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The sustainable management of natural resources in tourist attractions is a core issue in the 

collaborative development of ecological conservation and the tourism industry. Traditional 

manual monitoring methods suffer from limitations such as restricted coverage and delayed 

responses, making them unsuitable for large-scale, round-the-clock real-time monitoring 

needs. Computer vision technology offers an efficient solution for this domain, but 

challenges such as significant variations in lighting, unclear boundaries between resource 

types, and strong heterogeneity in texture features make it difficult for conventional image 

processing methods to achieve the segmentation accuracy and real-time performance 

required for quantitative assessments. Existing research shows significant shortcomings in 

key areas such as edge detection, feature extraction, and clustering segmentation: traditional 

edge detection operators often produce broken or false edges, single-feature representations 

struggle to address resource feature heterogeneity, manually set clustering parameters fail 

to adapt to dynamic distributions, and pixel-level clustering faces computational 

bottlenecks. To address these issues, this paper proposes an improved superpixel 

segmentation method for real-time monitoring of natural resources in tourist attractions. The 

specific research includes: 1) constructing a superpixel segmentation model to improve edge 

extraction accuracy and noise resistance; 2) integrating multi-dimensional features, 

normalizing and reducing their dimensions to build high-discriminative feature vectors; 3) 

using the density peak algorithm to adaptively determine the number of clusters, avoiding 

manual intervention; and 4) performing fuzzy C-means clustering on superpixels to optimize 

segmentation in transitional areas and improve efficiency. The innovation of this method 

lies in: 1) replacing traditional edge detection operators with structured edge detection to 

solve robustness issues in complex scenes; 2) developing a multi-dimensional feature fusion 

system to overcome the limitations of single-feature representation; 3) introducing an 

adaptive clustering parameter mechanism to accommodate dynamic resource distribution; 

and 4) combining superpixels with fuzzy C-means clustering to ensure segmentation 

accuracy while meeting real-time demands. This method provides technical support for the 

precise identification, dynamic monitoring, and quantitative evaluation of natural resources 

in tourist attractions, contributing to the fine-grained management and sustainable 

development of scenic areas. 
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1. INTRODUCTION

With the rapid development of the global tourism industry 

and the increasing awareness of ecological environmental 

protection [1-3], the sustainable management of natural 

resources in tourist attractions [4, 5] has become a key issue 

that needs to be addressed. The natural resources in tourist 

attractions, such as vegetation, water bodies, and rocks, are not 

only core elements of the scenic ecosystem but also serve as 

important landscape foundations that attract tourists. Changes 

in their status directly affect the ecological safety and tourism 

experience of the scenic area. However, traditional natural 

resource monitoring methods [6-9], which rely on manual 

inspections and fixed-point sampling, have limitations such as 

limited coverage, delayed response, and high labor costs, 

making them unsuitable for large-scale, round-the-clock real-

time monitoring needs of tourist attractions. Computer vision 

technology [10, 11], with its advantages of non-contact 

sensing and efficient data acquisition, provides a new technical 

path for dynamic monitoring of natural resources. However, 

its application in complex tourism scenarios still faces 

challenges—issues such as significant lighting changes, 

blurred boundaries between resource types, and strong 

heterogeneity in texture features lead to difficulties in 

achieving the segmentation accuracy and real-time 

performance required for quantitative assessments using 

traditional image processing methods. These challenges limit 

the deep application of computer vision technology in the 
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management of natural resources in tourist attractions. 

Conducting research on the real-time monitoring and 

assessment of natural resources in tourist attractions using 

computer vision has significant theoretical and practical value. 

In practical terms, this research enables the rapid identification 

and dynamic tracking of ecological issues such as vegetation 

degradation, water pollution, and rock weathering, providing 

precise decision-making support for scenic area management 

departments. This can help in formulating scientific ecological 

protection strategies and tourism development plans, 

achieving the collaborative development of ecological 

protection and the tourism industry. In theoretical terms, this 

research explores high-precision and robust image processing 

methods tailored to the specificities of tourist scenarios, 

enriching the application of computer vision technology in 

ecological monitoring. It provides new research ideas for 

cross-disciplinary technology integration and promotes the 

transformation of natural resource monitoring technology 

from traditional manual methods to intelligent and automated 

models. 

Although existing research has made some progress in 

combining computer vision and natural resource monitoring, 

there are still many flaws and deficiencies. Traditional edge 

detection algorithms, such as the Sobel operator [12], rely 

solely on color gradients to extract edge information, which 

tends to generate broken edges and false edges when dealing 

with complex textures and lighting changes in scenic areas, 

resulting in a decline in subsequent segmentation accuracy. In 

feature extraction, some studies only use single texture or 

color features for resource type identification [13, 14], which 

are insufficient to address the feature heterogeneity of natural 

resources in scenic areas. For example, using only Local 

Binary Pattern (LBP) features [15] cannot fully capture the 

global texture differences between different vegetation types, 

leading to high misclassification rates. In clustering and 

segmentation, most methods rely on manually setting the 

number of clusters [16, 17], which cannot adapt to the dynamic 

changes in resource distribution in scenic areas. For example, 

the K-means algorithm [18], with its hard clustering 

characteristics, struggles to handle the fuzzy features of 

resource transition areas, while traditional fuzzy C-means 

clustering algorithms [19, 20] directly operate on pixel-level 

data, leading to low computational efficiency and failing to 

meet real-time monitoring demands. These issues seriously 

affect the application effectiveness of computer vision 

technology in the natural resource monitoring of tourist 

attractions, highlighting the urgent need to establish an image 

processing method system that balances both accuracy and 

efficiency. 

This paper focuses on the core requirements of real-time 

monitoring and assessment of natural resources in tourist 

attractions and proposes an improved superpixel 

segmentation-based computer vision processing method. The 

core research content includes: first, replacing the traditional 

Sobel operator with structured edge detection, combined with 

multi-scale morphological gradient reconstruction watershed 

transformation to generate high-precision, noise-resistant 

superpixel images; second, integrating complementary texture 

features of Gabor and LBP, multi-color space statistical 

features, and spatial location features, normalizing and 

performing Principal Component Analysis (PCA) 

dimensionality reduction to construct high-discriminative 

feature vectors; third, using the density peak algorithm to 

adaptively determine the number of clusters, avoiding manual 

intervention; and fourth, performing fuzzy C-means clustering 

on superpixels to accurately process resource transition areas 

and improve computational efficiency. The core value of this 

research lies in the fact that through multi-technology 

integration, it breaks through the accuracy bottleneck of 

traditional methods. With adaptive parameter adjustment and 

optimized computational units, it meets the large-scale real-

time monitoring demands, ultimately providing technical 

support for the fine-grained management of natural resources 

in scenic areas, promoting the coordinated advancement of 

ecological protection and sustainable tourism development. 

 

 

2. METHOD 

 

2.1 Problem description and method overview 

 

Real-time monitoring and assessment of natural resources 

in tourist attractions is the core technical support for achieving 

the coordinated advancement of ecological protection and 

sustainable tourism development. The primary objective is to 

use computer vision technology to accurately capture key 

ecological indicators, such as dynamic vegetation cover, 

changes in water body area, degree of rock weathering, and 

pollutant distribution, and provide reliable pixel-level data 

support for quantitative assessment. However, the complex 

scene characteristics of tourist attractions pose multiple 

technical challenges to image processing tasks: First, the 

boundaries of natural resource types are highly ambiguous, 

such as the transitional zone between vegetation and bare land, 

and the interface between shallow water areas and tidal flats. 

Traditional segmentation methods are prone to boundary 

confusion, leading to insufficient resource classification 

accuracy. Second, resource features are significantly affected 

by environmental factors; lighting changes and seasonal 

transitions can cause color feature drift, while the texture 

heterogeneity of different resource types further complicates 

feature differentiation. Third, the real-time monitoring scene 

requirements impose dual constraints on algorithm 

performance, as they need to process vast amounts of image 

data generated by large-scale monitoring to meet timeliness 

requirements, while also adapting to the dynamic changes in 

resource distribution, avoiding inefficiencies and subjective 

biases caused by manual parameter adjustments. Fourth, the 

pixel assignment problem in transition areas directly affects 

the accuracy of subsequent evaluation metric calculations, and 

traditional hard segmentation methods are difficult to adapt to 

such scenarios. The presence of these issues severely restricts 

the practical application of computer vision technology in the 

monitoring and assessment of natural resources in tourist 

attractions, highlighting the urgent need to develop an image 

processing method that combines high precision, high 

efficiency, and strong adaptability. 

To address the above research issues, this paper chooses a 

superpixel segmentation method that integrates edge 

enhancement, hybrid feature fusion, and adaptive clustering as 

the core image processing technique. The rationality and 

necessity of this method stem from its precise adaptation to the 

research goals and the targeted utilization of its technical 

advantages. From the precision assurance dimension, this 

method enhances edges through the cooperation of a 

structured edge detection algorithm and a watershed transform 

algorithm based on multi-scale morphological gradient 

reconstruction. It can effectively solve the problem of 
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ambiguous boundaries between different natural resource 

types, providing an accurate spatial positioning foundation for 

subsequent segmentation, avoiding resource classification 

confusion caused by boundary errors, and directly supporting 

the accurate calculation of assessment metrics such as 

vegetation cover and water pollution extent. In terms of feature 

representation, the design that integrates LBP and Gabor 

texture features can fully capture the texture details of resource 

types. Coupled with the deep integration of color features, it 

can resist interference from environmental factors such as 

lighting and seasonal changes in feature extraction, 

significantly improving the differentiation of different 

resource types in complex scenes. From the efficiency and 

adaptability perspective, this method achieves high-precision 

boundary extraction with a single superpixel segmentation, 

greatly reducing computational complexity compared to 

traditional multi-round segmentation methods, enabling the 

fast processing of massive monitoring images, and meeting the 

timeliness requirements for large-scale, round-the-clock real-

time monitoring in tourist attractions. The introduction of the 

density peak algorithm allows for the automatic determination 

of the number of clusters, effectively adapting to the dynamic 

changes in resource distribution and regional differences in 

tourist attractions, avoiding the efficiency bottlenecks and 

subjective biases caused by manual parameter adjustments. 

Furthermore, the soft segmentation nature of the fuzzy C-

means clustering algorithm can appropriately address the pixel 

assignment issue in resource transition areas, further 

compensating for the technical shortcomings of traditional 

segmentation methods and providing high-quality data support 

for subsequent quantitative assessment, ultimately achieving a 

deep alignment between the technical solution and research 

objectives. 

 

 
 

Figure 1. Core steps of the proposed method 

 

 
 

Figure 2. Flowchart of the core technical chain of the 

proposed method 

The superpixel segmentation method for real-time 

monitoring of natural resources in tourist attractions proposed 

in this paper follows the technical chain of "preprocessing-

feature optimization-parameter adaptation-precise 

segmentation." Figure 1 shows the schematic diagram of the 

core steps of this method. In the preprocessing stage, the 

structured edge detection algorithm and the watershed 

transform algorithm based on multi-scale morphological 

gradient reconstruction are used in coordination to enhance 

image edge information: the structured edge detection 

algorithm enhances the edge response of different resource 

types, highlighting key boundaries; the watershed transform 

algorithm based on multi-scale morphological gradient 

reconstruction suppresses environmental noise while retaining 

resource texture details, generating preprocessed images with 

clear edge contours and strong anti-interference capability. In 

the feature optimization stage, multi-dimensional feature 

vectors are constructed: by integrating the local detail 

description ability of LBP texture features with the multi-scale, 

multi-directional representation advantages of Gabor texture 

features, a mixed texture feature set is formed, while color 

features are also integrated to characterize different resource 

types. In the parameter adaptation stage, the density peak 

algorithm is introduced to automatically identify the density 

peak points in the feature space to determine the optimal 

number of clusters, adapting to the resource distribution 

characteristics of different monitoring areas. In the precise 

segmentation stage, based on the optimized multi-dimensional 

feature vectors and the adaptive clustering parameters, the 

fuzzy C-means clustering algorithm is used to perform the 

superpixel segmentation operation, using its soft segmentation 

feature to handle the pixel assignment problem in resource 

transition areas, and obtaining precise segmentation results 

with accurate boundaries through a single segmentation. 

Figure 2 shows the flowchart of the core technical chain of this 
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method. 

 

2.2 Superpixel segmentation 

 

The proposed superpixel segmentation method for real-time 

monitoring of natural resources in tourist attractions focuses 

on improving edge extraction accuracy. By integrating 

structured edge detection with multi-scale morphological 

gradient reconstruction-based watershed transform, it 

addresses the problem of blurred edges and poor noise 

resistance in traditional segmentation methods for complex 

tourist scenes, laying the foundation for subsequent precise 

segmentation of natural resource types. This stage directly 

serves the research goal of real-time monitoring and 

assessment of natural resources in tourist attractions, namely, 

to accurately capture the boundary information of resources 

such as vegetation, water bodies, and rocks, supporting the 

quantitative analysis of key metrics such as resource 

distribution and dynamic changes. 

The core improvement of the superpixel segmentation stage 

lies in the optimization of the edge extraction method. The 

traditional multi-scale morphological gradient reconstruction-

based watershed transform algorithm relies on the Sobel 

operator to generate edge images. However, the Sobel operator 

only identifies edges by calculating color gradient magnitude, 

which has significant limitations in complex tourist scenes: for 

example, visual prominent edges such as texture boundaries 

formed by overlapping leaves in dense vegetation, light and 

dark alternating areas caused by light reflection on water 

bodies, and fine contours formed by rock weathering, often 

have weak correlations with color gradients, causing edges 

extracted by the Sobel operator to be broken, false, or 

mislocated. These problems directly affect the segmentation 

results of the watershed transform based on multi-scale 

morphological gradient reconstruction, potentially 

misclassifying adjacent vegetation and bare land areas as the 

same category or incorrectly segmenting reflective areas of 

water bodies as independent regions, ultimately interfering 

with the accuracy of natural resource status assessment. 

Therefore, the introduction of structured edge detection 

algorithms to replace the Sobel operator becomes the key 

improvement direction for enhancing edge extraction accuracy. 

The reason why structured edge detection algorithms are 

suitable for edge extraction of natural resources in tourist 

attractions lies in their deep ability to mine "structured 

features." This algorithm computes based on the intrinsic 

structural information of local image blocks, using a structured 

learning framework combined with a random decision forest, 

specifically designed to solve the problem of predicting local 

edge masks. In tourist scenes, the edges of natural resources 

often have significant local correlations. For example, the 

edges between water bodies and shorelines maintain consistent 

directions in continuous image blocks, and the boundaries of 

vegetation communities show continuous transitional trends in 

adjacent pixels. By learning these associations, structured edge 

detection can break through the limitations of a single-color 

gradient, capturing "real edges" that align more closely with 

human visual perception, especially suitable for handling the 

edge extraction challenges caused by complex textures, 

lighting changes, and noise interference in tourist attractions. 

The computational mechanism of structured edge detection 

achieves precise encoding and selection of edge features 

through two key steps: "intermediate mapping" and 

"information gain selection," which are highly adaptable to the 

edge characteristics of natural resources in tourist attractions. 

In the intermediate mapping stage, the algorithm maps the 

edge labels of the output space Y to a high-dimensional space 

Z and approximates the dissimilarity of the labels by 

calculating the Euclidean distance in Z. For example, for a 

16×16 image block, binary vector encoding is used to 

represent whether pixel pairs belong to the same resource 

region, such as "vegetation-vegetation" or "vegetation-bare 

land," thus precisely capturing edge details in small areas, such 

as the boundary between coniferous and broad-leaved forests. 

The specific mapping formula is: 

 

ZY → :  (1) 

 

Considering the computational cost of high-dimensional 

space, the algorithm simplifies the mapping and uses PCA 

dimensionality reduction to retain distance approximation 

while removing noise, addressing interference issues caused 

by camera noise and atmospheric scattering in tourism 

monitoring images. 

In the information gain selection stage, structured edge 

detection maps the high-dimensional space labels to a discrete 

set, ensuring global consistency of edge features. The 

algorithm uses K-means clustering or PCA quantization for 

mapping, allowing similar edge features to be assigned the 

same discrete label, and then selects the most discriminative 

features using Shannon entropy or Gini impurity. This process 

is independently performed for each decision tree node and 

can adapt to the resource distribution characteristics of 

different regions. For example, in the water area, the algorithm 

prioritizes learning "smooth continuous edge" features to 

distinguish shorelines; in the vegetation area, it focuses on 

"texture gradient edge" features to identify community 

boundaries. This adaptive capability allows the algorithm to 

simultaneously handle diverse edge types in tourist attractions, 

with the output edge images retaining fine textures while 

maintaining global continuity. 

Finally, the high-precision edge images generated by 

structured edge detection are input into the watershed 

transform algorithm based on multi-scale morphological 

gradient reconstruction, forming an improved superpixel 

segmentation process. Compared with traditional methods, the 

superpixel boundaries output by this method are more aligned 

with the actual distribution of natural resources. For example, 

in lake monitoring, it accurately segments the fuzzy transition 

zone between water bodies and shoreline vegetation; in forest 

monitoring, it clearly distinguishes the boundaries of different 

tree species communities. This precise superpixel 

segmentation provides reliable spatial units for subsequent 

feature extraction and clustering analysis, directly supporting 

the real-time monitoring and quantitative assessment of 

natural resources in tourist attractions and achieving a deep 

coupling of technological improvements and research goals. 
 

2.3 Color and texture feature extraction and fusion 
 

In the color and texture feature extraction and fusion stage, 

this paper adopts a strategy combining Gabor texture features 

and LBP texture features to fully capture texture information 

at different scales and details, laying the foundation for 

accurate differentiation of resource types. Natural resources in 

tourist attractions, such as coniferous forests, broad-leaved 

forests, calm water bodies, turbulent water, and weathered 

rocks, have significant texture differences. The global texture 
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of vegetation communities exhibits regular distribution, while 

local details such as overlapping leaves and rock cracks form 

fine textures. Additionally, lighting changes, seasonal 

transitions, and other factors easily lead to dynamic 

fluctuations in texture features. Gabor filters, with their 

excellent ability to select directions and scales, can effectively 

capture global texture information at different directions and 

scales and have strong robustness to lighting changes and 

slight image rotation deformations, making them highly 

adaptable to dynamic texture changes such as water reflections 

and vegetation swaying in the wind in tourism scenes. 

Specifically, assume that the input image is represented by d(a, 

b), where L is the L channel in the Lab color space. The scale 

and direction of the Gabor filter are represented by μ and ϕ, 

and the Gabor filter is denoted by h. The expression formula 

for Gabor texture features is: 

 

( ) ( ) ( ) ,,b,ah*b,ad,,b,aD =
 

(2) 

 

Assume the normalization factor is represented by X, and 

the Gabor filter definition formula is: 
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(3) 

 

To further optimize the quality of Gabor features, the 

algorithm smooths its amplitude information using a Gaussian 

low-pass filter, reducing interference caused by local texture 

fluctuations, and uses the PCA algorithm to reduce the 16-

dimensional feature map to a 1-dimensional vector to improve 

computational efficiency, ensuring the performance 

requirements of real-time monitoring. 

LBP features focus on the extraction of local texture details. 

Their high sensitivity to subtle texture changes and scale 

invariance perfectly compensates for Gabor features' 

limitations in characterizing local details. For example, when 

distinguishing between different tree species in vegetation 

areas, LBP features can precisely capture the local differences 

in leaf arrangement, while Gabor features characterize the 

global texture distribution pattern of vegetation communities. 

The complementary combination of both effectively reduces 

the misclassification rate of single features in complex tourism 

scenes, providing a comprehensive texture representation 

foundation for subsequent accurate clustering of resource 

types. 

To overcome the interference of lighting, seasonal, and 

other factors on color features in tourism scenes, the algorithm 

selects three color spaces—RGB, HSV, and Lab—and extracts 

the first-order and second-order moments of each color 

component as color features to provide comprehensive and 

robust representation of natural resource color information. 

Different color spaces have varying sensitivities to 

environmental changes: RGB space reflects raw color 

information, HSV space better aligns with human color 

perception, and Lab space has good color separation 

characteristics, which can effectively resist color drift caused 

by lighting changes. For example, in vegetation monitoring 

during winter and summer, color features in the Lab space can 

more stably reflect changes in vegetation growth; in water 

body monitoring, the saturation component in the HSV space 

can accurately distinguish between clean and polluted water. 

At the same time, the algorithm incorporates spatial location 

features, fully considering the spatial distribution patterns of 

natural resources in tourist attractions, such as water bodies 

being concentrated in low-lying areas and vegetation being 

distributed on hillsides or plains. By using spatial location 

information to assist in distinguishing resources of similar 

color and texture features but different types, the 

discriminative ability of features is further enhanced. 

To achieve effective integration of multi-dimensional 

features, the algorithm uses feature concatenation to combine 

color features, texture features, and spatial location features 

into high-dimensional feature vectors. These vectors are then 

normalized using Z-score normalization to eliminate 

dimensional differences between features, avoiding feature 

weight imbalance caused by differences in value ranges. 

Considering the computational efficiency requirements of 

real-time monitoring and the potential redundancy in high-

dimensional features, the algorithm uses PCA to reduce the 

dimensionality of the fused feature vector. This reduces data 

dimensions and the computational complexity of subsequent 

clustering tasks while retaining key discriminative information, 

ensuring that the algorithm can quickly process massive 

monitoring images of large-scale tourist attractions. 

The feature vectors optimized through the above process 

comprehensively integrate the color, texture, and spatial 

attributes of the superpixel blocks, enabling precise 

characterization of different types of natural resources and 

providing high-quality input for the automatic determination 

of the number of clusters and fuzzy C-means clustering 

segmentation. 

 

2.4 Determination of the number of clusters 

 

In the clustering number determination stage, this paper 

introduces the density peak algorithm. The core objective is to 

address the dynamic heterogeneity of natural resource 

distribution in tourist sites, achieving precise matching 

between the number of clusters and actual resource types, 

avoiding subjective biases and efficiency bottlenecks caused 

by manual setting of clustering parameters, and providing a 

scientific parameter basis for subsequent fuzzy C-means 

clustering segmentation. The natural resource types in tourist 

attractions are complex and subject to dynamic changes in 

distribution: on the one hand, there are significant differences 

in resource combinations across different regions, such as 

mountainous areas dominated by vegetation and rocks, and 

waterfront areas dominated by water bodies and wetlands; on 

the other hand, seasonal changes and environmental factors 

cause dynamic adjustments to resource type boundaries and 

distribution ranges, such as the expansion of vegetation in 

summer and the change in the area of frozen water bodies in 

winter. Manually setting the number of clusters is difficult to 

adapt to these dynamic changes. If the number of clusters is 

too few, different resource types will be misclassified as the 

same category, affecting the accuracy of evaluation indicators. 

If the number of clusters is too many, excessive segmentation 

will occur, increasing computational costs and interfering with 

the effective identification of resource types, which cannot 

meet the real-time monitoring requirements. The Density Peak 

Algorithm, driven by data, automatically uncovers the 

distribution pattern of superpixel features, which is well-suited 

to the core demands of the tourism scene. 

The Density Peak Algorithm determines the number of 

clusters automatically by calculating two key indicators: local 
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density ϑu and minimum distance σu. For each superpixel block, 

the local density ϑu is calculated based on the Euclidean 

distance fuk between superpixels and truncation distance fz, 

reflecting the density of similar superpixels around that 

superpixel. Specifically, assuming the number of the k-th 

superpixel area is represented by Tk, and the total number of 

superpixels by V, the calculation formula is: 

 

( )
=

−=
V

uk,k

zukku f/fT
1

2exp

 

(4) 

 

In the tourism scene, superpixels of the same resource type 

typically have similar features and small Euclidean distances, 

resulting in higher local densities, while superpixels of 

different resource types show significant feature differences 

and larger Euclidean distances, resulting in lower local 

densities. 

The minimum distance σu is defined as the minimum 

Euclidean distance between the superpixel and all higher-

density superpixels, used to distinguish the core areas of 

different resource types. The specific calculation formula is: 

 

( )uk
:k

u fMIN
uk 




=
 

(5) 

 

In practice, the core superpixels in water body regions, due 

to their strong feature specificity, will have a significantly 

larger distance from other high-density superpixels than other 

regions. For the superpixels with the highest density, the 

algorithm defines their minimum distance σu separately to 

ensure the accurate identification of core resource types. For 

the superpixel region with the highest density, fuk is defined as: 
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

−=
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T
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(6) 

 

The decision graph of superpixels is derived from ϑu and σu: 

 

uuu  =
 

(7) 

 

After constructing the decision graph based on ϑu and σu, the 

algorithm analyzes the distribution characteristics of points in 

the graph to identify the density peak points. Each peak point 

corresponds to a core cluster of a natural resource type, 

automatically determining the optimal number of clusters. For 

example, in a tourist scene containing water bodies, coniferous 

forests, broad-leaved forests, and bare land, the decision graph 

will form four distinct density peak points corresponding to 

four core resource types. This data-driven automatic decision-

making mechanism not only avoids the cumbersome process 

of manual parameter adjustment but also adapts to the resource 

distribution characteristics of different tourism scenes, 

ensuring that the number of clusters aligns closely with the 

actual resource types. Ultimately, this stage provides precise 

parameter input for the subsequent fuzzy C-means clustering, 

ensuring the accuracy of segmentation results. 
 

2.5 Superpixel-based fuzzy C-means clustering 
 

The core objective of this stage is to use the soft clustering 

properties of the fuzzy C-means algorithm to precisely handle 

the boundary transition problems of natural resource types in 

tourist attractions and achieve efficient clustering and 

segmentation at the superpixel level, providing reliable 

category division results for subsequent real-time monitoring 

and quantitative evaluation of resource conditions. The natural 

resource distribution in tourist attractions generally exhibits 

significant transition characteristics: for example, the gradient 

zone between vegetation and bare land, the boundary between 

shallow water areas and tidal flats, and the mixed areas of 

different vegetation communities. The pixel features of these 

regions are fuzzy, and traditional hard clustering algorithms 

force each pixel to be assigned to a single category, which 

often leads to distorted boundary segmentation and affects the 

accuracy of resource area calculation, type identification, and 

other evaluation indicators. The fuzzy C-means clustering 

algorithm, by introducing the concept of membership degree, 

allows each superpixel to belong to multiple clustering 

categories simultaneously and quantifies its degree of 

membership. This is well-suited for the feature fuzziness of 

natural resource transition areas, allowing for a more realistic 

reflection of the spatial distribution patterns of resource types. 

Additionally, its stronger hierarchy and stability compared to 

hard clustering further ensure the reliability of segmentation 

results in complex tourism scenes. 

The core logic of this stage revolves around the 

optimization of the objective function of the fuzzy C-means 

clustering algorithm. The objective function minimizes the 

weighted sum of squared distances between superpixel 

features and clustering centers, achieving optimal category 

division, with parameter designs highly compatible with the 

characteristics of natural resources in tourist attractions. The 

specific objective function expression is: 
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(8) 

 

In the objective function, the membership matrix iks 

quantifies the degree of membership of the k-th superpixel to 

the s-th resource category. For example, superpixels in the 

transition zone between vegetation and bare land will have 

membership degrees to both the "vegetation" class and the 

"bare land" class between 0 and 1, with their sum satisfying 

the fuzzy set constraint. The clustering center zs represents the 

core feature vector of a certain natural resource category, 

integrating the color, texture, and spatial location features of 

that resource. The fuzziness factor l is usually set to 2, 

balancing the fuzziness and distinguishability of the clustering, 

avoiding category confusion due to excessive fuzziness, and 

reserving reasonable space for the feature expression of 

transition areas. In addition, the objective function introduces 

the number of pixels Tk in the superpixel area as a weight, so 

that larger resource areas occupy more important weight in the 

clustering optimization, aligning with the dominant position of 

dominant resource types in tourist attractions, and ensuring 

that the clustering results accurately reflect the spatial 

proportion relationships of resources. 

Superpixel-based fuzzy C-means clustering achieves 

convergence of clustering results through a systematic 

iterative optimization process. At the same time, relying on the 

preprocessing advantages of superpixels, it meets the 

efficiency requirements of real-time monitoring in tourism 

scenes. Its iterative process follows the logic of "initialization-
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update-convergence judgment": first, the membership matrix 

is randomly initialized, combining the number of clusters k, 

which is automatically determined by the density peak 

algorithm in the previous section (i.e., the actual number of 

core resource types in the tourist attraction), to provide initial 

parameters for the iteration; then, using the analytical solution 

derived from the Lagrange multiplier method, the clustering 

center and membership matrix are alternately updated. The 

optimization problem is transformed using the Lagrange 

multiplier η, as follows: 
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Furthermore, partial differential equations of Kl with respect 

to zs and iks are calculated as follows: 
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By integrating the above equations, the corresponding 

solutions for zs and iks are: 

 





=

=
=

V

k

l

ksk

Eo

o

V

k

l

ks

s

iT

ai

z k

1

1

 

(12) 

( )

( )

 



=

−−



−−



−














−














=
j

s

l/

s

Eo

o

k

l/

s

Eo

o

k

ks

za
T

za
T

i

k

k

1

12

12

1

1

 

(13) 

 

The updating of clustering centers makes the core features 

of each category more aligned with the actual resource types, 

while the updating of the membership matrix dynamically 

adjusts the degree of membership of superpixels to categories. 

This is particularly important for addressing feature 

fluctuations caused by lighting changes and seasonal 

transitions, and the iterative process can adaptively adjust 

parameters to maintain segmentation accuracy. Finally, the 

convergence condition is used to determine whether the 

iteration should stop, ensuring the stability of segmentation 

results and avoiding classification bias caused by insufficient 

iteration. The convergence condition expression is: 

 
( ) ( )  − +1yy IIMAX

 
(14) 

 

 

3. EXPERIMENTS 

 

To verify the adaptability of the proposed superpixel 

segmentation method to different natural resource scenes in 

tourist attractions, typical images containing vegetation, water 

bodies, and mountains were selected for the superpixel 

segmentation effect experiment. As shown in Figure 3, in 

Example 1, the left side presents a scene of a tourist attraction 

with golden fallen leaves and trees, while the right side shows 

the segmentation result, where different colored regions 

clearly distinguish trees, fallen leaf pathways, and pedestrians, 

demonstrating the algorithm's ability to precisely capture the 

texture and color differences in vegetation areas, achieving 

fine segmentation of vegetation-type resources. In Example 2, 

the left side depicts a tourist attraction scene combining 

mountains, water bodies, and vegetation. In the right-side 

segmentation result, blue areas distinguish different parts of 

the water body, green areas distinguish vegetation, gray-white 

areas distinguish mountains, and red boundaries precisely 

outline the contours of each resource type, showcasing the 

algorithm’s boundary recognition and type distinction 

capabilities for multiple natural resources such as water bodies, 

vegetation, and mountains. In conclusion, the experimental 

results indicate that the proposed superpixel segmentation 

method can accurately adapt to typical scenes in tourist 

attractions, such as densely vegetated areas and mountain-

water integrated areas, achieving clear segmentation of 

different natural resource types through effective integration 

of color and texture features, thus providing a reliable 

superpixel unit basis for subsequent real-time monitoring and 

quantitative evaluation of natural resources. 

 

 
(a) Example 1                                (b) Example 2 

 

Figure 3. Image superpixel segmentation examples 
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(a) Original monitoring image superpixel segmentation (b) Optimized superpixel segmentation using the proposed 

method 

 

Figure 4. Comparison of natural resource superpixel segmentation effects in tourist attractions 

 

Table 1. Recognition accuracy for different natural resource types 

 
Natural Resource Type Accuracy, % Precision, % Recall, % F1-Score, % IoU, % 

Coniferous Forest 98.2 97.8 98.5 98.1 96.4 

Broad-leaved Forest 97.9 97.5 98.3 97.9 95.9 

Shrubland 96.5 95.8 97.2 96.5 93.2 

Lake 99.1 98.9 99.3 99.1 98.2 

Stream 98.5 98.3 98.7 98.5 97.1 

Exposed Rocks 95.8 95.2 96.4 95.8 92.1 

Bare Land 96.2 95.6 96.8 96.2 92.7 

Artificial Landscape 99.3 99.0 99.5 99.2 98.5 

Average Metrics 97.6 97.1 98.1 97.6 95.3 

 

To visually validate the optimization effect of the proposed 

improved superpixel segmentation method on the boundaries 

of natural resources and cluster distribution in tourist 

attractions, a comparison experiment was conducted between 

the original monitoring image and the optimized segmentation 

results using the proposed method. As shown in Figure 4(a) 

represents the superpixel segmentation results of the original 

monitoring image, where the superpixel clustering density 

distribution is relatively scattered, indicating that without edge 

enhancement and noise suppression, the superpixels’ 

boundary delineation of natural resources such as vegetation 

and water bodies is blurred, and clustering is severely affected 

by environmental noise, making it difficult to accurately fit the 

actual spatial form of resources. On the other hand, (b) shows 

the segmentation results after optimization by the proposed 

SE-MMGR-WT algorithm, where superpixel clusters are 

more concentrated, and boundary distinction is much higher. 

This is because the structured edge detection enhanced the 

edge responses of different resource types, and the watershed 

transformation based on multi-scale morphological gradient 

reconstruction effectively suppressed environmental noise in 

the monitoring images while preserving resource texture 

details, enabling the superpixel segmentation to more 

accurately match the spatial distribution characteristics of 

natural resources in tourist attractions. In conclusion, the 

experimental results intuitively prove the significant 

advantages of the proposed improved superpixel segmentation 

method in enhancing resource boundary delineation and 

optimizing clustering accuracy, providing a high-quality 

spatial unit foundation for subsequent feature extraction and 

clustering analysis based on superpixels. 

To verify the algorithm’s precise recognition capability for 

different natural resource types in tourist attractions, a multi-

category resource recognition accuracy experiment was 

conducted, selecting eight typical targets from tourist 

attractions and performing quantitative analysis using five 

core classification evaluation metrics. The experimental 

results shown in Table 1 reveal that the algorithm achieves an 

average recognition accuracy of 97.6%, an average F1-score 

of 97.6%, and an average IoU of 95.3%. Among these, the 

recognition metrics for water resources such as lakes, streams, 

and artificial landscapes are the highest, benefiting from the 

fusion of multi-color space features and texture features that 

effectively capture the color stability of water bodies and the 

contour regularity of artificial landscapes. The recognition 

accuracy for primary vegetation types such as coniferous and 

broad-leaved forests exceeds 97.9%, demonstrating the 

algorithm’s ability to precisely capture texture differences 

between different vegetation types through the complementary 

use of Gabor and LBP texture features. The recognition 

metrics for exposed rocks and bare land are relatively lower 

but still exceed 95.8%, primarily due to slight confusion 

between the textures and color features of weathered rocks and 

bare land in certain areas, though the algorithm still meets the 

precise recognition requirements. In conclusion, the 

experimental results demonstrate that the proposed algorithm 

effectively distinguishes various natural resources and 

interference targets in tourist attractions, providing a reliable 

foundation for subsequent quantitative assessment and 

detailed management of natural resources. 
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To verify the algorithm’s ability to capture the temporal 

dynamic changes of natural resources in tourist attractions, 

continuous monitoring for one year was conducted in the same 

monitoring area, focusing on the core dynamic indicators of 

vegetation, water bodies, and bare land, as well as the growth 

trend of shrubland. The experimental results shown in Table 2 

reveal that the algorithm can accurately track the seasonal 

change patterns of natural resources: vegetation coverage 

remains above 89% in summer, with an NDVI value of 0.88-

0.90, reaching the annual peak, while the water body area 

increases to 2200-2350 m² due to rainfall, although the water 

transparency slightly decreases due to algae growth. In winter, 

vegetation coverage drops to 58.2%, the NDVI value is 0.55, 

and the water body area decreases to 1600 m² due to drought, 

while the water transparency increases to 0.92 due to reduced 

algae under low temperatures. The proportion of bare land 

exhibits an inverse change pattern, being higher in winter and 

lower in summer. For the short-term dynamics of shrubland, 

the algorithm accurately captures the rapid growth period in 

summer with a monthly growth rate of 8.2%, and the slow 

decline period in autumn and winter. In conclusion, the 

experimental results indicate that the proposed algorithm can 

accurately monitor the temporal changes of natural resources 

in tourist attractions, effectively extracting core dynamic 

indicators such as vegetation growth status, water body area, 

and quality, providing data support for ecological evolution 

analysis and seasonal protection strategy formulation, fully 

meeting the goals of real-time monitoring and evaluation. 

 

Table 2. Dynamic monitoring experiment results across time dimensions 

 

Monitoring 

Time 

Vegetation 

Coverage (%) 

Water 

Area (m²) 

Vegetation 

NDVI Value 

Water 

Transparency 

Index 

Bare Land 

Area (%) 

Shrubland Growth Rate 

(Monthly, %) 

Spring 

(March) 
62.5 1850 0.62 0.85 15.2 -0.5 

Summer (June) 89.3 2200 0.88 0.72 4.8 8.2 

Summer (July) 90.1 2350 0.90 0.68 4.2 1.1 

Summer 

(August) 
89.7 2280 0.89 0.70 4.5 0.3 

Autumn 

(October) 
75.4 1920 0.75 0.80 9.6 -4.3 

Winter 

(December) 
58.2 1600 0.55 0.92 18.5 -2.1 

 

Table 3. Robustness experiment results under different lighting conditions 

 
Lighting Condition DICE Coefficient (%) Boundary Recall Rate (%) Runtime (s) 

Sunny Strong Light 92.5 89.8 0.18 

Cloudy Weak Light 93.2 90.5 0.16 

Backlight (Water/Veg) 91.8 88.6 0.20 

Shadow Occlusion (Under Trees) 92.1 89.2 0.17 

Average Level 92.4 89.5 0.18 

 

 
(a) Superpixel segmentation accuracy comparison 

 

 
(b) Resource boundary recall rate comparison 

(c) Algorithm runtime comparison 

 

Figure 5. Performance comparison of the proposed algorithm 

with comparison algorithms in the natural resource 

segmentation task of tourist attractions 

 

To verify the performance advantages of the proposed 

method in the natural resource segmentation task of tourist 

attractions, a comparison experiment was conducted with 

SLIC, traditional watershed, and Canny+K-means algorithms 

across a superpixel count range from 100 to 1000. The 

experiment was analyzed from the perspectives of 

segmentation accuracy, resource boundary recall rate, and 

runtime. As shown in Figure 5, in terms of superpixel 

segmentation accuracy, the proposed algorithm performs the 
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best across all superpixel counts, achieving a value of 0.933 

when the superpixel count is 1000, significantly higher than 

SLIC's 0.916, traditional watershed's 0.932, and Canny+K-

means's 0.916. This indicates that the collaborative effect of 

structured edge detection and multi-scale morphological 

gradient reconstruction enables the algorithm to more 

accurately distinguish different natural resource types, such as 

vegetation, water bodies, and bare land, in tourist attractions. 

In terms of resource boundary recall rate, the proposed 

algorithm reaches 0.88 when the superpixel count is 1000, 

outperforming SLIC's 0.885, traditional watershed's 0.83, and 

Canny+K-means's 0.86, proving its strong robustness in 

capturing boundaries of vegetation and shorelines, and water 

bodies and tidal flats. Regarding runtime, the proposed 

algorithm achieves a runtime of only 0.15s at 1000 superpixels, 

much lower than SLIC's 0.21s, traditional watershed's 0.295s, 

and Canny+K-means's 0.25s. This is due to the efficient 

integration of superpixel preprocessing and FCM clustering, 

meeting the timeliness requirements for real-time monitoring 

of tourist attractions. In conclusion, the experimental results 

fully validate the technical advantages of the proposed 

superpixel segmentation method in the real-time monitoring 

and evaluation of natural resources in tourist attractions, in 

terms of segmentation accuracy, boundary fitting, and 

computational efficiency. 

To verify the robustness of the proposed algorithm in 

complex lighting environments at tourist attractions, 

experiments were conducted under four typical lighting 

conditions: sunny strong light, cloudy weak light, backlight, 

and shadow occlusion. The experiments analyzed 

segmentation accuracy, boundary fitting, and runtime 

efficiency. The results in Table 3 show that the proposed 

algorithm achieves an average DICE coefficient of 92.4%, an 

average boundary recall rate of 89.5%, and stable runtime 

between 0.16s and 0.20s, demonstrating strong robustness. 

Among these, the cloudy weak light scenario yields the best 

results with a DICE of 93.2% and boundary recall rate of 

90.5%, as the multi-color space features effectively counteract 

interference from varying light intensities. The backlight 

scenario shows a slight decrease in performance with a DICE 

of 91.8% and a boundary recall rate of 88.6%, but it still 

maintains a high level, reflecting the compensatory role of 

Gabor texture features in addressing color distortion. In sunny 

strong light and shadow occlusion scenarios, the performance 

remains stable, proving the algorithm's good adaptability to 

local contrast changes caused by strong light and shadow. In 

conclusion, the experiments show that the proposed algorithm 

works reliably under various lighting conditions at tourist 

attractions, meeting the lighting robustness requirements for 

all-weather real-time monitoring. 

 

Table 4. Adaptability experiment results with multi-resolution images 

 
Image Resolution DICE Coefficient (%) Runtime (s) Memory Usage (MB) Superpixel Segmentation Time Proportion (%) 

720P 91.5 0.12 128 35 

1080P 93.2 0.25 256 40 

4K 94.8 0.55 512 45 

To validate the adaptability of the proposed algorithm to 

various monitoring devices with different resolutions, 

experiments were conducted with three mainstream 

resolutions: 720P, 1080P, and 4K. The experiment evaluated 

segmentation accuracy, runtime efficiency, and resource 

consumption. As shown in Table 4, with the increase in 

resolution, the DICE coefficient of the proposed algorithm 

improves from 91.5% at 720P to 94.8% at 4K, reflecting the 

gain in segmentation accuracy due to higher resolution 

providing more detailed information. Both runtime and 

memory usage increase linearly, with 720P taking 0.12s and 

128MB, while 4K takes 0.55s and 512MB. However, the 

proportion of time spent on superpixel segmentation increases 

from 35% to 45%, indicating that the algorithm maintains an 

efficient computational structure even at high resolutions. At 

720P, the algorithm already meets basic monitoring 

requirements, while 1080P and 4K offer more detailed 

resource characterization. In conclusion, the experiments 

demonstrate that the proposed algorithm is adaptable to a wide 

range of monitoring devices in tourist attractions, from 

standard to high-definition equipment, balancing 

segmentation accuracy with reasonable computational 

resource consumption, thus providing flexibility for device 

selection and deployment in different scenarios. 

 

 

4. CONCLUSION 

 

This paper focuses on the core requirements of real-time 

monitoring and evaluation of natural resources in tourist 

attractions and proposes a computer vision processing method 

based on improved superpixel segmentation. The method 

optimizes superpixel segmentation accuracy through 

structured edge detection and multi-scale morphological 

gradient reconstruction watershed transformation. It integrates 

Gabor and LBP complementary texture features, multi-color 

space statistical features, and spatial position features to 

construct high-discrimination vectors, and uses the density 

peak algorithm to adaptively determine the number of clusters. 

Finally, the FCM fuzzy clustering algorithm is applied to 

achieve precise segmentation at the superpixel level. A series 

of experiments demonstrate that the proposed method 

significantly outperforms traditional algorithms in terms of 

segmentation accuracy, resource boundary recall, and real-

time algorithm performance. It also exhibits strong robustness 

and adaptability in different scenarios, including natural 

resource recognition, temporal dynamic monitoring, complex 

lighting conditions, and multi-resolution image adaptation. 

The research value of this method lies in overcoming the 

precision and efficiency bottlenecks of traditional methods in 

complex tourist environments. It provides technical support 

for the precise identification, dynamic tracking, and 

quantitative evaluation of resources such as vegetation, water 

bodies, and rocks in tourist attractions, which effectively 

supports the collaborative management of ecological 

protection and sustainable tourism development. 

Despite its excellent performance in multi-dimensional 

validation, the proposed method has certain limitations: First, 

there is a reduction in segmentation accuracy under extreme 

weather conditions, where image noise and feature ambiguity 

significantly impact algorithm performance. Second, the 

integration strategy for multi-modal data has not been fully 

explored, and the role of multi-source information in 

enhancing resource monitoring has not been maximized. Third, 
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the optimization for lightweight deployment of the algorithm 

on edge computing devices is insufficient, making it difficult 

to directly meet the lightweight requirements for large-scale, 

real-time monitoring of tourist attractions. Future research can 

advance in three areas: First, by introducing deep learning 

components to enhance feature robustness under extreme 

weather conditions, improving the algorithm's adaptability to 

harsh environments; second, by exploring multi-sensor data 

fusion frameworks, integrating infrared, 3D point cloud, and 

other data to enrich the dimensions and accuracy of resource 

monitoring; and third, by focusing on algorithm 

lightweighting and acceleration optimization for edge 

computing devices, promoting large-scale, real-time 

deployment of the technology in tourist attractions, and further 

expanding its application boundaries in smart tourism 

management and ecological dynamic monitoring. 
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