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The sustainable management of natural resources in tourist attractions is a core issue in the
collaborative development of ecological conservation and the tourism industry. Traditional
manual monitoring methods suffer from limitations such as restricted coverage and delayed
responses, making them unsuitable for large-scale, round-the-clock real-time monitoring
needs. Computer vision technology offers an efficient solution for this domain, but
challenges such as significant variations in lighting, unclear boundaries between resource
types, and strong heterogeneity in texture features make it difficult for conventional image
processing methods to achieve the segmentation accuracy and real-time performance
required for quantitative assessments. Existing research shows significant shortcomings in
key areas such as edge detection, feature extraction, and clustering segmentation: traditional
edge detection operators often produce broken or false edges, single-feature representations
struggle to address resource feature heterogeneity, manually set clustering parameters fail
to adapt to dynamic distributions, and pixel-level clustering faces computational
bottlenecks. To address these issues, this paper proposes an improved superpixel
segmentation method for real-time monitoring of natural resources in tourist attractions. The
specific research includes: 1) constructing a superpixel segmentation model to improve edge
extraction accuracy and noise resistance; 2) integrating multi-dimensional features,
normalizing and reducing their dimensions to build high-discriminative feature vectors; 3)
using the density peak algorithm to adaptively determine the number of clusters, avoiding
manual intervention; and 4) performing fuzzy C-means clustering on superpixels to optimize
segmentation in transitional areas and improve efficiency. The innovation of this method
lies in: 1) replacing traditional edge detection operators with structured edge detection to
solve robustness issues in complex scenes; 2) developing a multi-dimensional feature fusion
system to overcome the limitations of single-feature representation; 3) introducing an
adaptive clustering parameter mechanism to accommodate dynamic resource distribution;
and 4) combining superpixels with fuzzy C-means clustering to ensure segmentation
accuracy while meeting real-time demands. This method provides technical support for the
precise identification, dynamic monitoring, and quantitative evaluation of natural resources
in tourist attractions, contributing to the fine-grained management and sustainable
development of scenic areas.

1. INTRODUCTION

limited coverage, delayed response, and high labor costs,
making them unsuitable for large-scale, round-the-clock real-

With the rapid development of the global tourism industry
and the increasing awareness of ecological environmental
protection [1-3], the sustainable management of natural
resources in tourist attractions [4, 5] has become a key issue
that needs to be addressed. The natural resources in tourist
attractions, such as vegetation, water bodies, and rocks, are not
only core elements of the scenic ecosystem but also serve as
important landscape foundations that attract tourists. Changes
in their status directly affect the ecological safety and tourism
experience of the scenic area. However, traditional natural
resource monitoring methods [6-9], which rely on manual
inspections and fixed-point sampling, have limitations such as
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time monitoring needs of tourist attractions. Computer vision
technology [10, 11], with its advantages of non-contact
sensing and efficient data acquisition, provides a new technical
path for dynamic monitoring of natural resources. However,
its application in complex tourism scenarios still faces
challenges—issues such as significant lighting changes,
blurred boundaries between resource types, and strong
heterogeneity in texture features lead to difficulties in
achieving the segmentation accuracy and real-time
performance required for quantitative assessments using
traditional image processing methods. These challenges limit
the deep application of computer vision technology in the
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management of natural resources in tourist attractions.

Conducting research on the real-time monitoring and
assessment of natural resources in tourist attractions using
computer vision has significant theoretical and practical value.
In practical terms, this research enables the rapid identification
and dynamic tracking of ecological issues such as vegetation
degradation, water pollution, and rock weathering, providing
precise decision-making support for scenic area management
departments. This can help in formulating scientific ecological
protection strategies and tourism development plans,
achieving the collaborative development of ecological
protection and the tourism industry. In theoretical terms, this
research explores high-precision and robust image processing
methods tailored to the specificities of tourist scenarios,
enriching the application of computer vision technology in
ecological monitoring. It provides new research ideas for
cross-disciplinary technology integration and promotes the
transformation of natural resource monitoring technology
from traditional manual methods to intelligent and automated
models.

Although existing research has made some progress in
combining computer vision and natural resource monitoring,
there are still many flaws and deficiencies. Traditional edge
detection algorithms, such as the Sobel operator [12], rely
solely on color gradients to extract edge information, which
tends to generate broken edges and false edges when dealing
with complex textures and lighting changes in scenic areas,
resulting in a decline in subsequent segmentation accuracy. In
feature extraction, some studies only use single texture or
color features for resource type identification [13, 14], which
are insufficient to address the feature heterogeneity of natural
resources in scenic areas. For example, using only Local
Binary Pattern (LBP) features [15] cannot fully capture the
global texture differences between different vegetation types,
leading to high misclassification rates. In clustering and
segmentation, most methods rely on manually setting the
number of clusters [16, 17], which cannot adapt to the dynamic
changes in resource distribution in scenic areas. For example,
the K-means algorithm [18], with its hard -clustering
characteristics, struggles to handle the fuzzy features of
resource transition areas, while traditional fuzzy C-means
clustering algorithms [19, 20] directly operate on pixel-level
data, leading to low computational efficiency and failing to
meet real-time monitoring demands. These issues seriously
affect the application effectiveness of computer vision
technology in the natural resource monitoring of tourist
attractions, highlighting the urgent need to establish an image
processing method system that balances both accuracy and
efficiency.

This paper focuses on the core requirements of real-time
monitoring and assessment of natural resources in tourist
attractions and proposes an improved superpixel
segmentation-based computer vision processing method. The
core research content includes: first, replacing the traditional
Sobel operator with structured edge detection, combined with
multi-scale morphological gradient reconstruction watershed
transformation to generate high-precision, noise-resistant
superpixel images; second, integrating complementary texture
features of Gabor and LBP, multi-color space statistical
features, and spatial location features, normalizing and
performing  Principal Component Analysis (PCA)
dimensionality reduction to construct high-discriminative
feature vectors; third, using the density peak algorithm to
adaptively determine the number of clusters, avoiding manual
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intervention; and fourth, performing fuzzy C-means clustering
on superpixels to accurately process resource transition areas
and improve computational efficiency. The core value of this
research lies in the fact that through multi-technology
integration, it breaks through the accuracy bottleneck of
traditional methods. With adaptive parameter adjustment and
optimized computational units, it meets the large-scale real-
time monitoring demands, ultimately providing technical
support for the fine-grained management of natural resources
in scenic areas, promoting the coordinated advancement of
ecological protection and sustainable tourism development.

2. METHOD
2.1 Problem description and method overview

Real-time monitoring and assessment of natural resources
in tourist attractions is the core technical support for achieving
the coordinated advancement of ecological protection and
sustainable tourism development. The primary objective is to
use computer vision technology to accurately capture key
ecological indicators, such as dynamic vegetation cover,
changes in water body area, degree of rock weathering, and
pollutant distribution, and provide reliable pixel-level data
support for quantitative assessment. However, the complex
scene characteristics of tourist attractions pose multiple
technical challenges to image processing tasks: First, the
boundaries of natural resource types are highly ambiguous,
such as the transitional zone between vegetation and bare land,
and the interface between shallow water areas and tidal flats.
Traditional segmentation methods are prone to boundary
confusion, leading to insufficient resource classification
accuracy. Second, resource features are significantly affected
by environmental factors; lighting changes and seasonal
transitions can cause color feature drift, while the texture
heterogeneity of different resource types further complicates
feature differentiation. Third, the real-time monitoring scene
requirements impose dual constraints on algorithm
performance, as they need to process vast amounts of image
data generated by large-scale monitoring to meet timeliness
requirements, while also adapting to the dynamic changes in
resource distribution, avoiding inefficiencies and subjective
biases caused by manual parameter adjustments. Fourth, the
pixel assignment problem in transition areas directly affects
the accuracy of subsequent evaluation metric calculations, and
traditional hard segmentation methods are difficult to adapt to
such scenarios. The presence of these issues severely restricts
the practical application of computer vision technology in the
monitoring and assessment of natural resources in tourist
attractions, highlighting the urgent need to develop an image
processing method that combines high precision, high
efficiency, and strong adaptability.

To address the above research issues, this paper chooses a
superpixel segmentation method that integrates edge
enhancement, hybrid feature fusion, and adaptive clustering as
the core image processing technique. The rationality and
necessity of this method stem from its precise adaptation to the
research goals and the targeted utilization of its technical
advantages. From the precision assurance dimension, this
method enhances edges through the cooperation of a
structured edge detection algorithm and a watershed transform
algorithm based on multi-scale morphological gradient
reconstruction. It can effectively solve the problem of



ambiguous boundaries between different natural resource
types, providing an accurate spatial positioning foundation for
subsequent segmentation, avoiding resource classification
confusion caused by boundary errors, and directly supporting
the accurate calculation of assessment metrics such as
vegetation cover and water pollution extent. In terms of feature
representation, the design that integrates LBP and Gabor
texture features can fully capture the texture details of resource
types. Coupled with the deep integration of color features, it
can resist interference from environmental factors such as
lighting and seasonal changes in feature extraction,
significantly improving the differentiation of different
resource types in complex scenes. From the efficiency and
adaptability perspective, this method achieves high-precision
boundary extraction with a single superpixel segmentation,
greatly reducing computational complexity compared to
traditional multi-round segmentation methods, enabling the

Superpixel Segmentation

Input Image

fast processing of massive monitoring images, and meeting the
timeliness requirements for large-scale, round-the-clock real-
time monitoring in tourist attractions. The introduction of the
density peak algorithm allows for the automatic determination
of the number of clusters, effectively adapting to the dynamic
changes in resource distribution and regional differences in
tourist attractions, avoiding the efficiency bottlenecks and
subjective biases caused by manual parameter adjustments.
Furthermore, the soft segmentation nature of the fuzzy C-
means clustering algorithm can appropriately address the pixel
assignment issue in resource transition areas, further
compensating for the technical shortcomings of traditional
segmentation methods and providing high-quality data support
for subsequent quantitative assessment, ultimately achieving a
deep alignment between the technical solution and research
objectives.
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Figure 1. Core steps of the proposed method
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Figure 2. Flowchart of the core technical chain of the
proposed method
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The superpixel segmentation method for real-time
monitoring of natural resources in tourist attractions proposed
in this paper follows the technical chain of "preprocessing-
feature optimization-parameter adaptation-precise
segmentation." Figure 1 shows the schematic diagram of the
core steps of this method. In the preprocessing stage, the
structured edge detection algorithm and the watershed
transform algorithm based on multi-scale morphological
gradient reconstruction are used in coordination to enhance
image edge information: the structured edge detection
algorithm enhances the edge response of different resource
types, highlighting key boundaries; the watershed transform
algorithm based on multi-scale morphological gradient
reconstruction suppresses environmental noise while retaining
resource texture details, generating preprocessed images with
clear edge contours and strong anti-interference capability. In
the feature optimization stage, multi-dimensional feature
vectors are constructed: by integrating the local detail
description ability of LBP texture features with the multi-scale,
multi-directional representation advantages of Gabor texture
features, a mixed texture feature set is formed, while color
features are also integrated to characterize different resource
types. In the parameter adaptation stage, the density peak
algorithm is introduced to automatically identify the density
peak points in the feature space to determine the optimal
number of clusters, adapting to the resource distribution
characteristics of different monitoring areas. In the precise
segmentation stage, based on the optimized multi-dimensional
feature vectors and the adaptive clustering parameters, the
fuzzy C-means clustering algorithm is used to perform the
superpixel segmentation operation, using its soft segmentation
feature to handle the pixel assignment problem in resource
transition areas, and obtaining precise segmentation results
with accurate boundaries through a single segmentation.
Figure 2 shows the flowchart of the core technical chain of this



method.
2.2 Superpixel segmentation

The proposed superpixel segmentation method for real-time
monitoring of natural resources in tourist attractions focuses
on improving edge extraction accuracy. By integrating
structured edge detection with multi-scale morphological
gradient reconstruction-based watershed transform, it
addresses the problem of blurred edges and poor noise
resistance in traditional segmentation methods for complex
tourist scenes, laying the foundation for subsequent precise
segmentation of natural resource types. This stage directly
serves the research goal of real-time monitoring and
assessment of natural resources in tourist attractions, namely,
to accurately capture the boundary information of resources
such as vegetation, water bodies, and rocks, supporting the
quantitative analysis of key metrics such as resource
distribution and dynamic changes.

The core improvement of the superpixel segmentation stage
lies in the optimization of the edge extraction method. The
traditional multi-scale morphological gradient reconstruction-
based watershed transform algorithm relies on the Sobel
operator to generate edge images. However, the Sobel operator
only identifies edges by calculating color gradient magnitude,
which has significant limitations in complex tourist scenes: for
example, visual prominent edges such as texture boundaries
formed by overlapping leaves in dense vegetation, light and
dark alternating areas caused by light reflection on water
bodies, and fine contours formed by rock weathering, often
have weak correlations with color gradients, causing edges
extracted by the Sobel operator to be broken, false, or
mislocated. These problems directly affect the segmentation
results of the watershed transform based on multi-scale
morphological gradient  reconstruction, potentially
misclassifying adjacent vegetation and bare land areas as the
same category or incorrectly segmenting reflective areas of
water bodies as independent regions, ultimately interfering
with the accuracy of natural resource status assessment.
Therefore, the introduction of structured edge detection
algorithms to replace the Sobel operator becomes the key

improvement direction for enhancing edge extraction accuracy.

The reason why structured edge detection algorithms are
suitable for edge extraction of natural resources in tourist
attractions lies in their deep ability to mine "structured
features." This algorithm computes based on the intrinsic
structural information of local image blocks, using a structured
learning framework combined with a random decision forest,
specifically designed to solve the problem of predicting local
edge masks. In tourist scenes, the edges of natural resources
often have significant local correlations. For example, the
edges between water bodies and shorelines maintain consistent
directions in continuous image blocks, and the boundaries of
vegetation communities show continuous transitional trends in
adjacent pixels. By learning these associations, structured edge
detection can break through the limitations of a single-color
gradient, capturing "real edges" that align more closely with
human visual perception, especially suitable for handling the
edge extraction challenges caused by complex textures,
lighting changes, and noise interference in tourist attractions.

The computational mechanism of structured edge detection
achieves precise encoding and selection of edge features
through two key steps: "intermediate mapping" and
"information gain selection," which are highly adaptable to the
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edge characteristics of natural resources in tourist attractions.
In the intermediate mapping stage, the algorithm maps the
edge labels of the output space Y to a high-dimensional space
Z and approximates the dissimilarity of the labels by
calculating the Euclidean distance in Z. For example, for a
16x16 image block, binary vector encoding is used to
represent whether pixel pairs belong to the same resource
region, such as "vegetation-vegetation" or "vegetation-bare
land," thus precisely capturing edge details in small areas, such
as the boundary between coniferous and broad-leaved forests.
The specific mapping formula is:

Im:y -z (D)

Considering the computational cost of high-dimensional
space, the algorithm simplifies the mapping and uses PCA
dimensionality reduction to retain distance approximation
while removing noise, addressing interference issues caused
by camera noise and atmospheric scattering in tourism
monitoring images.

In the information gain selection stage, structured edge
detection maps the high-dimensional space labels to a discrete
set, ensuring global consistency of edge features. The
algorithm uses K-means clustering or PCA quantization for
mapping, allowing similar edge features to be assigned the
same discrete label, and then selects the most discriminative
features using Shannon entropy or Gini impurity. This process
is independently performed for each decision tree node and
can adapt to the resource distribution characteristics of
different regions. For example, in the water area, the algorithm
prioritizes learning "smooth continuous edge" features to
distinguish shorelines; in the vegetation area, it focuses on
"texture gradient edge" features to identify community
boundaries. This adaptive capability allows the algorithm to
simultaneously handle diverse edge types in tourist attractions,
with the output edge images retaining fine textures while
maintaining global continuity.

Finally, the high-precision edge images generated by
structured edge detection are input into the watershed
transform algorithm based on multi-scale morphological
gradient reconstruction, forming an improved superpixel
segmentation process. Compared with traditional methods, the
superpixel boundaries output by this method are more aligned
with the actual distribution of natural resources. For example,
in lake monitoring, it accurately segments the fuzzy transition
zone between water bodies and shoreline vegetation; in forest
monitoring, it clearly distinguishes the boundaries of different
tree species communities. This precise superpixel
segmentation provides reliable spatial units for subsequent
feature extraction and clustering analysis, directly supporting
the real-time monitoring and quantitative assessment of
natural resources in tourist attractions and achieving a deep
coupling of technological improvements and research goals.

2.3 Color and texture feature extraction and fusion

In the color and texture feature extraction and fusion stage,
this paper adopts a strategy combining Gabor texture features
and LBP texture features to fully capture texture information
at different scales and details, laying the foundation for
accurate differentiation of resource types. Natural resources in
tourist attractions, such as coniferous forests, broad-leaved
forests, calm water bodies, turbulent water, and weathered
rocks, have significant texture differences. The global texture



of vegetation communities exhibits regular distribution, while
local details such as overlapping leaves and rock cracks form
fine textures. Additionally, lighting changes, seasonal
transitions, and other factors easily lead to dynamic
fluctuations in texture features. Gabor filters, with their
excellent ability to select directions and scales, can effectively
capture global texture information at different directions and
scales and have strong robustness to lighting changes and
slight image rotation deformations, making them highly
adaptable to dynamic texture changes such as water reflections
and vegetation swaying in the wind in tourism scenes.
Specifically, assume that the input image is represented by d(a,
b), where L is the L channel in the Lab color space. The scale
and direction of the Gabor filter are represented by u and ¢,
and the Gabor filter is denoted by 4. The expression formula
for Gabor texture features is:

D(a,b,¢,11)=d(a,b)* h(a,b,¢, 1) )

Assume the normalization factor is represented by X, and
the Gabor filter definition formula is:

h(a,b,g,u)= Xexp(-a?/ 57 —b2 1 52)COS(1a')
a' =aCO0Sg +bSINg
b = aSINg —bCOSs

3)

To further optimize the quality of Gabor features, the
algorithm smooths its amplitude information using a Gaussian
low-pass filter, reducing interference caused by local texture
fluctuations, and uses the PCA algorithm to reduce the 16-
dimensional feature map to a 1-dimensional vector to improve
computational efficiency, ensuring the performance
requirements of real-time monitoring.

LBP features focus on the extraction of local texture details.
Their high sensitivity to subtle texture changes and scale
invariance perfectly compensates for Gabor features'
limitations in characterizing local details. For example, when
distinguishing between different tree species in vegetation
areas, LBP features can precisely capture the local differences
in leaf arrangement, while Gabor features characterize the
global texture distribution pattern of vegetation communities.
The complementary combination of both effectively reduces
the misclassification rate of single features in complex tourism
scenes, providing a comprehensive texture representation
foundation for subsequent accurate clustering of resource
types.

To overcome the interference of lighting, seasonal, and
other factors on color features in tourism scenes, the algorithm
selects three color spaces—RGB, HSV, and Lab—and extracts
the first-order and second-order moments of each color
component as color features to provide comprehensive and
robust representation of natural resource color information.
Different color spaces have varying sensitivities to
environmental changes: RGB space reflects raw color
information, HSV space better aligns with human color
perception, and Lab space has good color separation
characteristics, which can effectively resist color drift caused
by lighting changes. For example, in vegetation monitoring
during winter and summer, color features in the Lab space can
more stably reflect changes in vegetation growth; in water
body monitoring, the saturation component in the HSV space
can accurately distinguish between clean and polluted water.
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At the same time, the algorithm incorporates spatial location
features, fully considering the spatial distribution patterns of
natural resources in tourist attractions, such as water bodies
being concentrated in low-lying areas and vegetation being
distributed on hillsides or plains. By using spatial location
information to assist in distinguishing resources of similar
color and texture features but different types, the
discriminative ability of features is further enhanced.

To achieve effective integration of multi-dimensional
features, the algorithm uses feature concatenation to combine
color features, texture features, and spatial location features
into high-dimensional feature vectors. These vectors are then
normalized using Z-score normalization to eliminate
dimensional differences between features, avoiding feature
weight imbalance caused by differences in value ranges.
Considering the computational efficiency requirements of
real-time monitoring and the potential redundancy in high-
dimensional features, the algorithm uses PCA to reduce the
dimensionality of the fused feature vector. This reduces data
dimensions and the computational complexity of subsequent
clustering tasks while retaining key discriminative information,
ensuring that the algorithm can quickly process massive
monitoring images of large-scale tourist attractions.

The feature vectors optimized through the above process
comprehensively integrate the color, texture, and spatial
attributes of the superpixel blocks, enabling precise
characterization of different types of natural resources and
providing high-quality input for the automatic determination
of the number of clusters and fuzzy C-means clustering
segmentation.

2.4 Determination of the number of clusters

In the clustering number determination stage, this paper
introduces the density peak algorithm. The core objective is to
address the dynamic heterogeneity of natural resource
distribution in tourist sites, achieving precise matching
between the number of clusters and actual resource types,
avoiding subjective biases and efficiency bottlenecks caused
by manual setting of clustering parameters, and providing a
scientific parameter basis for subsequent fuzzy C-means
clustering segmentation. The natural resource types in tourist
attractions are complex and subject to dynamic changes in
distribution: on the one hand, there are significant differences
in resource combinations across different regions, such as
mountainous areas dominated by vegetation and rocks, and
waterfront areas dominated by water bodies and wetlands; on
the other hand, seasonal changes and environmental factors
cause dynamic adjustments to resource type boundaries and
distribution ranges, such as the expansion of vegetation in
summer and the change in the area of frozen water bodies in
winter. Manually setting the number of clusters is difficult to
adapt to these dynamic changes. If the number of clusters is
too few, different resource types will be misclassified as the
same category, affecting the accuracy of evaluation indicators.
If the number of clusters is too many, excessive segmentation
will occur, increasing computational costs and interfering with
the effective identification of resource types, which cannot
meet the real-time monitoring requirements. The Density Peak
Algorithm, driven by data, automatically uncovers the
distribution pattern of superpixel features, which is well-suited
to the core demands of the tourism scene.

The Density Peak Algorithm determines the number of
clusters automatically by calculating two key indicators: local



density 3, and minimum distance a,. For each superpixel block,
the local density 3, is calculated based on the Euclidean
distance f.x between superpixels and truncation distance f,
reflecting the density of similar superpixels around that
superpixel. Specifically, assuming the number of the k-th
superpixel area is represented by 7%, and the total number of
superpixels by V, the calculation formula is:

Vv
9, = ZTkexp(— f2/ fz)

k=1k=u

“4)

In the tourism scene, superpixels of the same resource type
typically have similar features and small Euclidean distances,
resulting in higher local densities, while superpixels of
different resource types show significant feature differences
and larger Euclidean distances, resulting in lower local
densities.

The minimum distance o, is defined as the minimum
Euclidean distance between the superpixel and all higher-
density superpixels, used to distinguish the core areas of
different resource types. The specific calculation formula is:

o, = MIN(fuk)

k:9>8, (5)

In practice, the core superpixels in water body regions, due
to their strong feature specificity, will have a significantly
larger distance from other high-density superpixels than other
regions. For the superpixels with the highest density, the
algorithm defines their minimum distance o, separately to
ensure the accurate identification of core resource types. For
the superpixel region with the highest density, f.xis defined as:

2 28

oeE, Tk ocE,

1

T

u

1

f (6)

uk

The decision graph of superpixels is derived from &, and o,

0, =38,0, (7)

After constructing the decision graph based on 9, and oy, the
algorithm analyzes the distribution characteristics of points in
the graph to identify the density peak points. Each peak point
corresponds to a core cluster of a natural resource type,
automatically determining the optimal number of clusters. For
example, in a tourist scene containing water bodies, coniferous
forests, broad-leaved forests, and bare land, the decision graph
will form four distinct density peak points corresponding to
four core resource types. This data-driven automatic decision-
making mechanism not only avoids the cumbersome process
of manual parameter adjustment but also adapts to the resource
distribution characteristics of different tourism scenes,
ensuring that the number of clusters aligns closely with the
actual resource types. Ultimately, this stage provides precise
parameter input for the subsequent fuzzy C-means clustering,
ensuring the accuracy of segmentation results.

2.5 Superpixel-based fuzzy C-means clustering

The core objective of this stage is to use the soft clustering
properties of the fuzzy C-means algorithm to precisely handle
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the boundary transition problems of natural resource types in
tourist attractions and achieve efficient clustering and
segmentation at the superpixel level, providing reliable
category division results for subsequent real-time monitoring
and quantitative evaluation of resource conditions. The natural
resource distribution in tourist attractions generally exhibits
significant transition characteristics: for example, the gradient
zone between vegetation and bare land, the boundary between
shallow water areas and tidal flats, and the mixed areas of
different vegetation communities. The pixel features of these
regions are fuzzy, and traditional hard clustering algorithms
force each pixel to be assigned to a single category, which
often leads to distorted boundary segmentation and affects the
accuracy of resource area calculation, type identification, and
other evaluation indicators. The fuzzy C-means clustering
algorithm, by introducing the concept of membership degree,
allows each superpixel to belong to multiple clustering
categories simultaneously and quantifies its degree of
membership. This is well-suited for the feature fuzziness of
natural resource transition areas, allowing for a more realistic
reflection of the spatial distribution patterns of resource types.
Additionally, its stronger hierarchy and stability compared to
hard clustering further ensure the reliability of segmentation
results in complex tourism scenes.

The core logic of this stage revolves around the
optimization of the objective function of the fuzzy C-means
clustering algorithm. The objective function minimizes the
weighted sum of squared distances between superpixel
features and clustering centers, achieving optimal category
division, with parameter designs highly compatible with the
characteristics of natural resources in tourist attractions. The
specific objective function expression is:

2

Tizao —Z

k oeEy

v __J
K =YD T ®)
k=

1 s=1

In the objective function, the membership matrix i
quantifies the degree of membership of the k-th superpixel to
the s-th resource category. For example, superpixels in the
transition zone between vegetation and bare land will have
membership degrees to both the "vegetation" class and the
"bare land" class between 0 and 1, with their sum satisfying
the fuzzy set constraint. The clustering center z, represents the
core feature vector of a certain natural resource category,
integrating the color, texture, and spatial location features of
that resource. The fuzziness factor / is usually set to 2,
balancing the fuzziness and distinguishability of the clustering,
avoiding category confusion due to excessive fuzziness, and
reserving reasonable space for the feature expression of
transition areas. In addition, the objective function introduces
the number of pixels 7 in the superpixel area as a weight, so
that larger resource areas occupy more important weight in the
clustering optimization, aligning with the dominant position of
dominant resource types in tourist attractions, and ensuring
that the clustering results accurately reflect the spatial
proportion relationships of resources.

Superpixel-based fuzzy C-means clustering achieves
convergence of clustering results through a systematic
iterative optimization process. At the same time, relying on the
preprocessing advantages of superpixels, it meets the
efficiency requirements of real-time monitoring in tourism
scenes. Its iterative process follows the logic of "initialization-



update-convergence judgment": first, the membership matrix
is randomly initialized, combining the number of clusters £,
which is automatically determined by the density peak
algorithm in the previous section (i.e., the actual number of
core resource types in the tourist attraction), to provide initial
parameters for the iteration; then, using the analytical solution
derived from the Lagrange multiplier method, the clustering
center and membership matrix are alternately updated. The
optimization problem is transformed using the Lagrange
multiplier #, as follows:

2
LA S 1
KI = ZZTKIIIG T_ Z a, |—Z
k=1 s=1 k oeEy (9)
i
-n Ziks -1
k=1

Furthermore, partial differential equations of K;with respect
to z, and i are calculated as follows:

2
ot i, a, |—zs
8K, v j Okl koezEk
aIks ;Szl: alks 77
, (10)
v
Symitt L va |- -y
k=1 s=1 kOEEk
=0
1 2
oTi Il =Y a |-z
% ii k "ks TkerE:k 0 S
0z, 13 0z,
2
1
, kT 0 ch;kao ~z,
2§Z§k“ oz, (11)
2
1
, 0 _l_k;ao -z,
kZ kks 625
Y. 1
=-2) Tiull =D a, |-z]/=0
k=1 Tk oeEy

By integrating the above equations, the corresponding
solutions for z; and i are:

ZlkSZa

=1  oeEy

Zg =y (12)

ZTkiIis
k=1
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-2/(1-1)

Za ~7,

k oeEy

Za ~z,

k ok,

(13)

—2/(1-1)

>

s=1

The updating of clustering centers makes the core features
of each category more aligned with the actual resource types,
while the updating of the membership matrix dynamically
adjusts the degree of membership of superpixels to categories.
This is particularly important for addressing feature
fluctuations caused by lighting changes and seasonal
transitions, and the iterative process can adaptively adjust
parameters to maintain segmentation accuracy. Finally, the
convergence condition is used to determine whether the
iteration should stop, ensuring the stability of segmentation
results and avoiding classification bias caused by insufficient
iteration. The convergence condition expression is:

MAX{I ) — 10 3 (14)

3. EXPERIMENTS

To verify the adaptability of the proposed superpixel
segmentation method to different natural resource scenes in
tourist attractions, typical images containing vegetation, water
bodies, and mountains were selected for the superpixel
segmentation effect experiment. As shown in Figure 3, in
Example 1, the left side presents a scene of a tourist attraction
with golden fallen leaves and trees, while the right side shows
the segmentation result, where different colored regions
clearly distinguish trees, fallen leaf pathways, and pedestrians,
demonstrating the algorithm's ability to precisely capture the
texture and color differences in vegetation areas, achieving
fine segmentation of vegetation-type resources. In Example 2,
the left side depicts a tourist attraction scene combining
mountains, water bodies, and vegetation. In the right-side
segmentation result, blue areas distinguish different parts of
the water body, green areas distinguish vegetation, gray-white
areas distinguish mountains, and red boundaries precisely
outline the contours of each resource type, showcasing the
algorithm’s boundary recognition and type distinction
capabilities for multiple natural resources such as water bodies,
vegetation, and mountains. In conclusion, the experimental
results indicate that the proposed superpixel segmentation
method can accurately adapt to typical scenes in tourist
attractions, such as densely vegetated areas and mountain-
water integrated areas, achieving clear segmentation of
different natural resource types through effective integration
of color and texture features, thus providing a reliable
superpixel unit basis for subsequent real-time monitoring and
quantitative evaluation of natural resources.

(b) Example 2

(a) Example 1

Figure 3. Image superpixel segmentation examples



Superpixel clustering density

73

|
100 125

Superpixel spatial distribution

|
30 150

(a) Original monitoring image superpixel segmentation

|
175 200

Superpixel spatial distribution

[y
=]
=

] Lh -]
L = L

=1

75 | | | | | 1
25 30 73 100 125 150 175

Superpixel spatial distribution

(b) Optimized superpixel segmentation using the proposed
method

200

Figure 4. Comparison of natural resource superpixel segmentation effects in tourist attractions

Table 1. Recognition accuracy for different natural resource types

Natural Resource Type Accuracy, % Precision, % Recall, % F1-Score, % IoU, %
Coniferous Forest 98.2 97.8 98.5 98.1 96.4
Broad-leaved Forest 97.9 97.5 98.3 97.9 95.9
Shrubland 96.5 95.8 97.2 96.5 93.2
Lake 99.1 98.9 99.3 99.1 98.2
Stream 98.5 98.3 98.7 98.5 97.1
Exposed Rocks 95.8 95.2 96.4 95.8 92.1
Bare Land 96.2 95.6 96.8 96.2 92.7
Artificial Landscape 99.3 99.0 99.5 99.2 98.5
Average Metrics 97.6 97.1 98.1 97.6 95.3

To visually validate the optimization effect of the proposed
improved superpixel segmentation method on the boundaries
of natural resources and cluster distribution in tourist
attractions, a comparison experiment was conducted between
the original monitoring image and the optimized segmentation
results using the proposed method. As shown in Figure 4(a)
represents the superpixel segmentation results of the original
monitoring image, where the superpixel clustering density
distribution is relatively scattered, indicating that without edge
enhancement and noise suppression, the superpixels’
boundary delineation of natural resources such as vegetation
and water bodies is blurred, and clustering is severely affected
by environmental noise, making it difficult to accurately fit the
actual spatial form of resources. On the other hand, (b) shows
the segmentation results after optimization by the proposed
SE-MMGR-WT algorithm, where superpixel clusters are
more concentrated, and boundary distinction is much higher.
This is because the structured edge detection enhanced the
edge responses of different resource types, and the watershed
transformation based on multi-scale morphological gradient
reconstruction effectively suppressed environmental noise in
the monitoring images while preserving resource texture
details, enabling the superpixel segmentation to more
accurately match the spatial distribution characteristics of
natural resources in tourist attractions. In conclusion, the
experimental results intuitively prove the significant
advantages of the proposed improved superpixel segmentation
method in enhancing resource boundary delineation and
optimizing clustering accuracy, providing a high-quality
spatial unit foundation for subsequent feature extraction and
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clustering analysis based on superpixels.

To verify the algorithm’s precise recognition capability for
different natural resource types in tourist attractions, a multi-
category resource recognition accuracy experiment was
conducted, selecting eight typical targets from tourist
attractions and performing quantitative analysis using five
core classification evaluation metrics. The experimental
results shown in Table 1 reveal that the algorithm achieves an
average recognition accuracy of 97.6%, an average F1-score
of 97.6%, and an average IoU of 95.3%. Among these, the
recognition metrics for water resources such as lakes, streams,
and artificial landscapes are the highest, benefiting from the
fusion of multi-color space features and texture features that
effectively capture the color stability of water bodies and the
contour regularity of artificial landscapes. The recognition
accuracy for primary vegetation types such as coniferous and
broad-leaved forests exceeds 97.9%, demonstrating the
algorithm’s ability to precisely capture texture differences
between different vegetation types through the complementary
use of Gabor and LBP texture features. The recognition
metrics for exposed rocks and bare land are relatively lower
but still exceed 95.8%, primarily due to slight confusion
between the textures and color features of weathered rocks and
bare land in certain areas, though the algorithm still meets the
precise recognition requirements. In conclusion, the
experimental results demonstrate that the proposed algorithm
effectively distinguishes various natural resources and
interference targets in tourist attractions, providing a reliable
foundation for subsequent quantitative assessment and
detailed management of natural resources.



To verify the algorithm’s ability to capture the temporal
dynamic changes of natural resources in tourist attractions,
continuous monitoring for one year was conducted in the same
monitoring area, focusing on the core dynamic indicators of
vegetation, water bodies, and bare land, as well as the growth
trend of shrubland. The experimental results shown in Table 2
reveal that the algorithm can accurately track the seasonal
change patterns of natural resources: vegetation coverage
remains above 89% in summer, with an NDVI value of 0.88-
0.90, reaching the annual peak, while the water body area
increases to 2200-2350 m? due to rainfall, although the water
transparency slightly decreases due to algae growth. In winter,
vegetation coverage drops to 58.2%, the NDVI value is 0.55,
and the water body area decreases to 1600 m? due to drought,

while the water transparency increases to 0.92 due to reduced
algae under low temperatures. The proportion of bare land
exhibits an inverse change pattern, being higher in winter and
lower in summer. For the short-term dynamics of shrubland,
the algorithm accurately captures the rapid growth period in
summer with a monthly growth rate of 8.2%, and the slow
decline period in autumn and winter. In conclusion, the
experimental results indicate that the proposed algorithm can
accurately monitor the temporal changes of natural resources
in tourist attractions, effectively extracting core dynamic
indicators such as vegetation growth status, water body area,
and quality, providing data support for ecological evolution
analysis and seasonal protection strategy formulation, fully
meeting the goals of real-time monitoring and evaluation.

Table 2. Dynamic monitoring experiment results across time dimensions

Monitoring Vegetation Water Vegetation TranWsa:l?;:nc Bare Land  Shrubland Growth Rate
Time Coverage (%) Area (m?) NDVI Value Inlt)lex y Area (%) (Monthly, %)
Spring

(March) 62.5 1850 0.62 0.85 15.2 -0.5
Summer (June) 89.3 2200 0.88 0.72 4.8 8.2
Summer (July) 90.1 2350 0.90 0.68 4.2 1.1
Summer 89.7 2280 0.89 0.70 45 03
(August)
Autumn
(October) 754 1920 0.75 0.80 9.6 -4.3
Winter
(December) 58.2 1600 0.55 0.92 18.5 2.1
Table 3. Robustness experiment results under different lighting conditions
Lighting Condition DICE Coefficient (%) Boundary Recall Rate (%) Runtime (s)
Sunny Strong Light 92.5 89.8 0.18
Cloudy Weak Light 93.2 90.5 0.16
Backlight (Water/Veg) 91.8 88.6 0.20
Shadow Occlusion (Under Trees) 92.1 89.2 0.17
Average Level 92.4 89.5 0.18
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Figure 5. Performance comparison of the proposed algorithm
with comparison algorithms in the natural resource
segmentation task of tourist attractions

To verify the performance advantages of the proposed
method in the natural resource segmentation task of tourist
attractions, a comparison experiment was conducted with
SLIC, traditional watershed, and Canny+K-means algorithms
across a superpixel count range from 100 to 1000. The
experiment was analyzed from the perspectives of
segmentation accuracy, resource boundary recall rate, and
runtime. As shown in Figure 5, in terms of superpixel
segmentation accuracy, the proposed algorithm performs the



best across all superpixel counts, achieving a value of 0.933
when the superpixel count is 1000, significantly higher than
SLIC's 0.916, traditional watershed's 0.932, and Canny+K-
means's 0.916. This indicates that the collaborative effect of
structured edge detection and multi-scale morphological
gradient reconstruction enables the algorithm to more
accurately distinguish different natural resource types, such as
vegetation, water bodies, and bare land, in tourist attractions.
In terms of resource boundary recall rate, the proposed
algorithm reaches 0.88 when the superpixel count is 1000,
outperforming SLIC's 0.885, traditional watershed's 0.83, and
Canny+K-means's 0.86, proving its strong robustness in
capturing boundaries of vegetation and shorelines, and water
bodies and tidal flats. Regarding runtime, the proposed
algorithm achieves a runtime of only 0.15s at 1000 superpixels,
much lower than SLIC's 0.21s, traditional watershed's 0.295s,
and Canny+K-means's 0.25s. This is due to the efficient
integration of superpixel preprocessing and FCM clustering,
meeting the timeliness requirements for real-time monitoring
of tourist attractions. In conclusion, the experimental results
fully validate the technical advantages of the proposed
superpixel segmentation method in the real-time monitoring
and evaluation of natural resources in tourist attractions, in
terms of segmentation accuracy, boundary fitting, and
computational efficiency.

To verify the robustness of the proposed algorithm in
complex lighting environments at tourist attractions,
experiments were conducted under four typical lighting
conditions: sunny strong light, cloudy weak light, backlight,
and shadow occlusion. The experiments analyzed
segmentation accuracy, boundary fitting, and runtime
efficiency. The results in Table 3 show that the proposed
algorithm achieves an average DICE coefficient of 92.4%, an
average boundary recall rate of 89.5%, and stable runtime
between 0.16s and 0.20s, demonstrating strong robustness.
Among these, the cloudy weak light scenario yields the best
results with a DICE of 93.2% and boundary recall rate of
90.5%, as the multi-color space features effectively counteract
interference from varying light intensities. The backlight
scenario shows a slight decrease in performance with a DICE
of 91.8% and a boundary recall rate of 88.6%, but it still
maintains a high level, reflecting the compensatory role of
Gabor texture features in addressing color distortion. In sunny
strong light and shadow occlusion scenarios, the performance
remains stable, proving the algorithm's good adaptability to
local contrast changes caused by strong light and shadow. In
conclusion, the experiments show that the proposed algorithm
works reliably under various lighting conditions at tourist
attractions, meeting the lighting robustness requirements for
all-weather real-time monitoring.

Table 4. Adaptability experiment results with multi-resolution images

Image Resolution DICE Coefficient (%) Runtime (s) Memory Usage (MB) Superpixel Segmentation Time Proportion (%)
720P 91.5 0.12 128 35
1080P 932 0.25 256 40
4K 94.8 0.55 512 45
To validate the adaptability of the proposed algorithm to optimizes superpixel segmentation accuracy through

various monitoring devices with different resolutions,
experiments were conducted with three mainstream
resolutions: 720P, 1080P, and 4K. The experiment evaluated
segmentation accuracy, runtime efficiency, and resource
consumption. As shown in Table 4, with the increase in
resolution, the DICE coefficient of the proposed algorithm
improves from 91.5% at 720P to 94.8% at 4K, reflecting the
gain in segmentation accuracy due to higher resolution
providing more detailed information. Both runtime and
memory usage increase linearly, with 720P taking 0.12s and
128MB, while 4K takes 0.55s and 512MB. However, the
proportion of time spent on superpixel segmentation increases
from 35% to 45%, indicating that the algorithm maintains an
efficient computational structure even at high resolutions. At
720P, the algorithm already meets basic monitoring
requirements, while 1080P and 4K offer more detailed
resource characterization. In conclusion, the experiments
demonstrate that the proposed algorithm is adaptable to a wide
range of monitoring devices in tourist attractions, from
standard to  high-definition = equipment, balancing
segmentation accuracy with reasonable computational
resource consumption, thus providing flexibility for device
selection and deployment in different scenarios.

4. CONCLUSION

This paper focuses on the core requirements of real-time
monitoring and evaluation of natural resources in tourist
attractions and proposes a computer vision processing method
based on improved superpixel segmentation. The method
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structured edge detection and multi-scale morphological
gradient reconstruction watershed transformation. It integrates
Gabor and LBP complementary texture features, multi-color
space statistical features, and spatial position features to
construct high-discrimination vectors, and uses the density
peak algorithm to adaptively determine the number of clusters.
Finally, the FCM fuzzy clustering algorithm is applied to
achieve precise segmentation at the superpixel level. A series
of experiments demonstrate that the proposed method
significantly outperforms traditional algorithms in terms of
segmentation accuracy, resource boundary recall, and real-
time algorithm performance. It also exhibits strong robustness
and adaptability in different scenarios, including natural
resource recognition, temporal dynamic monitoring, complex
lighting conditions, and multi-resolution image adaptation.
The research value of this method lies in overcoming the
precision and efficiency bottlenecks of traditional methods in
complex tourist environments. It provides technical support
for the precise identification, dynamic tracking, and
quantitative evaluation of resources such as vegetation, water
bodies, and rocks in tourist attractions, which effectively
supports the collaborative management of ecological
protection and sustainable tourism development.

Despite its excellent performance in multi-dimensional
validation, the proposed method has certain limitations: First,
there is a reduction in segmentation accuracy under extreme
weather conditions, where image noise and feature ambiguity
significantly impact algorithm performance. Second, the
integration strategy for multi-modal data has not been fully
explored, and the role of multi-source information in
enhancing resource monitoring has not been maximized. Third,



the optimization for lightweight deployment of the algorithm
on edge computing devices is insufficient, making it difficult
to directly meet the lightweight requirements for large-scale,
real-time monitoring of tourist attractions. Future research can
advance in three areas: First, by introducing deep learning
components to enhance feature robustness under extreme
weather conditions, improving the algorithm's adaptability to
harsh environments; second, by exploring multi-sensor data
fusion frameworks, integrating infrared, 3D point cloud, and
other data to enrich the dimensions and accuracy of resource
monitoring; and third, by focusing on algorithm
lightweighting and acceleration optimization for edge
computing devices, promoting large-scale, real-time
deployment of the technology in tourist attractions, and further
expanding its application boundaries in smart tourism
management and ecological dynamic monitoring.
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