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The development of smart education has created an urgent demand for fine-grained and
intelligent management of classroom teaching. Traditional educational evaluation methods
are highly subjective and lack objective quantification. Leveraging computer vision
techniques to analyze classroom image data provides a new solution for contactless and
accurate assessment of learning behaviors. Multimodal image data, with its complementary
strengths in capturing appearance, spatial, and physiological information, lays a solid
foundation for comprehensively interpreting classroom behavior patterns. However,
existing studies are often limited to unimodal analysis, which is vulnerable to environmental
interference, or, when employing multimodal data, rely on simplistic fusion strategies that
fail to fully exploit the deep complementarity among modalities. Moreover, the
interpretability and visualization of analysis results remain insufficient, hindering their
practical application in educational management. To address these challenges, this paper
investigates multimodal image processing and learning behavior pattern visualization
methods tailored for educational management. The main contributions are as follows: (1) a
novel multimodal feature integration model is proposed, employing an encoder—decoder
architecture that incorporates tri-modal feature fusion, adjacent-layer feature enhancement,
and multi-level cascaded feature integration, aiming to generate high-quality saliency maps
for robust representation of learning behaviors; (2) a visualization framework for learning
behavior patterns is developed, transforming model outputs into intuitive forms such as
heatmaps and behavioral trajectories to support educational management decision-making.
The key innovations of this study lie in the following: the design of a hierarchical and guided
multimodal feature integration model tailored to educational management scenarios,
enabling deep complementarity and enhancement across multiple information sources; the
development of a visualization paradigm closely coupled with the feature integration model,
significantly improving the interpretability and usability of the analysis results; and the deep
integration of advanced computer vision technologies with the specific needs of educational
management, providing an end-to-end solution from algorithm to application for precise
supervision in smart classrooms.

1. INTRODUCTION

recorded, providing data-driven decision support for
educational managers. In particular, the popularization of

With the deep advancement of educational informatization
[1-3] and intelligent management [4, 5], how to objectively
and accurately evaluate the effectiveness of classroom
teaching and the state of student participation has become one
of the core challenges faced by modern educational
management. Traditional educational management [6-9]
mostly relies on subjective methods such as class observation
and questionnaire surveys, which are difficult to realize large-
scale, fine-grained, and non-intrusive routine analysis. In
recent years, the rapid development of computer vision
technology [10-13] has provided a new approach to solve this
problem. By analyzing visual data collected in classroom
environments, students’ learning behaviors can be objectively
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multimodal sensing technology [14-16] has made it possible
to simultaneously acquire various types of image data
reflecting students’ appearance behaviors, spatial positions,
and physiological states, laying a data foundation for
interpreting complex classroom interactive behaviors from
multiple dimensions.

Accurate analysis and visualization of classroom learning
behaviors have important theoretical value and practical
significance. From the perspective of educational management,
it can transform abstract concepts such as “classroom
atmosphere” and “student engagement,” which are difficult to
quantify, into computable and analyzable data indicators,
helping to realize fine-grained supervision of the teaching
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process and scientific adjustment of teaching strategies. From
the perspective of technical research, exploring multimodal
image processing methods for educational scenarios can
promote new research directions in the cross-integration of
computer vision technology and the important field of
education. Developing effective visualization methods for
learning behavior patterns can not only improve the
interpretability of the model and enhance the trust of
educational managers in the analysis results, but also present
the analysis results in an intuitive and understandable form,
directly serving teaching reflection and personalized
intervention. In this way, a complete closed loop from data
acquisition to management decision-making can be formed,
which is of great significance for promoting the construction
and development of smart classrooms.

Although some existing studies have attempted to apply
image processing technology to classroom analysis, current
methods still have obvious limitations. First, most studies,
such as the method proposed in [17], rely only on RGB
unimodal video, which is highly susceptible to the influence
of complex classroom environments such as lighting changes
and occlusion, and the reliability of recognizing behaviors
such as looking down to write and sitting still to think is
insufficient. Second, even when multimodal data are
introduced, some studies [18, 19] often adopt simple early or
late fusion strategies, failing to fully explore the deep-level
complementarity and synergy between different modalities,
resulting in limited representation ability of fused features. In
addition, existing methods [20] mostly focus on the
recognition accuracy of specific behaviors, while generally
lacking intuitive and efficient visualization mechanisms for
educational management decision-making, which makes the
analysis results difficult to be directly understood and applied
by educators without technical backgrounds, greatly limiting
their practical value in real educational management scenarios.

Aiming at the above deficiencies, this paper conducts
research on “multimodal image processing and learning
behavior pattern visualization methods for educational
management.” The research mainly includes two core parts:
first, a novel multimodal image feature integration model for
educational management is proposed. The model adopts an
encoder—decoder architecture and integrates modules such as
multimodal  feature  fusion, adjacent-layer  feature
enhancement, and multi-level cascaded feature integration,
aiming to deeply fuse the advantages of RGB, depth, and
thermal infrared images, and generate high-quality saliency
maps that can robustly represent learning behaviors. Second, a
set of learning behavior pattern visualization methods is
constructed, which combines the saliency maps output by the
model with original classroom video streams, and transforms
the analysis results into visual language easily understood by
educational managers through multiple approaches. The value
of this research lies in not only proposing a more robust and
accurate behavior analysis model for educational scenarios
from the technical perspective, but also building a bridge from
the application perspective between advanced artificial
intelligence technologies and the practical needs of
educational management, providing an effective solution for
realizing data-driven smart education management.

2. MULTIMODAL IMAGE FEATURE INTEGRATION
FOR EDUCATIONAL MANAGEMENT

The overall architecture of the multimodal image feature
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integration model for educational management is based on an
encoder—decoder framework. It aims to construct feature
representations that can reveal learning behavior patterns by
collaboratively analyzing synchronously collected RGB
images capturing student postures and interactions, depth
images quantifying spatial positions and distances, and
thermal infrared images reflecting body temperature
distribution and attention fluctuations in classroom scenes.
The model architecture is shown in Figure 1. The model first
uses three parallel encoders based on VGG16 to extract five-
level pyramid features {D%,,DV,,D5,}°~1 of the three
modalities, where deep features contain semantic behavior
information, and shallow features retain spatial details. To fuse
multimodal behavior representations, each feature level
introduces a tri-modal feature fusion module, which integrates
visual appearance, spatial relationship, and physiological
response features through a cross-modal attention mechanism,
generating fused features {DP,}°.-1. For example, the
association enhancement between abnormal thermal infrared
regions and head-down postures in RGB images can be
achieved.

To further strengthen multi-scale behavioral context, the
model designs a neighboring-layer feature enhancement
module, which aggregates tri-modal fusion outputs of adjacent
levels through a top-down path, and captures cross-scale
dependencies from local actions to global scene layout by
using dilated convolution and spatial pyramid pooling,
generating enhanced decoding features D", In particular, to
optimize the discriminability of behavior patterns, the model
concatenates the semantic abstract features D%, from the
deepest layer of the encoder with the fine-grained features
DR, from the shallowest layer, obtaining joint features
DR, , which are used to guide the decoding process in the
multi-level cascaded feature integration module. This module
progressively fuses behavioral features at different resolutions
through gated recurrent units, avoiding detail loss while
suppressing background interference. Finally, the decoder
block reconstructs spatial resolution and outputs a high-quality
learning behavior saliency map 7. This saliency map not only
highlights key behavioral regions but also provides
quantitative evidence for educational managers through
feature back-projection interpretability mapping, supporting
decision-making applications such as classroom engagement
evaluation and teaching strategy adjustment.

2.1 Tri-modal feature fusion

The core goal of the tri-modal feature fusion module for
educational management is to construct more robust learning
behavior representations by complementary enhancement of
appearance behavior information from RGB images (such as
students raising hands or writing posture), spatial relationship
information from depth images (such as relative distance
between students and podium/peers), and physiological
engagement information from thermal infrared images (such
as attention concentration implied by facial temperature
changes). The module architecture is shown in Figure 2. The
module first performs input calibration on the same-level
features {DF,, D¥,, D5,} extracted by three parallel encoders.
Specifically, each modality feature is independently input into
a sequence consisting of a Squeeze-and-Excitation block and
a Convolution—Batch Normalization—-ReLU block. The SE
block generates channel weights through global average
pooling and fully connected layers to achieve dynamic
calibration. For example, in analyzing a group discussion



scene, the weight of the depth modality may be increased;
while in recognizing individual reading behavior, the
importance of the RGB modality may be enhanced. The
calibrated features {DPy, DPr, D5Ps}are concatenated along
the channel dimension to form the preliminary fused feature
DPcyr, laying the foundation for subsequent deep mixing.
Specifically, the operation of the SE module is denoted as
drr(+), the convolution layer as ZYE(-), and the concatenation
operation as [, , ], then:

DY = ZYE(dy (D))
DY = ZYE(dyy (D]

1
Dy = ZYE(dy, (D @

SD
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Figure 1. Overall architecture of the multimodal image feature integration model for educational management

In the feature mixing part, the module aims to fuse
behavioral contexts at different spatial scales, so as to
simultaneously capture local subtle actions such as page
turning and global interaction patterns such as orientations
between teachers and students. The concatenated feature
DSPcyr first passes through a CSR block for dimensionality
reduction and nonlinear transformation, obtaining feature
D?cur. Then, D?cris processed by dilated convolutions with
dilation rates of 1, 3, 5, and 7 in parallel. This is intended to
expand the receptive field without losing resolution: small
dilation rates focus on local body movement details, while
large dilation rates help to understand classroom spatial layout
and student group distribution on a larger scale. All outputs of
the dilated convolutions are concatenated again to form the
multi-scale feature D5P.. To adaptively optimize the fusion
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effect, D?c4ris simultaneously input into a CBR block with a
Sigmoid activation function, generating a spatial weighting
map between 0 and 1. This weighting map is multiplied
pointwise with DSP,, thereby highlighting regions highly
related to learning behaviors and suppressing irrelevant
background. Finally, residual connection is used to retain the
original information flow and ensure gradient stability.
Considering that in educational scenarios, RGB images
usually contain the richest and most direct appearance
behavior cues, which are the main basis for managers to judge
behaviors, the module specifically adds the original RGB
feature DV, back into the weighted fused features in residual
form after completing the above fusion. This design ensures
that key appearance behavior information will not be diluted
or distorted in the complex cross-modal fusion process. For



example, it can strengthen the unique texture and shape
patterns of the behavior “student looking down at a phone” in
the RGB channel. Finally, a convolution layer is used to
integrate all information flows and generate the fused output
feature DSP, of this level. This feature not only contains
behavioral semantics after multimodal complementary
enhancement but also retains RGB visual details that are
crucial for educational management decision-making,
providing high-quality input for subsequent multi-scale
feature enhancement and precise reconstruction of learning
behavior saliency maps. Assuming that the dilated convolution
operation with dilation rate v is denoted as 6,(-), the Sigmoid
activation function as SSI/G(-), and the convolution operation
as CO, the corresponding process can be represented as

D,

v
v

v

follows:

DgATt = ZYE(Dng>
L [a(oa)0 (o). .
o |6(Dy )6 (D)
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=
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Figure 2. Architecture of the tri-modal feature fusion module

2.2 Neighboring-layer feature enhancement

After completing the tri-modal feature fusion at the same
level, the obtained features are already rich in fusion
information, but there is a natural complementarity among
features at different levels when describing learning behaviors:
deep features contain rich semantic information, such as
abstract categories of behavior patterns like “focused listening’
and “group discussion”; while shallow features retain key
spatial details, such as precise contours of student gestures and
subtle changes in body orientation. To construct behavior
representations with both semantic clarity and spatial precision,
we propose the neighboring-layer feature enhancement
module. The core idea of this module is to achieve effective
transmission and enhancement of multi-scale behavioral
context by aggregating the fused features of adjacent levels
and the upsampled features provided by the previous decoder.
This design aims to overcome the limitations of a single scale,
enabling the model to simultaneously understand macro
classroom interaction patterns and micro individual action

>
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details, laying the foundation for accurate visualization of
learning behavior patterns. The module architecture is shown
in Figure 3.

This module first upsamples the higher-level semantic
features DSP,+; with lower resolution by bilinear interpolation
and uses a convolution layer to adjust its channel dimension
so that it is consistent in size with the current level feature DS?,,.
After adding the two, the initial aggregated feature D"Rgy,is
obtained, which preliminarily fuses behavioral semantics from
deep layers and spatial details from shallow layers. This
process can be expressed as:

DIMR = CO(UR2 (D ))(—)Df”,u =1,2,3,4 3)

To intelligently focus on spatial regions related to learning
behaviors, the module introduces a spatial attention
mechanism CA/ based on channel average pooling. This
mechanism compresses DR, along the channel dimension
to generate a spatial attention weight map 7Q, which can



identify regions with higher average activation at the channel
level, usually corresponding to behavior hotspots commonly
attended to by multiple modalities. Subsequently, 7Q is
multiplied element-wise with both the initial aggregated

feature D"™Rg, and the features from the previous decoder
block, achieving reweighting in the spatial dimension to
highlight key behavioral regions and suppress irrelevant
interference.
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Figure 3. Architecture of the neighboring-layer feature enhancement module

After completing the first round of spatial reweighting, the
module adds the two weighted types of features and inputs
them into the second spatial attention block CA2. At this stage,
channel max pooling operation is adopted to further refine the
strongest response across channels at each spatial location.
This strategy helps to emphasize the most discriminative
behavioral cues at each location. For example, a certain
location may appear as a hand-raising posture in the RGB
channel and as a slight temperature increase in the thermal
infrared channel; max pooling can strengthen such cross-
modal consistent key evidence. The final enhanced feature
DR, not only fuses complementary information from
adjacent levels but also achieves precise focus on key
behavioral regions through a two-stage spatial attention
mechanism. This enhanced feature significantly improves the
quality of decoder reconstructed feature maps, enabling the
final generated visualization saliency map to clearly and
reliably highlight patterns of great value to educational
management, such as “actively interacting student groups™ and
“individuals with dispersed attention,” directly serving core
research goals such as classroom engagement evaluation and
teaching strategy optimization. Specifically, assuming the
channel max pooling operation is denoted as ¢(+), the process
can be described as follows:

DSI'/L];M = (D;%\}; (DF;«H ) ®TQ

DWR _ DVF ®DVF (4)
u - ¢( SUM) SUM

2.3 Multi-level cascaded feature integration module

In multimodal learning behavior analysis, it is crucial to
effectively distinguish “foreground” regions representing key
learning behaviors such as teacher—student interaction and
group collaboration from irrelevant classroom environment
“background.” For this purpose, we design a multi-level

cascaded feature integration module, aiming to intelligently
aggregate features from different decoder levels in a “from
global to detail” manner. The core inputs of this module are
two key elements: first, the joint feature D", , formed by
concatenating the deepest semantic feature D", (encoding
global patterns of “what behavior”) and the shallowest detail
feature D"MR, (encoding subtle actions of “how behavior”);
second, the multi-resolution features {F’s,Fa,F3,F>} generated
during the decoding process. As a powerful guiding signal, the
joint feature D"™R,, itself has already integrated broad-
spectrum information from behavioral semantics to spatial
details and will be used to guide the weighting and fusion
process of all subsequent decoder features, ensuring that the
final generated behavior saliency map can both accurately
locate behavior subjects and clearly outline behavioral details.

This module progressively integrates features through four
cascaded convolution blocks Conv-Bi. Each Conv-Bi block
contains a Convolution—Batch Normalization—ReLU block, a
Convolution—Batch Normalization block, a Sigmoid activation
function, and a convolution layer, jointly forming a precise
feature selection and enhancement unit. Assuming Conv-Bu is
denoted as ¢(*), the specific process can be defined as follows:

u+l > u+l

D =|UP,(CO(F, D!
I: ><2( ( u+1)) :|,l/l=1,2,3,4 (5)
DuL :CofBu (DuLfl’D:Jrl)

Taking Conv-Ba, which processes the highest semantic level
feature, as an example: first, the decoder feature Fs is
convolved and upsampled to compress its channel number to
1. This operation aims to extract the most essential behavioral
semantic information of this level while reducing
computational complexity. Then, the compressed feature is
concatenated with the guiding feature D%, 4 to form the
fusion input Dy, Inside Conv-Bs, FMDS5 undergoes feature
transformation successively through the CBR block and the
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CB block, then a spatial weight map is generated through the
Sigmoid function. This weight map clearly identifies regions
considered highly related to learning behaviors under the joint
guidance of high-level semantics and low-level details. Finally,
by multiplication of the weight map with the guiding feature
DR, , and residual connection, the enhanced feature D4 is
generated, which has deeply fused the global context of Fs.
The entire process can be expressed as:

Df= CO(SIG(ZY(ZYE(DSLF)))®D5L @DSL) (6)

This process is repeated step by step downward, such as
Conv-B; processing D4 and Fi, and so on. Like an information
filter, under the guidance of D", each step reinforces
behavior-related multi-scale cues and suppresses background
noise. Ultimately, a highly pure and progressively restored
resolution feature map is output, laying a solid foundation for
generating high-quality saliency maps that can accurately
highlight key learning behaviors such as “raising hand,”
“turning,” and “gathering.”

2.4 Loss function

To ensure that each level in the decoder generates saliency
representations related to learning behaviors and to alleviate
the gradient vanishing problem for faster convergence, the
model introduces a deep supervision mechanism. This
mechanism connects a convolutional prediction head to the
four intermediate decoder blocks, except for the final output
layer, to obtain multiple intermediate predictions at different
resolutions. The losses between these intermediate predictions
and the ground truth are calculated separately, with the core
purpose of providing explicit gradient guidance for different
depths of the network: deep supervision forces the network to
focus on the overall semantic structure of behavior patterns at
early stages, such as identifying regions where “group
discussion” occurs, while shallow supervision constrains the
network to recover clear spatial boundaries and details of
behavior subjects, such as accurately delineating the contours
of individuals participating in the discussion. This coarse-to-
fine multi-scale supervision strategy effectively ensures that
the model optimizes each step of learning behavior feature
extraction and reconstruction in the correct direction,
enhancing the model’s ability to capture multi-scale behaviors
from global interactions to individual micro-actions in
complex classroom scenes and improving training stability.

To comprehensively optimize the quality of saliency maps,
making them not only pixel-accurate but also structurally
complete, thereby providing reliable analysis for educational
managers, we design a joint loss function. This function
consists of three components: binary cross-entropy (BCE) loss,
10U loss, and SSIM loss, which constrain the prediction
results from different dimensions. BCE loss is responsible for
pixel-level classification, minimizing the error between
predicted values and ground truth at each pixel, ensuring that
the model can clearly distinguish foreground pixels
representing key learning behaviors from background pixels,
which is the basis for accurate localization of behavior regions.
IOU loss optimizes at the region level, directly maximizing the
overlap between predicted behavior regions and ground truth
regions. Its sensitivity to region shape helps the model detect
the entire behavior subject completely rather than in
fragmented pieces, which is crucial for accurately quantifying
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the scope of behavior occurrence. SSIM loss focuses on
evaluating structural similarity differences between the
predicted map and ground truth map. It penalizes outputs that
may have acceptable pixel accuracy but distorted structures,
ensuring that the generated behavior saliency maps have good
visual fidelity and structural authenticity. This greatly
improves the reliability and interpretability of subsequent
behavior pattern visualization and manual judgment based on
saliency maps. Specifically, assuming BCE loss, IOU loss, and
SSIM loss are denoted as loss?,, loss,, and loss”,, respectively,
the model loss function is calculated as follows:

LOSS = Zsl(lossu)

u=1

(7

Y T
loss, =loss! +loss” +loss]

Assuming the ground truth map is denoted by HS, the
predicted saliency map by 7, and the coordinates of each pixel
in the image by (a, b), the BCE loss in the above equation is
expressed as:

s’ {stb)mg(r(mb)) 1
' (@] +(1-HS(a,b))log(1-T(a,b))

®)
The IOU loss is expressed as:
Z , T(a,b)HS(a,b)
loss! =1- (=5)
T(a,b)+HS(a,b) 9)

|

—T(a,b)+HS(a,b)}

Let the image patches cropped from the saliency map 7 and
ground truth map HS be Or=0%r and Oy=0"y, respectively.
The mean and standard deviation of Orand Op are wor, won
and Jdor, don, and their covariance is doron. The SSIM loss is
defined as:

(20, @5, +2,)(2604,0, +2,)
(wZOTwZOI, +Zl)(520T520” +Zz)

loss! =1-

(10)

The collaboration of these three losses jointly drives the
model to generate learning behavior saliency maps with high
precision, high completeness, and high structural fidelity,
providing a solid data foundation for educational managers to
perform quantitative analysis and make decisions.

3. LEARNING BEHAVIOR
VISUALIZATION METHOD

PATTERN

The overall architecture of the proposed learning behavior
pattern visualization system follows a data-flow-driven
hierarchical design concept, divided from bottom to top into
the data layer, functional layer, and application layer,
constructing a complete closed loop from multi-modal data
perception to educational management insights. The specific
architecture is shown in Figure 4.

The data layer is the foundation of the entire system,
responsible for managing and providing all data resources
required for analysis. Its core is a multi-modal image database,



continuously recording and storing RGB video streams, depth
images, and thermal infrared images synchronously collected
by sensors deployed in classrooms. All image data are time-
stamp aligned and preprocessed to ensure consistency across
modalities. In addition, this layer maintains a pre-trained
model weight repository, providing strong initial parameters

for feature extraction in upper layers, ensuring algorithm
performance and convergence speed. At the same time, the
classroom layout map serves as key prior knowledge, defining
regions of interest and providing geographical context for
subsequent 3D spatial localization and group behavior
analysis.
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Figure 4. Learning behavior pattern visualization system architecture

The functional layer serves as the “brain” of the system and
contains two sequentially cooperating, progressively advanced
core processing engines. The multi-modal feature integration
engine implements the algorithm proposed in this paper. It
receives raw multi-modal images from the data layer and first
extracts hierarchical features for each modality using encoder
networks. Then, the tri-modal feature fusion module performs
complementary weighted fusion at different scales, effectively
overcoming the limitations of single modalities. Next, the
neighboring layer feature enhancement module aggregates
fusion features from adjacent scales, enriching the multi-scale
contextual information of behavior representations. Finally,
the multi-level cascaded feature integration module, guided by
the joint feature, reconstructs high-resolution, high-contrast
behavior saliency maps precisely. These saliency maps are not
simple binary images but highlight spatial regions most likely
representing key learning behaviors in the form of pixel-level
confidence. The behavior pattern visualization engine is
responsible for converting algorithm-generated saliency maps
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into intuitive information for decision-making. It first
performs behavior semantic labeling on the saliency maps,
using classifiers or rules to identify pixel-level regions as
specific, understandable behavior labels. Then, by aggregating
these labeled behavior data over time, it drives the generation
of various visualization models: focus heatmaps intuitively
show the overall attention distribution of students in different
areas of a class through temporal integration; interaction
trajectory maps dynamically display movement and
communication paths between teacher-student or student-
student; behavior event reports automatically generate
structured summaries, counting the frequency, duration, and
distribution of specific behaviors.

The application layer seamlessly connects the outputs of the
functional layer with the needs of specific educational
management scenarios, providing customized services for
different user roles. The system interface converts
visualization results into specific functional modules: the real-
time classroom supervision module provides managers with



dynamically updated panoramic heatmaps of the classroom,
enabling immediate perception of overall learning atmosphere
and anomalies; the teaching review and analysis module
provides teachers with detailed classroom behavior timelines
and event reports, supporting precise teaching reflection and
strategy adjustment; the macro-situation assessment module,
aimed at school-level managers, aggregates long-term data
and performs trend analysis to generate reports on attendance
patterns, participation changes, and other macro-level insights,
providing data support for course planning and teaching
evaluation.

This architecture clearly depicts a technical pathway that
takes multi-modal images as input, uses an advanced feature
integration model as the core, and ultimately produces multi-
level, highly interpretable visualization results, fully
demonstrating the complete value chain of this study from
technological innovation to practical educational application.

4. EXPERIMENTAL RESULTS AND ANALYSIS

A behavior analysis model aimed at serving practical
educational ~ management  scenarios must  balance

computational efficiency and accuracy to ensure deployability.
To validate the performance of the proposed model, relevant
experiments were conducted. Analyzing the data in Table 1,
skeleton-based models (e.g., PoseC3D) and lightweight
detection models (e.g., YOLOVS5s) significantly outperform in
terms of parameter count, FLOPs, and FPS, because they
process highly abstracted skeleton data or focus on a single
detection task. In contrast, our proposed model has a higher
parameter count (84.56M) and computation (335.39G FLOPs),
fundamentally because it processes RGB, depth, and thermal
infrared raw modalities and performs end-to-end complex
computation from pixel-level feature fusion to behavior
heatmap generation. Although its FPS is 13.89, lower than
pure detection models with extremely high real-time
requirements, this speed is sufficient for high-efficiency post-
processing and analysis of classroom video data at a minute-
level granularity rather than millisecond-level response. It can
be concluded that the proposed model achieves deep fusion of
multi-modal raw information and intuitive visual output at an
acceptable computational cost, and its efficiency is reasonable
and feasible for practical educational management
applications.

Table 1. Comparison of computational efficiency of different behavior analysis models on classroom scene dataset

Parameters (M) FLOPs (G)

FPS

Model Type | ! 1 Remarks
3D Behavior Recognition 12.0 108.3 325 Based on RGB video
SlowFast Behavior Recognition 345 66.3 28.1 Dual-path RGB network
PoseC3D Skeleton-baseq .BehaV1or 39 53 105.6 High computational .efﬁc.lency, relies on
Recognition pose estimation
YOLOvSs- Pose Detection and Tracking 20 45 68.9 High real-time performfmce, outputs human
Pose keypoints
ST-GCN Skeleton-basefi .BehaV10r 3.1 6.1 98.3 Processes spatiotemporal graph structure
Recognition
Ours Multl-m()daif;l;z\;slor Saliency 84.56 335.39 13.89  End-to-end generation of behavior heatmap

Table 2. Ablation experiment performance of the proposed model on EduBehav-2024 dataset

General Saliency Metrics

Behavior Analysis Specific Metrics

Group S-Measure  MAE maxF  Behavior localization accuracy Behavior classification Interaction event detection
T l T (mAP@0.5) 1 accuracy (Top-1 Acc) 1 rate (/EDR) 1

1 0.9398 0.0023  0.9228 0.856 0.783 0.912

2 0.9374 0.0023  0.9190 0.849 0.779 0.908

3 0.9369 0.0023  0.9193 0.851 0.781 0.909

4 0.9390 0.0022 0.9214 0.858 0.785 0.915

5 0.9368 0.0023  0.9190 0.847 0.778 0.907

6 0.9400 0.0023  0.9225 0.859 0.786 0.916

7 0.9383 0.0023  0.9212 0.853 0.782 0911

8 0.9392 0.0023  0.9220 0.855 0.784 0.913

9 0.9386 0.0023  0.9218 0.857 0.785 0914

10 0.9380 0.0022 0.9212 0.852 0.780 0.910
Mean 0.9385 0.0023  0.9210 0.853 0.782 0.911

Using only general saliency metrics is insufficient to

demonstrate the model's practical value in the educational field.

Behavior analysis specific metrics must be combined to
comprehensively evaluate its performance on real tasks. From
the average of the ten experimental groups in Table 2, the
model performs excellently on general saliency metrics: S-
Measure is 0.9385, MAE is 0.0023, and maxF is 0.9210,
ensuring that the generated behavior heatmaps are visually
accurate and clear. More importantly, on behavior analysis
specific metrics, the model achieves behavior localization
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accuracy of 0.853, behavior classification accuracy of 0.782,
and interaction event detection rate of 0.911. This indicates
that the model can not only highlight salient regions at the
pixel level but also precisely associate these regions with
specific learning behaviors and effectively capture complex
interactive events such as “teacher-student Q&A.” The high
performance of both specific and general metrics demonstrates
that the model successfully establishes strong associations
between low-level visual features and high-level behavior
semantics. It can be concluded that the proposed model retains



excellent pixel-level saliency detection capabilities while
showing high effectiveness and practical value in core
educational management tasks, namely learning behavior

localization, recognition, and interaction analysis,
significantly surpassing performance measured solely by
general metrics.

Table 3. Statistical significance test (p-values) of the proposed model and baseline methods on educational behavior analysis
dataset

General Saliency Metrics

Behavior Analysis Specific Metrics

Coﬁl():::ls on S- MAE | maxF 1 Behavior localization Behavior classification Interaction event
Measure 1 accuracy (mA4P) 1 accuracy (d4cc) 1 detection rate (/EDR) 1
vs. 13D 5.2x1077 3.1x10°%  4.8x1077 1.5x10710 2.3x107° 6.7x1071
vs. PoseC3D 0.125 0.043 0.089 4.4x107° 9.8x107 3.2x1077
vs. HWSI 9.3x107°  9.0x10710 58x10712 1.1x10710 5.2x107° 8.4x10712

Table 4. Ablation study of core components of the proposed model on educational behavior analysis dataset (Mean performance)

Behavior Localization Interaction Event

Description S-Measure | MAE | Accuracy (mAP) 1 Detection Rate (/EDR) 1
Without Tri-modal Feature Fusion 0.9357 0.0024 0.841 0.892
Without Adjacent Layer Feature Enhancement 0.9391 0.0023 0.848 0.905
Without Multi-level Cascade Feature Integration 0.9388 0.0023 0.846 0.903
Without Cross-layer Guiding Feature 0.9376 0.0024 0.843 0.901
Without Deep Supervision Training 0.9272 0.0028 0.825 0.878
Complete Model 0.9398 0.0023 0.853 0.911

Table 5. Performance comparison of different feature fusion strategies on educational behavior analysis task

Fusion Strate Description S-Measure ~ MAE Behavior Classification Interaction Event Detection
gy P 1 ! Aceuracy (Acc) 1 Rate (/EDR) 1
Feature Addition Direct Channel Addition 0.9122 0.0031 0.752 0.865
Attention-based Channel/Spatial Attention 0.9261 0.0027 0.781 0.890
Ours Cross-modal Attention with 9305 ¢ 923 0.793 0.911
Multi-scale Mixing
Table 6. Effects of different modal combinations on educational behavior analysis performance
Modal s . Behavior Classification Interaction Event
Combination Description S-Measure | MAE | Accuracy (4cc) 1 Detection Rate (/EDR) 1
D-T Depth and Thermal Only 0.7421 0.0144 0.655 0.601
R-D RGB and Depth Only 0.7285 0.0123 0.638 0.589
R-T RGB and Thermal Only 0.9371 0.0025 0.785 0.902
R-D-T (Ours) RGB, Depth, and Thermal 0.9398 0.0023 0.793 0.911

Furthermore, this paper statistically confirms that the
performance advantage of the proposed model in educational
behavior analysis tasks is not accidental, but represents a
substantial improvement with statistical significance.
Analyzing the data in the Table 3, compared with the general
video behavior recognition model 13D, the proposed model
achieves extremely low p-values on all general and specific
metrics (all far below 0.01), indicating that the model's
performance is comprehensive and significantly superior to
models relying only on RGB information. Second, in
comparison with the efficient skeleton-based model PoseC3D,
although the differences in general metrics such as S-Measure
are not statistically significant (p>0.05), reflecting PoseC3D’s
capability in extracting abstract spatiotemporal features, the
proposed model exhibits overwhelming advantages in the
three core educational analysis metrics: behavior localization
accuracy (p=4.4e*), classification accuracy (p=9.8¢”), and
interaction event detection rate (p=3.2¢”7). This strongly
demonstrates that generating behavior heatmaps directly via
multi-modal fusion far exceeds skeleton-based simplified
representations in understanding and parsing complex
classroom interaction semantics. Finally, compared with the
same-type multi-modal model HWSI, our model also shows
statistically significant improvements across all metrics.
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To quantitatively evaluate the contribution of each core
component of the proposed model to the final educational
behavior analysis performance, ablation experiments were
conducted. Analyzing the data in Table 4, removing the tri-
modal feature fusion module leads to the most obvious decline
in all metrics, especially behavior localization accuracy and
interaction event detection rate, proving that deep fusion of
RGB, depth, and thermal infrared information is the
cornerstone of accurately understanding learning behaviors.
Second, removing deep supervision training causes a
comprehensive and significant performance degradation,
highlighting the critical role of this strategy in guiding the
network to learn multi-scale behavior features. Moreover,
although removing adjacent layer feature enhancement or
multi-level cascade feature integration has relatively minor
impacts on general metrics, their negative effects on behavior-
specific metrics are clearly visible, indicating that these
modules mainly optimize semantic understanding and spatial
precision of behaviors. It can be concluded that each core
component of the proposed model contributes positively and
irreplaceably to improving educational behavior analysis
performance, with tri-modal feature fusion and deep
supervision training being key guarantees of overall
performance, fully validating the design of the model as an



organic whole.

Fusion strategy is the core determinant of multi-modal
model performance. To demonstrate the superiority of the
proposed tri-modal feature fusion module in capturing
complex correlations of educational behaviors, feature fusion
strategy comparison experiments were conducted. The data in
the Table 5 clearly shows a stepwise improvement in all
evaluation metrics from simple “feature addition” to
“attention-based fusion,” and further to the proposed tri-modal
feature fusion module. In particular, the tri-modal feature
fusion module shows the most obvious advantages in behavior
classification accuracy and interaction event detection rate,
indicating that its cross-modal attention and multi-scale
mixing mechanism can more effectively mine complementary
information between modalities, thereby enabling more
accurate judgment of complex behavior states such as
“distracted” or “focused.” It can be concluded that the
proposed feature fusion strategy significantly outperforms
traditional fusion methods in decoding learning behavior
semantics and is a key innovation for improving the overall
system’s behavior analysis accuracy.

To further verify that RGB, depth, and thermal infrared tri-
modal information are indispensable for educational behavior
analysis tasks, experiments on the effects of modal
combination inputs on educational behavior analysis
performance were conducted. The analysis data in Table 6
shows that when the RGB modality is missing, the model
cannot obtain rich appearance texture and semantic
information, causing the behavior classification accuracy to
drop sharply to 0.655, indicating that appearance information
is the basis for behavior recognition. Second, when the thermal
infrared modality is missing, the model struggles to capture
physiological thermal signals related to attention and emotion,
leading to the worst performance in interaction event detection
rate, highlighting the importance of physiological information
for understanding classroom interaction quality. It is
noteworthy that the R-T combination is already close to the
complete model in various metrics, especially performing well
on general metrics, indicating that the combination of
appearance and physiological signals can largely infer
behaviors. However, the complete model maintains leading
performance on all behavior-specific metrics, especially the
further improvement of interaction event detection rate
sensitive to spatial relationships, proving that depth
information provides precise spatial relations necessary to
clarify complex interactions. It can be concluded that in
educational behavior analysis, RGB, depth, and thermal
modalities respectively provide irreplaceable appearance,
spatial, and physiological cues, and together form a
comprehensive and robust basis for behavior understanding.
The absence of any modality leads to a significant decline in
analysis performance, thereby validating the necessity of the
tri-modal design adopted in this paper.

5. CONCLUSION

This study focuses on “multi-modal image processing and
learning behavior pattern visualization methods for
educational management,” with the core contribution being
the proposal of a novel multi-modal feature integration model
and its accompanying visualization system. This model,
through modules such as tri-modal feature fusion, adjacent
layer feature enhancement, and multi-level cascade feature
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integration, achieves deep information collaboration for RGB,
depth, and thermal infrared images in classroom scenarios,
generating high-quality learning behavior saliency maps. On
this basis, the constructed visualization system converts the
saliency maps into intuitive forms such as attention heatmaps
and behavior event reports, directly connecting algorithm
outputs with educational managers’ decision-making needs.
Experimental results indicate that the proposed model
achieves a good balance between computational efficiency and
performance, significantly outperforming baseline models on
multiple metrics in the calibrated educational behavior
analysis dataset. Ablation experiments further verify the
effectiveness of each core component and confirm the
complementary value and necessity of tri-modal input in
capturing behavioral appearance, spatial relationships, and
physiological states.

The main value of this study lies in deeply integrating
advanced computer vision technology with specific
educational management scenarios, providing an end-to-end
solution from algorithm to application for fine-grained and
objective classroom teaching assessment. However, there are
limitations: first, model performance relies on high-quality
synchronized multi-modal data collection, placing high
demands on hardware configuration and environmental
stability in actual deployment; second, the current study
mainly addresses pre-defined typical learning behaviors, and
the ability to recognize and visualize more complex and
abstract learning states remains to be explored. Looking
forward, future research directions may focus on: (1) exploring
more lightweight model architectures and self-supervised
learning strategies to reduce reliance on labeled data and
deployment costs; (2) investigating effective integration of
audio, text, and other multi-modal information to build a more
comprehensive classroom analysis model; (3) combining
educational theory to develop more interpretable visualization
paradigms and automatically linking system outputs with
teaching intervention strategies, ultimately forming a
“perception-analysis-feedback-optimization” closed-loop
intelligent educational management ecosystem.
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