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In response to the increasing frequency of natural disasters and public safety incidents, 

traditional field-based drills face significant challenges in terms of cost, safety, and scene 

diversity. Virtual simulation technology, however, provides a revolutionary approach for 

efficient, low-risk disaster drills. Nevertheless, constructing a high-fidelity, interactive 

virtual training environment and realizing physically credible dynamic disaster responses 

remain core challenges in this field. Current research in environmental modeling, such as 

methods like Neural Radiance Fields (NeRF), suffers from slow training and difficulties in 

integrating physical semantics, while high-fidelity disaster simulations incur enormous 

computational costs, with simplified models sacrificing realism. To address these issues, this 

paper focuses on two core areas: “image-driven modeling” and “dynamic response 

mechanisms.” (1) In environmental simulation modeling, this paper innovatively optimizes 

and applies three-dimensional Gaussian Splatting (3DGS) techniques, enabling rapid 

reconstruction of geometrically accurate, visually rich, and semantically informed digital 

twins of scenes from multi-view images via hierarchical spatial partitioning and semantic 

injection. (2) In dynamic response, a hybrid framework combining physical simulation and 

AI acceleration is proposed, where graph neural network (GNN)-based proxy models are 

trained to simulate the physical evolution of disasters such as fires and floods in real time. 

These models are deeply coupled with particle systems and physics engines in game engines 

to achieve intelligent, real-time interaction between disasters, environments, and trainee 

behaviors. The main contributions of this paper are: (1) the introduction of a complete virtual 

disaster drill technology system that integrates improved 3DGS with AI-accelerated 

physical simulation, achieving a closed-loop from real-world perception to virtual-world 

interaction; (2) the introduction of enhanced appearance and geometric priors in 

environmental modeling, significantly improving the physical consistency and semantic 

completeness of reconstructed models; and (3) the development of a real-time disaster 

simulator based on AI proxy models, which breaks computational bottlenecks and enables 

immersive, interactive drills at large-scale scenes while ensuring physical credibility.  
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1. INTRODUCTION

With the accelerating global climate change [1-3] and 

urbanization processes [4, 5], extreme natural disasters [6] and 

sudden public safety incidents [7] have become frequent, 

posing a severe challenge to human society. Traditional field-

based disaster drills have many limitations, such as high costs, 

uncontrollable risks, and limited and hard-to-replicate 

scenarios [8, 9], making it difficult to meet the demand for 

regular, large-scale, and precise training in modern emergency 

management systems. Against this background, the virtual 

simulation-based drill model has emerged, providing a safe, 

controllable, and repeatable advanced platform for emergency 

command decision-making, rescue skills training, and public 

safety education by constructing highly realistic virtual 

disaster environments [10-12]. However, how to quickly and 

automatically construct high-fidelity simulation environments 

from the real world and achieve physically accurate dynamic 

disaster evolution and intelligent responses within these 

environments remains a key technical bottleneck that needs to 

be overcome in the field of virtual drills. 

The research on image-driven environmental simulation 

and dynamic response for virtual disaster drills has important 

theoretical value and broad application prospects. At the 

technical level, it deeply integrates cutting-edge fields such as 

computer vision [13], computer graphics [14], physical 

simulation [15], and AI [16], promoting the leapfrog 

development of intelligent simulation technology. At the 

application level, an efficient and realistic virtual drill system 

can significantly enhance training effectiveness, allowing 

trainees to master emergency response processes in a highly 

immersive experience, while providing a scientific “digital 
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sandbox” for evaluating and optimizing emergency plans. This 

can assist in formulating more effective disaster prevention 

and reduction strategies, ultimately providing key technical 

support to enhance the overall emergency response capacity 

and resilience of society. 

Although existing research has made preliminary progress 

in this field, there are still significant shortcomings in its 

technical approaches. In terms of environmental modeling, 

although implicit scene representation methods such as Neural 

Radiance Fields [17] can generate high-quality novel view 

synthesis, their training speed is slow, and they are difficult to 

integrate with semantic information and physics engines, 

limiting their application in real-time interactive simulation. 

Emerging 3DGS [18] has made breakthroughs in rendering 

speed, but its initialization and appearance expression are 

heavily reliant on sparse point clouds, lacking in-depth 

exploration of scene geometric continuity and physical 

appearance attributes. This leads to the reconstructed models 

still being lacking in visual detail and physical consistency. In 

terms of dynamic response, directly using high-fidelity 

computational fluid dynamics (CFD) models [19] for disaster 

simulation can ensure physical accuracy, but the enormous 

computational cost makes it unsuitable for real-time systems. 

Meanwhile, many simplified particle systems [20] or preset 

scripts used to achieve real-time performance often sacrifice 

physical authenticity, leading to a lack of credibility in disaster 

evolution, making it difficult to support scientific decision 

analysis. 

To address these challenges, this paper aims to study a 

virtual disaster drill solution that integrates “high-fidelity, 

high-efficiency environmental modeling” with “real-time, 

physically credible dynamic response.” The main research 

content of this paper is divided into two core parts: first, to 

propose an improved image-driven multi-view environmental 

simulation modeling method. This paper will explore and 

optimize the 3DGS technique by introducing hierarchical 

spatial indexing and semantic information injection, 

constructing a scene digital twin that is geometrically accurate, 

visually rich, and semantically clear, providing a high-quality 

environmental foundation for dynamic responses. Second, to 

build a dynamic response mechanism based on physical 

simulation and AI acceleration. This paper will train 

lightweight AI proxy models to replace expensive CFD 

computations, achieving real-time and physically reasonable 

evolution of disasters such as fires and floods. It will also 

achieve intelligent interaction between disasters, virtual 

environments, and trainee behaviors through tight coupling 

with game engines. The value of this paper lies in bridging the 

entire technical chain from “real-world data collection” to 

“high-fidelity environment reconstruction” and “physical real-

time simulation,” which is expected to significantly enhance 

the realism, interactivity, and scientific nature of virtual 

disaster drills, providing the core technical engine for building 

the next generation of intelligent emergency drill platforms. 

2. IMAGE-DRIVEN ENVIRONMENTAL

SIMULATION MODELING BASED ON SEMANTICS-

ENHANCED 3DGS

The traditional 3DGS process can quickly reconstruct 

geometry, but its appearance attributes are only supervised by 

image color, leading to a serious lack of expression of material 

optical properties and surface physical states. In disaster 

simulation, these appearance attributes are precisely the key 

physical parameters that determine the dynamic evolution of 

disasters. For example, the flame propagation rate heavily 

depends on the material’s combustibility and surface 

roughness, while flood simulation must consider the resistance 

and infiltration properties of different surfaces. To address 

this, this chapter proposes an improved image-driven 

modeling method, where the core idea is to enhance 3DGS 

with semantics. By introducing a hierarchical index structure 

based on point cloud space partitioning, the geometric and 

color appearance features in the input images are extracted and 

stored as implicit features. These features are then used to 

construct a 3D colored mesh with rich appearance attributes, 

providing strong geometric constraints and appearance priors 

for the initialization and optimization of Gaussian spheres. 

Ultimately, this method achieves efficient and automated 

reconstruction of a scene digital twin that is semantically rich, 

geometrically accurate, and visually realistic from multi-view 

images, laying a solid environmental foundation for 

subsequent dynamic disaster simulations. Figure 1 illustrates 

the image-driven environmental simulation modeling process 

based on semantics-enhanced 3DGS. 

Figure 1. Image-driven environmental simulation modeling process based on semantics-enhanced 3DGS 
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2.1 Point cloud space partitioning and appearance feature 

learning based on binary space partitioning (BSP) tree 

Virtual disaster drills require extremely high geometric 

accuracy of the scene. For instance, subtle deformations in 

building load-bearing structures or the spatial layout of 

pipeline systems could directly impact disaster evolution 

simulation results. Although traditional 3DGS methods excel 

in rendering efficiency, the point cloud space they initialize 

lacks effective structural organization, leading to limited 

encoding ability for scene geometric details, especially in 

areas with texture loss or complex occlusion, where geometric 

distortion is common. To solve the core conflict between 

geometric reconstruction accuracy and physical property 

fidelity in large-scale complex scenes, this paper chooses to 

adopt BSP tree-based point cloud space partitioning in image-

driven multi-view environmental simulation modeling for 

virtual disaster drills. As a spatial binary partitioning data 

structure, BSP trees can recursively divide unordered point 

clouds into spatial indices with a hierarchical organization. 

This structured representation provides a solid foundation for 

subsequent geometric optimization. 

The BSP tree construction begins with systematically 

organizing the point cloud space generated by the Structure 

from Motion (SfM) algorithm. In practice, the system first 

merges the 3D point clouds generated from multiple images 

via SfM into a unified global spatial distribution map. Then, it 

samples this point cloud space by passing camera rays through 

it. Based on the computation of spatial axis variance, the 

system recursively divides the point cloud space into a left 

subtree and a right subtree until each leaf node contains a 

single point cloud. In the hierarchical structure of the BSP tree, 

this paper innovatively stores appearance attribute features at 

the nodes of the tree branches. Lower-level subtree nodes 

capture fine-grained local features, while higher-level nodes 

encode more macroscopic regional features. Each point cloud, 

based on its position index in the BSP tree, can quickly retrieve 

its corresponding color appearance feature DZu and geometric 

appearance feature Dhu. 

To fully exploit the implicit features stored in the BSP tree, 

this paper designs a dedicated dual-branch Multi-Layer 

Perceptron (MLP) decoder architecture. The signed distance 

field (SDF) decoder accurately describes the geometric surface 

of the scene by estimating the SDF, with its ReLU activation 

function and 32 hidden nodes balancing computational 

efficiency and precision. Meanwhile, the RGB decoder is 

responsible for reconstructing the scene's color appearance, 

with 128 hidden nodes designed to capture complex texture 

details. These two decoders work together to convert the 

discrete point clouds into continuous scene representations via 

trilinear interpolation of point cloud features and positional 

encoding. Specifically, let the SDF decoder Ft be used to 

estimate 𝑡̂𝑜, and the RGB decoder Fz be used to estimate the

RGB color 𝑧̂𝑜, where d is the position encoding function, as

expressed in the following: 

( ) ( )( ) ( ) ( )( )ˆ ˆ, , ,

1,2,...,

o t u o z uo o
t F d D o z F d D o

u M

= =

=
(1) 

During training, the system uses a multi-level supervision 

strategy to optimize the implicit representation of the BSP tree. 

The SDF branch uses binary cross-entropy loss (LOSSBCE) 

combined with function regularization loss (LOSSEIK) and 

smoothness loss (LOSSSMOOTH) to ensure the continuity and 

accuracy of the geometric surface. The expressions are as 

follows: 
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The RGB branch uses the L1 loss function L1 = |𝑧̂𝑜-zo|, with 

the real colors from the input images as supervision signals. 

Notably, when determining the ground-truth color of the 

ground, the system selects the pixel color with the minimal 

Euclidean distance from the point cloud, effectively solving 

the color inconsistency issue between multi-view images. 

Let ηEIK, ηSMOOTH, and ηRGB be the scaling factors. The global 

objective function for BSP tree implicit feature learning, 

LOSS(o), is defined as: 

( ) ( ) ( )

( ) ( )1

BCE EIK EIKo

SMOOTH SMOOTH RGB

LOSS LOSS o LOSS o

LOSS o LOSS o



 

= +

+ +
(5) 

The advantages of applying this BSP tree-based point cloud 

space partitioning method in virtual disaster drill environment 

modeling are manifold. First, the hierarchical spatial index 

allows the system to flexibly adjust the reconstruction 

accuracy of different areas based on the specific drill 

requirements—finer divisions can be applied to critical 

facilities, while background areas can maintain a relatively 

sparse representation. Second, the rich appearance features 

stored in the BSP tree provide important input for subsequent 

physical simulations, such as the material reflection properties 

and surface roughness, which can be derived from these 

features. This structured scene representation provides an 

efficient query and update mechanism for dynamic disaster 

simulation. When a disaster causes scene changes, the system 

can quickly locate the affected areas and update the 

corresponding BSP tree nodes, enabling real-time evolution of 

the scene state. 

2.2 Construction of 3D colored mesh with implicit feature 

fusion and dense supervision generation 

Virtual disaster drills require extremely high geometric 

continuity of the scene. For example, in scenarios such as 

simulating stress distribution in building structures damaged 

by earthquakes or analyzing water flow paths during flood 

propagation, discrete Gaussian sphere representations are 

insufficient to provide continuous, complete surface 

information. To address the inherent limitations of traditional 

3DGS methods in terms of geometric integrity and physical 

accuracy, this paper introduces a 3D colored mesh. The 3D 

colored mesh generated based on BSP tree implicit features 

can extract isosurface from the probability density function 

f(x) = 2e-4 as a continuous mesh surface N0 using the 

MarchingCubes algorithm: 
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This explicit mesh representation provides an essential 

continuous geometric foundation for disaster physical 

simulation. Compared to sparse SFM point clouds, mesh 

representations can reconstruct geometric features that are lost 

due to sparse scanning, such as complete walls, pipeline 

systems, and other key structures. 

At the technical implementation level, the construction of 

the 3D colored mesh is based on the BSP tree implicit features 

learned in the previous steps. Using the SDF values and RGB 

colors predicted by the dual-branch MLP decoder, the system 

uses the MarchingCubes algorithm to perform isosurface 

extraction in the 3D space composed of BSP tree leaf nodes. 

The algorithm traverses each small cube, determining its 

intersection with the isosurface based on the SDF values at the 

cube's vertices. It then computes the position and color 

attributes of the intersection points through linear 

interpolation, ultimately connecting these points into 

triangular faces, forming a complete mesh model that includes 

both geometric information and color textures. Specifically, let 

the original point cloud space R be partitioned into R' with 

multiple layers of leaf nodes by the BSP algorithm, the camera 

motion path provided by the original image shooting path be 

S, and the input images be U, then a set of density depth images 

can be generated from the constructed 3D mesh L: 

 

( )| , , , 'F RayTracing L S R U R=  (7) 

 

This process converts discrete point cloud data into 

continuous surface representations while maintaining the 

scene's visual fidelity. 

The core advantage of the 3D-colored mesh lies in its 

provision of dense geometric and appearance supervision for 

3DGS optimization. Unlike traditional 3DGS, which only uses 

sparse SFM point clouds for deep supervision, this method 

generates a set of dense depth images from the rendered 3D 

mesh using a ray-tracing algorithm. These depth images, 

consistent with the resolution of the input images, provide 

richer and continuous geometric constraints. During training, 

the dense depth supervision effectively prevents the Gaussian 

spheres from excessive expansion or contraction in textureless 

areas, significantly improving the accuracy of the 

reconstructed geometry. At the same time, the RGB color 

information stored at the mesh vertices provides more reliable 

guidance for the appearance optimization of Gaussian spheres, 

ensuring consistent material texture representation. 

 

2.3 Semantics-enhanced GS and model optimization based 

on 3D mesh priors 

 

Virtual disaster drills not only require visual realism in 

scenes but also need to ensure geometric accuracy in 

representation and feasibility in dynamic updates. To solve the 

fundamental limitations of traditional 3DGS methods in 

geometric consistency and physical property representation, 

this paper employs GS based on implicit features and 3D 

colored mesh as the final optimization step. Traditional 3DGS 

directly initializes Gaussian spheres from sparse SFM point 

clouds, which tends to produce geometric distortions in 

textureless areas or complex structures. In contrast, this 

method constrains the initialization of Gaussian spheres in a 

physically plausible spatial distribution using the continuous 

surface prior provided by 3D mesh vertices. This mesh-based 

initialization strategy is especially suitable for precise 

reconstruction of key structures in disaster scenarios, 

providing a solid geometric foundation for subsequent 

physical simulations. 

At the technical implementation level, this method 

innovatively performs deep fusion of BSP tree-learned 

implicit features with explicit geometry from 3D meshes. The 

3D mesh vertices not only provide positional information ω 

but also serve as carriers of rich attribute information. By 

retrieving implicit features D(n) from the BSP tree, geometric 

appearance and color appearance priors are injected into each 

Gaussian sphere. The introduction of a feature encoder further 

enhances the expressiveness of this process by encoding the 

average position ω, scale t, rotation w, color z, and the newly 

added attributes Du(n) into a unified feature representation, 

integrated into the spherical harmonic coefficients tg and 

opacity p of the Gaussian spheres. Specifically, the properties 

of the 3D Gaussian spheres are initialized as: 
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The mesh-based attribute initialization fundamentally 

enhances the physical authenticity of GS. In virtual disaster 

drills, physical properties such as material thermal 

conductivity, combustibility, and structural strength directly 

affect disaster evolution processes. By associating the implicit 

features at the mesh vertices with the spherical harmonic 

coefficients of the Gaussian spheres, the system is able to 

encode the microscopic optical properties of materials, such as 

high-gloss reflection for metals and diffuse reflection 

properties for wood. These optical properties are intrinsically 

linked to physical parameters, for example, surface roughness 

affecting flame adhesion capacity, and color saturation 

reflecting material moisture content. Therefore, the optimized 

set of Gaussian spheres not only ensures visual realism but 

also forms a computable physical field, providing rich input 

parameters for disaster simulation. 

In the rendering and optimization phase, the method uses 

differentiable rasterization and adaptive density control 

mechanisms to ensure stability during the training process and 

realism in the final result. By indexing Gaussian spheres in 

depth order within camera space, the system achieves efficient 

foreground-background blending, where the covariance 

matrix in the β blending formula accurately describes the 

anisotropic spatial distribution. The specific covariance matrix 

expression is: 

 

' S SKR R K=   (9) 

 

The color Z, depth F, and total opacity P for each pixel can 

be computed as: 
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β is computed as: βu = pu·exp(-1/2(a- ωu)SΣ'-1(a-ωu)), and for 

a specific view (R, U) in the scene containing V 3D Gaussian 

spheres, the image U and depth F are rendered via the 

differentiable rendering function E: 

 

 ( )ˆ ˆ, , 1,2,..., | ,uU F E u V R U=  =  (11) 

 

Here, the use of inverse depth enhances numerical stability, 

making it especially suitable for rendering large-scale outdoor 

scenes. During training, adaptive density control dynamically 

prunes or clones Gaussian spheres based on gradient 

information in the view space. This feature is particularly 

important for dynamic updates in disaster scenarios—when 

building structures are damaged, the system can quickly adjust 

the distribution of Gaussian spheres in the affected areas, 

reflecting real-time changes in the scene. Assuming the scaling 

factors ηSS, ηDEP, and ηSMOOTH are defined, the original RGB 

image is denoted by U, the density depth rendered by the 3D 

mesh is denoted by F, and the structural similarity index 

between the original RGB and rendered RGB images is 

represented by LOSSSS. The inverse depth smoothness term 

between the original RGB image and rendered depth is 

represented by LOSSSMOOTH. The following equation gives the 

objective function used during training: 

 

( ) ( ) ( )

( )
1

ˆ ˆ1 , ,

ˆ,

SS DEP SS

SMOOTH SMOOTH
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The innovative application of these methods in virtual 

disaster drills shows value in multiple dimensions. 

Geometrically, the Gaussian sphere distribution initialized 

based on the mesh ensures the structural integrity and 

continuity of the scene, making physical calculations such as 

collision detection and ray tracing more accurate and reliable. 

In terms of materials, the enhanced Gaussian spheres with 

implicit features can distinguish the behavior characteristics of 

different materials during disasters, such as the different 

reaction modes of concrete and glass under heat. In terms of 

dynamic response, the structured Gaussian sphere 

representation supports a local update mechanism, allowing 

the system to quickly reconstruct the Gaussian sphere 

parameters of affected areas when disasters such as explosions 

or collapses occur, achieving real-time evolution of the scene 

state. 
 

 

3. DYNAMIC DISASTER RESPONSE MECHANISM 

BASED ON AI AGENT MODELS AND PHYSICAL 

COUPLING 

 

Figure 2 illustrates the core architecture of the simulation 

system for virtual disaster drills. The entire system maintains 

data consistency through a scene data request/update 

mechanism, forming a complete closed-loop from user 

interaction, intelligent inference, to immersive rendering. In 

the first phase of environmental simulation modeling, the 

3DGS technique will serve as the core reconstruction engine, 

fundamentally changing the paradigm of virtual disaster scene 

construction due to its efficiency and realism. In response to 

the demanding requirements of disaster drills for scene scale 

and reconstruction speed, 3DGS can use multi-view images of 

disaster-prone areas collected by drones or street view vehicles 

to complete high-fidelity reconstruction of large-scale scenes 

within minutes. The process starts by obtaining sparse point 

clouds and camera poses through COLMAP, and using these 

as initialization to drive millions of anisotropic Gaussian 

points for adaptive density control and attribute optimization. 

These Gaussian points not only carry color and transparency 

but also innovate by synchronously assigning them semantic 

feature vectors. Through an online-trained lightweight MLP 

decoder, photogrammetric data is associated with pre-labeled 

semantic tags, allowing the system to output pixel-level 

semantic segmentation maps while rendering realistic images. 

This means that the reconstructed virtual environment is no 

longer just a simple collection of visual elements, but a deeply 

understood and objectified digital twin: each building, 

window, and piece of vegetation carries a semantic identity 

that can be recognized and processed by computers, providing 

an indispensable structured data foundation for subsequent 

physical simulations and disaster drills. 

In the second phase, during the deep integration with the 

dynamic response mechanism, the explicit scene 

representations generated by 3DGS and endowed with 

semantics will become the critical bridge connecting visual 

simulation and physical simulation. On the one hand, the dense 

point clouds with semantic annotations produced by 3DGS can 

serve as excellent input for traditional meshing algorithms, 

such as Poisson reconstruction or screen-space modeling, to 

quickly generate watertight mesh models with material type 

identifiers. These mesh models can be directly imported into 

game engines like Unity or Unreal Engine, with the semantic 

information automatically mapped to physical material 

properties and colliders within the engine, enabling the 

disaster simulation module to perform high-precision 

calculations based on real physical parameters. On the other 

hand, 3DGS's real-time rendering capability provides a 

nausea-free immersive experience for VR drills, while its 

synchronized semantic buffers further enable pixel-level 

precise interaction in dynamic responses. For example, when 

the drill participant uses a virtual fire hydrant to extinguish a 

fire, the system can dynamically adjust the disaster field's state 

by detecting the intersection of the water jet with the "flame" 

region in the semantic buffer; or when a building is impacted 

by an earthquake simulation, the system can drive different 

destruction models based on its "load-bearing wall" and "non-

load-bearing wall" semantic tags, realizing physically-based 

collapse simulations. Thus, 3DGS is not just a standalone 

rendering tool in this research, but a core component 

integrated with perception, understanding, and expression 

capabilities, driving the entire virtual disaster drill system's 

qualitative leap from "static reproduction" to "dynamic 

inference." 

In the dynamic response mechanism for virtual disaster 

drills, this paper introduces physics-based simulations and AI 

acceleration strategies to achieve real-time, high-fidelity 

disaster evolution. This paper adopts an "offline high-fidelity 

simulation - online AI inference" dual-phase framework to 

address the inherent contradiction between physical accuracy 

and computational efficiency. Specifically, large-scale offline 

computations are first conducted using professional CFD 

software to generate disaster evolution datasets under various 

initial conditions. These datasets are then used to train AI 

agent models based on GNN, where the nodes of the graph 

correspond to key elements in the semantic 3D scene, and the 

edges represent their spatial relations and physical 

interactions. Figure 3 illustrates the complete disaster dynamic 

triggering and rendering process. 
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Figure 2. Core architecture of the simulation system for virtual disaster drills 

 

 
 

Figure 3. Disaster dynamic triggering and rendering process based on perception and prediction 

 

In practical deployment, the trained AI agent models will be 

deeply coupled with the semantic virtual environment 

generated by 3DGS. The semantic information in the 

environment will be converted into input features for the 

GNN, driving the physically plausible evolution of the 

disaster. Meanwhile, this paper establishes a bidirectional 

coupling mechanism: the disaster field predicted by the AI 

model will dynamically drive the particle system and physics 

engine in the game engine; conversely, the scene changes 

detected by the physics engine will be fed back as new 

boundary conditions to the AI model, enabling dynamic 

environment-disaster interaction. To achieve dynamic 

response throughout the entire process, this paper further 

integrates user interaction behavior into the simulation loop. 

The actions of drill participants captured by VR devices will 

be interpreted as environmental interventions, which will act 

as disturbance factors input to the AI agent models, triggering 

immediate updates to the disaster field. At the same time, 

virtual intelligent agents trained by reinforcement learning will 

autonomously adjust escape strategies based on real-time 

disaster conditions, forming a human-machine collaborative 

drill environment. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

To determine the optimal parameter configuration for the 

semantic-enhanced 3DGS algorithm proposed in this paper, 

we systematically conducted ablation experiments on BSP tree 

depth and feature dimensions. A detailed analysis of Table 1 

shows that when the BSP tree depth is set to 8, the model 

achieves peak performance in three key metrics: geometric 

error of 2.24, semantic segmentation mIoU of 82.7%, and 

structural integrity of 86.4. This optimal result demonstrates 

that a moderate tree depth allows for a sufficient yet not 

excessive hierarchical scene representation: overly shallow 

trees fail to organize spatial semantic information effectively, 

leading to a significant reduction in geometric accuracy and 

structural integrity, while overly deep trees introduce 

excessive noise and overfitting, damaging the overall 

structural integrity. It can be seen that accurate geometry and 

complete structure are prerequisites for subsequent physical 

calculations such as collapse simulations and stress analysis, 

while excellent semantic segmentation ability enables the 

assignment of differentiated physical properties to different 

building components. 

The data analysis of Table 2 shows that when the feature 

dimension is 32, the model achieves the best balance between 

visual quality (PSNR = 28.53) and functional metrics 

(flammable material recognition rate 83.5%, dynamic 

occlusion handling 83.2%). When the feature dimension is 

lower, the model's expressive capacity is insufficient, making 

it difficult to capture material properties and complex 

structural features, leading to poor performance in fire risk 
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assessment and dynamic scene adaptability. On the other hand, 

when the dimension is increased to 64, although PSNR slightly 

improves, the functional metrics decrease, indicating that 

excessively high dimensions cause the model to focus too 

much on texture details while neglecting macro semantic 

information. 

Table 1. Effect of bsp tree depth on modeling quality 

BSP Tree Depth Geometric Error (CD, ×10⁻³)↓ Semantic Segmentation mIoU (%)↑ Structural Integrity Score ↑ 

No BSP Tree (Baseline) 4.32 75.3 72.1 

Depth = 4 3.15 79.6 78.9 

Depth = 8 2.24 82.7 86.4 

Depth = 12 2.87 80.2 83.7 

Table 2. Effect of feature dimension on reconstruction results 

Feature Dimension PSNR↑ Flammable Material Recognition Rate ↑ Dynamic Occlusion Handling ↑ 

16 Dimensions 27.15 78.3 76.5 

32 Dimensions 28.53 83.5 83.2 

64 Dimensions 28.21 81.7 81.9 

Figure 4. Dynamic efficiency evaluation of personnel 

evacuation in disaster environments based on AI agent 

models 

To verify the effectiveness of the dynamic response 

mechanism in the virtual drill environment built in this paper, 

we conducted a simulation experiment on personnel 

evacuation in a disaster environment using an AI agent model, 

to evaluate the real-time efficiency of different evacuation 

paths. The experimental results are shown in Figure 4. The 

four evacuation flows exhibit significant dynamic 

characteristics: the main exit evacuation flow in the east zone 

quickly peaks at approximately 20 persons/min within the first 

50 minutes but sharply drops to below 11 persons/min after 

100 minutes, indicating that while the early capacity of this 

exit is strong, it is prone to bottlenecks; the emergency passage 

evacuation flow in the west zone shows a steady upward trend, 

gradually increasing from 10 persons/min to 23 persons/min, 

demonstrating its sustained reliability as a secondary route; the 

underground to upper evacuation flow fluctuates throughout 

the process, reflecting the complexity of vertical evacuation 

affected by building structure; while the cross-regional 

transfer flow remains inactive throughout the entire simulation 

period, reflecting the simulation model's decision-making 

ability to dynamically adjust paths according to environmental 

changes. 

To systematically evaluate the comprehensive performance 

of different modeling methods in virtual disaster drill 

scenarios, we designed a multidimensional evaluation system, 

including geometric accuracy, visual fidelity, semantic 

integrity, and reconstruction completeness, and conducted 

comparative experiments on a unified dataset. As shown in 

Figure 5, the proposed semantic-enhanced 3DGS method 

performs excellently in the overall modeling quality score: 

during the initial training phase, our method already achieves 

a comprehensive score of nearly 34, significantly higher than 

the 31 points for Point-Based Rendering and 29 points for 

Neural Feature Fields. As training progresses, our method 

reaches a stable peak score of 37 points after 15,000 iterations, 

while 3D-GS requires 25,000 iterations to reach 36 points, and 

the point-based rendering method ultimately only achieves 32 

points. This result proves that through the introduction of BSP 

tree implicit features and 3D mesh priors, our method achieves 

significant improvements in all dimensions of modeling 

quality while maintaining training efficiency. These 

experimental results fully validate the practical value of the 

research in virtual disaster drills. High-quality environment 

modeling is the foundation for the reliable operation of 

subsequent dynamic response mechanisms—a comprehensive 

score of 37 indicates that the reconstructed scene is not only 

visually realistic but also maintains a complete geometric 

structure and semantic information, which is crucial for the 

accuracy of disaster simulations. 

To more precisely evaluate the model's performance for this 

specific task, relevant experiments were set up in this paper. 

The data from Table 3 systematically verifies the significant 

advantages of the proposed method in the environmental 

simulation modeling for virtual disaster drills, from the 

perspectives of visual fidelity, geometric accuracy, and 

structural semantic integrity. In traditional image quality 

metrics, the proposed method leads comprehensively: with the 

highest values of PSNR 28.53 dB and SSIM 0.868, it indicates 

the optimal pixel-level color and structural similarity of the 

reconstructed scene. The lowest LPIPS of 0.231 demonstrates 

that the rendered results have the smallest perceptual 

difference from real images, effectively avoiding unnatural 

artifacts and distortions. This advantage ensures a high degree 

of visual immersion in the virtual drill environment, which is 

crucial for maintaining the participants' sense of presence and 

focus. However, for disaster drills, visual quality is just the 

foundation, and deeper requirements are geometric and 

physical accuracy. 

In terms of geometric accuracy and structural integrity, the 

proposed method provides a reliable digital foundation for 

physical simulations, which is core to supporting the "dynamic 

response mechanism." The proposed method significantly 
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outperforms all comparison models in geometric accuracy, 

being 3.2 percentage points higher than the next best model, 

3D-GS. This proves that by introducing BSP tree and 3D mesh 

priors, the proposed method can more accurately restore the 

3D geometric form of building structures, such as the precise 

dimensions of load-bearing columns, the slope and steps of 

stairs, and the flatness of walls. This millimeter-level 

geometric fidelity is an absolute prerequisite for subsequent 

precise physical calculations. The structural integrity score of 

86.4% is the key metric that most reflects the value of the 

proposed method. This score means the reconstructed model 

not only accurately reflects the visible surface but can also 

infer and complete the structural logic in accordance with the 

physical laws of the real world, such as wall continuity and the 

connection relationships between beams and columns. A 

model that scores high in "structural integrity" ensures that 

force transfer and structural damage in dynamic disaster 

simulations follow physical laws, rather than producing 

illogical "floating" or "fracturing," greatly improving the 

scientific and credible nature of disaster simulation results. 

Figure 5. Performance comparison of different modeling 

methods on the disaster scenario dataset 

Table 3. Building structural integrity assessment experimental results 

Model PSNR SSIM LPIPS Geometric Accuracy (%) Structural Integrity Score 

Neural Feature Fields 21.75 0.738 0.394 68.3 72.5 

Point-Based Rendering 26.36 0.815 0.283 75.6 78.9 

Semantic-NeRF 27.73 0.843 0.276 78.2 81.3 

3D-GS 27.94 0.854 0.248 79.5 83.7 

Proposed Method 28.53 0.868 0.231 82.7 86.4 

To verify the practicality and reliability of the reconstructed 

model in specific disaster scenarios, we conducted a 

specialized evaluation of key elements of indoor fire risks. The 

experimental data in Table 4 strongly demonstrates the 

excellent performance of the proposed method in supporting 

the dynamic response of virtual disaster drills, from both 

visual quality and disaster element analysis perspectives. In 

terms of basic visual quality, the proposed method maintains 

high fidelity in rendered images with PSNR of 27.77 dB and 

SSIM of 0.858, while its lowest LPIPS of 0.252 ensures 

realistic visual perception, providing participants with an 

immersive visual environment that is the foundation for 

maintaining their sense of presence. However, the core value 

of this experiment lies in the accurate extraction of key fire 

dynamics elements. In terms of flammable material 

recognition rate, the proposed method achieves 83.5%, 

significantly outperforming other models. This is due to the 

deep understanding of material properties enabled by the 

semantic enhancement mechanism. This ability allows the 

system to automatically and precisely label flammable 

materials such as wood, plastic, and textiles in the virtual 

environment, thus providing a crucial initial "fuel distribution 

map" for the AI agent model to simulate fire spread, bridging 

the gap from "visual representation" to "data-driven" fire 

evolution. More importantly, in terms of ventilation path 

reconstruction accuracy, the proposed method achieves an 

excellent performance of 85.7%. Ventilation conditions are 

key physical parameters determining the development of 

indoor fires, especially for extreme phenomena like 

"flashover" or "backdraft." The ability of the proposed method 

to accurately reconstruct these elements means that fire 

dynamic simulations based on this model can more 

realistically simulate smoke diffusion paths, air replenishment, 

and heat accumulation processes, significantly improving the 

physical credibility of the simulation results. 

Table 4. Indoor fire risk assessment experimental results 

Model PSNR SSIM LPIPS 
Flammable Material 

Recognition Rate (%) 

Ventilation Path Reconstruction 

Accuracy (%) 

Neural Feature Fields 24.43 0.767 0.356 65.8 70.2 

Point-Based Rendering 25.88 0.803 0.304 72.4 75.6 

Semantic-NeRF 26.35 0.825 0.282 76.1 78.9 

3D-GS 26.96 0.842 0.274 78.9 81.3 

Proposed Method 27.77 0.858 0.252 83.5 85.7 

Table 5. Evaluation of evacuation path planning support 

Model PSNR SSIM LPIPS Path Accessibility Analysis (%) Scene Coverage Rate (%) 

Neural Feature Fields 23.64 0.763 0.324 71.3 68.5 

Point-Based Rendering 24.94 0.796 0.306 78.2 75.9 

Semantic-NeRF 25.56 0.811 0.292 81.7 79.3 

3D-GS 25.99 0.834 0.274 83.5 82.1 

Proposed Method 26.26 0.846 0.265 86.9 84.7 

2556



To evaluate the support capability of the constructed virtual 

environment for emergency evacuation simulations, we 

conducted a special experiment on evacuation path planning 

support. The data in Table 5 shows that the proposed method 

significantly outperforms the comparison models in two key 

functional indicators: path accessibility analysis (86.9%) and 

scene coverage rate (84.7%), fully demonstrating its unique 

value in supporting intelligent evacuation drills. The higher 

path accessibility indicates that the reconstructed environment 

can accurately maintain the geometric structure and spatial 

relationship of key passage elements such as doors, corridors, 

and stairs, providing realistic and reliable physical constraints 

for path planning algorithms. The excellent scene coverage 

rate ensures that all potential evacuation paths are fully 

reproduced in the virtual environment, avoiding evacuation 

simulation failure due to reconstruction omissions. It is 

particularly worth noting that while maintaining the best visual 

quality with PSNR 26.26 dB and SSIM 0.846, the proposed 

method maximizes functional indicator improvements. This 

balanced advantage is crucial for virtual drills—it ensures both 

visual immersion during the drill and the scientific reliability 

of the evacuation simulation results. 

To verify the stability and detail performance of the 

reconstructed model in the dynamic disaster evolution process, 

we set up a special evaluation experiment for dynamic 

occlusion handling and multi-scale detail retention. The 

experimental results in Table 6 show that the proposed method 

exhibits significant advantages in both key indicators: 

dynamic occlusion handling (83.2%) and multi-scale detail 

retention (86.7%), fully demonstrating its adaptability in 

complex disaster environments. The high score for dynamic 

occlusion handling indicates that when the scene is obstructed 

by new obstacles due to disasters such as explosions or 

collapses, the proposed method can maintain reconstruction 

stability and avoid scene tearing or distortion, which is crucial 

for ongoing disaster simulation. The excellent multi-scale 

detail retention capability ensures that the model can 

accurately reconstruct large building structures while also 

preserving small but critical safety features like fire hydrants, 

door handles, and vents, which often play a decisive role in 

emergency decision-making. From a technical perspective, the 

proposed method achieves a leading advantage in functional 

indicators while maintaining the best visual quality with PSNR 

30.37 dB and SSIM 0.918. This reflects the comprehensive 

value of the semantic-enhanced 3D Gaussian splashing 

technique. The higher dynamic occlusion handling capability 

comes from the BSP tree's hierarchical feature deep 

understanding of scene structure, enabling the system to 

reasonably infer the geometry and appearance of occluded 

areas. The excellent multi-scale detail retention is due to the 

geometric constraints provided by the 3D mesh prior, avoiding 

the common issue of detail loss seen in previous methods. 

These features ensure that the reconstructed environment 

model can effectively support the "dynamic response 

mechanism" with real-time interaction requirements. Whether 

it is the scene change caused by a disaster or the intervention 

behavior of the drill participants, the system can accurately 

respond while maintaining scene consistency, thus providing 

a stable and refined digital twin environment for virtual 

disaster drills, strongly supporting the effective transition from 

static reconstruction to dynamic simulation in the complete 

technical chain of this research. 

Table 6. Indoor fire risk assessment experimental results 

Model PSNR SSIM LPIPS 
Dynamic Occlusion 

Handling (%) 

Multi-Scale Detail Retention 

(%) 

Neural Feature Fields 26.85 0.864 0.248 63.7 67.8 

Point-Based Rendering 28.13 0.886 0.227 72.4 75.3 

Semantic-NeRF 28.54 0.897 0.225 76.8 78.9 

3D-GS 29.98 0.913 0.214 79.5 82.4 

Proposed Method 30.37 0.918 0.207 83.2 86.7 

5. CONCLUSION

This paper systematically studied "Image-Driven Multi-

View Environmental Simulation Modeling and Dynamic 

Response Mechanism for Virtual Disaster Drills" and 

successfully built a complete technical system from real scene 

perception to intelligent disaster simulation. In environmental 

simulation modeling, an innovative semantic-enhanced 3D 

Gaussian splashing method was proposed, significantly 

improving the geometric accuracy, semantic integrity, and 

structural rationality of the reconstructed model. This method 

addressed the difficulty of balancing visual quality and 

physical consistency in traditional methods. In the dynamic 

response mechanism, a simulation framework coupled with AI 

agent models and physics engines was designed. By training a 

lightweight GNN network to replace computationally 

expensive CFD simulations, real-time physical simulations of 

disasters such as fire and flood were achieved, while ensuring 

intelligent interaction with virtual environments and 

participant behaviors. The main value of this research lies in 

breaking through the technical bottleneck of "inaccurate 

reconstruction and unrealistic simulation" in virtual drills, 

providing a high-fidelity, interactive scientific experimental 

platform for emergency command decision-making and rescue 

training. 

However, this research still has certain limitations. First, the 

current system's performance depends on the quality and 

coverage of the input images, and the robustness of 

reconstruction under extreme lighting conditions or severe 

occlusion scenarios needs further improvement. Second, the 

training of the AI agent model requires a large amount of high-

fidelity physical simulation data, and its generalization ability 

in large-scale complex scenes still needs to be verified. 

Additionally, the dynamic response mechanism has not fully 

considered the complexity of multi-disaster coupling 

evolution. Future research directions will focus on the 

following aspects: First, exploring multi-modal data fusion 

mechanisms, combining LiDAR, infrared sensors, and other 

multi-source data to improve scene perception completeness; 

second, developing adaptive computational frameworks to 

achieve real-time simulation of ultra-large-scale scenes 

through dynamic load balancing technology; third, deepening 

intelligent agent behavior models, introducing large language 

models to enhance the cognitive decision-making ability of 
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virtual characters, and ultimately building a more forward-

looking next-generation intelligent emergency drill system, 

providing stronger digital support for urban public safety. 
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