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The development of smart education has created an urgent demand for fine-grained and 

intelligent management of classroom teaching. Traditional educational evaluation methods 

are highly subjective and lack objective quantification. Leveraging computer vision 

techniques to analyze classroom image data provides a new solution for contactless and 

accurate assessment of learning behaviors. Multimodal image data, with its complementary 

strengths in capturing appearance, spatial, and physiological information, lays a solid 

foundation for comprehensively interpreting classroom behavior patterns. However, 

existing studies are often limited to unimodal analysis, which is vulnerable to environmental 

interference, or, when employing multimodal data, rely on simplistic fusion strategies that 

fail to fully exploit the deep complementarity among modalities. Moreover, the 

interpretability and visualization of analysis results remain insufficient, hindering their 

practical application in educational management. To address these challenges, this paper 

investigates multimodal image processing and learning behavior pattern visualization 

methods tailored for educational management. The main contributions are as follows: (1) a 

novel multimodal feature integration model is proposed, employing an encoder–decoder 

architecture that incorporates tri-modal feature fusion, adjacent-layer feature enhancement, 

and multi-level cascaded feature integration, aiming to generate high-quality saliency maps 

for robust representation of learning behaviors; (2) a visualization framework for learning 

behavior patterns is developed, transforming model outputs into intuitive forms such as 

heatmaps and behavioral trajectories to support educational management decision-making. 

The key innovations of this study lie in the following: the design of a hierarchical and guided 

multimodal feature integration model tailored to educational management scenarios, 

enabling deep complementarity and enhancement across multiple information sources; the 

development of a visualization paradigm closely coupled with the feature integration model, 

significantly improving the interpretability and usability of the analysis results; and the deep 

integration of advanced computer vision technologies with the specific needs of educational 

management, providing an end-to-end solution from algorithm to application for precise 

supervision in smart classrooms. 
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1. INTRODUCTION

With the deep advancement of educational informatization 

[1-3] and intelligent management [4, 5], how to objectively 

and accurately evaluate the effectiveness of classroom 

teaching and the state of student participation has become one 

of the core challenges faced by modern educational 

management. Traditional educational management [6-9] 

mostly relies on subjective methods such as class observation 

and questionnaire surveys, which are difficult to realize large-

scale, fine-grained, and non-intrusive routine analysis. In 

recent years, the rapid development of computer vision 

technology [10-13] has provided a new approach to solve this 

problem. By analyzing visual data collected in classroom 

environments, students’ learning behaviors can be objectively 

recorded, providing data-driven decision support for 

educational managers. In particular, the popularization of 

multimodal sensing technology [14-16] has made it possible 

to simultaneously acquire various types of image data 

reflecting students’ appearance behaviors, spatial positions, 

and physiological states, laying a data foundation for 

interpreting complex classroom interactive behaviors from 

multiple dimensions. 

Accurate analysis and visualization of classroom learning 

behaviors have important theoretical value and practical 

significance. From the perspective of educational management, 

it can transform abstract concepts such as “classroom 

atmosphere” and “student engagement,” which are difficult to 

quantify, into computable and analyzable data indicators, 

helping to realize fine-grained supervision of the teaching 
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process and scientific adjustment of teaching strategies. From 

the perspective of technical research, exploring multimodal 

image processing methods for educational scenarios can 

promote new research directions in the cross-integration of 

computer vision technology and the important field of 

education. Developing effective visualization methods for 

learning behavior patterns can not only improve the 

interpretability of the model and enhance the trust of 

educational managers in the analysis results, but also present 

the analysis results in an intuitive and understandable form, 

directly serving teaching reflection and personalized 

intervention. In this way, a complete closed loop from data 

acquisition to management decision-making can be formed, 

which is of great significance for promoting the construction 

and development of smart classrooms. 

Although some existing studies have attempted to apply 

image processing technology to classroom analysis, current 

methods still have obvious limitations. First, most studies, 

such as the method proposed in [17], rely only on RGB 

unimodal video, which is highly susceptible to the influence 

of complex classroom environments such as lighting changes 

and occlusion, and the reliability of recognizing behaviors 

such as looking down to write and sitting still to think is 

insufficient. Second, even when multimodal data are 

introduced, some studies [18, 19] often adopt simple early or 

late fusion strategies, failing to fully explore the deep-level 

complementarity and synergy between different modalities, 

resulting in limited representation ability of fused features. In 

addition, existing methods [20] mostly focus on the 

recognition accuracy of specific behaviors, while generally 

lacking intuitive and efficient visualization mechanisms for 

educational management decision-making, which makes the 

analysis results difficult to be directly understood and applied 

by educators without technical backgrounds, greatly limiting 

their practical value in real educational management scenarios. 

Aiming at the above deficiencies, this paper conducts 

research on “multimodal image processing and learning 

behavior pattern visualization methods for educational 

management.” The research mainly includes two core parts: 

first, a novel multimodal image feature integration model for 

educational management is proposed. The model adopts an 

encoder–decoder architecture and integrates modules such as 

multimodal feature fusion, adjacent-layer feature 

enhancement, and multi-level cascaded feature integration, 

aiming to deeply fuse the advantages of RGB, depth, and 

thermal infrared images, and generate high-quality saliency 

maps that can robustly represent learning behaviors. Second, a 

set of learning behavior pattern visualization methods is 

constructed, which combines the saliency maps output by the 

model with original classroom video streams, and transforms 

the analysis results into visual language easily understood by 

educational managers through multiple approaches. The value 

of this research lies in not only proposing a more robust and 

accurate behavior analysis model for educational scenarios 

from the technical perspective, but also building a bridge from 

the application perspective between advanced artificial 

intelligence technologies and the practical needs of 

educational management, providing an effective solution for 

realizing data-driven smart education management. 

2. MULTIMODAL IMAGE FEATURE INTEGRATION

FOR EDUCATIONAL MANAGEMENT

The overall architecture of the multimodal image feature 

integration model for educational management is based on an 

encoder–decoder framework. It aims to construct feature 

representations that can reveal learning behavior patterns by 

collaboratively analyzing synchronously collected RGB 

images capturing student postures and interactions, depth 

images quantifying spatial positions and distances, and 

thermal infrared images reflecting body temperature 

distribution and attention fluctuations in classroom scenes. 

The model architecture is shown in Figure 1. The model first 

uses three parallel encoders based on VGG16 to extract five-

level pyramid features {DF
u,DN

u,DS
u}5

u=1 of the three 

modalities, where deep features contain semantic behavior 

information, and shallow features retain spatial details. To fuse 

multimodal behavior representations, each feature level 

introduces a tri-modal feature fusion module, which integrates 

visual appearance, spatial relationship, and physiological 

response features through a cross-modal attention mechanism, 

generating fused features {DSD
u}5

u=1. For example, the 

association enhancement between abnormal thermal infrared 

regions and head-down postures in RGB images can be 

achieved. 

To further strengthen multi-scale behavioral context, the 

model designs a neighboring-layer feature enhancement 

module, which aggregates tri-modal fusion outputs of adjacent 

levels through a top-down path, and captures cross-scale 

dependencies from local actions to global scene layout by 

using dilated convolution and spatial pyramid pooling, 

generating enhanced decoding features DVMR
u. In particular, to 

optimize the discriminability of behavior patterns, the model 

concatenates the semantic abstract features DVMR
4 from the 

deepest layer of the encoder with the fine-grained features 

DVMR
1 from the shallowest layer, obtaining joint features 

DVMR
1,4, which are used to guide the decoding process in the 

multi-level cascaded feature integration module. This module 

progressively fuses behavioral features at different resolutions 

through gated recurrent units, avoiding detail loss while 

suppressing background interference. Finally, the decoder 

block reconstructs spatial resolution and outputs a high-quality 

learning behavior saliency map T. This saliency map not only 

highlights key behavioral regions but also provides 

quantitative evidence for educational managers through 

feature back-projection interpretability mapping, supporting 

decision-making applications such as classroom engagement 

evaluation and teaching strategy adjustment. 

2.1 Tri-modal feature fusion 

The core goal of the tri-modal feature fusion module for 

educational management is to construct more robust learning 

behavior representations by complementary enhancement of 

appearance behavior information from RGB images (such as 

students raising hands or writing posture), spatial relationship 

information from depth images (such as relative distance 

between students and podium/peers), and physiological 

engagement information from thermal infrared images (such 

as attention concentration implied by facial temperature 

changes). The module architecture is shown in Figure 2. The 

module first performs input calibration on the same-level 

features {DF
u, DN

u, DS
u} extracted by three parallel encoders. 

Specifically, each modality feature is independently input into 

a sequence consisting of a Squeeze-and-Excitation block and 

a Convolution–Batch Normalization–ReLU block. The SE 

block generates channel weights through global average 

pooling and fully connected layers to achieve dynamic 

calibration. For example, in analyzing a group discussion 
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scene, the weight of the depth modality may be increased; 

while in recognizing individual reading behavior, the 

importance of the RGB modality may be enhanced. The 

calibrated features {DSD
N, DSD

F, DSD
S}are concatenated along 

the channel dimension to form the preliminary fused feature 

DSD
CAT, laying the foundation for subsequent deep mixing. 

Specifically, the operation of the SE module is denoted as 

dTR(·), the convolution layer as ZYE(·), and the concatenation 

operation as [ , , ], then: 

( )( )
( )( )
( )( )

, ,

SD N

N TR u

SD F

F TR u

SD S

S TR u

SD SD SD SD

CAT N F S

D ZYE d D

D ZYE d D

D ZYE d D

D D D D

 =

 =

 =

  =  

(1) 

Figure 1. Overall architecture of the multimodal image feature integration model for educational management 

In the feature mixing part, the module aims to fuse 

behavioral contexts at different spatial scales, so as to 

simultaneously capture local subtle actions such as page 

turning and global interaction patterns such as orientations 

between teachers and students. The concatenated feature 

DSD
CAT first passes through a CSR block for dimensionality 

reduction and nonlinear transformation, obtaining feature 

DZ
CAT. Then, DZ

CAT is processed by dilated convolutions with 

dilation rates of 1, 3, 5, and 7 in parallel. This is intended to 

expand the receptive field without losing resolution: small 

dilation rates focus on local body movement details, while 

large dilation rates help to understand classroom spatial layout 

and student group distribution on a larger scale. All outputs of 

the dilated convolutions are concatenated again to form the 

multi-scale feature DSD
z. To adaptively optimize the fusion 

effect, DZ
CAT is simultaneously input into a CBR block with a 

Sigmoid activation function, generating a spatial weighting 

map between 0 and 1. This weighting map is multiplied 

pointwise with DSD
z, thereby highlighting regions highly 

related to learning behaviors and suppressing irrelevant 

background. Finally, residual connection is used to retain the 

original information flow and ensure gradient stability. 

Considering that in educational scenarios, RGB images 

usually contain the richest and most direct appearance 

behavior cues, which are the main basis for managers to judge 

behaviors, the module specifically adds the original RGB 

feature DN
z back into the weighted fused features in residual 

form after completing the above fusion. This design ensures 

that key appearance behavior information will not be diluted 

or distorted in the complex cross-modal fusion process. For 
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example, it can strengthen the unique texture and shape 

patterns of the behavior “student looking down at a phone” in 

the RGB channel. Finally, a convolution layer is used to 

integrate all information flows and generate the fused output 

feature DSD
u of this level. This feature not only contains 

behavioral semantics after multimodal complementary 

enhancement but also retains RGB visual details that are 

crucial for educational management decision-making, 

providing high-quality input for subsequent multi-scale 

feature enhancement and precise reconstruction of learning 

behavior saliency maps. Assuming that the dilated convolution 

operation with dilation rate v is denoted as θv(·), the Sigmoid 

activation function as SSIG(·), and the convolution operation 

as CO, the corresponding process can be represented as 

follows: 

( )

( ) ( )

( ) ( )

( )
( )( )

1 3

5 7

, ,

,

Z SD

CATt CAT

Z Z

CAT CATSD

z Z Z

CAT CAT

Z

CATSD

u
SD SD N

z z u

D ZYE D

D D
D

D D

SIG ZYE D
D CO

D D D

 

 



 =

  
  =

   


 
  =
     

(2) 

Figure 2. Architecture of the tri-modal feature fusion module 

2.2 Neighboring-layer feature enhancement 

After completing the tri-modal feature fusion at the same 

level, the obtained features are already rich in fusion 

information, but there is a natural complementarity among 

features at different levels when describing learning behaviors: 

deep features contain rich semantic information, such as 

abstract categories of behavior patterns like “focused listening” 

and “group discussion”; while shallow features retain key 

spatial details, such as precise contours of student gestures and 

subtle changes in body orientation. To construct behavior 

representations with both semantic clarity and spatial precision, 

we propose the neighboring-layer feature enhancement 

module. The core idea of this module is to achieve effective 

transmission and enhancement of multi-scale behavioral 

context by aggregating the fused features of adjacent levels 

and the upsampled features provided by the previous decoder. 

This design aims to overcome the limitations of a single scale, 

enabling the model to simultaneously understand macro 

classroom interaction patterns and micro individual action 

details, laying the foundation for accurate visualization of 

learning behavior patterns. The module architecture is shown 

in Figure 3. 

This module first upsamples the higher-level semantic 

features DSD
u+1 with lower resolution by bilinear interpolation 

and uses a convolution layer to adjust its channel dimension 

so that it is consistent in size with the current level feature DSD
u. 

After adding the two, the initial aggregated feature DVMR
SUM is 

obtained, which preliminarily fuses behavioral semantics from 

deep layers and spatial details from shallow layers. This 

process can be expressed as: 

( )( )( )2 1 , 1,2,3,4VMR SD SD

SUM u uD CO UP D D u += − = (3) 

To intelligently focus on spatial regions related to learning 

behaviors, the module introduces a spatial attention 

mechanism CA1 based on channel average pooling. This 

mechanism compresses DVMR
SUM along the channel dimension 

to generate a spatial attention weight map TQ, which can 
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identify regions with higher average activation at the channel 

level, usually corresponding to behavior hotspots commonly 

attended to by multiple modalities. Subsequently, TQ is 

multiplied element-wise with both the initial aggregated 

feature DVMR
SUM and the features from the previous decoder 

block, achieving reweighting in the spatial dimension to 

highlight key behavioral regions and suppress irrelevant 

interference. 

Figure 3. Architecture of the neighboring-layer feature enhancement module 

After completing the first round of spatial reweighting, the 

module adds the two weighted types of features and inputs 

them into the second spatial attention block CA2. At this stage, 

channel max pooling operation is adopted to further refine the 

strongest response across channels at each spatial location. 

This strategy helps to emphasize the most discriminative 

behavioral cues at each location. For example, a certain 

location may appear as a hand-raising posture in the RGB 

channel and as a slight temperature increase in the thermal 

infrared channel; max pooling can strengthen such cross-

modal consistent key evidence. The final enhanced feature 

DVMR
u not only fuses complementary information from 

adjacent levels but also achieves precise focus on key 

behavioral regions through a two-stage spatial attention 

mechanism. This enhanced feature significantly improves the 

quality of decoder reconstructed feature maps, enabling the 

final generated visualization saliency map to clearly and 

reliably highlight patterns of great value to educational 

management, such as “actively interacting student groups” and 

“individuals with dispersed attention,” directly serving core 

research goals such as classroom engagement evaluation and 

teaching strategy optimization. Specifically, assuming the 

channel max pooling operation is denoted as φ(·), the process 

can be described as follows: 

( )( )

( )
1|VF VMR

SUM SUM u

VMR VF VF

u SUM SUM

D D F TQ

D D D

+
 = 


= 

(4) 

2.3 Multi-level cascaded feature integration module 

In multimodal learning behavior analysis, it is crucial to 

effectively distinguish “foreground” regions representing key 

learning behaviors such as teacher–student interaction and 

group collaboration from irrelevant classroom environment 

“background.” For this purpose, we design a multi-level 

cascaded feature integration module, aiming to intelligently 

aggregate features from different decoder levels in a “from 

global to detail” manner. The core inputs of this module are 

two key elements: first, the joint feature DVMR
1,4 formed by 

concatenating the deepest semantic feature DVMR
4 (encoding 

global patterns of “what behavior”) and the shallowest detail 

feature DVMR
1 (encoding subtle actions of “how behavior”); 

second, the multi-resolution features {F5,F4,F3,F2} generated 

during the decoding process. As a powerful guiding signal, the 

joint feature DVMR
1,4 itself has already integrated broad-

spectrum information from behavioral semantics to spatial 

details and will be used to guide the weighting and fusion 

process of all subsequent decoder features, ensuring that the 

final generated behavior saliency map can both accurately 

locate behavior subjects and clearly outline behavioral details. 

This module progressively integrates features through four 

cascaded convolution blocks Conv-Bi. Each Conv-Bi block 

contains a Convolution–Batch Normalization–ReLU block, a 

Convolution–Batch Normalization block, a Sigmoid activation 

function, and a convolution layer, jointly forming a precise 

feature selection and enhancement unit. Assuming Conv-Bu is 

denoted as φ(·), the specific process can be defined as follows: 

( )( )

( )
1 2 1 1

1 1

,
, 1,2,3,4

_ ,

LF L

u u u

L LF L

u u u u

D UP CO F D
u

D CO B D D

+  + +

+ +

  =  
=

=

(5) 

Taking Conv-B4, which processes the highest semantic level 

feature, as an example: first, the decoder feature F5 is 

convolved and upsampled to compress its channel number to 

1. This operation aims to extract the most essential behavioral

semantic information of this level while reducing

computational complexity. Then, the compressed feature is

concatenated with the guiding feature DVMR
1,4 to form the

fusion input DLF
4. Inside Conv-B4, FMD5 undergoes feature

transformation successively through the CBR block and the
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CB block, then a spatial weight map is generated through the 

Sigmoid function. This weight map clearly identifies regions 

considered highly related to learning behaviors under the joint 

guidance of high-level semantics and low-level details. Finally, 

by multiplication of the weight map with the guiding feature 

DVMR
1,4 and residual connection, the enhanced feature DL

4 is 

generated, which has deeply fused the global context of F5. 

The entire process can be expressed as: 

( )( )( )( )4 5 5 5

L LF L LD CO SIG ZY ZYE D D D=   (6) 

This process is repeated step by step downward, such as 

Conv-B3 processing DL
4 and F4, and so on. Like an information 

filter, under the guidance of DVMR
1,4, each step reinforces 

behavior-related multi-scale cues and suppresses background 

noise. Ultimately, a highly pure and progressively restored 

resolution feature map is output, laying a solid foundation for 

generating high-quality saliency maps that can accurately 

highlight key learning behaviors such as “raising hand,” 

“turning,” and “gathering.” 

2.4 Loss function 

To ensure that each level in the decoder generates saliency 

representations related to learning behaviors and to alleviate 

the gradient vanishing problem for faster convergence, the 

model introduces a deep supervision mechanism. This 

mechanism connects a convolutional prediction head to the 

four intermediate decoder blocks, except for the final output 

layer, to obtain multiple intermediate predictions at different 

resolutions. The losses between these intermediate predictions 

and the ground truth are calculated separately, with the core 

purpose of providing explicit gradient guidance for different 

depths of the network: deep supervision forces the network to 

focus on the overall semantic structure of behavior patterns at 

early stages, such as identifying regions where “group 

discussion” occurs, while shallow supervision constrains the 

network to recover clear spatial boundaries and details of 

behavior subjects, such as accurately delineating the contours 

of individuals participating in the discussion. This coarse-to-

fine multi-scale supervision strategy effectively ensures that 

the model optimizes each step of learning behavior feature 

extraction and reconstruction in the correct direction, 

enhancing the model’s ability to capture multi-scale behaviors 

from global interactions to individual micro-actions in 

complex classroom scenes and improving training stability. 

To comprehensively optimize the quality of saliency maps, 

making them not only pixel-accurate but also structurally 

complete, thereby providing reliable analysis for educational 

managers, we design a joint loss function. This function 

consists of three components: binary cross-entropy (BCE) loss, 

IOU loss, and SSIM loss, which constrain the prediction 

results from different dimensions. BCE loss is responsible for 

pixel-level classification, minimizing the error between 

predicted values and ground truth at each pixel, ensuring that 

the model can clearly distinguish foreground pixels 

representing key learning behaviors from background pixels, 

which is the basis for accurate localization of behavior regions. 

IOU loss optimizes at the region level, directly maximizing the 

overlap between predicted behavior regions and ground truth 

regions. Its sensitivity to region shape helps the model detect 

the entire behavior subject completely rather than in 

fragmented pieces, which is crucial for accurately quantifying 

the scope of behavior occurrence. SSIM loss focuses on 

evaluating structural similarity differences between the 

predicted map and ground truth map. It penalizes outputs that 

may have acceptable pixel accuracy but distorted structures, 

ensuring that the generated behavior saliency maps have good 

visual fidelity and structural authenticity. This greatly 

improves the reliability and interpretability of subsequent 

behavior pattern visualization and manual judgment based on 

saliency maps. Specifically, assuming BCE loss, IOU loss, and 

SSIM loss are denoted as lossY
u, lossY

u, and lossT
u, respectively, 

the model loss function is calculated as follows: 

( )
5

1

u

u

Y U T

u u u u

LOSS loss

loss loss loss loss

=


=


 = + +


(7) 

Assuming the ground truth map is denoted by HS, the 

predicted saliency map by T, and the coordinates of each pixel 

in the image by (a, b), the BCE loss in the above equation is 

expressed as: 

( ) ( )( )

( )( ) ( )( )( ),

, log ,

1 , log 1 ,

Y

u

a b

HS a b T a b
loss

HS a b T a b

 
 = −
 + − − 

  (8) 

The IOU loss is expressed as: 

( ) ( )
( )

( ) ( )

( ) ( )( )

,

,

, ,
1

, ,

, ,

a bU

u

a b

T a b HS a b
loss

T a b HS a b

T a b HS a b

= −
+ 

 
− +  




(9) 

Let the image patches cropped from the saliency map T and 

ground truth map HS be OT=Ok
T and OH=Ok

H, respectively. 

The mean and standard deviation of OT and OH are ωOT, ωOH

and δOT, δOH, and their covariance is δOTOH. The SSIM loss is 

defined as: 

( )( )
( )( )

1 2

2 2 2 2

1 2

2 2
1

T H T H

T H T H

O O O OT

u

O O O O

Z Z
loss

Z Z

  

   

+ +
= −

+ +
(10) 

The collaboration of these three losses jointly drives the 

model to generate learning behavior saliency maps with high 

precision, high completeness, and high structural fidelity, 

providing a solid data foundation for educational managers to 

perform quantitative analysis and make decisions. 

3. LEARNING BEHAVIOR PATTERN 

VISUALIZATION METHOD

The overall architecture of the proposed learning behavior 

pattern visualization system follows a data-flow-driven 

hierarchical design concept, divided from bottom to top into 

the data layer, functional layer, and application layer, 

constructing a complete closed loop from multi-modal data 

perception to educational management insights. The specific 

architecture is shown in Figure 4. 

The data layer is the foundation of the entire system, 

responsible for managing and providing all data resources 

required for analysis. Its core is a multi-modal image database, 
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continuously recording and storing RGB video streams, depth 

images, and thermal infrared images synchronously collected 

by sensors deployed in classrooms. All image data are time-

stamp aligned and preprocessed to ensure consistency across 

modalities. In addition, this layer maintains a pre-trained 

model weight repository, providing strong initial parameters 

for feature extraction in upper layers, ensuring algorithm 

performance and convergence speed. At the same time, the 

classroom layout map serves as key prior knowledge, defining 

regions of interest and providing geographical context for 

subsequent 3D spatial localization and group behavior 

analysis. 

Figure 4. Learning behavior pattern visualization system architecture 

The functional layer serves as the “brain” of the system and 

contains two sequentially cooperating, progressively advanced 

core processing engines. The multi-modal feature integration 

engine implements the algorithm proposed in this paper. It 

receives raw multi-modal images from the data layer and first 

extracts hierarchical features for each modality using encoder 

networks. Then, the tri-modal feature fusion module performs 

complementary weighted fusion at different scales, effectively 

overcoming the limitations of single modalities. Next, the 

neighboring layer feature enhancement module aggregates 

fusion features from adjacent scales, enriching the multi-scale 

contextual information of behavior representations. Finally, 

the multi-level cascaded feature integration module, guided by 

the joint feature, reconstructs high-resolution, high-contrast 

behavior saliency maps precisely. These saliency maps are not 

simple binary images but highlight spatial regions most likely 

representing key learning behaviors in the form of pixel-level 

confidence. The behavior pattern visualization engine is 

responsible for converting algorithm-generated saliency maps 

into intuitive information for decision-making. It first 

performs behavior semantic labeling on the saliency maps, 

using classifiers or rules to identify pixel-level regions as 

specific, understandable behavior labels. Then, by aggregating 

these labeled behavior data over time, it drives the generation 

of various visualization models: focus heatmaps intuitively 

show the overall attention distribution of students in different 

areas of a class through temporal integration; interaction 

trajectory maps dynamically display movement and 

communication paths between teacher-student or student-

student; behavior event reports automatically generate 

structured summaries, counting the frequency, duration, and 

distribution of specific behaviors. 

The application layer seamlessly connects the outputs of the 

functional layer with the needs of specific educational 

management scenarios, providing customized services for 

different user roles. The system interface converts 

visualization results into specific functional modules: the real-

time classroom supervision module provides managers with 
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dynamically updated panoramic heatmaps of the classroom, 

enabling immediate perception of overall learning atmosphere 

and anomalies; the teaching review and analysis module 

provides teachers with detailed classroom behavior timelines 

and event reports, supporting precise teaching reflection and 

strategy adjustment; the macro-situation assessment module, 

aimed at school-level managers, aggregates long-term data 

and performs trend analysis to generate reports on attendance 

patterns, participation changes, and other macro-level insights, 

providing data support for course planning and teaching 

evaluation. 

This architecture clearly depicts a technical pathway that 

takes multi-modal images as input, uses an advanced feature 

integration model as the core, and ultimately produces multi-

level, highly interpretable visualization results, fully 

demonstrating the complete value chain of this study from 

technological innovation to practical educational application. 

4. EXPERIMENTAL RESULTS AND ANALYSIS

A behavior analysis model aimed at serving practical 

educational management scenarios must balance 

computational efficiency and accuracy to ensure deployability. 

To validate the performance of the proposed model, relevant 

experiments were conducted. Analyzing the data in Table 1, 

skeleton-based models (e.g., PoseC3D) and lightweight 

detection models (e.g., YOLOv5s) significantly outperform in 

terms of parameter count, FLOPs, and FPS, because they 

process highly abstracted skeleton data or focus on a single 

detection task. In contrast, our proposed model has a higher 

parameter count (84.56M) and computation (335.39G FLOPs), 

fundamentally because it processes RGB, depth, and thermal 

infrared raw modalities and performs end-to-end complex 

computation from pixel-level feature fusion to behavior 

heatmap generation. Although its FPS is 13.89, lower than 

pure detection models with extremely high real-time 

requirements, this speed is sufficient for high-efficiency post-

processing and analysis of classroom video data at a minute-

level granularity rather than millisecond-level response. It can 

be concluded that the proposed model achieves deep fusion of 

multi-modal raw information and intuitive visual output at an 

acceptable computational cost, and its efficiency is reasonable 

and feasible for practical educational management 

applications. 

Table 1. Comparison of computational efficiency of different behavior analysis models on classroom scene dataset 

Model Type 
Parameters (M) 

↓ 

FLOPs (G) 

↓ 

FPS 

↑ 
Remarks 

I3D Behavior Recognition 12.0 108.3 32.5 Based on RGB video 

SlowFast Behavior Recognition 34.5 66.3 28.1 Dual-path RGB network 

PoseC3D 
Skeleton-based Behavior 

Recognition 
3.2 5.8 105.6 

High computational efficiency, relies on 

pose estimation 

YOLOv5s-

Pose 
Pose Detection and Tracking 2.0 4.5 68.9 

High real-time performance, outputs human 

keypoints 

ST-GCN 
Skeleton-based Behavior 

Recognition 
3.1 6.1 98.3 Processes spatiotemporal graph structure 

Ours 
Multi-modal Behavior Saliency 

Analysis 
84.56 335.39 13.89 End-to-end generation of behavior heatmap 

Table 2. Ablation experiment performance of the proposed model on EduBehav-2024 dataset 

Group 

General Saliency Metrics Behavior Analysis Specific Metrics 

S-Measure

↑

MAE 

↓ 

maxF 

↑ 

Behavior localization accuracy 

(mAP@0.5) ↑ 

Behavior classification 

accuracy (Top-1 Acc) ↑ 

Interaction event detection 

rate (IEDR) ↑ 

1 0.9398 0.0023 0.9228 0.856 0.783 0.912 

2 0.9374 0.0023 0.9190 0.849 0.779 0.908 

3 0.9369 0.0023 0.9193 0.851 0.781 0.909 

4 0.9390 0.0022 0.9214 0.858 0.785 0.915 

5 0.9368 0.0023 0.9190 0.847 0.778 0.907 

6 0.9400 0.0023 0.9225 0.859 0.786 0.916 

7 0.9383 0.0023 0.9212 0.853 0.782 0.911 

8 0.9392 0.0023 0.9220 0.855 0.784 0.913 

9 0.9386 0.0023 0.9218 0.857 0.785 0.914 

10 0.9380 0.0022 0.9212 0.852 0.780 0.910 

Mean 0.9385 0.0023 0.9210 0.853 0.782 0.911 

Using only general saliency metrics is insufficient to 

demonstrate the model's practical value in the educational field. 

Behavior analysis specific metrics must be combined to 

comprehensively evaluate its performance on real tasks. From 

the average of the ten experimental groups in Table 2, the 

model performs excellently on general saliency metrics: S-

Measure is 0.9385, MAE is 0.0023, and maxF is 0.9210, 

ensuring that the generated behavior heatmaps are visually 

accurate and clear. More importantly, on behavior analysis 

specific metrics, the model achieves behavior localization 

accuracy of 0.853, behavior classification accuracy of 0.782, 

and interaction event detection rate of 0.911. This indicates 

that the model can not only highlight salient regions at the 

pixel level but also precisely associate these regions with 

specific learning behaviors and effectively capture complex 

interactive events such as “teacher-student Q&A.” The high 

performance of both specific and general metrics demonstrates 

that the model successfully establishes strong associations 

between low-level visual features and high-level behavior 

semantics. It can be concluded that the proposed model retains 
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excellent pixel-level saliency detection capabilities while 

showing high effectiveness and practical value in core 

educational management tasks, namely learning behavior 

localization, recognition, and interaction analysis, 

significantly surpassing performance measured solely by 

general metrics. 

Table 3. Statistical significance test (p-values) of the proposed model and baseline methods on educational behavior analysis 

dataset 

Comparison 

Model 

General Saliency Metrics Behavior Analysis Specific Metrics 

S-

Measure ↑ 
MAE ↓ maxF ↑ 

Behavior localization 

accuracy (mAP) ↑ 

Behavior classification 

accuracy (Acc) ↑ 

Interaction event 

detection rate (IEDR) ↑ 

vs. I3D 5.2×10−7 3.1×10−8 4.8×10−7 1.5×10−10 2.3×10−9 6.7×10−11 

vs. PoseC3D 0.125 0.043 0.089 4.4×10−6 9.8×10−5 3.2×10−7 

vs. HWSI 9.3×10−9 9.0×10−10 5.8×10−12 1.1×10−10 5.2×10−9 8.4×10−12 

Table 4. Ablation study of core components of the proposed model on educational behavior analysis dataset (Mean performance) 

Description S-Measure ↑ MAE ↓ 
Behavior Localization 

Accuracy (mAP) ↑ 

Interaction Event 

Detection Rate (IEDR) ↑ 

Without Tri-modal Feature Fusion 0.9357 0.0024 0.841 0.892 

Without Adjacent Layer Feature Enhancement 0.9391 0.0023 0.848 0.905 

Without Multi-level Cascade Feature Integration 0.9388 0.0023 0.846 0.903 

Without Cross-layer Guiding Feature 0.9376 0.0024 0.843 0.901 

Without Deep Supervision Training 0.9272 0.0028 0.825 0.878 

Complete Model 0.9398 0.0023 0.853 0.911 

Table 5. Performance comparison of different feature fusion strategies on educational behavior analysis task 

Fusion Strategy Description 
S-Measure

↑

MAE 

↓ 

Behavior Classification 

Accuracy (Acc) ↑ 

Interaction Event Detection 

Rate (IEDR) ↑ 

Feature Addition Direct Channel Addition 0.9122 0.0031 0.752 0.865 

Attention-based Channel/Spatial Attention 0.9261 0.0027 0.781 0.890 

Ours 
Cross-modal Attention with 

Multi-scale Mixing 
0.9398 0.0023 0.793 0.911 

Table 6. Effects of different modal combinations on educational behavior analysis performance 

Modal 

Combination 
Description S-Measure ↑ MAE ↓ 

Behavior Classification 

Accuracy (Acc) ↑ 

Interaction Event 

Detection Rate (IEDR) ↑ 

D-T Depth and Thermal Only 0.7421 0.0144 0.655 0.601 

R-D RGB and Depth Only 0.7285 0.0123 0.638 0.589 

R-T RGB and Thermal Only 0.9371 0.0025 0.785 0.902 

R-D-T (Ours) RGB, Depth, and Thermal 0.9398 0.0023 0.793 0.911 

Furthermore, this paper statistically confirms that the 

performance advantage of the proposed model in educational 

behavior analysis tasks is not accidental, but represents a 

substantial improvement with statistical significance. 

Analyzing the data in the Table 3, compared with the general 

video behavior recognition model I3D, the proposed model 

achieves extremely low p-values on all general and specific 

metrics (all far below 0.01), indicating that the model's 

performance is comprehensive and significantly superior to 

models relying only on RGB information. Second, in 

comparison with the efficient skeleton-based model PoseC3D, 

although the differences in general metrics such as S-Measure 

are not statistically significant (p>0.05), reflecting PoseC3D’s 

capability in extracting abstract spatiotemporal features, the 

proposed model exhibits overwhelming advantages in the 

three core educational analysis metrics: behavior localization 

accuracy (p=4.4e-6), classification accuracy (p=9.8e-5), and 

interaction event detection rate (p=3.2e-7). This strongly 

demonstrates that generating behavior heatmaps directly via 

multi-modal fusion far exceeds skeleton-based simplified 

representations in understanding and parsing complex 

classroom interaction semantics. Finally, compared with the 

same-type multi-modal model HWSI, our model also shows 

statistically significant improvements across all metrics. 

To quantitatively evaluate the contribution of each core 

component of the proposed model to the final educational 

behavior analysis performance, ablation experiments were 

conducted. Analyzing the data in Table 4, removing the tri-

modal feature fusion module leads to the most obvious decline 

in all metrics, especially behavior localization accuracy and 

interaction event detection rate, proving that deep fusion of 

RGB, depth, and thermal infrared information is the 

cornerstone of accurately understanding learning behaviors. 

Second, removing deep supervision training causes a 

comprehensive and significant performance degradation, 

highlighting the critical role of this strategy in guiding the 

network to learn multi-scale behavior features. Moreover, 

although removing adjacent layer feature enhancement or 

multi-level cascade feature integration has relatively minor 

impacts on general metrics, their negative effects on behavior-

specific metrics are clearly visible, indicating that these 

modules mainly optimize semantic understanding and spatial 

precision of behaviors. It can be concluded that each core 

component of the proposed model contributes positively and 

irreplaceably to improving educational behavior analysis 

performance, with tri-modal feature fusion and deep 

supervision training being key guarantees of overall 

performance, fully validating the design of the model as an 
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organic whole. 

Fusion strategy is the core determinant of multi-modal 

model performance. To demonstrate the superiority of the 

proposed tri-modal feature fusion module in capturing 

complex correlations of educational behaviors, feature fusion 

strategy comparison experiments were conducted. The data in 

the Table 5 clearly shows a stepwise improvement in all 

evaluation metrics from simple “feature addition” to 

“attention-based fusion,” and further to the proposed tri-modal 

feature fusion module. In particular, the tri-modal feature 

fusion module shows the most obvious advantages in behavior 

classification accuracy and interaction event detection rate, 

indicating that its cross-modal attention and multi-scale 

mixing mechanism can more effectively mine complementary 

information between modalities, thereby enabling more 

accurate judgment of complex behavior states such as 

“distracted” or “focused.” It can be concluded that the 

proposed feature fusion strategy significantly outperforms 

traditional fusion methods in decoding learning behavior 

semantics and is a key innovation for improving the overall 

system’s behavior analysis accuracy. 

To further verify that RGB, depth, and thermal infrared tri-

modal information are indispensable for educational behavior 

analysis tasks, experiments on the effects of modal 

combination inputs on educational behavior analysis 

performance were conducted. The analysis data in Table 6 

shows that when the RGB modality is missing, the model 

cannot obtain rich appearance texture and semantic 

information, causing the behavior classification accuracy to 

drop sharply to 0.655, indicating that appearance information 

is the basis for behavior recognition. Second, when the thermal 

infrared modality is missing, the model struggles to capture 

physiological thermal signals related to attention and emotion, 

leading to the worst performance in interaction event detection 

rate, highlighting the importance of physiological information 

for understanding classroom interaction quality. It is 

noteworthy that the R-T combination is already close to the 

complete model in various metrics, especially performing well 

on general metrics, indicating that the combination of 

appearance and physiological signals can largely infer 

behaviors. However, the complete model maintains leading 

performance on all behavior-specific metrics, especially the 

further improvement of interaction event detection rate 

sensitive to spatial relationships, proving that depth 

information provides precise spatial relations necessary to 

clarify complex interactions. It can be concluded that in 

educational behavior analysis, RGB, depth, and thermal 

modalities respectively provide irreplaceable appearance, 

spatial, and physiological cues, and together form a 

comprehensive and robust basis for behavior understanding. 

The absence of any modality leads to a significant decline in 

analysis performance, thereby validating the necessity of the 

tri-modal design adopted in this paper. 

5. CONCLUSION

This study focuses on “multi-modal image processing and 

learning behavior pattern visualization methods for 

educational management,” with the core contribution being 

the proposal of a novel multi-modal feature integration model 

and its accompanying visualization system. This model, 

through modules such as tri-modal feature fusion, adjacent 

layer feature enhancement, and multi-level cascade feature 

integration, achieves deep information collaboration for RGB, 

depth, and thermal infrared images in classroom scenarios, 

generating high-quality learning behavior saliency maps. On 

this basis, the constructed visualization system converts the 

saliency maps into intuitive forms such as attention heatmaps 

and behavior event reports, directly connecting algorithm 

outputs with educational managers’ decision-making needs. 

Experimental results indicate that the proposed model 

achieves a good balance between computational efficiency and 

performance, significantly outperforming baseline models on 

multiple metrics in the calibrated educational behavior 

analysis dataset. Ablation experiments further verify the 

effectiveness of each core component and confirm the 

complementary value and necessity of tri-modal input in 

capturing behavioral appearance, spatial relationships, and 

physiological states. 

The main value of this study lies in deeply integrating 

advanced computer vision technology with specific 

educational management scenarios, providing an end-to-end 

solution from algorithm to application for fine-grained and 

objective classroom teaching assessment. However, there are 

limitations: first, model performance relies on high-quality 

synchronized multi-modal data collection, placing high 

demands on hardware configuration and environmental 

stability in actual deployment; second, the current study 

mainly addresses pre-defined typical learning behaviors, and 

the ability to recognize and visualize more complex and 

abstract learning states remains to be explored. Looking 

forward, future research directions may focus on: (1) exploring 

more lightweight model architectures and self-supervised 

learning strategies to reduce reliance on labeled data and 

deployment costs; (2) investigating effective integration of 

audio, text, and other multi-modal information to build a more 

comprehensive classroom analysis model; (3) combining 

educational theory to develop more interpretable visualization 

paradigms and automatically linking system outputs with 

teaching intervention strategies, ultimately forming a 

“perception-analysis-feedback-optimization” closed-loop 

intelligent educational management ecosystem. 
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