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Viral infections, especially those of the poxvirus family, present significant diagnostic
challenges due to their similar clinical symptoms. This study proposes an innovative deep
learning-based approach to classify six categories of poxvirus-related skin diseases:
chickenpox, cowpox, healthy, measles, monkeypox, and smallpox. A dataset of 9,120
augmented images was used to train, validate, and test three advanced deep-learning
models—YOLOVS, YOLOvVS, and ResNet32. Among the models, YOLOvV8 demonstrated
superior performance, achieving an accuracy of 99.80%, precision of 99.28%, and recall of
99.14%, significantly outperforming YOLOVS and ResNet32. The results underscore the
potential of YOLOvVS8 in medical image analysis, providing a robust and efficient tool for the
early detection and accurate classification of viral skin diseases. Comparisons with related
studies highlight the effectiveness of the proposed approach, making it a state-of-the-art
solution for improving diagnostic accuracy in healthcare. Future work will focus on
extending the dataset and evaluating the model's applicability in real-time clinical

environments.

1. INTRODUCTION

Viruses are one of the leading causes of human diseases.
They are formed in different species and family structures and
are known to be responsible for various health problems today
[1]. Viral infections are particularly prominent during
epidemics. In this context, viral infections pose a risk to the
lives of people around the world and harm the economic,
social, and cultural structures [2]. Some diseases caused by
viral infections—common during the COVID-19 pandemic,
for example—are hard to diagnose. For instance, during a
pandemic, diagnosing patients with sporadic flu cases has been
challenging because the symptoms of these diseases are very
similar, and they require intervention through a specific
process. After the COVID-19 pandemic, which began in 2019
and caused the deaths of 6.53 million people, there has been
panic that another virus might spread worldwide [3].

The same situation can be observed in skin diseases caused
by viral infections [4-6]. Monkeypox, one of the viral diseases
from the Pox virus family, has emerged as a potential new
pandemic by reminding itself of April 2022 as a previously
known disease. It has been declared endemic by the World
Health Organization, but the disease has not reached the levels
of the current pandemic numbers. Over the past months, an
alarm has been issued regarding monkeypox, highlighting the
need for heightened awareness and preparedness in dealing
with this viral threat. Again, some diseases from the past pox
virus family (Monkeypox, Chickenpox, Smallpox, and

2777

Cowpox) are rarely encountered in developing countries today
[7, 8].

Considering the increasing global concern surrounding
poxvirus-related skin diseases and the diagnostic difficulties
they pose due to overlapping clinical symptoms, there is a
critical need for reliable, efficient, and accessible diagnostic
methods. In recent years, deep learning-based image analysis
techniques have emerged as powerful tools in the field of
medical diagnostics, particularly in dermatology, offering
significant potential for the automated detection and
classification of skin lesions. Building on this technological
advancement, the present study aims to develop a deep
learning-based classification model capable of distinguishing
between six different skin diseases caused by viruses of the
Poxviridae family. By integrating artificial intelligence into
the diagnostic process, this research seeks to enhance early
detection capabilities, support timely medical intervention,
and ultimately contribute to the effective management of
potential outbreaks.

1.1 Pox virus family

This study aims to enhance the detection of poxvirus-related
skin diseases by utilizing artificial intelligence models to
analyze clinical images of six distinct conditions associated
with the Poxviridae family. In this context, detailed
information is provided regarding the diagnostic features,
symptomatic profiles, mortality rates, and epidemiological
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data of these six diseases. Furthermore, the common clinical
and pathological characteristics shared among these viruses—
particularly in terms of symptomatology and transmission
routes—are discussed to offer a comprehensive understanding
of their manifestation and spread.

Viruses responsible for diseases such as Chickenpox,
Cowpox, Measles, Smallpox, and Monkeypox belong to the
Poxviridae family and are known to cause dermatological
infections characterized by distinct skin lesions. These viruses
exhibit genetic similarity, follow similar infection pathways,
and pose serious threats to public health due to their potential
for rapid transmission and historical involvement in large-
scale epidemics. They are also defined by their complex life
cycles and unique morphological structures.

Research on poxviruses has significantly contributed not
only to the understanding of viral pathogenesis and host—virus
interactions but also to the development of effective vaccines
and public health intervention strategies. Insights gained from
studies in this field have laid the groundwork for innovative
approaches in managing viral outbreaks and highlight the
ongoing need for advanced research in virology to address
emerging infectious diseases.

Among the numerous members of this viral family, there
exists one such pathogen that has gained significant attention
over the past few years. Monkeypox is a double-stranded
enveloped DNA virus of the Orthopoxvirus genus and is
predominantly found in West and Central Africa. It is quite
similar to illnesses like smallpox and measles and is hard to
distinguish [9-11]. Monkeypox is primarily spread from
wildlife and rodents to humans via several routes: contact with
contaminated animals, consumption of undercooked meat, or
via contact with body fluids [12-15]. While human-to-human
transmission was limited previously, the spread in Africa,
Europe, and America over the past few years has raised its
global public health concern significantly. The disease
presents a range of symptoms including fever, joint pain,
lymph node swellings, and skin blister formations. Though the
mortality rate ranges between 3% and 6%, the application of
early detection methods like PCR tests and Al-aided image
recognition has enhanced diagnostic capability [16, 17].
However, access to adequate healthcare remains a significant
challenge, particularly in affected regions of Africa.

While monkeypox continues to be a growing concern, it's
crucial to understand its relationship to other poxviruses,
particularly its more infamous relative. Smallpox is an acute
viral disease caused by the variola virus. Known for causing
devastating epidemics throughout history, smallpox spreads
through respiratory droplets or direct contact with infected
items. The virus has an incubation period of 7-17 days, after
which patients typically present with fever, malaise, and
characteristic pus-filled blisters [18, 19]. Historically,
quarantining patients for six weeks was the primary method of
controlling its spread, and survivors often bore permanent
facial scarring. A major turning point came with Edward
Jenner's pioneering work on the smallpox vaccine in the 18th
century, which eventually led to the disease's global
eradication [20].

In contrast to smallpox, chickenpox represents a generally
milder but still significant viral infection. Caused by the
varicella virus, it predominantly affects children and spreads
through respiratory droplets. With a longer incubation period
of 13-22 days, chickenpox usually presents as a mild illness,
though complications can occur in some cases [21]. While the
introduction of vaccination programs has significantly reduced
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case numbers, infections still occur, albeit typically with
milder symptoms [22, 23].

Beyond the poxvirus family, other viral diseases share
similar transmission patterns and affect comparable
demographics. Measles is another highly contagious viral
disease, spread through respiratory droplets. It has a short
incubation period, and symptoms include high fever, runny
nose, and red eyes. It primarily affects children and can cause
outbreaks, especially in unvaccinated populations [23-26].

On the other hand, Cowpox, another infectious disease,
caused by a virus from the same family as smallpox, primarily
affects cattle. Transmitted primarily through insect vectors
such as mosquitoes and ticks, it causes nodular swellings and
can lead to severe economic losses in livestock populations.
First identified in southern Africa in 1929, the disease remains
prevalent in various parts of Africa and can spread efficiently
between cattle. While there is no direct treatment for cowpox,
preventive measures such as vaccination programs and
controlling insect vector populations are key to managing the
disease [27-29].

In these viral infections, patients commonly develop rashes
similar to those seen in chickenpox, smallpox, and monkeypox,
typically appearing on the face and genital areas. While these
diseases share many symptoms, making them difficult to
distinguish clinically, there are some differentiating factors,
including regional variation in symptom presentation. The
rashes are generally accompanied by systemic symptoms such
as fever, arthralgia, chills, and shivering. These systemic
manifestations are characteristic of poxvirus infections and
related diseases, though their severity and specific
presentation may vary.

In this respect, skin rashes are particularly significant for
artificial intelligence-assisted diagnosis, as these visual
symptoms can be processed and analyzed to classify different
diseases. Advanced models can be developed not only through
image processing but also by quantifying various factors such
as rash size and other symptoms on a numerical scale.
However, significant challenges exist in differentiation due to
the remarkable similarity of symptoms among these diseases
and the variable frequency and distribution of rashes on the
body [30-32]. To address these limitations, ongoing
refinements in image processing techniques show promise.
Nevertheless, it's important to acknowledge that
distinguishing between these diseases remains difficult
without specialist expertise. Therefore, our deep learning-
supported classification system for smallpox and related
diseases is designed not to replace but to assist medical experts
in their diagnostic process. By providing an additional
analytical tool, this system aims to enhance the accuracy of
clinical decisions and contribute to advancements in the field
of viral disease diagnosis.

2. MATERIAL AND METHOD

For the development of our classification model, the dataset
was partitioned using a 70:10:20 ratio for training, validation,
and testing sets, respectively, as detailed in Table 1. Figure 1
provides most samples of diverse pox diseases. The picture
preprocessing pipeline blanketed annotation in a folder-
primarily based total structure, accompanied by means of data
augmentation strategies by each horizontal and vertical
transformation with a total of 9,914 images. For data,
horizontal and vertical flip processes were used as



augmentation techniques, and although those technics were
applied to increase dataset size and improve generalization and
robustness, their potential effects on classification prediction
were also examined. These augmentation methods may
introduce fine-tuning of the model at a level that could affect
its ability to discriminate between patterns in predictions.

Table 1. Train, test, and validation sets

Train Validation Test

Chickenpox 1068 171 445
Cowpox 1079 173 465
Healthy 1013 162 426
Measles 1053 137 159
Monkeypox 1049 136 154
Smallpox 1089 141 154
Total 6351 921 1803
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Figure 1. Sample images from the augmented images were
applied with a 50% probability of horizontal flipped and a
50% probability of vertical flipped

To compare models without any differences, all models
were trained under the same conditions, including the same
dataset split, learning rate, batch size, and number of epochs.
The methodological framework hired for this has a look at
applied Python-primarily based totally libraries, in particular
Pandas and NumPy, for data manipulation and analysis. The
implementation was accomplished at the Google Colab
platform, leveraging the PyTorch and TorchVision libraries
for our model. On the other hand, we used high-performance
virtual machines provided by GoogleColabPro+ for data
analysis and modeling. Thus, it provides NVIDIA A100 and
up to 32 GB RAM, which provides a suitable environment for
large-scale data processing and training deep learning models.
Therefore, a small change in performance may be due
primarily to differences in model structure rather than
degradation in the training set.

2.1 Data preprocessing and collecting

The dataset utilized in this study was carefully curated from
two publicly available sources: Google Image Search and
Kaggle. These platforms offer a wide range of visual resources;
however, they also present inherent challenges, including
variations in image quality and labeling accuracy. To address
these issues, a meticulous selection and preprocessing process
was implemented. All images were evaluated for clarity,
relevance, and resolution, with efforts made to anonymize any
residual identifiers through cropping and resolution
adjustments. No personally identifiable information (PII) was
associated with the images. Since the dataset comprised only
publicly sourced and anonymized images, formal ethical
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approval was not required. Nonetheless, recognizing the

sensitive nature of medical imagery, we affirm our strong

commitment to maintaining high ethical standards and
adhering to data privacy principles in the use and
dissemination of clinical image data.

e To tackle these limitations, we established a detailed
screening process. Our team came up with a
comprehensive selection method that went beyond merely
collecting images. Each image was thoroughly assessed
based on a few key criteria:

Visual clarity and sharpness to ensure the image is clear,

Sufficient resolution so we can conduct detailed analysis,

Display of clear and important skin-related features to

ensure relevance in dermatological studies.

Moreover, we were committed to creating a representative
and inclusive dataset. This meant intentionally seeking out
images that showcased the rich diversity of skin types and
appearances. We carefully selected images captured under
various lighting conditions and representing different skin
tones and textures. By taking these meticulous steps, we aimed
to minimize potential biases and create a robust, representative
dataset that could provide meaningful insights into
dermatological research.

This dataset focuses on the classification of five distinct
diseases: Monkeypox, Measles, Chickenpox, Cowpox, and
Smallpox, along with samples representing healthy human
skin. The creation of the dataset involved a meticulous
selection process to ensure that it accurately reflects the
diversity of the targeted diseases. The distribution of the
dataset and representative image samples are detailed in Table
L.

Data augmentation, the process of generating new and
synthetic data by applying certain operations to existing
datasets, is an important technique in machine learning [33].
In machine learning applications, it is inevitable to use large
datasets to improve model performance. However, working
with limited data can lead to overfitting models. This will
negatively affect the performance of the model. As a solution
to this problem, data augmentation methods are an alternative.
The most common data augmentation method is to create
transformed copies of images that belong to the same class as
the existing images in the training dataset. Commonly used
image augmentation methods include translation, rotation,
scaling, zooming, and cropping. One of the main goals is to
expand the training set by providing alternative, current, and
relevant examples that reflect changes the model may
encounter in real-world conditions. As shown in Figure 1,
rotating an image horizontally and zooming in from different
angles are among the options that can be used in this context.
This is because images can be taken from different angles,
such as left or right.

Conversely, applying a vertical flip to an image may be
inappropriate, as it is unlikely that the model will encounter
upside-down representations of the subject in real-world
scenarios. This underscores the importance of judiciously
selecting data augmentation techniques that are tailored to the
specific context of the training dataset and informed by
domain knowledge. Furthermore, when working with a
limited prototype dataset, it can be beneficial to evaluate data
augmentation techniques both individually and in combination
to assess their impact on model performance. Such an
approach allows for a systematic investigation of which
techniques yield measurable improvements in the model's
effectiveness [34].



Preprocessing was performed by applying each of the
following steps to every image: auto-orienting pixel facts,
including EXIF-orientation stripping, resizing to 224 x 224
pixels and stretching. Further, augmentation was made on each
source image to produce three versions, with a 50% chance of
horizontal flip and a 50% chance of vertical flip. Other
augmentation strategies include rotation and brightness
adjustment; these will also be taken into consideration for
version robustness.

All pores and skin lesion photos have been shown using
Google's Reverse Image Search and then cross-referenced
with other sources. The ones that were no longer recognizable,
of low resolution, or terrible quality went through a two-step
screening process for discarding. Unique photos that met the
high standards were picked, then cropped to identification at
the area of interest and resized to 224 x 224 pixels while
maintaining the aspect ratio. Normalization techniques were
followed afterward to ensure that the pixel values were
correctly scaled for training the model with the aim of
facilitating improved convergence at the time of training.

The dataset is partitioned into three subsets: training,
validation, and test sets. The training set, comprising 6,351
images (70% of the total data), is employed for model training
and fitting. The validation set includes 921 images (10% of the
data), playing a critical role in fine-tuning the model and
mitigating overfitting during the training phase. The test set,
containing 1,803 images (20% of the data), is reserved for
evaluating the model's performance on unseen data, ensuring
robust generalization. During the preprocessing phase, 43 data
instances were identified as invalid and excluded from the
dataset. This balanced distribution enables efficient training,
validation, and testing of the model.

Table 2. Key hyperparameters for deep learning model

training
Parameter Value Description
task classify Defines the task as classification.
mode train Indicates the mode of operation.
epochs 100 Number of training epochs.
batch 16 Size of the training batch.
image size 128 Input image size for the model.
workers 8 Number of workers for data loading.
pretrained true Utilizes pretrained weights.
optimizer auto Automatically selects the optimizer.
1r0 0.01 Initial learning rate.
momentum 0.937 Momentum for the optimizer.
Weight decay  0.0005 L2 regularization factor.
Warmup epochs 30 Number of warmup epochs for the
learning rate.
Labe¥ 0.0 Smoothing parameter for labels.
smoothing
nbs 64 Effective batch size.
hsv_h 0.015 Hue augmentation range.
hsv_s 0.7 Saturation augmentation range.
hsv_v 0.4 Value augmentation range.
fliplr 0.5 Probability of horizontal flip.
mosaic 1.0 Mosaic augmentation probability.
cfg null Configuration file (if any).

As shown in Table 2, hyperparameters selection was guided
by preliminary experiments and empirical optimization.
Learning rates were selected based on a grid search strategy to
balance convergence speed and stability. Batch size was
determined by considering both model performance and GPU
memory constraints.

The table above presents the major hyperparameters for
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developing this deep-learning model to classify images. Firstly,
the --task is a parameter that defines the task; in this context,
it was just image classification. Secondly, mode is "train",
indicating that the model should be in training mode. Thirdly,
the model should train up to 100 epochs, as defined with
epochs, while efficient training will be done on a batch size of
16. All images are resized to 128 x 128 pixels normalizing the
input size. Grayscale images are loaded parallel through 8
workers, further speeding up the training. More importantly,
the model makes use of pre-trained weights. The optimizer is
specified as "auto" which means automatic selection. The
initial learning rate, IrO stands at 0.01.

Additionally, the parameters include a momentum value of
0.937 and a weight decay factor of 0.0005 to regulate training
dynamics and prevent overfitting. A warmup phase of 3
epochs is incorporated to stabilize the learning process initially.
The inclusion of label smoothing (set to 0.0) and augmentation
parameters, such as hue, saturation, and value adjustments,
further aims to enhance model robustness and generalization
capabilities. The probability of horizontal flipping is set at 0.5,
and the mosaic augmentation is employed with a probability
of 1.0, contributing to the diversity of training samples [35].

2.2 ResNet32

Residual Networks represent architecture, developed to
cope with performance degradation along with the increase in
depth in deep learning. As shown in Figure 2, the ResNet32
architecture was made to overcome the problem of gradient
loss at each step, encountered during deep network training. It
has a 32-layer network, and the "skip connections" [36] are
directly available between layers. This architecture enables the
training of deep networks and alleviates the problem of
gradient loss. It focuses on attention with its high accuracy
rates, especially in tasks such as image classification and
object recognition. Hayward is another advantage of this
model having 32 layers; the remaining connections let the
model go deeper. The learning process then will be more stable,
and effective, and reach high accuracy in complex image
processing. Its success also comes to reinforcing the
importance of ResNet architecture due to winning deep
learning research.

®

®

ReLU |

Conv

Figure 2. Traditional RESNET32 architecture
2.3 YOLOvV5S
You Only Look Once (YOLOVS) is a deep-learning

architecture designed for real-time object detection. As shown
in Figure 3, each forward pass processes objects within images,



allowing for precise and rapid object detection simultaneously
[37]. With the use of convolutional layers along with a certain
design of the network, the model is particularly efficient for
real-time applications. Because of the multilayered
architecture of this model, it is capable of quite effective object
detection for different scales [38]. YOLOvS5 model is well
known among learners performing object detection in complex
environments because of its straightforward implementation
and great community support. It is, however, more known for
precise and accurate object detection as posed by moderate
difficulties given by overlapping objects and variations in
object size and pose. Due to this quality, it has been used
widely across multiple industries such as automation, security,
and self-driving cars [39]. Due to this quality, it has been
widely used across different industries such as automation,
security, and autonomous vehicles. Also, it is user-friendly and
has great community support which allows developers to use
it for many applications.

2.4 YOLOvS

The newest member of the YOLO family, YOLOVS,
brought several enhancements for object detection, as shown
in Figure 4, with important gains in both accuracy and speed
compared to the previous ones. Using state-of-the-art layers
and modern optimization techniques for better feature
extraction, YOLOvV8 can detect a wide range of objects very
fast [40]. Its upgraded configurations allow it to perform
effectively across various applications. According to Sohan et
al. [41] this latest version is designed to enhance object
detection performance through innovative features. YOLOVS8's

refined architecture not only boosts detection capabilities but
also supports diverse applications, from surveillance systems
to autonomous driving, positioning it as a leading choice in
deep learning for computer vision tasks.

2.5 Model performance metrics

The process of choosing the optimal classifier is one of the
most important issues in machine/deep learning classification
methods model development. It’s essential to choose the
training dataset for building the model and the test section for
testing the model when choosing the best classifier.

While the confusion matrices provide an overview of
classification performance, a closer examination reveals
misclassifications, particularly between diseases with visually
similar symptoms, such as monkeypox and smallpox. These
errors may arise due to overlapping dermatological features,
image resolution limitations, or insufficient distinguishing
characteristics in certain cases. Understanding these
misclassifications is crucial for improving model robustness.

True Positive (TP) and True Negative (TN) metrics indicate
the number of times the algorithm correctly predicts positive
and negative samples, respectively, and are utilized to measure
the algorithm's accuracy. The False Positive (FP) value
reflects the number of instances where the algorithm
incorrectly predicts a negative sample as positive, serving as a
measure of the algorithm's precision. Conversely, the False
Negative (FN) metric denotes the number of times the
algorithm predicts a positive sample as negative, which is used
to measure the algorithm's Recall. The confusion matrix is
illustrated in Figure 5.
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Figure 5. Metrics for classification and confusion matrix

Accuracy is calculated as the ratio of the number of samples
correctly classified by the algorithm (TP + TN) to the total
number of samples (TP + FP + FN + TN). Confusion matrix
graphs were generated on a navy-blue background in the
Findings and Results section. In these visualizations, a darker
shade of blue indicates a performance value approaching
100%. Conversely, as the color intensity decreases, it can be
inferred that the performance also diminishes. For the
YOLOvV8 model, the confusion matrix was derived from the
validation data; however, it is important to note that the results
were normalized to a range of 0 to 1, reflecting performance
metrics within this interval.

3. RESULTS

The study used a dataset consisting of Monkeypox, Cowpox,
Measles, Chickenpox, Smallpox, and Healthy images for
classification problems. The dataset consisted of 6351 images
in raw form, as shown in Table 1. However, corrupted photos
have been eliminated with preprocessing techniques, and the
sample of images has been increased to 9120 by filtering
image algorithms. During the preprocessing stage, 43 data
instances were deemed invalid by the model. This balanced
distribution allows for effective model training, validation,
and testing. 70% of the dataset was proportioned as training,
10% as validation, and 20% as test data.

Loo Model Comparison - Accuracy, Recall, Precision
i . olovd

= YoloW5
mmm ResNet32

Scores

Recall Precision

Accuracy

Figure 6. Numerical results of the experimental study

Figure 6 provides a comparative summary of the
performance metrics—accuracy, recall, and precision—across
the YoloV8, YoloV5, and ResNet32 models. Among the three
models, YoloV8 exhibits the highest overall accuracy
(99.45%) and precision (99.28%), while also maintaining a
strong recall (99.14%). It communicates that YoloV8 has the
best balance between true positives and false positives relative
to other models. On the other hand, YoloV5 has the poorest
performance by all metrics with 97.40%, 96.65%, and 96.65%
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as the accuracy, recall, and the precision, respectively. YoloV5
is strong model, yet he is more prone to variance and
misclassification of diseases when compared to other models.
On one hand, ResNet32 is capable of achieving 98.45%
accuracy and 97.85% in recall and precision, which is lower,
but still quite competitive. These confirm that YoloV8 still has
the best results but ResNet32 performs significantly with
active competition versus YoloV8 depending on the use-case
scenario.

Figure 7 illustrates the test images used in the experimental
results of our model, categorized according to the YoloV§
algorithm, which was identified as the most successful
classification model in this study. The images are associated
with six categories of viral skin diseases: chickenpox (0),
cowpox (1), healthy (2), measles (3), monkeypox (4), and
smallpox (5). YoloVS8 algorithm was able to correctly classify
these features as belonging to their respective categories due
to the accurate labeling and separation of unique features
associated with each disease. The model accuracy in
classifying these test images indicates that the model is able to
capture complex visual features, like the typical viral infection
rashes. This differentiation capability for diseases with
common symptoms indicates the value of YoloV8 for medical
image analysis, particularly in the automation of early-stage
diagnosis of skin diseases associated with pox viruses.

Figure 7. Test Images of experimental results in our model
(Chickenpox: 0, Cowpox: 1, Healty:2, measles:3,
monkeypox: 4, smallpox:5)

Figure 8 shows the Confusion Matrix graph obtained as a
result of experimental dataset training with YoloV8 (a),
YoloVS5 (b) and ResNet32 (c) models. According to the graphs,
the most successful Chickhenpox detection was obtained with
the ResNet32 model. Cowpox was detected by YoloV8 model
without error. Healty was detected with the YoloV8 model
without error. Measles was detected with the YoloV5 model
without error. However, the YOLOv8 model detected Measles
with one error, showing that the model was also successful
here. YoloV8 and ResNet32 performed similarly in
Monkeypox prediction. Unlike YOLOvVS8, ResNet32 predicted
monkeypox with one more correct prediction. In smallpox
prediction, the YOLOvVS model predicted perfectly. In the



prediction of this class, the performance of ResNet32 and

YOLOv8 models was far behind the prediction of other classes.
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Figure 8. Confusion matrix output of the study's analyses (a-
YoloV8, b-YoloVS5, c-Resnet32)
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The YoloV8 model shows the highest overall accuracy,
particularly excelling in the classification of Smallpox, Healty
and Cowpox, where no misclassifications occur. Overall
performance remains robust, although minor
misclassifications were observed for chickenpox, where a few
cases were mistaken for measles and smallpox. There was
slight confusion between monkeypox and smallpox, with two
cases of monkeypox misclassified as smallpox. Despite these
few misclassifications, YoloV8 stands out as the most reliable
model for detecting these viral skin diseases. In contrast, the
YoloV5 model, while still performing well, shows a higher
degree of misclassification, especially between chickenpox
and smallpox; 17 cases of chickenpox were misclassified as
smallpox. In addition, five cases of monkeypox were
misclassified as chickenpox, suggesting some confusion
between these classes. However, YoloV5 performs strongly
with minimal errors in the cowpox and healthy categories.
ResNet32, on the other hand, strikes a balance between
YoloV8 and YoloV5 in terms of accuracy. While it shows high
precision in classifying chickenpox, only one case was
misclassified as chickenpox and another as smallpox.
However, ResNet32 has some difficulty distinguishing
measles from other diseases and there is some confusion
between monkeypox and smallpox, with three cases
misclassified in both directions. Overall, YoloV8 emerges as
the most suitable model for correct classification, while
YoloV5 and ResNet32 show some room for improvement,
especially in distinguishing specific disease categories.

The analysis of confusion matrices revealed certain
misclassifications, particularly between diseases exhibiting
similar dermatological features, such as monkeypox and
smallpox. These classification errors can be attributed to
overlapping visual symptoms, including pustular rashes and
lesion distributions, which often appear nearly identical in
two-dimensional clinical images. In some instances, image
resolution limitations or inconsistent lighting conditions may
also obscure subtle diagnostic cues, leading the model to
misclassify. From a clinical standpoint, such errors are
significant, as incorrect differentiation between monkeypox
and smallpox could delay appropriate public health responses
or treatment strategies. Therefore, while the model exhibits
high overall accuracy, these findings emphasize the need for
incorporating additional clinical metadata, such as lesion
progression patterns or patient history, to further reduce
ambiguity in future implementations.

Table 3 presents a comparative analysis of the performance
metrics from our study alongside related works in the field of
viral skin disease classification. Previous studies have
explored both binary and multiclass classification problems
using various deep-learning architectures. For instance, Nanni
etal. [42] achieved 89.42% accuracy using a DenseNet + SVM
model for binary classification of cowpox, while Ji and Wu
[43] reached 97.7% accuracy for measles using ResNet50
combined with DeepLabv3. Similarly, Ali et al. [44] employed
models such as VGG-16, ResNet50, and InceptionV3 for
multiclass classification of measles, monkeypox, and
chickenpox, with ResNet50 achieving 82.96% accuracy. More
recent works, such as Lakshmi and Das [45] and Khan and
Ullah [46], focused on the binary classification of monkeypox
using advanced architectures like ResNet101 and Inception-
Resnet, achieving accuracies of 94.25% and 97%, respectively.

In comparison, our study utilizes a more comprehensive
dataset of 9120 images and focuses on the multiclass
classification of chickenpox, cowpox, healthy, measles,



monkeypox, and smallpox. The YoloV8 model demonstrated
superior performance, achieving an impressive accuracy of
99.80%, significantly outperforming previous models. This
highlights the effectiveness of our approach, particularly in
handling complex multiclass classification tasks, and positions

YoloV8 as a state-of-the-art model for viral skin disease
detection. This comparison underscores the advancements
made in this study and the potential of deep learning
techniques in improving diagnostic accuracy for pox virus-
related skin diseases.

Table 3. Comparison of performance metrics with related works

Class Authors Size Model Accuracy
CowPox Nanni et al. [42] 1500 DenseNet +SVM 89.42%
Measles Ji and Wu [43] 500 ResNet50 +DeepLabv3 97.7%

MonkeyPox
chickenpox Ali et al. [44] 3196 VGG-16, ResNet50, and InceptionV3 ResNet50: 82.96%
Measles
Monkeypox Lakshmi and Das 835 VGG16, VGGI19, ResNet50, ResNet101, DenseNet201, and ResNet101: 94.25%
[45] AlexNet
Monkeypox Khan and Ullah [46] 558 VGG16, VGG19, ResNet50, Inception and Inception-Resnet Inception-Resnet: 97%
Chickenpox
Cowpox
Measles Our study 9120 YoloVS8, YoloV5 and ResNet32 YoloV8: 99.80%
Monkeypox
Smallpox

4. DISCUSSION AND CONCLUSIONS

The findings of this study demonstrate the significant
potential of deep learning techniques, particularly the
YOLOvV8 model, in the accurate classification of viral skin
diseases from the poxvirus family. By leveraging a dataset
comprising six different categories—chickenpox, cowpox,
healthy, measles, monkeypox, and smallpox—the YOLOVS8
model achieved an outstanding accuracy of 99.80%,
outperforming other models like YOLOvVS and ResNet32. This
performance is particularly noteworthy in the context of
multiclass classification, a more complex task compared to
binary classification explored in previous studies.

The comparative analysis of YOLOvVS, YOLOVS, and
ResNet32 reveals that YOLOVS consistently delivers superior
results, not only in terms of accuracy but also in precision and
recall. This can be attributed to the architectural improvements
introduced in YOLOv8, which enhance both detection speed
and accuracy through advanced feature extraction and
optimized layers. While YOLOvS5 and ResNet32 also
performed well, the increased misclassification rates between
categories like chickenpox and smallpox in YOLOVS5, as well
as some confusion between monkeypox and smallpox in
ResNet32, indicate that these models may require further
refinement to match the robust performance of YOLOVS.

In comparing our work with previous studies, the YOLOvS
model's performance represents a significant advancement in
the field. For example, Nanni et al. [42] achieved 89.42%
accuracy in the binary classification of cowpox using
DenseNet + SVM, while Ali et al. [44] reported 82.96%
accuracy for multiclass classification using ResNet50. In
contrast, our study demonstrates that by utilizing a more
comprehensive and augmented dataset, combined with state-
of-the-art deep learning architectures, it is possible to achieve
substantially higher classification accuracy. This highlights
the importance of using larger, more diverse datasets and
advanced models like YOLOvV8 to improve diagnostic
accuracy in medical image analysis.

The application of image augmentation techniques,
including horizontal and vertical flips, further enhanced the
performance of the models by generating diverse training
examples, thereby preventing overfitting and improving the
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generalization capability. This was crucial in achieving high
classification performance, especially in distinguishing
between diseases with similar visual presentations, such as
chickenpox and smallpox.

Although hyperparameters such as learning rate and batch
size were selected through preliminary tuning and grid search,
it is important to acknowledge that these values were not
independently optimized for each model architecture. Using a
uniform set of hyperparameters across all models ensured
fairness in comparison but may have prevented each model
from achieving its optimal performance. Future studies should
incorporate model-specific hyperparameter optimization
strategies to potentially enhance the accuracy and robustness
of each deep learning architecture.

Despite the significant improvements observed through data
augmentation techniques, including horizontal and vertical
flipping, certain limitations must be acknowledged. Some
augmentation strategies—such as vertical flipping—may
introduce unrealistic visual patterns that are unlikely to occur
in real clinical scenarios, potentially impacting the model’s
generalization capability. Furthermore, while these methods
expand the training set and reduce overfitting, they do not
contribute to novel pathological features and may fail to reflect
the complexity of real-world variability, such as different
imaging devices, lighting conditions, or lesion evolution
stages. Thus, although data augmentation has proven
beneficial in boosting performance, future studies should
explore more advanced augmentation methods such as GAN-
based synthetic data generation or domain-specific
transformations tailored to dermatological contexts to further
enhance model robustness and clinical applicability.

Despite the high classification accuracy achieved by the
proposed deep learning model, several limitations must be
acknowledged, particularly regarding its applicability in real-
world clinical settings. Variability in skin tones, lighting
conditions, image resolution, and acquisition angles can
significantly impact model performance, as these factors are
often uncontrollable in practical diagnostic environments.
Moreover, the dataset used in this study was derived from
publicly available sources, which may not adequately
represent the full clinical diversity, including rare or atypical
cases. Consequently, the model’s generalizability to less



common presentations remains uncertain. To address these
challenges, future research should focus on incorporating
more diverse, real-world datasets and validating the model
within prospective clinical workflows. Additionally, the
integration of expert dermatological insights could further
enhance diagnostic precision and help mitigate potential biases,
reinforcing the model’s role as a supportive tool rather than a
standalone diagnostic solution.

In conclusion, this study demonstrates that deep learning
models, particularly YOLOVS, are highly effective tools for
the classification of viral skin diseases from the poxvirus
family. The results not only confirm the superiority of
YOLOVS over other models but also underscore the potential
of integrating artificial intelligence into diagnostic processes
to support medical professionals in early detection and
accurate disease classification. Future research could explore
further improvements in model architecture and investigate the
application of these techniques in real-time clinical settings.
Additionally, expanding the dataset to include other types of
skin lesions or diseases could further enhance the
generalizability and applicability of the models in broader
healthcare contexts.
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