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Viral infections, especially those of the poxvirus family, present significant diagnostic 

challenges due to their similar clinical symptoms. This study proposes an innovative deep 

learning-based approach to classify six categories of poxvirus-related skin diseases: 

chickenpox, cowpox, healthy, measles, monkeypox, and smallpox. A dataset of 9,120 

augmented images was used to train, validate, and test three advanced deep-learning 

models—YOLOv8, YOLOv5, and ResNet32. Among the models, YOLOv8 demonstrated 

superior performance, achieving an accuracy of 99.80%, precision of 99.28%, and recall of 

99.14%, significantly outperforming YOLOv5 and ResNet32. The results underscore the 

potential of YOLOv8 in medical image analysis, providing a robust and efficient tool for the 

early detection and accurate classification of viral skin diseases. Comparisons with related 

studies highlight the effectiveness of the proposed approach, making it a state-of-the-art 

solution for improving diagnostic accuracy in healthcare. Future work will focus on 

extending the dataset and evaluating the model's applicability in real-time clinical 

environments. 
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1. INTRODUCTION

Viruses are one of the leading causes of human diseases. 

They are formed in different species and family structures and 

are known to be responsible for various health problems today 

[1]. Viral infections are particularly prominent during 

epidemics. In this context, viral infections pose a risk to the 

lives of people around the world and harm the economic, 

social, and cultural structures [2]. Some diseases caused by 

viral infections—common during the COVID-19 pandemic, 

for example—are hard to diagnose. For instance, during a 

pandemic, diagnosing patients with sporadic flu cases has been 

challenging because the symptoms of these diseases are very 

similar, and they require intervention through a specific 

process. After the COVID-19 pandemic, which began in 2019 

and caused the deaths of 6.53 million people, there has been 

panic that another virus might spread worldwide [3]. 

The same situation can be observed in skin diseases caused 

by viral infections [4-6]. Monkeypox, one of the viral diseases 

from the Pox virus family, has emerged as a potential new 

pandemic by reminding itself of April 2022 as a previously 

known disease. It has been declared endemic by the World 

Health Organization, but the disease has not reached the levels 

of the current pandemic numbers. Over the past months, an 

alarm has been issued regarding monkeypox, highlighting the 

need for heightened awareness and preparedness in dealing 

with this viral threat. Again, some diseases from the past pox 

virus family (Monkeypox, Chickenpox, Smallpox, and 

Cowpox) are rarely encountered in developing countries today 

[7, 8]. 

Considering the increasing global concern surrounding 

poxvirus-related skin diseases and the diagnostic difficulties 

they pose due to overlapping clinical symptoms, there is a 

critical need for reliable, efficient, and accessible diagnostic 

methods. In recent years, deep learning-based image analysis 

techniques have emerged as powerful tools in the field of 

medical diagnostics, particularly in dermatology, offering 

significant potential for the automated detection and 

classification of skin lesions. Building on this technological 

advancement, the present study aims to develop a deep 

learning-based classification model capable of distinguishing 

between six different skin diseases caused by viruses of the 

Poxviridae family. By integrating artificial intelligence into 

the diagnostic process, this research seeks to enhance early 

detection capabilities, support timely medical intervention, 

and ultimately contribute to the effective management of 

potential outbreaks. 

1.1 Pox virus family 

This study aims to enhance the detection of poxvirus-related 

skin diseases by utilizing artificial intelligence models to 

analyze clinical images of six distinct conditions associated 

with the Poxviridae family. In this context, detailed 

information is provided regarding the diagnostic features, 

symptomatic profiles, mortality rates, and epidemiological 

Traitement du Signal 
Vol. 42, No. 5, October, 2025, pp. 2777-2786 

Journal homepage: http://iieta.org/journals/ts 

2777

https://orcid.org/0000-0002-0930-8955
https://orcid.org/0000-0002-5608-6240
https://orcid.org/0000-0002-7530-7715
https://orcid.org/0000-0003-2899-4679
https://orcid.org/0000-0003-2214-8092
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420528&domain=pdf


 

data of these six diseases. Furthermore, the common clinical 

and pathological characteristics shared among these viruses—

particularly in terms of symptomatology and transmission 

routes—are discussed to offer a comprehensive understanding 

of their manifestation and spread. 

Viruses responsible for diseases such as Chickenpox, 

Cowpox, Measles, Smallpox, and Monkeypox belong to the 

Poxviridae family and are known to cause dermatological 

infections characterized by distinct skin lesions. These viruses 

exhibit genetic similarity, follow similar infection pathways, 

and pose serious threats to public health due to their potential 

for rapid transmission and historical involvement in large-

scale epidemics. They are also defined by their complex life 

cycles and unique morphological structures. 

Research on poxviruses has significantly contributed not 

only to the understanding of viral pathogenesis and host–virus 

interactions but also to the development of effective vaccines 

and public health intervention strategies. Insights gained from 

studies in this field have laid the groundwork for innovative 

approaches in managing viral outbreaks and highlight the 

ongoing need for advanced research in virology to address 

emerging infectious diseases. 

Among the numerous members of this viral family, there 

exists one such pathogen that has gained significant attention 

over the past few years. Monkeypox is a double-stranded 

enveloped DNA virus of the Orthopoxvirus genus and is 

predominantly found in West and Central Africa. It is quite 

similar to illnesses like smallpox and measles and is hard to 

distinguish [9-11]. Monkeypox is primarily spread from 

wildlife and rodents to humans via several routes: contact with 

contaminated animals, consumption of undercooked meat, or 

via contact with body fluids [12-15]. While human-to-human 

transmission was limited previously, the spread in Africa, 

Europe, and America over the past few years has raised its 

global public health concern significantly. The disease 

presents a range of symptoms including fever, joint pain, 

lymph node swellings, and skin blister formations. Though the 

mortality rate ranges between 3% and 6%, the application of 

early detection methods like PCR tests and AI-aided image 

recognition has enhanced diagnostic capability [16, 17]. 

However, access to adequate healthcare remains a significant 

challenge, particularly in affected regions of Africa. 

While monkeypox continues to be a growing concern, it's 

crucial to understand its relationship to other poxviruses, 

particularly its more infamous relative. Smallpox is an acute 

viral disease caused by the variola virus. Known for causing 

devastating epidemics throughout history, smallpox spreads 

through respiratory droplets or direct contact with infected 

items. The virus has an incubation period of 7-17 days, after 

which patients typically present with fever, malaise, and 

characteristic pus-filled blisters [18, 19]. Historically, 

quarantining patients for six weeks was the primary method of 

controlling its spread, and survivors often bore permanent 

facial scarring. A major turning point came with Edward 

Jenner's pioneering work on the smallpox vaccine in the 18th 

century, which eventually led to the disease's global 

eradication [20]. 

In contrast to smallpox, chickenpox represents a generally 

milder but still significant viral infection. Caused by the 

varicella virus, it predominantly affects children and spreads 

through respiratory droplets. With a longer incubation period 

of 13-22 days, chickenpox usually presents as a mild illness, 

though complications can occur in some cases [21]. While the 

introduction of vaccination programs has significantly reduced 

case numbers, infections still occur, albeit typically with 

milder symptoms [22, 23]. 

Beyond the poxvirus family, other viral diseases share 

similar transmission patterns and affect comparable 

demographics. Measles is another highly contagious viral 

disease, spread through respiratory droplets. It has a short 

incubation period, and symptoms include high fever, runny 

nose, and red eyes. It primarily affects children and can cause 

outbreaks, especially in unvaccinated populations [23-26].  

On the other hand, Cowpox, another infectious disease, 

caused by a virus from the same family as smallpox, primarily 

affects cattle. Transmitted primarily through insect vectors 

such as mosquitoes and ticks, it causes nodular swellings and 

can lead to severe economic losses in livestock populations. 

First identified in southern Africa in 1929, the disease remains 

prevalent in various parts of Africa and can spread efficiently 

between cattle. While there is no direct treatment for cowpox, 

preventive measures such as vaccination programs and 

controlling insect vector populations are key to managing the 

disease [27-29]. 

In these viral infections, patients commonly develop rashes 

similar to those seen in chickenpox, smallpox, and monkeypox, 

typically appearing on the face and genital areas. While these 

diseases share many symptoms, making them difficult to 

distinguish clinically, there are some differentiating factors, 

including regional variation in symptom presentation. The 

rashes are generally accompanied by systemic symptoms such 

as fever, arthralgia, chills, and shivering. These systemic 

manifestations are characteristic of poxvirus infections and 

related diseases, though their severity and specific 

presentation may vary. 

In this respect, skin rashes are particularly significant for 

artificial intelligence-assisted diagnosis, as these visual 

symptoms can be processed and analyzed to classify different 

diseases. Advanced models can be developed not only through 

image processing but also by quantifying various factors such 

as rash size and other symptoms on a numerical scale. 

However, significant challenges exist in differentiation due to 

the remarkable similarity of symptoms among these diseases 

and the variable frequency and distribution of rashes on the 

body [30-32]. To address these limitations, ongoing 

refinements in image processing techniques show promise. 

Nevertheless, it's important to acknowledge that 

distinguishing between these diseases remains difficult 

without specialist expertise. Therefore, our deep learning-

supported classification system for smallpox and related 

diseases is designed not to replace but to assist medical experts 

in their diagnostic process. By providing an additional 

analytical tool, this system aims to enhance the accuracy of 

clinical decisions and contribute to advancements in the field 

of viral disease diagnosis. 

 

 

2. MATERIAL AND METHOD 

 

For the development of our classification model, the dataset 

was partitioned using a 70:10:20 ratio for training, validation, 

and testing sets, respectively, as detailed in Table 1. Figure 1 

provides most samples of diverse pox diseases. The picture 

preprocessing pipeline blanketed annotation in a folder-

primarily based total structure, accompanied by means of data 

augmentation strategies by each horizontal and vertical 

transformation with a total of 9,914 images. For data, 

horizontal and vertical flip processes were used as 
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augmentation techniques, and although those technics were 

applied to increase dataset size and improve generalization and 

robustness, their potential effects on classification prediction 

were also examined. These augmentation methods may 

introduce fine-tuning of the model at a level that could affect 

its ability to discriminate between patterns in predictions. 

 

Table 1. Train, test, and validation sets 

 
 Train Validation Test 

Chickenpox 1068 171 445 

Cowpox 1079 173 465 

Healthy 1013 162 426 

Measles 1053 137 159 

Monkeypox 1049 136 154 

Smallpox 1089 141 154 

Total 6351 921 1803 

 

 
 

Figure 1. Sample images from the augmented images were 

applied with a 50% probability of horizontal flipped and a 

50% probability of vertical flipped 

 

To compare models without any differences, all models 

were trained under the same conditions, including the same 

dataset split, learning rate, batch size, and number of epochs. 

The methodological framework hired for this has a look at 

applied Python-primarily based totally libraries, in particular 

Pandas and NumPy, for data manipulation and analysis. The 

implementation was accomplished at the Google Colab 

platform, leveraging the PyTorch and TorchVision libraries 

for our model. On the other hand, we used high-performance 

virtual machines provided by GoogleColabPro+ for data 

analysis and modeling. Thus, it provides NVIDIA A100 and 

up to 32 GB RAM, which provides a suitable environment for 

large-scale data processing and training deep learning models. 

Therefore, a small change in performance may be due 

primarily to differences in model structure rather than 

degradation in the training set. 

 

2.1 Data preprocessing and collecting 

 

The dataset utilized in this study was carefully curated from 

two publicly available sources: Google Image Search and 

Kaggle. These platforms offer a wide range of visual resources; 

however, they also present inherent challenges, including 

variations in image quality and labeling accuracy. To address 

these issues, a meticulous selection and preprocessing process 

was implemented. All images were evaluated for clarity, 

relevance, and resolution, with efforts made to anonymize any 

residual identifiers through cropping and resolution 

adjustments. No personally identifiable information (PII) was 

associated with the images. Since the dataset comprised only 

publicly sourced and anonymized images, formal ethical 

approval was not required. Nonetheless, recognizing the 

sensitive nature of medical imagery, we affirm our strong 

commitment to maintaining high ethical standards and 

adhering to data privacy principles in the use and 

dissemination of clinical image data. 

• To tackle these limitations, we established a detailed 

screening process. Our team came up with a 

comprehensive selection method that went beyond merely 

collecting images. Each image was thoroughly assessed 

based on a few key criteria: 

• Visual clarity and sharpness to ensure the image is clear, 

• Sufficient resolution so we can conduct detailed analysis, 

• Display of clear and important skin-related features to 

ensure relevance in dermatological studies. 

Moreover, we were committed to creating a representative 

and inclusive dataset. This meant intentionally seeking out 

images that showcased the rich diversity of skin types and 

appearances. We carefully selected images captured under 

various lighting conditions and representing different skin 

tones and textures. By taking these meticulous steps, we aimed 

to minimize potential biases and create a robust, representative 

dataset that could provide meaningful insights into 

dermatological research. 

This dataset focuses on the classification of five distinct 

diseases: Monkeypox, Measles, Chickenpox, Cowpox, and 

Smallpox, along with samples representing healthy human 

skin. The creation of the dataset involved a meticulous 

selection process to ensure that it accurately reflects the 

diversity of the targeted diseases. The distribution of the 

dataset and representative image samples are detailed in Table 

1. 

Data augmentation, the process of generating new and 

synthetic data by applying certain operations to existing 

datasets, is an important technique in machine learning [33]. 

In machine learning applications, it is inevitable to use large 

datasets to improve model performance. However, working 

with limited data can lead to overfitting models. This will 

negatively affect the performance of the model. As a solution 

to this problem, data augmentation methods are an alternative. 

The most common data augmentation method is to create 

transformed copies of images that belong to the same class as 

the existing images in the training dataset. Commonly used 

image augmentation methods include translation, rotation, 

scaling, zooming, and cropping. One of the main goals is to 

expand the training set by providing alternative, current, and 

relevant examples that reflect changes the model may 

encounter in real-world conditions. As shown in Figure 1, 

rotating an image horizontally and zooming in from different 

angles are among the options that can be used in this context. 

This is because images can be taken from different angles, 

such as left or right. 

Conversely, applying a vertical flip to an image may be 

inappropriate, as it is unlikely that the model will encounter 

upside-down representations of the subject in real-world 

scenarios. This underscores the importance of judiciously 

selecting data augmentation techniques that are tailored to the 

specific context of the training dataset and informed by 

domain knowledge. Furthermore, when working with a 

limited prototype dataset, it can be beneficial to evaluate data 

augmentation techniques both individually and in combination 

to assess their impact on model performance. Such an 

approach allows for a systematic investigation of which 

techniques yield measurable improvements in the model's 

effectiveness [34]. 
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Preprocessing was performed by applying each of the 

following steps to every image: auto-orienting pixel facts, 

including EXIF-orientation stripping, resizing to 224  224 

pixels and stretching. Further, augmentation was made on each 

source image to produce three versions, with a 50% chance of 

horizontal flip and a 50% chance of vertical flip. Other 

augmentation strategies include rotation and brightness 

adjustment; these will also be taken into consideration for 

version robustness. 

All pores and skin lesion photos have been shown using 

Google's Reverse Image Search and then cross-referenced 

with other sources. The ones that were no longer recognizable, 

of low resolution, or terrible quality went through a two-step 

screening process for discarding. Unique photos that met the 

high standards were picked, then cropped to identification at 

the area of interest and resized to 224 × 224 pixels while 

maintaining the aspect ratio. Normalization techniques were 

followed afterward to ensure that the pixel values were 

correctly scaled for training the model with the aim of 

facilitating improved convergence at the time of training. 

The dataset is partitioned into three subsets: training, 

validation, and test sets. The training set, comprising 6,351 

images (70% of the total data), is employed for model training 

and fitting. The validation set includes 921 images (10% of the 

data), playing a critical role in fine-tuning the model and 

mitigating overfitting during the training phase. The test set, 

containing 1,803 images (20% of the data), is reserved for 

evaluating the model's performance on unseen data, ensuring 

robust generalization. During the preprocessing phase, 43 data 

instances were identified as invalid and excluded from the 

dataset. This balanced distribution enables efficient training, 

validation, and testing of the model. 
 

Table 2. Key hyperparameters for deep learning model 

training 
 

Parameter Value Description 

task classify Defines the task as classification. 

mode train Indicates the mode of operation. 

epochs 100 Number of training epochs. 

batch 16 Size of the training batch. 

image size 128 Input image size for the model. 

workers 8 Number of workers for data loading. 

pretrained true Utilizes pretrained weights. 

optimizer auto Automatically selects the optimizer. 

lr0 0.01 Initial learning rate. 

momentum 0.937 Momentum for the optimizer. 

Weight decay 0.0005 L2 regularization factor. 

Warmup epochs 3.0 
Number of warmup epochs for the 

learning rate. 

Label 

smoothing 
0.0 Smoothing parameter for labels. 

nbs 64 Effective batch size. 

hsv_h 0.015 Hue augmentation range. 

hsv_s 0.7 Saturation augmentation range. 

hsv_v 0.4 Value augmentation range. 

fliplr 0.5 Probability of horizontal flip. 

mosaic 1.0 Mosaic augmentation probability. 

cfg null Configuration file (if any). 
 

As shown in Table 2, hyperparameters selection was guided 

by preliminary experiments and empirical optimization. 

Learning rates were selected based on a grid search strategy to 

balance convergence speed and stability. Batch size was 

determined by considering both model performance and GPU 

memory constraints. 

The table above presents the major hyperparameters for 

developing this deep-learning model to classify images. Firstly, 

the --task is a parameter that defines the task; in this context, 

it was just image classification. Secondly, mode is "train", 

indicating that the model should be in training mode. Thirdly, 

the model should train up to 100 epochs, as defined with 

epochs, while efficient training will be done on a batch size of 

16. All images are resized to 128  128 pixels normalizing the 

input size. Grayscale images are loaded parallel through 8 

workers, further speeding up the training. More importantly, 

the model makes use of pre-trained weights. The optimizer is 

specified as "auto" which means automatic selection. The 

initial learning rate, lr0 stands at 0.01.  

Additionally, the parameters include a momentum value of 

0.937 and a weight decay factor of 0.0005 to regulate training 

dynamics and prevent overfitting. A warmup phase of 3 

epochs is incorporated to stabilize the learning process initially. 

The inclusion of label smoothing (set to 0.0) and augmentation 

parameters, such as hue, saturation, and value adjustments, 

further aims to enhance model robustness and generalization 

capabilities. The probability of horizontal flipping is set at 0.5, 

and the mosaic augmentation is employed with a probability 

of 1.0, contributing to the diversity of training samples [35]. 
 

2.2 ResNet32 
 

Residual Networks represent architecture, developed to 

cope with performance degradation along with the increase in 

depth in deep learning. As shown in Figure 2, the ResNet32 

architecture was made to overcome the problem of gradient 

loss at each step, encountered during deep network training. It 

has a 32-layer network, and the "skip connections" [36] are 

directly available between layers. This architecture enables the 

training of deep networks and alleviates the problem of 

gradient loss. It focuses on attention with its high accuracy 

rates, especially in tasks such as image classification and 

object recognition. Hayward is another advantage of this 

model having 32 layers; the remaining connections let the 

model go deeper. The learning process then will be more stable, 

and effective, and reach high accuracy in complex image 

processing. Its success also comes to reinforcing the 

importance of ResNet architecture due to winning deep 

learning research. 
 

 
 

Figure 2. Traditional RESNET32 architecture 

 

2.3 YOLOv5 

 

You Only Look Once (YOLOv5) is a deep-learning 

architecture designed for real-time object detection. As shown 

in Figure 3, each forward pass processes objects within images, 
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allowing for precise and rapid object detection simultaneously 

[37]. With the use of convolutional layers along with a certain 

design of the network, the model is particularly efficient for 

real-time applications. Because of the multilayered 

architecture of this model, it is capable of quite effective object 

detection for different scales [38]. YOLOv5 model is well 

known among learners performing object detection in complex 

environments because of its straightforward implementation 

and great community support. It is, however, more known for 

precise and accurate object detection as posed by moderate 

difficulties given by overlapping objects and variations in 

object size and pose. Due to this quality, it has been used 

widely across multiple industries such as automation, security, 

and self-driving cars [39]. Due to this quality, it has been 

widely used across different industries such as automation, 

security, and autonomous vehicles. Also, it is user-friendly and 

has great community support which allows developers to use 

it for many applications. 

 

2.4 YOLOv8 

 

The newest member of the YOLO family, YOLOv8, 

brought several enhancements for object detection, as shown 

in Figure 4, with important gains in both accuracy and speed 

compared to the previous ones. Using state-of-the-art layers 

and modern optimization techniques for better feature 

extraction, YOLOv8 can detect a wide range of objects very 

fast [40]. Its upgraded configurations allow it to perform 

effectively across various applications. According to Sohan et 

al. [41] this latest version is designed to enhance object 

detection performance through innovative features. YOLOv8's 

refined architecture not only boosts detection capabilities but 

also supports diverse applications, from surveillance systems 

to autonomous driving, positioning it as a leading choice in 

deep learning for computer vision tasks. 

 

2.5 Model performance metrics 

 

The process of choosing the optimal classifier is one of the 

most important issues in machine/deep learning classification 

methods model development. It’s essential to choose the 

training dataset for building the model and the test section for 

testing the model when choosing the best classifier. 

While the confusion matrices provide an overview of 

classification performance, a closer examination reveals 

misclassifications, particularly between diseases with visually 

similar symptoms, such as monkeypox and smallpox. These 

errors may arise due to overlapping dermatological features, 

image resolution limitations, or insufficient distinguishing 

characteristics in certain cases. Understanding these 

misclassifications is crucial for improving model robustness. 

True Positive (TP) and True Negative (TN) metrics indicate 

the number of times the algorithm correctly predicts positive 

and negative samples, respectively, and are utilized to measure 

the algorithm's accuracy. The False Positive (FP) value 

reflects the number of instances where the algorithm 

incorrectly predicts a negative sample as positive, serving as a 

measure of the algorithm's precision. Conversely, the False 

Negative (FN) metric denotes the number of times the 

algorithm predicts a positive sample as negative, which is used 

to measure the algorithm's Recall. The confusion matrix is 

illustrated in Figure 5. 

 

 
 

Figure 3. YOLOv5 architecture 

 

 
 

Figure 4. YOLOv8 Architecture 
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Figure 5. Metrics for classification and confusion matrix 

 

Accuracy is calculated as the ratio of the number of samples 

correctly classified by the algorithm (TP + TN) to the total 

number of samples (TP + FP + FN + TN). Confusion matrix 

graphs were generated on a navy-blue background in the 

Findings and Results section. In these visualizations, a darker 

shade of blue indicates a performance value approaching 

100%. Conversely, as the color intensity decreases, it can be 

inferred that the performance also diminishes. For the 

YOLOv8 model, the confusion matrix was derived from the 

validation data; however, it is important to note that the results 

were normalized to a range of 0 to 1, reflecting performance 

metrics within this interval. 

 

 

3. RESULTS 

 

The study used a dataset consisting of Monkeypox, Cowpox, 

Measles, Chickenpox, Smallpox, and Healthy images for 

classification problems. The dataset consisted of 6351 images 

in raw form, as shown in Table 1. However, corrupted photos 

have been eliminated with preprocessing techniques, and the 

sample of images has been increased to 9120 by filtering 

image algorithms. During the preprocessing stage, 43 data 

instances were deemed invalid by the model. This balanced 

distribution allows for effective model training, validation, 

and testing. 70% of the dataset was proportioned as training, 

10% as validation, and 20% as test data. 

 

 
 

Figure 6. Numerical results of the experimental study 

 

Figure 6 provides a comparative summary of the 

performance metrics—accuracy, recall, and precision—across 

the YoloV8, YoloV5, and ResNet32 models. Among the three 

models, YoloV8 exhibits the highest overall accuracy 

(99.45%) and precision (99.28%), while also maintaining a 

strong recall (99.14%). It communicates that YoloV8 has the 

best balance between true positives and false positives relative 

to other models. On the other hand, YoloV5 has the poorest 

performance by all metrics with 97.40%, 96.65%, and 96.65% 

as the accuracy, recall, and the precision, respectively. YoloV5 

is strong model, yet he is more prone to variance and 

misclassification of diseases when compared to other models. 

On one hand, ResNet32 is capable of achieving 98.45% 

accuracy and 97.85% in recall and precision, which is lower, 

but still quite competitive. These confirm that YoloV8 still has 

the best results but ResNet32 performs significantly with 

active competition versus YoloV8 depending on the use-case 

scenario. 

Figure 7 illustrates the test images used in the experimental 

results of our model, categorized according to the YoloV8 

algorithm, which was identified as the most successful 

classification model in this study. The images are associated 

with six categories of viral skin diseases: chickenpox (0), 

cowpox (1), healthy (2), measles (3), monkeypox (4), and 

smallpox (5). YoloV8 algorithm was able to correctly classify 

these features as belonging to their respective categories due 

to the accurate labeling and separation of unique features 

associated with each disease. The model accuracy in 

classifying these test images indicates that the model is able to 

capture complex visual features, like the typical viral infection 

rashes. This differentiation capability for diseases with 

common symptoms indicates the value of YoloV8 for medical 

image analysis, particularly in the automation of early-stage 

diagnosis of skin diseases associated with pox viruses. 

 

 
 

Figure 7. Test Images of experimental results in our model 

(Chickenpox: 0, Cowpox: 1, Healty:2, measles:3, 

monkeypox: 4, smallpox:5) 

 

Figure 8 shows the Confusion Matrix graph obtained as a 

result of experimental dataset training with YoloV8 (a), 

YoloV5 (b) and ResNet32 (c) models. According to the graphs, 

the most successful Chickhenpox detection was obtained with 

the ResNet32 model. Cowpox was detected by YoloV8 model 

without error. Healty was detected with the YoloV8 model 

without error. Measles was detected with the YoloV5 model 

without error. However, the YOLOv8 model detected Measles 

with one error, showing that the model was also successful 

here. YoloV8 and ResNet32 performed similarly in 

Monkeypox prediction. Unlike YOLOv8, ResNet32 predicted 

monkeypox with one more correct prediction. In smallpox 

prediction, the YOLOv8 model predicted perfectly. In the 
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prediction of this class, the performance of ResNet32 and 

YOLOv8 models was far behind the prediction of other classes. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 8. Confusion matrix output of the study's analyses (a-

YoloV8, b-YoloV5, c-Resnet32) 

 

The YoloV8 model shows the highest overall accuracy, 

particularly excelling in the classification of Smallpox, Healty 

and Cowpox, where no misclassifications occur. Overall 

performance remains robust, although minor 

misclassifications were observed for chickenpox, where a few 

cases were mistaken for measles and smallpox. There was 

slight confusion between monkeypox and smallpox, with two 

cases of monkeypox misclassified as smallpox. Despite these 

few misclassifications, YoloV8 stands out as the most reliable 

model for detecting these viral skin diseases. In contrast, the 

YoloV5 model, while still performing well, shows a higher 

degree of misclassification, especially between chickenpox 

and smallpox; 17 cases of chickenpox were misclassified as 

smallpox. In addition, five cases of monkeypox were 

misclassified as chickenpox, suggesting some confusion 

between these classes. However, YoloV5 performs strongly 

with minimal errors in the cowpox and healthy categories. 

ResNet32, on the other hand, strikes a balance between 

YoloV8 and YoloV5 in terms of accuracy. While it shows high 

precision in classifying chickenpox, only one case was 

misclassified as chickenpox and another as smallpox. 

However, ResNet32 has some difficulty distinguishing 

measles from other diseases and there is some confusion 

between monkeypox and smallpox, with three cases 

misclassified in both directions. Overall, YoloV8 emerges as 

the most suitable model for correct classification, while 

YoloV5 and ResNet32 show some room for improvement, 

especially in distinguishing specific disease categories. 

The analysis of confusion matrices revealed certain 

misclassifications, particularly between diseases exhibiting 

similar dermatological features, such as monkeypox and 

smallpox. These classification errors can be attributed to 

overlapping visual symptoms, including pustular rashes and 

lesion distributions, which often appear nearly identical in 

two-dimensional clinical images. In some instances, image 

resolution limitations or inconsistent lighting conditions may 

also obscure subtle diagnostic cues, leading the model to 

misclassify. From a clinical standpoint, such errors are 

significant, as incorrect differentiation between monkeypox 

and smallpox could delay appropriate public health responses 

or treatment strategies. Therefore, while the model exhibits 

high overall accuracy, these findings emphasize the need for 

incorporating additional clinical metadata, such as lesion 

progression patterns or patient history, to further reduce 

ambiguity in future implementations. 

Table 3 presents a comparative analysis of the performance 

metrics from our study alongside related works in the field of 

viral skin disease classification. Previous studies have 

explored both binary and multiclass classification problems 

using various deep-learning architectures. For instance, Nanni 

et al. [42] achieved 89.42% accuracy using a DenseNet + SVM 

model for binary classification of cowpox, while Ji and Wu 

[43] reached 97.7% accuracy for measles using ResNet50 

combined with DeepLabv3. Similarly, Ali et al. [44] employed 

models such as VGG-16, ResNet50, and InceptionV3 for 

multiclass classification of measles, monkeypox, and 

chickenpox, with ResNet50 achieving 82.96% accuracy. More 

recent works, such as Lakshmi and Das [45] and Khan and 

Ullah [46], focused on the binary classification of monkeypox 

using advanced architectures like ResNet101 and Inception-

Resnet, achieving accuracies of 94.25% and 97%, respectively. 

In comparison, our study utilizes a more comprehensive 

dataset of 9120 images and focuses on the multiclass 

classification of chickenpox, cowpox, healthy, measles, 
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monkeypox, and smallpox. The YoloV8 model demonstrated 

superior performance, achieving an impressive accuracy of 

99.80%, significantly outperforming previous models. This 

highlights the effectiveness of our approach, particularly in 

handling complex multiclass classification tasks, and positions 

YoloV8 as a state-of-the-art model for viral skin disease 

detection. This comparison underscores the advancements 

made in this study and the potential of deep learning 

techniques in improving diagnostic accuracy for pox virus-

related skin diseases. 

 

Table 3. Comparison of performance metrics with related works 
 

Class Authors Size Model Accuracy 

CowPox Nanni et al. [42] 1500 DenseNet +SVM 89.42% 

Measles Ji and Wu [43] 500 ResNet50 +DeepLabv3 97.7% 

MonkeyPox 

chickenpox 

Measles 

Ali et al. [44] 3196 VGG-16, ResNet50, and InceptionV3 ResNet50: 82.96% 

Monkeypox 
Lakshmi and Das 

[45] 
835 

VGG16, VGG19, ResNet50, ResNet101, DenseNet201, and 

AlexNet 
ResNet101: 94.25% 

Monkeypox Khan and Ullah [46] 558 VGG16, VGG19, ResNet50, Inception and Inception-Resnet Inception-Resnet: 97% 

Chickenpox 

Cowpox 

Measles 

Monkeypox 

Smallpox 

Our study 9120 YoloV8, YoloV5 and ResNet32 YoloV8: 99.80% 

 

 

4. DISCUSSION AND CONCLUSIONS 

 

The findings of this study demonstrate the significant 

potential of deep learning techniques, particularly the 

YOLOv8 model, in the accurate classification of viral skin 

diseases from the poxvirus family. By leveraging a dataset 

comprising six different categories—chickenpox, cowpox, 

healthy, measles, monkeypox, and smallpox—the YOLOv8 

model achieved an outstanding accuracy of 99.80%, 

outperforming other models like YOLOv5 and ResNet32. This 

performance is particularly noteworthy in the context of 

multiclass classification, a more complex task compared to 

binary classification explored in previous studies. 

The comparative analysis of YOLOv8, YOLOv5, and 

ResNet32 reveals that YOLOv8 consistently delivers superior 

results, not only in terms of accuracy but also in precision and 

recall. This can be attributed to the architectural improvements 

introduced in YOLOv8, which enhance both detection speed 

and accuracy through advanced feature extraction and 

optimized layers. While YOLOv5 and ResNet32 also 

performed well, the increased misclassification rates between 

categories like chickenpox and smallpox in YOLOv5, as well 

as some confusion between monkeypox and smallpox in 

ResNet32, indicate that these models may require further 

refinement to match the robust performance of YOLOv8. 

In comparing our work with previous studies, the YOLOv8 

model's performance represents a significant advancement in 

the field. For example, Nanni et al. [42] achieved 89.42% 

accuracy in the binary classification of cowpox using 

DenseNet + SVM, while Ali et al. [44] reported 82.96% 

accuracy for multiclass classification using ResNet50. In 

contrast, our study demonstrates that by utilizing a more 

comprehensive and augmented dataset, combined with state-

of-the-art deep learning architectures, it is possible to achieve 

substantially higher classification accuracy. This highlights 

the importance of using larger, more diverse datasets and 

advanced models like YOLOv8 to improve diagnostic 

accuracy in medical image analysis. 

The application of image augmentation techniques, 

including horizontal and vertical flips, further enhanced the 

performance of the models by generating diverse training 

examples, thereby preventing overfitting and improving the 

generalization capability. This was crucial in achieving high 

classification performance, especially in distinguishing 

between diseases with similar visual presentations, such as 

chickenpox and smallpox. 

Although hyperparameters such as learning rate and batch 

size were selected through preliminary tuning and grid search, 

it is important to acknowledge that these values were not 

independently optimized for each model architecture. Using a 

uniform set of hyperparameters across all models ensured 

fairness in comparison but may have prevented each model 

from achieving its optimal performance. Future studies should 

incorporate model-specific hyperparameter optimization 

strategies to potentially enhance the accuracy and robustness 

of each deep learning architecture. 

Despite the significant improvements observed through data 

augmentation techniques, including horizontal and vertical 

flipping, certain limitations must be acknowledged. Some 

augmentation strategies—such as vertical flipping—may 

introduce unrealistic visual patterns that are unlikely to occur 

in real clinical scenarios, potentially impacting the model’s 

generalization capability. Furthermore, while these methods 

expand the training set and reduce overfitting, they do not 

contribute to novel pathological features and may fail to reflect 

the complexity of real-world variability, such as different 

imaging devices, lighting conditions, or lesion evolution 

stages. Thus, although data augmentation has proven 

beneficial in boosting performance, future studies should 

explore more advanced augmentation methods such as GAN-

based synthetic data generation or domain-specific 

transformations tailored to dermatological contexts to further 

enhance model robustness and clinical applicability. 

Despite the high classification accuracy achieved by the 

proposed deep learning model, several limitations must be 

acknowledged, particularly regarding its applicability in real-

world clinical settings. Variability in skin tones, lighting 

conditions, image resolution, and acquisition angles can 

significantly impact model performance, as these factors are 

often uncontrollable in practical diagnostic environments. 

Moreover, the dataset used in this study was derived from 

publicly available sources, which may not adequately 

represent the full clinical diversity, including rare or atypical 

cases. Consequently, the model’s generalizability to less 
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common presentations remains uncertain. To address these 

challenges, future research should focus on incorporating 

more diverse, real-world datasets and validating the model 

within prospective clinical workflows. Additionally, the 

integration of expert dermatological insights could further 

enhance diagnostic precision and help mitigate potential biases, 

reinforcing the model’s role as a supportive tool rather than a 

standalone diagnostic solution. 

In conclusion, this study demonstrates that deep learning 

models, particularly YOLOv8, are highly effective tools for 

the classification of viral skin diseases from the poxvirus 

family. The results not only confirm the superiority of 

YOLOv8 over other models but also underscore the potential 

of integrating artificial intelligence into diagnostic processes 

to support medical professionals in early detection and 

accurate disease classification. Future research could explore 

further improvements in model architecture and investigate the 

application of these techniques in real-time clinical settings. 

Additionally, expanding the dataset to include other types of 

skin lesions or diseases could further enhance the 

generalizability and applicability of the models in broader 

healthcare contexts. 
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