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In response to the increasing frequency of natural disasters and public safety incidents,
traditional field-based drills face significant challenges in terms of cost, safety, and scene
diversity. Virtual simulation technology, however, provides a revolutionary approach for
efficient, low-risk disaster drills. Nevertheless, constructing a high-fidelity, interactive
virtual training environment and realizing physically credible dynamic disaster responses
remain core challenges in this field. Current research in environmental modeling, such as
methods like Neural Radiance Fields (NeRF), suffers from slow training and difficulties in
integrating physical semantics, while high-fidelity disaster simulations incur enormous
computational costs, with simplified models sacrificing realism. To address these issues, this
paper focuses on two core areas: “image-driven modeling” and “dynamic response
mechanisms.” (1) In environmental simulation modeling, this paper innovatively optimizes
and applies three-dimensional Gaussian Splatting (3DGS) techniques, enabling rapid
reconstruction of geometrically accurate, visually rich, and semantically informed digital
twins of scenes from multi-view images via hierarchical spatial partitioning and semantic
injection. (2) In dynamic response, a hybrid framework combining physical simulation and
Al acceleration is proposed, where graph neural network (GNN)-based proxy models are
trained to simulate the physical evolution of disasters such as fires and floods in real time.
These models are deeply coupled with particle systems and physics engines in game engines
to achieve intelligent, real-time interaction between disasters, environments, and trainee
behaviors. The main contributions of this paper are: (1) the introduction of a complete virtual
disaster drill technology system that integrates improved 3DGS with Al-accelerated
physical simulation, achieving a closed-loop from real-world perception to virtual-world
interaction; (2) the introduction of enhanced appearance and geometric priors in
environmental modeling, significantly improving the physical consistency and semantic
completeness of reconstructed models; and (3) the development of a real-time disaster
simulator based on Al proxy models, which breaks computational bottlenecks and enables
immersive, interactive drills at large-scale scenes while ensuring physical credibility.

1. INTRODUCTION

automatically construct high-fidelity simulation environments
from the real world and achieve physically accurate dynamic

With the accelerating global climate change [1-3] and
urbanization processes [4, 5], extreme natural disasters [6] and
sudden public safety incidents [7] have become frequent,
posing a severe challenge to human society. Traditional field-
based disaster drills have many limitations, such as high costs,
uncontrollable risks, and limited and hard-to-replicate
scenarios [8, 9], making it difficult to meet the demand for
regular, large-scale, and precise training in modern emergency
management systems. Against this background, the virtual
simulation-based drill model has emerged, providing a safe,
controllable, and repeatable advanced platform for emergency
command decision-making, rescue skills training, and public
safety education by constructing highly realistic virtual
disaster environments [10-12]. However, how to quickly and
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disaster evolution and intelligent responses within these
environments remains a key technical bottleneck that needs to
be overcome in the field of virtual drills.

The research on image-driven environmental simulation
and dynamic response for virtual disaster drills has important
theoretical value and broad application prospects. At the
technical level, it deeply integrates cutting-edge fields such as
computer vision [13], computer graphics [14], physical
simulation [15], and AI [16], promoting the leapfrog
development of intelligent simulation technology. At the
application level, an efficient and realistic virtual drill system
can significantly enhance training effectiveness, allowing
trainees to master emergency response processes in a highly
immersive experience, while providing a scientific “digital
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sandbox” for evaluating and optimizing emergency plans. This
can assist in formulating more effective disaster prevention
and reduction strategies, ultimately providing key technical
support to enhance the overall emergency response capacity
and resilience of society.

Although existing research has made preliminary progress
in this field, there are still significant shortcomings in its
technical approaches. In terms of environmental modeling,
although implicit scene representation methods such as Neural
Radiance Fields [17] can generate high-quality novel view
synthesis, their training speed is slow, and they are difficult to
integrate with semantic information and physics engines,
limiting their application in real-time interactive simulation.
Emerging 3DGS [18] has made breakthroughs in rendering
speed, but its initialization and appearance expression are
heavily reliant on sparse point clouds, lacking in-depth
exploration of scene geometric continuity and physical
appearance attributes. This leads to the reconstructed models
still being lacking in visual detail and physical consistency. In
terms of dynamic response, directly using high-fidelity
computational fluid dynamics (CFD) models [19] for disaster
simulation can ensure physical accuracy, but the enormous
computational cost makes it unsuitable for real-time systems.
Meanwhile, many simplified particle systems [20] or preset
scripts used to achieve real-time performance often sacrifice
physical authenticity, leading to a lack of credibility in disaster
evolution, making it difficult to support scientific decision
analysis.

To address these challenges, this paper aims to study a
virtual disaster drill solution that integrates “high-fidelity,
high-efficiency environmental modeling” with “real-time,
physically credible dynamic response.” The main research
content of this paper is divided into two core parts: first, to
propose an improved image-driven multi-view environmental
simulation modeling method. This paper will explore and
optimize the 3DGS technique by introducing hierarchical
spatial indexing and semantic information injection,
constructing a scene digital twin that is geometrically accurate,
visually rich, and semantically clear, providing a high-quality
environmental foundation for dynamic responses. Second, to
build a dynamic response mechanism based on physical
simulation and Al acceleration. This paper will train
lightweight Al proxy models to replace expensive CFD

computations, achieving real-time and physically reasonable
evolution of disasters such as fires and floods. It will also
achieve intelligent interaction between disasters, virtual
environments, and trainee behaviors through tight coupling
with game engines. The value of this paper lies in bridging the
entire technical chain from “real-world data collection” to
“high-fidelity environment reconstruction” and “physical real-
time simulation,” which is expected to significantly enhance
the realism, interactivity, and scientific nature of virtual
disaster drills, providing the core technical engine for building
the next generation of intelligent emergency drill platforms.

2. IMAGE-DRIVEN ENVIRONMENTAL
SIMULATION MODELING BASED ON SEMANTICS-
ENHANCED 3DGS

The traditional 3DGS process can quickly reconstruct
geometry, but its appearance attributes are only supervised by
image color, leading to a serious lack of expression of material
optical properties and surface physical states. In disaster
simulation, these appearance attributes are precisely the key
physical parameters that determine the dynamic evolution of
disasters. For example, the flame propagation rate heavily
depends on the material’s combustibility and surface
roughness, while flood simulation must consider the resistance
and infiltration properties of different surfaces. To address
this, this chapter proposes an improved image-driven
modeling method, where the core idea is to enhance 3DGS
with semantics. By introducing a hierarchical index structure
based on point cloud space partitioning, the geometric and
color appearance features in the input images are extracted and
stored as implicit features. These features are then used to
construct a 3D colored mesh with rich appearance attributes,
providing strong geometric constraints and appearance priors
for the initialization and optimization of Gaussian spheres.
Ultimately, this method achieves efficient and automated
reconstruction of a scene digital twin that is semantically rich,
geometrically accurate, and visually realistic from multi-view
images, laying a solid environmental foundation for
subsequent dynamic disaster simulations. Figure 1 illustrates
the image-driven environmental simulation modeling process
based on semantics-enhanced 3DGS.
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Figure 1. Image-driven environmental simulation modeling process based on semantics-enhanced 3DGS



2.1 Point cloud space partitioning and appearance feature
learning based on binary space partitioning (BSP) tree

Virtual disaster drills require extremely high geometric
accuracy of the scene. For instance, subtle deformations in
building load-bearing structures or the spatial layout of
pipeline systems could directly impact disaster evolution
simulation results. Although traditional 3DGS methods excel
in rendering efficiency, the point cloud space they initialize
lacks effective structural organization, leading to limited
encoding ability for scene geometric details, especially in
areas with texture loss or complex occlusion, where geometric
distortion is common. To solve the core conflict between
geometric reconstruction accuracy and physical property
fidelity in large-scale complex scenes, this paper chooses to
adopt BSP tree-based point cloud space partitioning in image-
driven multi-view environmental simulation modeling for
virtual disaster drills. As a spatial binary partitioning data
structure, BSP trees can recursively divide unordered point
clouds into spatial indices with a hierarchical organization.
This structured representation provides a solid foundation for
subsequent geometric optimization.

The BSP tree construction begins with systematically
organizing the point cloud space generated by the Structure
from Motion (SfM) algorithm. In practice, the system first
merges the 3D point clouds generated from multiple images
via SfM into a unified global spatial distribution map. Then, it
samples this point cloud space by passing camera rays through
it. Based on the computation of spatial axis variance, the
system recursively divides the point cloud space into a left
subtree and a right subtree until each leaf node contains a
single point cloud. In the hierarchical structure of the BSP tree,
this paper innovatively stores appearance attribute features at
the nodes of the tree branches. Lower-level subtree nodes
capture fine-grained local features, while higher-level nodes
encode more macroscopic regional features. Each point cloud,
based on its position index in the BSP tree, can quickly retrieve
its corresponding color appearance feature Dz, and geometric
appearance feature Dj,.

To fully exploit the implicit features stored in the BSP tree,
this paper designs a dedicated dual-branch Multi-Layer
Perceptron (MLP) decoder architecture. The signed distance
field (SDF) decoder accurately describes the geometric surface
of the scene by estimating the SDF, with its ReLU activation
function and 32 hidden nodes balancing computational
efficiency and precision. Meanwhile, the RGB decoder is
responsible for reconstructing the scene's color appearance,
with 128 hidden nodes designed to capture complex texture
details. These two decoders work together to convert the
discrete point clouds into continuous scene representations via
trilinear interpolation of point cloud features and positional
encoding. Specifically, let the SDF decoder F; be used to
estimate £,, and the RGB decoder F: be used to estimate the
RGB color Z,, where d is the position encoding function, as
expressed in the following:

(1

During training, the system uses a multi-level supervision
strategy to optimize the implicit representation of the BSP tree.
The SDF branch uses binary cross-entropy loss (LOSSgcE)
combined with function regularization loss (LOSSEx) and
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smoothness loss (LOSSsmoorn) to ensure the continuity and
accuracy of the geometric surface. The expressions are as
follows:

LOSS, ., (0) =
7(1) log(T(1,)+(1-7(,)) log(1-T(1,))
LOSS (o) =(1-|VE,(d(0).D, (o)) 3)
M g 00mm (0) = 4
||VE (d(0).D,(0))-VF,(d(o+€),D, (o+ e))”

The RGB branch uses the L1 loss function L = |Z,-z,|, with
the real colors from the input images as supervision signals.
Notably, when determining the ground-truth color of the
ground, the system selects the pixel color with the minimal
Euclidean distance from the point cloud, effectively solving
the color inconsistency issue between multi-view images.

Let nzix, nsmoors, and nres be the scaling factors. The global
objective function for BSP tree implicit feature learning,
LOSS(0), is defined as:

LOSS,, = LOSS ;. (0) + 1 LOSS 3 (0)

(5)
svoors LOSSsvvor (0) +1re LOSS, (0)

The advantages of applying this BSP tree-based point cloud
space partitioning method in virtual disaster drill environment
modeling are manifold. First, the hierarchical spatial index
allows the system to flexibly adjust the reconstruction
accuracy of different areas based on the specific drill
requirements—finer divisions can be applied to critical
facilities, while background areas can maintain a relatively
sparse representation. Second, the rich appearance features
stored in the BSP tree provide important input for subsequent
physical simulations, such as the material reflection properties
and surface roughness, which can be derived from these
features. This structured scene representation provides an
efficient query and update mechanism for dynamic disaster
simulation. When a disaster causes scene changes, the system
can quickly locate the affected areas and update the
corresponding BSP tree nodes, enabling real-time evolution of
the scene state.

2.2 Construction of 3D colored mesh with implicit feature
fusion and dense supervision generation

Virtual disaster drills require extremely high geometric
continuity of the scene. For example, in scenarios such as
simulating stress distribution in building structures damaged
by earthquakes or analyzing water flow paths during flood
propagation, discrete Gaussian sphere representations are
insufficient to provide continuous, complete surface
information. To address the inherent limitations of traditional
3DGS methods in terms of geometric integrity and physical
accuracy, this paper introduces a 3D colored mesh. The 3D
colored mesh generated based on BSP tree implicit features
can extract isosurface from the probability density function
flx) = 2e* as a continuous mesh surface Np using the
MarchingCubes algorithm:



N, = —2111((25‘)-(27:)3 |z|§j (6)

This explicit mesh representation provides an essential
continuous geometric foundation for disaster physical
simulation. Compared to sparse SFM point clouds, mesh
representations can reconstruct geometric features that are lost
due to sparse scanning, such as complete walls, pipeline
systems, and other key structures.

At the technical implementation level, the construction of
the 3D colored mesh is based on the BSP tree implicit features
learned in the previous steps. Using the SDF values and RGB
colors predicted by the dual-branch MLP decoder, the system
uses the MarchingCubes algorithm to perform isosurface
extraction in the 3D space composed of BSP tree leaf nodes.
The algorithm traverses each small cube, determining its
intersection with the isosurface based on the SDF values at the
cube's vertices. It then computes the position and color
attributes of the intersection points through linear
interpolation, ultimately connecting these points into
triangular faces, forming a complete mesh model that includes
both geometric information and color textures. Specifically, let
the original point cloud space R be partitioned into R' with
multiple layers of leaf nodes by the BSP algorithm, the camera
motion path provided by the original image shooting path be
S, and the input images be U, then a set of density depth images
can be generated from the constructed 3D mesh L:

F= RayTracing(L |S,R, U,R') (7)

This process converts discrete point cloud data into
continuous surface representations while maintaining the
scene's visual fidelity.

The core advantage of the 3D-colored mesh lies in its
provision of dense geometric and appearance supervision for
3DGS optimization. Unlike traditional 3DGS, which only uses
sparse SFM point clouds for deep supervision, this method
generates a set of dense depth images from the rendered 3D
mesh using a ray-tracing algorithm. These depth images,
consistent with the resolution of the input images, provide
richer and continuous geometric constraints. During training,
the dense depth supervision effectively prevents the Gaussian
spheres from excessive expansion or contraction in textureless
areas, significantly improving the accuracy of the
reconstructed geometry. At the same time, the RGB color
information stored at the mesh vertices provides more reliable
guidance for the appearance optimization of Gaussian spheres,
ensuring consistent material texture representation.

2.3 Semantics-enhanced GS and model optimization based
on 3D mesh priors

Virtual disaster drills not only require visual realism in
scenes but also need to ensure geometric accuracy in
representation and feasibility in dynamic updates. To solve the
fundamental limitations of traditional 3DGS methods in
geometric consistency and physical property representation,
this paper employs GS based on implicit features and 3D
colored mesh as the final optimization step. Traditional 3DGS
directly initializes Gaussian spheres from sparse SFM point
clouds, which tends to produce geometric distortions in
textureless areas or complex structures. In contrast, this
method constrains the initialization of Gaussian spheres in a
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physically plausible spatial distribution using the continuous
surface prior provided by 3D mesh vertices. This mesh-based
initialization strategy is especially suitable for precise
reconstruction of key structures in disaster scenarios,
providing a solid geometric foundation for subsequent
physical simulations.

At the technical implementation level, this method
innovatively performs deep fusion of BSP tree-learned
implicit features with explicit geometry from 3D meshes. The
3D mesh vertices not only provide positional information @
but also serve as carriers of rich attribute information. By
retrieving implicit features D(n) from the BSP tree, geometric
appearance and color appearance priors are injected into each
Gaussian sphere. The introduction of a feature encoder further
enhances the expressiveness of this process by encoding the
average position w, scale ¢, rotation w, color z, and the newly
added attributes D,(n) into a unified feature representation,
integrated into the spherical harmonic coefficients #g and
opacity p of the Gaussian spheres. Specifically, the properties
of the 3D Gaussian spheres are initialized as:

~ w(n),t(n),w(n),z(n)
a | L;p(Du (n),tg(z(n),
u=1,...,

D, (n)),D,(n)|L,D)

M

®)

The mesh-based attribute initialization fundamentally
enhances the physical authenticity of GS. In virtual disaster
drills, physical properties such as material thermal
conductivity, combustibility, and structural strength directly
affect disaster evolution processes. By associating the implicit
features at the mesh vertices with the spherical harmonic
coefficients of the Gaussian spheres, the system is able to
encode the microscopic optical properties of materials, such as
high-gloss reflection for metals and diffuse reflection
properties for wood. These optical properties are intrinsically
linked to physical parameters, for example, surface roughness
affecting flame adhesion capacity, and color saturation
reflecting material moisture content. Therefore, the optimized
set of Gaussian spheres not only ensures visual realism but
also forms a computable physical field, providing rich input
parameters for disaster simulation.

In the rendering and optimization phase, the method uses
differentiable rasterization and adaptive density control
mechanisms to ensure stability during the training process and
realism in the final result. By indexing Gaussian spheres in
depth order within camera space, the system achieves efficient
foreground-background blending, where the covariance
matrix in the £ blending formula accurately describes the
anisotropic spatial distribution. The specific covariance matrix

expression is:
Zv — KRZRSKS

The color Z, depth F, and total opacity P for each pixel can
be computed as:

)

(1 B,)

Mw

VA

Mﬁll

M’

=
I

(10)

~
MV

ﬁ_’:jﬁ 3

=
L



Bis computed as: B,= p,-exp(-1/2(a- ,)°2"(a-w,)), and for

a specific view (R, U) in the scene containing ¥ 3D Gaussian

spheres, the image U and depth F are rendered via the
differentiable rendering function E:

U,F=E({T,,u=12,..V}|RU) (11)

u’

Here, the use of inverse depth enhances numerical stability,
making it especially suitable for rendering large-scale outdoor
scenes. During training, adaptive density control dynamically
prunes or clones Gaussian spheres based on gradient
information in the view space. This feature is particularly
important for dynamic updates in disaster scenarios—when
building structures are damaged, the system can quickly adjust
the distribution of Gaussian spheres in the affected areas,
reflecting real-time changes in the scene. Assuming the scaling
factors #ss, #pep, and ysmoorn are defined, the original RGB
image is denoted by U, the density depth rendered by the 3D
mesh is denoted by F, and the structural similarity index
between the original RGB and rendered RGB images is
represented by LOSSss. The inverse depth smoothness term
between the original RGB image and rendered depth is
represented by LOSSsyoors. The following equation gives the
objective function used during training:

LOSS = (1-1755) LOSS, (U,U )+ 1,5, LOSS s ( F, F)

. (12)
Hsuoor LOSSsvoon (U’ F )
The innovative application of these methods in virtual
disaster drills shows value in multiple dimensions.
Geometrically, the Gaussian sphere distribution initialized
based on the mesh ensures the structural integrity and
continuity of the scene, making physical calculations such as
collision detection and ray tracing more accurate and reliable.
In terms of materials, the enhanced Gaussian spheres with
implicit features can distinguish the behavior characteristics of
different materials during disasters, such as the different
reaction modes of concrete and glass under heat. In terms of
dynamic response, the structured Gaussian sphere
representation supports a local update mechanism, allowing
the system to quickly reconstruct the Gaussian sphere
parameters of affected areas when disasters such as explosions
or collapses occur, achieving real-time evolution of the scene
state.

3. DYNAMIC DISASTER RESPONSE MECHANISM
BASED ON AI AGENT MODELS AND PHYSICAL
COUPLING

Figure 2 illustrates the core architecture of the simulation
system for virtual disaster drills. The entire system maintains
data consistency through a scene data request/update
mechanism, forming a complete closed-loop from user
interaction, intelligent inference, to immersive rendering. In
the first phase of environmental simulation modeling, the
3DGS technique will serve as the core reconstruction engine,
fundamentally changing the paradigm of virtual disaster scene
construction due to its efficiency and realism. In response to
the demanding requirements of disaster drills for scene scale
and reconstruction speed, 3DGS can use multi-view images of
disaster-prone areas collected by drones or street view vehicles
to complete high-fidelity reconstruction of large-scale scenes
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within minutes. The process starts by obtaining sparse point
clouds and camera poses through COLMAP, and using these
as initialization to drive millions of anisotropic Gaussian
points for adaptive density control and attribute optimization.
These Gaussian points not only carry color and transparency
but also innovate by synchronously assigning them semantic
feature vectors. Through an online-trained lightweight MLP
decoder, photogrammetric data is associated with pre-labeled
semantic tags, allowing the system to output pixel-level
semantic segmentation maps while rendering realistic images.
This means that the reconstructed virtual environment is no
longer just a simple collection of visual elements, but a deeply
understood and objectified digital twin: each building,
window, and piece of vegetation carries a semantic identity
that can be recognized and processed by computers, providing
an indispensable structured data foundation for subsequent
physical simulations and disaster drills.

In the second phase, during the deep integration with the
dynamic response mechanism, the explicit scene
representations generated by 3DGS and endowed with
semantics will become the critical bridge connecting visual
simulation and physical simulation. On the one hand, the dense
point clouds with semantic annotations produced by 3DGS can
serve as excellent input for traditional meshing algorithms,
such as Poisson reconstruction or screen-space modeling, to
quickly generate watertight mesh models with material type
identifiers. These mesh models can be directly imported into
game engines like Unity or Unreal Engine, with the semantic
information automatically mapped to physical material
properties and colliders within the engine, enabling the
disaster simulation module to perform high-precision
calculations based on real physical parameters. On the other
hand, 3DGS's real-time rendering capability provides a
nausea-free immersive experience for VR drills, while its
synchronized semantic buffers further enable pixel-level
precise interaction in dynamic responses. For example, when
the drill participant uses a virtual fire hydrant to extinguish a
fire, the system can dynamically adjust the disaster field's state
by detecting the intersection of the water jet with the "flame"
region in the semantic buffer; or when a building is impacted
by an earthquake simulation, the system can drive different
destruction models based on its "load-bearing wall" and "non-
load-bearing wall" semantic tags, realizing physically-based
collapse simulations. Thus, 3DGS is not just a standalone
rendering tool in this research, but a core component
integrated with perception, understanding, and expression
capabilities, driving the entire virtual disaster drill system's
qualitative leap from "static reproduction" to "dynamic
inference."

In the dynamic response mechanism for virtual disaster
drills, this paper introduces physics-based simulations and Al
acceleration strategies to achieve real-time, high-fidelity
disaster evolution. This paper adopts an "offline high-fidelity
simulation - online Al inference" dual-phase framework to
address the inherent contradiction between physical accuracy
and computational efficiency. Specifically, large-scale offline
computations are first conducted using professional CFD
software to generate disaster evolution datasets under various
initial conditions. These datasets are then used to train Al
agent models based on GNN, where the nodes of the graph
correspond to key elements in the semantic 3D scene, and the
edges represent their spatial relations and physical
interactions. Figure 3 illustrates the complete disaster dynamic
triggering and rendering process.
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In practical deployment, the trained Al agent models will be
deeply coupled with the semantic virtual environment
generated by 3DGS. The semantic information in the
environment will be converted into input features for the
GNN, driving the physically plausible evolution of the
disaster. Meanwhile, this paper establishes a bidirectional
coupling mechanism: the disaster field predicted by the Al
model will dynamically drive the particle system and physics
engine in the game engine; conversely, the scene changes
detected by the physics engine will be fed back as new
boundary conditions to the AI model, enabling dynamic
environment-disaster interaction. To achieve dynamic
response throughout the entire process, this paper further
integrates user interaction behavior into the simulation loop.
The actions of drill participants captured by VR devices will
be interpreted as environmental interventions, which will act
as disturbance factors input to the Al agent models, triggering
immediate updates to the disaster field. At the same time,
virtual intelligent agents trained by reinforcement learning will
autonomously adjust escape strategies based on real-time
disaster conditions, forming a human-machine collaborative
drill environment.

4. EXPERIMENTAL RESULTS AND ANALYSIS

To determine the optimal parameter configuration for the
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semantic-enhanced 3DGS algorithm proposed in this paper,
we systematically conducted ablation experiments on BSP tree
depth and feature dimensions. A detailed analysis of Table 1
shows that when the BSP tree depth is set to 8, the model
achieves peak performance in three key metrics: geometric
error of 2.24, semantic segmentation mloU of 82.7%, and
structural integrity of 86.4. This optimal result demonstrates
that a moderate tree depth allows for a sufficient yet not
excessive hierarchical scene representation: overly shallow
trees fail to organize spatial semantic information effectively,
leading to a significant reduction in geometric accuracy and
structural integrity, while overly deep trees introduce
excessive noise and overfitting, damaging the overall
structural integrity. It can be seen that accurate geometry and
complete structure are prerequisites for subsequent physical
calculations such as collapse simulations and stress analysis,
while excellent semantic segmentation ability enables the
assignment of differentiated physical properties to different
building components.

The data analysis of Table 2 shows that when the feature
dimension is 32, the model achieves the best balance between
visual quality (PSNR 28.53) and functional metrics
(flammable material recognition rate 83.5%, dynamic
occlusion handling 83.2%). When the feature dimension is
lower, the model's expressive capacity is insufficient, making
it difficult to capture material properties and complex
structural features, leading to poor performance in fire risk



assessment and dynamic scene adaptability. On the other hand,
when the dimension is increased to 64, although PSNR slightly
improves, the functional metrics decrease, indicating that

excessively high dimensions cause the model to focus too
much on texture details while neglecting macro semantic
information.

Table 1. Effect of bsp tree depth on modeling quality

BSP Tree Depth Geometric Error (CD, X1073)| Semantic Segmentation mIoU (%)1 Structural Integrity Score 1
No BSP Tree (Baseline) 4.32 75.3 72.1
Depth = 4 3.15 79.6 78.9
Depth = 8 2.24 82.7 86.4
Depth =12 2.87 80.2 83.7

Table 2. Effect of feature dimension on reconstruction results

Feature Dimension PSNR? Flammable Material Recognition Rate 1 Dynamic Occlusion Handling 1
16 Dimensions 27.15 78.3 76.5
32 Dimensions 28.53 83.5 83.2
64 Dimensions 28.21 81.7 81.9
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Figure 4. Dynamic efficiency evaluation of personnel
evacuation in disaster environments based on Al agent
models

To verify the effectiveness of the dynamic response
mechanism in the virtual drill environment built in this paper,
we conducted a simulation experiment on personnel
evacuation in a disaster environment using an Al agent model,
to evaluate the real-time efficiency of different evacuation
paths. The experimental results are shown in Figure 4. The
four evacuation flows exhibit significant dynamic
characteristics: the main exit evacuation flow in the east zone
quickly peaks at approximately 20 persons/min within the first
50 minutes but sharply drops to below 11 persons/min after
100 minutes, indicating that while the early capacity of this
exit is strong, it is prone to bottlenecks; the emergency passage
evacuation flow in the west zone shows a steady upward trend,
gradually increasing from 10 persons/min to 23 persons/min,
demonstrating its sustained reliability as a secondary route; the
underground to upper evacuation flow fluctuates throughout
the process, reflecting the complexity of vertical evacuation
affected by building structure; while the cross-regional
transfer flow remains inactive throughout the entire simulation
period, reflecting the simulation model's decision-making
ability to dynamically adjust paths according to environmental
changes.

To systematically evaluate the comprehensive performance
of different modeling methods in virtual disaster drill
scenarios, we designed a multidimensional evaluation system,
including geometric accuracy, visual fidelity, semantic
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integrity, and reconstruction completeness, and conducted
comparative experiments on a unified dataset. As shown in
Figure 5, the proposed semantic-enhanced 3DGS method
performs excellently in the overall modeling quality score:
during the initial training phase, our method already achieves
a comprehensive score of nearly 34, significantly higher than
the 31 points for Point-Based Rendering and 29 points for
Neural Feature Fields. As training progresses, our method
reaches a stable peak score of 37 points after 15,000 iterations,
while 3D-GS requires 25,000 iterations to reach 36 points, and
the point-based rendering method ultimately only achieves 32
points. This result proves that through the introduction of BSP
tree implicit features and 3D mesh priors, our method achieves
significant improvements in all dimensions of modeling
quality while maintaining training efficiency. These
experimental results fully validate the practical value of the
research in virtual disaster drills. High-quality environment
modeling is the foundation for the reliable operation of
subsequent dynamic response mechanisms—a comprehensive
score of 37 indicates that the reconstructed scene is not only
visually realistic but also maintains a complete geometric
structure and semantic information, which is crucial for the
accuracy of disaster simulations.

To more precisely evaluate the model's performance for this
specific task, relevant experiments were set up in this paper.
The data from Table 3 systematically verifies the significant
advantages of the proposed method in the environmental
simulation modeling for virtual disaster drills, from the
perspectives of visual fidelity, geometric accuracy, and
structural semantic integrity. In traditional image quality
metrics, the proposed method leads comprehensively: with the
highest values of PSNR 28.53 dB and SSIM 0.868, it indicates
the optimal pixel-level color and structural similarity of the
reconstructed scene. The lowest LPIPS of 0.231 demonstrates
that the rendered results have the smallest perceptual
difference from real images, effectively avoiding unnatural
artifacts and distortions. This advantage ensures a high degree
of visual immersion in the virtual drill environment, which is
crucial for maintaining the participants' sense of presence and
focus. However, for disaster drills, visual quality is just the
foundation, and deeper requirements are geometric and
physical accuracy.

In terms of geometric accuracy and structural integrity, the
proposed method provides a reliable digital foundation for
physical simulations, which is core to supporting the "dynamic
response mechanism." The proposed method significantly



outperforms all comparison models in geometric accuracy,
being 3.2 percentage points higher than the next best model,
3D-GS. This proves that by introducing BSP tree and 3D mesh
priors, the proposed method can more accurately restore the
3D geometric form of building structures, such as the precise
dimensions of load-bearing columns, the slope and steps of
stairs, and the flatness of walls. This millimeter-level
geometric fidelity is an absolute prerequisite for subsequent
precise physical calculations. The structural integrity score of
86.4% is the key metric that most reflects the value of the
proposed method. This score means the reconstructed model
not only accurately reflects the visible surface but can also
infer and complete the structural logic in accordance with the
physical laws of the real world, such as wall continuity and the
connection relationships between beams and columns. A
model that scores high in "structural integrity" ensures that
force transfer and structural damage in dynamic disaster
simulations follow physical laws, rather than producing
illogical "floating" or "fracturing," greatly improving the
scientific and credible nature of disaster simulation results.
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Figure 5. Performance comparison of different modeling
methods on the disaster scenario dataset

Table 3. Building structural integrity assessment experimental results

Model PSNR SSIM LPIPS Geometric Accuracy (%) Structural Integrity Score
Neural Feature Fields 21.75 0.738 0.394 68.3 72.5
Point-Based Rendering 26.36 0.815 0.283 75.6 78.9
Semantic-NeRF 27.73 0.843 0.276 78.2 81.3
3D-GS 27.94 0.854 0.248 79.5 83.7
Proposed Method 28.53 0.868 0.231 82.7 86.4

To verify the practicality and reliability of the reconstructed
model in specific disaster scenarios, we conducted a
specialized evaluation of key elements of indoor fire risks. The
experimental data in Table 4 strongly demonstrates the
excellent performance of the proposed method in supporting
the dynamic response of virtual disaster drills, from both
visual quality and disaster element analysis perspectives. In
terms of basic visual quality, the proposed method maintains
high fidelity in rendered images with PSNR of 27.77 dB and
SSIM of 0.858, while its lowest LPIPS of 0.252 ensures
realistic visual perception, providing participants with an
immersive visual environment that is the foundation for
maintaining their sense of presence. However, the core value
of this experiment lies in the accurate extraction of key fire
dynamics elements. In terms of flammable material
recognition rate, the proposed method achieves 83.5%,
significantly outperforming other models. This is due to the
deep understanding of material properties enabled by the

semantic enhancement mechanism. This ability allows the
system to automatically and precisely label flammable
materials such as wood, plastic, and textiles in the virtual
environment, thus providing a crucial initial "fuel distribution
map" for the Al agent model to simulate fire spread, bridging
the gap from "visual representation" to "data-driven" fire
evolution. More importantly, in terms of ventilation path
reconstruction accuracy, the proposed method achieves an
excellent performance of 85.7%. Ventilation conditions are
key physical parameters determining the development of
indoor fires, especially for extreme phenomena like
"flashover" or "backdraft." The ability of the proposed method
to accurately reconstruct these elements means that fire
dynamic simulations based on this model can more
realistically simulate smoke diffusion paths, air replenishment,
and heat accumulation processes, significantly improving the
physical credibility of the simulation results.

Table 4. Indoor fire risk assessment experimental results

Flammable Material Ventilation Path Reconstruction

Model PSNR SSIM LPIPS Recognition Rate (%) Accuracy (%)
Neural Feature Fields 2443 0.767 0.356 65.8 70.2
Point-Based Rendering 25.88 0.803 0.304 72.4 75.6
Semantic-NeRF 26.35 0.825 0.282 76.1 78.9
3D-GS 26.96 0.842 0.274 78.9 81.3
Proposed Method 27.77 0.858 0.252 83.5 85.7

Table 5. Evaluation of evacuation path planning support

Model PSNR SSIM LPIPS Path Accessibility Analysis (%)  Scene Coverage Rate (%)
Neural Feature Fields 23.64 0.763 0.324 71.3 68.5
Point-Based Rendering 24.94 0.796 0.306 78.2 75.9
Semantic-NeRF 25.56 0.811 0.292 81.7 79.3
3D-GS 25.99 0.834 0.274 83.5 82.1
Proposed Method 26.26 0.846 0.265 86.9 84.7
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To evaluate the support capability of the constructed virtual
environment for emergency evacuation simulations, we
conducted a special experiment on evacuation path planning
support. The data in Table 5 shows that the proposed method
significantly outperforms the comparison models in two key
functional indicators: path accessibility analysis (86.9%) and
scene coverage rate (84.7%), fully demonstrating its unique
value in supporting intelligent evacuation drills. The higher
path accessibility indicates that the reconstructed environment
can accurately maintain the geometric structure and spatial
relationship of key passage elements such as doors, corridors,
and stairs, providing realistic and reliable physical constraints
for path planning algorithms. The excellent scene coverage
rate ensures that all potential evacuation paths are fully
reproduced in the virtual environment, avoiding evacuation
simulation failure due to reconstruction omissions. It is
particularly worth noting that while maintaining the best visual
quality with PSNR 26.26 dB and SSIM 0.846, the proposed
method maximizes functional indicator improvements. This
balanced advantage is crucial for virtual drills—it ensures both
visual immersion during the drill and the scientific reliability
of the evacuation simulation results.

To verify the stability and detail performance of the
reconstructed model in the dynamic disaster evolution process,
we set up a special evaluation experiment for dynamic
occlusion handling and multi-scale detail retention. The
experimental results in Table 6 show that the proposed method
exhibits significant advantages in both key indicators:
dynamic occlusion handling (83.2%) and multi-scale detail
retention (86.7%), fully demonstrating its adaptability in
complex disaster environments. The high score for dynamic

occlusion handling indicates that when the scene is obstructed
by new obstacles due to disasters such as explosions or
collapses, the proposed method can maintain reconstruction
stability and avoid scene tearing or distortion, which is crucial
for ongoing disaster simulation. The excellent multi-scale
detail retention capability ensures that the model can
accurately reconstruct large building structures while also
preserving small but critical safety features like fire hydrants,
door handles, and vents, which often play a decisive role in
emergency decision-making. From a technical perspective, the
proposed method achieves a leading advantage in functional
indicators while maintaining the best visual quality with PSNR
30.37 dB and SSIM 0.918. This reflects the comprehensive
value of the semantic-enhanced 3D Gaussian splashing
technique. The higher dynamic occlusion handling capability
comes from the BSP tree's hierarchical feature deep
understanding of scene structure, enabling the system to
reasonably infer the geometry and appearance of occluded
areas. The excellent multi-scale detail retention is due to the
geometric constraints provided by the 3D mesh prior, avoiding
the common issue of detail loss seen in previous methods.

These features ensure that the reconstructed environment
model can effectively support the "dynamic response
mechanism" with real-time interaction requirements. Whether
it is the scene change caused by a disaster or the intervention
behavior of the drill participants, the system can accurately
respond while maintaining scene consistency, thus providing
a stable and refined digital twin environment for virtual
disaster drills, strongly supporting the effective transition from
static reconstruction to dynamic simulation in the complete
technical chain of this research.

Table 6. Indoor fire risk assessment experimental results

Dynamic Occlusion Multi-Scale Detail Retention

Model PSNR SSIM LPIPS Handling (%) (%)

Neural Feature Fields 26.85 0.864 0.248 63.7 67.8
Point-Based Rendering 28.13 0.886 0.227 72.4 75.3
Semantic-NeRF 28.54 0.897 0.225 76.8 78.9
3D-GS 29.98 0913 0.214 79.5 82.4
Proposed Method 30.37 0.918 0.207 83.2 86.7

5. CONCLUSION

This paper systematically studied "Image-Driven Multi-
View Environmental Simulation Modeling and Dynamic
Response Mechanism for Virtual Disaster Drills" and
successfully built a complete technical system from real scene
perception to intelligent disaster simulation. In environmental
simulation modeling, an innovative semantic-enhanced 3D
Gaussian splashing method was proposed, significantly
improving the geometric accuracy, semantic integrity, and
structural rationality of the reconstructed model. This method
addressed the difficulty of balancing visual quality and
physical consistency in traditional methods. In the dynamic
response mechanism, a simulation framework coupled with Al
agent models and physics engines was designed. By training a
lightweight GNN network to replace computationally
expensive CFD simulations, real-time physical simulations of
disasters such as fire and flood were achieved, while ensuring
intelligent interaction with virtual environments and
participant behaviors. The main value of this research lies in
breaking through the technical bottleneck of "inaccurate
reconstruction and unrealistic simulation" in virtual drills,
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providing a high-fidelity, interactive scientific experimental
platform for emergency command decision-making and rescue
training.

However, this research still has certain limitations. First, the
current system's performance depends on the quality and
coverage of the input images, and the robustness of
reconstruction under extreme lighting conditions or severe
occlusion scenarios needs further improvement. Second, the
training of the Al agent model requires a large amount of high-
fidelity physical simulation data, and its generalization ability
in large-scale complex scenes still needs to be verified.
Additionally, the dynamic response mechanism has not fully
considered the complexity of multi-disaster coupling
evolution. Future research directions will focus on the
following aspects: First, exploring multi-modal data fusion
mechanisms, combining LiDAR, infrared sensors, and other
multi-source data to improve scene perception completeness;
second, developing adaptive computational frameworks to
achieve real-time simulation of ultra-large-scale scenes
through dynamic load balancing technology; third, deepening
intelligent agent behavior models, introducing large language
models to enhance the cognitive decision-making ability of



virtual characters, and ultimately building a more forward-
looking next-generation intelligent emergency drill system,
providing stronger digital support for urban public safety.
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