are discussed 

in the following sections. 

2.2 Entropy-based edge detection and thresholding 

Entropy-based approaches to edge detection are image-

segmentation- and information-theory-based, where the aim is 

to maximize the value of information gained through an image. 

Kapur et al. [7] contributed to the literature by introducing a 

new entropy thresholding based on Shannon entropy. Here, in 

the approach, the histogram of grayscale image is divided by 

the potential threshold T in the two disjoint sets—evidently 

observable by the user as background and foreground. The 

entropy sum, Htotal(T)=Hback+Hfore, of the two subregions is then 

obtained, and the threshold maximizing the sum is adopted to 

be the optimum. Although originally motivated for binary 

partition of images, the approach is portable to edge detection 

by allotting the first of the two sets (typically the minority) to 

the edge pixels and the second to the non-edge pixels. Shannon 

entropy-based thresholding is extremely successful when the 

image histogram is bimodal but may fail if the distributions of 

edges and the non-edges are severely overlapping, or if higher-

order statistical interrelations are significant [29, 30]. 

To counter the lack of Shannon entropy in adequately 

representing complex image properties, generalized entropy 

expressions have also been employed by researchers. Tsallis 

entropy is another popular representative, which is Shannon’s 

measure generalized by the addition of a tunable parameter q > 

0. When the value of q approaches 1, Tsallis entropy is close

to Shannon entropy. The parameter q adjusts the sensitivity to

different parts of the probability distribution to better respond

to rare events or noise in the form of outliers—a good attribute

when handling long-range dependent images or non-Gaussian

noise. For the purpose of thresholding, maximizing Tsallis

entropy in the grayscale histogram can give better

segmentations, particularly in cases where Shannon entropy is

of little use for segment discrimination between different

classes. However, the main issue here is in picking the

appropriate q for each image [31].
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Researchers have had to resort to generalized entropy 

measures in order to address the complexity of image data, 

capturing finer statistical details which are overlooked by the 

simpler schemes. Tsallis entropy is such an entropy measure 

which is an extension of Shannon entropy and is regulated by 

an adjustable parameter q>0. For q→1, Tsallis entropy 

approaches Shannon entropy. The parameter q regulates the 

weight which is assigned to different parts of the probability 

distribution; e.g., for some values of q, Tsallis entropy is 

particularly sensitive to the tail probabilities and is therefore 

suited best for image data which includes spikes/long-range 

dependencies. When applied to image thresholding, 

maximizing the Tsallis entropy over the image histogram in 

some cases obtains a better split between object and 

background where the assumptions of Shannon's entropy are 

violated. However, the great challenge which is presented in 

the use of Tsallis entropy is determining the optimum value of 

q for the specific image in all instances [32]. 

These other generalized measures of entropy also gained 

application in image segmentation, some of which are Renyi 

entropy, Kapur’s extended entropy, fuzzy entropy, and 

Kaniadakis entropy. All of these also bring along the 

parameter to be adjusted in order to obtain the trade-off 

between the information release and noise removal. Hill 

entropy, which is based on Hill’s measure of diversity, is 

another family of measures of entropy to interpolate between 

different statistics descriptors. It brings the intensity count of 

simple number-based measure to the continuum up to Shannon 

entropy and measures of concentration like Simpson’s index. 

Even though less frequent in the use in the past in image 

processing literature, Hill entropy also gained application 

recently to treat the drawback of the consideration of the 

dominant and rare intensity values. The common pitfall of the 

entropy models is the needed parameter choice, but if the 

appropriate optimization method like cross-validation or 

auxiliary criterion is employed, they can significantly enhance 

the performance of the threshold-based edge detection [33, 34]. 

There are various empirical research which have pointed out 

the effectiveness of entropy-based thresholding for finding 

edges in noisy conditions. For example, Heshmat et al. 

proposed the hybrid approach of Shannon and Tsallis entropy. 

By the merging of the classical and generalized measures of 

entropy, their method corrects for bias between rare and 

common pixel intensities, yielding better robustness to salt-

and-pepper noise in medical scans, such as scans of blood cells. 

Their method also keeps computational overhead low by 

minimizing space for best-possible thresholds to search. Other 

studies looked at multi-phase entropy models to determine 

multiple thresholds for multi-level segmentations. The 

methods give broader edge bands, which are further 

improvable. Furthermore, fuzzy entropy methods, such as the 

fuzzy divergence approach of Chaira and Ray, correct for the 

intrinsic uncertainty of pixel classification in the vicinity of 

edges. The methods first transform the image to the fuzzy 

space and then apply an entropy-based condition to threshold. 

The fuzzy entropy models are particularly excellent in dealing 

with fuzzy edge regions where membership of the pixels is in 

doubt [35, 36]. 

The paper of Elaraby and Moratal [1] is of specific interest 

for the work herein, for they had outlined a two-stage 

thresholding method utilizing generalized Hill entropy. It 

starts off its approach by choosing an optimum value of the 

global threshold T1 in maximizing the Hill entropy of the 

whole image histogram, thus generally partitioning the image 

into object and background regions. Local background and 

object area thresholds T2 and T3 are then determined by 

maximizing Hill entropy in the background and object 

subregions, respectively. The resulting edge map is then 

generated by integrating the edges thus obtained across all 

three threshold values, therefore encompassing broad-based, 

in addition to fine details-based, changes in intensity. The 

hierarchical method is seen to be particularly well-adapted to 

the detection of faint edges, which are otherwise generally 

neglected by the classical methods. 

Comparative evaluations demonstrated that this method 

outperformed both Tsallis-based thresholding and the Canny 

edge detector, particularly under noisy conditions, thereby 

highlighting the potential of multi-level, adaptive entropy 

frameworks for robust edge detection in complex imagery [37, 

38]. 

2.3 Quantum image processing and quantum edge 

detection 

Quantum Image Processing (QIP) has emerged from the 

convergence of quantum computing and classical image 

processing, driven by the goal of harnessing quantum 

computational speed for enhanced efficiency in image data 

manipulation [39-43]. Central to QIP is the encoding of 

images into quantum memory, with multiple quantum image 

representation (QIR) frameworks proposed to optimize 

processing in quantum systems: 

• Flexible Representation of Quantum Images (FRQI):

This method encodes a 2n×2n -sized image into a quantum

state using 2n qubits for spatial coordinates and one qubit

for pixel intensity. Each basis state in this model

corresponds to a pixel’s position, with its amplitude

encoding grayscale or color values. By exploiting quantum

superposition, FRQI stores all pixel values simultaneously

in a single quantum state ∣I⟩. A key strength lies in quantum

parallelism: operations such as global rotations can act on

all pixels concurrently, enabling tasks like bulk intensity

adjustments. However, retrieving individual pixel values

necessitates measurement, collapsing the quantum state.

Consequently, FRQI-based algorithms must prioritize

operations within the quantum phase space to avoid state

collapse [19].

• Novel Enhanced Quantum Representation (NEQR): It

refines FRQI by encoding pixel intensities as discrete

binary values within qubit basis states. For an 8-bit

grayscale image, NEQR allocates 8 qubits for intensity and

2n qubits for coordinates. The resultant quantum state

∣y,x,I(y,x)⟩ represents a superposition of basis states, where

I(y,x) denotes the binary intensity at coordinates (y,x).

Unlike FRQI’s amplitude-dependent encoding, NEQR

stores intensity values in orthogonal states, enabling

unambiguous pixel retrieval through direct measurement

of intensity qubits. This explicit encoding simplifies

intensity comparisons and algorithmic design. While

NEQR requires more qubits than FRQI for equivalent

images, it achieves quadratic acceleration in state

preparation and circumvents the complexities of

amplitude-based encoding [44, 45].

The advancement of quantum algorithms for image

processing tasks, particularly edge detection, has been 

propelled by innovations in quantum image representations. 

Another work pioneered this domain by demonstrating edge 

detection on a quantum processor through their Quantum 
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Probability Image Encoding (QPIE) method. Their approach 

employed quantum operations to identify abrupt intensity 

transitions, achieving edge extraction in constant time 

irrespective of image dimensions. Subsequent work by Heo et 

al. [46] introduced QSobel, a quantum Sobel operator 

leveraging the Flexible Representation of Quantum Images 

(FRQI). By exploiting quantum parallelism, QSobel computes 

gradients across all pixel positions simultaneously via 

quantum arithmetic, reducing computational complexity to 

O(n2) for 2n×2n images, a significant improvement over the 

classical O(4n) complexity. Further developments extended 

this paradigm to Prewitt, Robinson, and Haar wavelet-based 

quantum edge detectors, where convolution and frequency-

domain operations are executed through tailored quantum 

circuits. For instance, Zhang et al. [47] implemented an eight-

directional Robinson compass mask on quantum-encoded 

images, utilizing superposition to evaluate all orientations 

concurrently and applying quantum thresholding gates to 

classify edges. These methodologies universally capitalize on 

quantum state representations to perform filtering and 

differentiation operations with enhanced efficiency, 

harnessing the inherent parallelism of quantum systems [17, 

48, 49]. 

Beyond gradient-based methods, quantum thresholding and 

segmentation techniques integrated with entropy principles 

have gained traction. Pramanik et al. [50] addressed breast 

tumor edge detection as a multilevel thresholding optimization 

problem, deploying a quantum-inspired genetic algorithm 

grounded in Tsallis entropy maximization. Their hybrid 

quantum-classical framework identified optimal thresholds to 

segment mammogram images, yielding superior PSNR/SSIM 

metrics compared to conventional approaches. Similarly, Yao 

et al. [20] had created a quantum edge detection mechanism 

incorporating Hill entropy in the new enhanced quantum 

representation (NEQR) scheme. The method they employed 

constituted the application of hybrid neural-quantum filter to 

suppress noise in encoded medical data and then entropy-

based thresholding for the dissection of the background and 

foreground regions. The method achieved 97.5% accuracy in 

edge detection and enhanced the PSNR, which establishes the 

efficiency of the entropy measure generalizations in quantum 

image processing. Such findings indicate the paradigm-

shifting potential of the integration of quantum computing and 

entropy-based measures for medical image use cases [49-51]. 

Subsequent quantum image processing advancements 

looked into adaptive and hybrid solutions for maximizing the 

performance of edge detection. Shukla and Vedula [52] put 

forward an adaptive quantum edge detection approach evolved 

based on the usage of Quantum Pixel Imaging (QPI), which 

encompasses the application of dynamic threshold 

optimization techniques for maximizing the detection 

accuracy in various conditions of an image. The approach 

outperformed the static quantum filters in adaptability but 

required heavy quantum computing resources. In the ensuing 

direction [52], Shannon [53] developed a hybrid classical-

quantum framework using an enhanced version of the FRQI 

representation. Their model successfully integrated classical 

preprocessing with quantum logic to achieve effective edge 

extraction in grayscale images. These two contributions 

underscore a shift in the field towards more flexible, 

optimization-driven, and hardware-aware quantum image 

processing frameworks, which aligns closely with the 

objectives of the current study [53]. Table 1 shows a 

comparison between different quantum image representation 

techniques. 

Table 1. Comparison between different quantum image representation techniques 

Study Representation Technique Strengths Limitations 

[19] 
FRQI (Flexible Representation of 

Quantum Images) 

General quantum 

image processing 

Foundational flexible encoding model- 

basis for further developments 

Not suitable for high-resolution 

grayscale images 

[23] 
NEQR (Novel Enhanced 

Quantum Representation) 

Quantum Boolean 

Edge Detection 

Direct pixel value encoding-more 

accurate than FRQI 

Does not support color images- 

sensitive to noise 

[24] NEQR+Quantum Gates
Quantum Sobel+ Edge 

Filtering 
High fidelity-improved noise resistance 

Based on static filters-lacks 

adaptability 

[44] QPI (Quantum Pixel Imaging)
Adaptive Quantum 

Edge Detection 

Dynamic edge adaptation- optimization-

based detection 

Computationally complex-requires 

advanced quantum hardware 

[46] Enhanced FRQI
Hybrid Classical-

Quantum Model 

Integrates classical and quantum 

processing in simulation 

Experimental only-not tested on real 

quantum systems 

3. PROPOSED METHODOLOGY

Entropy is the measure of uncertainty proposed by Shannon 

in information theory to measure information in a source 

which obeys the law of probability [54]. It is subsequent to 

Shannon introducing information theory that there is vast 

literature on invoking the concept in some of its applications 

which is why Pal and Pal propose another measure in the form 

of exponential entropy [55]. The traditional exponential 

entropy is for the histogram of the gray-levels of an image 

which carries the information of the distribution of the 

frequency of the pixel intensities [55, 56]. The quantum 

Exponential entropy, however, requires an appropriate 

quantum representation of the image to reflect the information 

quantum in nature. Shannon entropy is defined as: 

𝐻(𝑝) = − ∑ 𝑝𝑖 𝑙𝑛( 𝑝𝑖)

𝑘

𝑖=1

(1) 

Exponential entropy given by: 

eH(p) = ∑ pie
(1− pi)

n

i=1

(2) 

As there are some merits put forward by for handling 

exponential entropy in lieu of Shannon’s entropy, which is 

extremely renowned, we observe the measure of the self-info 

of an event with probability pi being thought of as log(1/pi), 

which is a function decreasing in pi. The same decreasing 

character alternately can be maintained by taking the function 
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to be in terms of (1-pi) in place of being in terms of (1/pi). Also, 

for the uniform probability distribution P = (
1

n
,

1

n
, … … . ,

1

n
)

exponential entropy has a fixed upper bound 

lim
n⟶∞

H (
1

n
,
1

n
, … … . ,

1

n
) = e − 1 (3) 

which is not the case for Shannon’s entropy. 

The additive characteristic, central in Shannon’s theory, of 

the function for self-information for independent events may 

not be of significant practical effect (impact) in some instances. 

Otherwise, such as in the case of the probability law, the 

double function for self-information would be product rather 

than sum of the function for the self-information of two 

independent instances. 

The above thoughts suggest the self-information in the 

exponential form of (1-pi) and introduce another measure in 

exponential entropy form. The measure of entropy is of great 

significance, particularly for image processing, since an image 

can be considered an information source with the probability 

law being the image histogram. 

Based on the definition of exponential entropy, the entropy 

of Object pixels and the entropy of Back ground pixels can 

respectively be presented by the following definitions: 

eHO(p) = ∑
pi

PA

e
(1−

pi
PA

)

t

i=1

(4) 

eHB(p) = ∑
pi

PB
e

(1−
pi
PB

)
k

i=t+1

 (5) 

The exponential entropy eH(t) is also parametric in the 

threshold value (t) of background and object. It is presented in 

the form of the sum of the individual entropy such that the 

pseudo-additive property is attainable for statistically 

independent setups. We try to optimize the information 

measure between two classes (background and object). For the 

function eH(t) being in the maximum value, the value of the 

luminance level t maximizing the function is considered to be 

the optimum threshold value. It is attainable for an inexpensive 

computational cost. 

topt = Arg max  [eHO(t) + eHB(t)] (6) 

In quantum image processing, there are different quantum 

image representations. Here, we specifically use the flexible 

representation of quantum images (FRQI). The representation 

of the FRQI is able to provide an adaptable and flexible form 

of representing classical images in the form of quantum 

systems. It is possible to map pixel intensity and space to a 

quantum state so that we can perform quantum operations and 

measurements over image information. We can exploit 

quantum advantages in information processing and take 

advantage of tasks like thresholding and edge detection using 

the FRQI representation. Apart from this, employing FRQI 

with quantum exponential entropy allows us to exploit the 

quantum representation of the information contained in images 

as well as the qualitative measure based on entropy. Through 

the use of the two in combination, we are able to benefit from 

a different type of approach of image thresholding and edge 

detection, which could benefit in the form of better 

performance and higher accuracy. The approach of the FRQI 

is capable of representing the digital image in the form of the 

quantum system. In particular, the image histogram is capable 

of being presented in the form of the entangled state of the 

composite quantum system. For a grayscale image which 

contains 256 gray levels, we are in need of 256 angles θi to 

encode the ith level of the intensity. These are used in creating 

the vector through the use of the principle of superposition 

providing in the following equation: 

|𝐼(𝜃𝑖)⟩  =  𝑐𝑜𝑠𝜃𝑖|0⟩  +  𝑠𝑖𝑛𝜃𝑖|1⟩, (7) 

where, 𝜃𝑖 =
𝜋

2
𝑝𝑖  represents the probability of the 𝑖𝑡ℎ  intensity

level, |0⟩ and |1⟩ are the spin dawn and up. The quantum state 

of 𝐶𝑗 is.

|𝐼(𝐶𝑗)⟩ = ∑ |𝐼(𝜙𝑖)⟩

𝑡𝑗+1≤𝑖<𝑡𝑗

(8) 

with 

𝜙𝑖 =
𝜃𝑖

∑ 𝑝𝑖  𝑡𝑗+1≤𝑖<𝑡𝑗

(9) 

The density matrix (density operator) corresponding to the 

quantum state of class 𝐶𝑗 can be written as:

𝜌𝑗|𝐼(𝐶𝑗)⟩⟨𝐼(𝐶𝑗)|

= (
∑ 𝑐𝑜𝑠𝜑𝑖𝑡𝑗−1≤𝑖<𝑡𝑗

∑ 𝑠𝑖𝑛𝜑𝑖𝑡𝑗−1≤𝑖<𝑡𝑗

) ( ∑ 𝑐𝑜𝑠𝜑𝑖

𝑡𝑗−1≤𝑖<𝑡𝑗

 , ∑ 𝑠𝑖𝑛𝜑𝑖

𝑡𝑗−1≤𝑖<𝑡𝑗

 ) 
(10) 

The density matrix 𝜌𝑗 contains valuable information about

differences and probability distributions among intensity 

levels within class 𝐶𝑗, specified by thresholds 𝑡𝑗−1 and 𝑡𝑗. This

is very useful information for thresholding operations. 

Quantum exponential entropy quantifies how much 

quantum information is present in class 𝐶𝑗. It is given by:

𝑄𝐸𝑎(𝐶𝑗) = 𝑡𝑟𝑎𝑐𝑒 𝜌je
(1− 𝜌j) (11) 

Here, α is an arbitrarily real parameter never equal to 1. The 

quantum exponential entropy is an extension of classical 

exponential entropy, and it is itself an extension of Shannon 

entropy. Due to the additivity principle, we can calculate total 

information contained in system S (the image), including 

information from each subsystem and inter-subsystem 

quantum correlations 𝐶𝑗, j=1, ⋯, k+1, which is calculated by:

𝑄𝐸𝑎(𝑆) = ∑ 𝑄𝐻𝐸𝑎(𝐶𝑗)

𝑘+1

𝑗=1

 (12) 

The objective of the thresholding approach is to identify the 

optimal subsystems, 𝑇∗ =𝑇1
∗ < ⋯ < 𝑇𝑘

∗ , that maximizes the

total entropy, thereby producing the highest-quality image 

segmentation into k+1 subsystems 𝐶1, ⋯ , 𝐶𝑘+1.

𝑇∗ = 𝐴𝑟𝑔max 𝑄𝐸𝑎(𝑆), 𝑇 ∈ {𝑔𝑚𝑖𝑛 , … , 𝑔𝑚𝑎𝑥}𝑘 (13) 

Edge detection identifies the boundaries between regions in 

an image that have distinct levels of brightness or color. To 

carry out the operation of edge detection, the spatial filter mask 

2814



is specified by the definition of the matrix w of order m×n. 

Spatial filtering is attained by the simple shifting of the filter 

mask w of order m×n point to point in an image. If we suppose 

that m=2a + 1and n=2b + 1, where the nonnegative integers a 

and b specify the mask size, then the minimum size of the 

meaningful mask is 3 × 3. Moving the window through the 

whole binary image, the entropy of the probability of each 

central pixel of the window is computed. If the probability of 

central pixel 𝑝𝑐 = 1 then the entropy of the pixel is zeros.

Thus, if the level of the gray of all the pixels underneath the 

mask are homogenous then 𝑝𝑐 = 1 and 𝐻 = 0. In such case,

if the difference between the gray levels of pixels in the local 

mask is minimal, then the central pixel belongs to a 

homogeneous area and as such will not be digitized as an edge 

pixel. But if the difference between the gray levels in the 

neighborhood window is significant, it can be assumed that the 

central pixel is on an edge area of the image. 

After finding out global optimal threshold, set each pixel 

from the image as background or object. Then, traverse a small 

window of size five by five (or three by three) over the image. 

For each central pixel within the window: 

• Construct a local histogram that models the distribution

for pixel intensities within that window and normalize it for 

achieving the local probability distribution. 

• Split this local distribution across the world threshold into

two distributions, and calculate each local's exponential 

entropy by utilizing the same formula utilized in the global 

step. 

• Flag the central pixel as an edge if there is both

background and object pixels in the window, and if the overall 

local entropy is beyond a tiny threshold value (reflecting a 

mixed or ambiguous neighborhood), or if both local 

probabilities of classes are non-zero and significant instead of 

being nearly zero. 

• This process links global QEE thresholding with local

spatial consistency so that the technique can pick up on thin 

edges that a global decision itself may overlook. 

Executable pseudo-code: 

Input:   

    I ← grayscale image   

    topt ← global threshold obtained from QEE 

    w  ← window size (default = 3)   

Output:  

    E  ← binary edge map (0 for non-edge, 1 for edge) 

Procedure: 

1. Initialize E ← zeroslike(I)

2. For each pixel (r, c) in I:

3. Extract W ← local window around (r, c) of size w×w

4. Compute local histogram hloc from W

5. Normalize to obtain ploc[i] ← hloc[i] / (w×w)

6. Compute probabilities:

    PB ← sum of ploc[i] for i ≤ t_opt 

    PO ← 1 - PB 

7. If (PB == 0) or (PO == 0):

   E[r, c] ← 0  # no edge 

        Else: 

8. Normalize local distributions:

 pBloc[i] ← ploc[i] / PB,   for i ≤ topt 

 pOloc[i] ← ploc[i] / PO,   for i > topt 

9. Compute local entropies:

 eHB ← EXP_ENTROPY(pBloc) 

 eHO ← EXP_ENTROPY(pOloc) 

10. If (eHB + eHO) ≥ τ:   # τ: small threshold

 E[r, c] ← 1  # mark as edge 

   Else: 

 E[r, c] ← 0 

11. Return E

4. EXPERIMENTAL RESULTS ANALYSIS

To investigate the effectiveness of new algorithms, we 

validate them using different sets of benchmark images. This 

section also describes the image sets. 

4.1 Images sets 

The images sets include natural images, aerial images and 

medical images which are commonly used as benchmarks for 

edge detection. 

4.2 Experimental results 

In this section, four algorithms’ results are shown for 

images sets natural images, aerial images and medical images 

that used experimental which are commonly used as 

benchmarks for edge detection. 

Figure 1 shows various images of dataset including natural, 

aerial and medical images. Figure 2 investigates the capacity 

of quantum exponential entropy edge detection of tested 

images. Figure 3 investigates the capacity of Canny edge 

detection of tested images. Figure 4 investigates the capacity 

of LoG edge detection of tested images. Figure 5 investigates 

the capacity of Sobel edge detection of tested images. 

The resulting images indicate that the proposed approach is 

better than others on the different image sets based on 

suggestive compression as object boundary for every image is 

clearer. 

Figure 1. Examples of natural, aerial and medical images 

To evaluate the performance of the proposed methods, we 

utilized samples of natural, aerial, and medical images. The 

comparison involved our quantum-based approach alongside 

three benchmark methods: Canny, LoG, and Sobel. In total, 

four edge detection methods were assessed to determine their 

effectiveness and performance. Numerical experiments were 

conducted using MATLAB, revealing that the Hill entropy 

2815



threshold effectively localizes specific objects within the edge 

maps. 

Figures 2-5 present the edge detection results from the 

competing methods across nine selected images for visual 

examination and comparison. The results indicate that the 

quantum-based method produces the most defined contours, 

while the Sobel method yields the least satisfactory results. 

Additionally, the Canny and LoG methods provide contours 

that are approximately similar in quality. 

Figure 2. Results of proposed quantum exponential entropy 

approach 

Figure 3. Results of canny algorithm 

Figure 4. Results of LoG algorithm 

Figure 5. Results of sobel algorithm 

5. CONCLUSION

In the present paper, we present the first original approach 

to quantum edge detection in quantum image representations. 

Considering the image's one-dimensional histogram as a 

quantum system along with the proper quantum 

representations, we suggest an original approach to the 

detection of edges. Quantum exponential entropy is a key 

measure of the quantity of quantum information in histogram 

representations. For the verification level of our approach, we 

conduct the first comparison study, comparing our approach 

to established methods like the Canny, LoG, and Sobel 

approaches. Based on a set of ten representative images, our 

numerical findings clearly indicate the benefits of our 

quantum-based approach. Our findings indicate the promise of 

quantum image representations for the further evolution of 

edge detection approaches. The application of quantum 

principles and of the quantum exponential entropy adds novel 

insight and novel dimensions to the detection of edges in 

medical images. Through the exploration of new avenues, our 

related approaches exhibit excellent efficiency and contribute 

to the further evolution of image analysis and image 

processing. It is the first pioneering study of quantum image 

representations for the detection of edges, and there is 

immense potential for further research. Future research studies 

could examine further types of quantum image representations 

and entropies, and also apply our approach in combination 

with further quantum methodologies, such as qubit-based 

representations, quantum Fourier transformation. The 

application of the use of the integration of our approach in 

combination with further quantum methodologies could yield 

further possibilities for the detection of edges and for the 

analysis of medical images, and adding novel dimensions to 

the field. The avenues for research we propose have countless 

possibilities for further evolution, expanding the scope of use 

of these approaches, both theoretically and practically. 
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