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This paper presents an automated system named GWOESCA-SVM, which integrates the
hybrid Grey Wolf Optimizer-Enhanced Sine Cosine Algorithm (GWOESCA) with
Support Vector Machine (SVM) to differentiate between abnormal and healthy speech
samples. First, the extracted features from speech and Electroglottography (EGG) signals
are integrated. Second, GWOESCA was employed to choose relevant features, reducing
dimensionality and boosting system performance. Third, the selected features were
inputted into the GWOESCA-SVM framework to discern between healthy and
pathological voice samples. The effectiveness of speech and EGG signals in classifying
voice pathology, specifically using voice samples of /a/ for both men and women, was

investigated. The GWOESCA-SVM obtains a maximum classification accuracy of 92.75%
for male data, 89.80% for female data and 96.08% for merged data, enhancing robustness
in detecting voice pathologies. A comparative analysis was conducted to validate the
effectiveness of GWOESCA-SVM compared with previous approaches.

1. INTRODUCTION

Speech signals play a pivotal role in human
communication, serving as the primary means of conveying
information. Nevertheless, voice disorders present a barrier to
effective social interaction among individuals. Voice issues
are becoming more common everywhere in the world, with
approximately 18 million people in India reporting voice
problems each year [1]. One in every 12 children has speech,
voice, and language issues, according to the NIDCD [2].
While the precise causes of voice problems remain elusive,
factors such as vocal cord shutting, vocal cord paralysis,
swelling on the vocal cords, brain injury, drug abuse, and
neurological issues are recognized as significant contributors.
[3, 4]. Further to this, some individual may encounter
temporary voice problems due to factors such as tonsils,
respiratory infections, allergies, and adenoids.

Professionals in teaching, singing, acting and law,
extensively use their voices and they have a higher chance of
experiencing voice issues. Around 25% of workers
worldwide are impacted by voice issues [5]. People with
voice pathology may encounter feelings of depression,
anxiety and lonely, leading to various social and personal
complications. There are invasive and non-invasive methods
of detecting voice pathology. Laryngoscopy, stroboscope and
laryngeal electromyography are a few invasive techniques
that need skilled personnel and specific tools to provide an
accurate diagnosis [6, 7]. These surgical procedures can be
traumatic and painful for patients. Therefore, the challenges
are addressed using voice signal processing techniques.
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Recently, strategies for addressing vocal pathology
identification challenges have incorporated Machine
Learning (ML), Deep Learning (DL), and their

amalgamations [8-12]. In ML techniques, patient speech
samples are obtained, analyzed and characteristics are
retrieved. Based on the features, voice signals are categorized
into healthy and pathological voices. There are problems in
ML methods such as selecting a suitable feature selection
algorithm, classifier and parameter optimization. DL methods
automatically extract features for a better classification rate.
However, DL methods must be trained by large number of
samples to achieve better result. To overcome these
drawbacks networks use metaheuristic algorithms for
parameter optimization and improved performance.

This focuses on developing an automated voice pathology
technique by integrating HNIA and SVM. In the proposed
framework, features extracted from speech and
Electroglottography (EGG) signals are utilized to distinguish
between healthy and pathological voice samples, the
contributions are as follows:

(1) A HNIA is proposed by combining GWO and
GWOESCA for feature selection and SVM parameter
optimization.

(2) An automated voice pathology detection system,
named GWOESCA-SVM, by integrating HNIA and ML is
introduced.

(3) The introduced framework can compute the salient
features from speech and EGG signals, thus preserving
pathological data within the datasets. SVD is used in several
experiments to verify the developed system's efficacy.
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(4) To evaluate and correlate each signal's contribution the
new developed method uses speech and EGG signals
individually.

2. REVIEW OF PAST APPROACHES

This section presents the methodologies used in the
identification of speech pathology focusing on ML and DL
techniques. The common voice sample features utilized for
voice pathology detection are MFCC [5], Jitter, LPCC [7],
glottal signal features [8], shimmer, Wavelet entropy [9] and
HNR. For categorization, KNN [6], RF [9], SVM [10], DL
[11] and MLP [13] models are preferred.

Martinez et al. [14] built a voice pathology detection
system using GMM. Four voice attributes such as MFCC,
HNR, NNE and GNER were used as features. This system
yielded an accuracy of 67%. El Emary et al. [15] focused on
the categorization of voice samples into healthy and
pathological samples based on MFCC, jitter, and shimmer.
The GMM was employed to identify affected voices in a
small subset of the SVD database. This subset consisted of 38
healthy and 63 pathological voice samples. This approach
reported an accuracy of 82.37%.

In the study conducted by Souissi and Cherif [16], to
categorize speech samples into healthy and pathology, the

SVM classifier was used and MFCC was used as a feature,
while LDA served as the dimension reduction tool. A total of
40 samples of healthy voices and 70 pathological sounds
were obtained from the SVD database to evaluate the model.
This approach achieved an accuracy of 86%. Amara et al.
[17] reported a high accuracy of 95.5% by applying ML
classifier to analyse specific /a/ vowel sound. The dataset
used for analysis comprised of 45 pathological and 55
healthy voice samples. The above methods used only a small
number of speech samples for evaluation. NBN was
employed to identify pathological voice samples using
MFCC, jitter, shimmer and F [18]. The results showed a
highest classification rate of 90%.

Verde et al. [19] selected four features namely MFCC,
HNR, jitter and shimmer for voice pathology detection.
These features were calculated for each sample, consisting of
685 healthy and 685 pathological voice samples and
subsequently used in four different classifiers to assess their
classification rate. With a classification accuracy of 85.77%,
the SVM classifier had the greatest performance. Lee [13]
presented ML models, MFCC, LPCC, NS, and NK for
identification of abnormal voices using MLP and CNN. A
total of 518 samples consisted of 259 healthy and 259
pathological were obtained, from the SVD database for
experimentation.

Table 1. (a) Overview of recent studies on SVD database (b) Strengths and limitations of existing approaches pertaining to voice

pathology detection
(@
Authors Year Features Classifier Accuracy (%) S\zl;s:jg Limitations
Martinez et al 2012 HNR, MFCC, GMM 67 /a/ at normal Lower classification
[14] NNR, GNER pitch rate
El Emary et al. 2014 MEFCC, jitter, GMM 82.37 /a/ at normal Small data set was
[15] shimmer pitch used
Souissi and 2015 Temporal SVM 86 /a/ at normal Needs parameter
Cherif [16] derivatives pitch optimization
Amaraetal. [17] 2016 MFCC GMM 95.5 /a/ atnormal  Tested on small data
pitch
Dahmani and 2017 MEFCC, jitter, NBN 90 /a/ at normal Only male samples
Guerti [18] shimmer, F pitch were used
Verde etal. [19] 2018 MFCC, HNR, SVM 85.77 /a/ at normal Only speech signals
jitter, shimmer pitch were analysed
Lee [13] 2021 MFCC, LPCC, CNN 82.77 /a/ at normal More training time
NS, NK pitch
Omeroglu et al. 2022 MFCC, LPCC, SVM 90.10 /a/ at normal Need parameter
[20] pitch, slope pitch tuning
Ksibi et al. [21] 2023 MFCC, ZCR, CNN-RNN 88.83 /a/ at normal More training time
RMSE pitch
(b)
Approach / Study Key Features / Classifier Strengths Limitations

Martinez et al. [14],
El Emary et al. [15]

MFCC, HNR, GMM

Souissi and Cherif MFCC + Temporal features,
[16], Verde et al. [19] SVM

Amara et al. [17], MEFCC, jitter, shimmer; GMM,
Dahmani and Guerti NBN

[18]
Lee [13], Xie et al.
[22], Islam et al. [23]
Omeroglu et al. [20],
Ksibi et al. [21]
Proposed:
GWOESCA-SVM

MFCC, CNN / DNN
CNN-RNN; combined features

MFCC, spectral, ZCR, STE +
EGG; Hybrid optimization

Simple models; low computational cost

Moderate accuracy; good generalization

on small datasets

High accuracy in limited settings;
effective for vowel /a/

Learns complex representations; DL
handles nonlinearity well
Better modeling with temporal fusion;
moderate gains
Integrates speech + EGG signals; auto-
optimized feature selection + SVM tuning;

Low accuracy (67-82%); limited to
speech features; no feature
optimization
Manual parameter tuning; no hybrid
signal use; dimensionality not reduced
Small datasets; only male data or
speech-only signals considered

Requires large datasets; high training
time; lacks interpretability
Still lacks optimization; performance
varies; not tailored to EGG data
Slightly increased algorithmic
complexity; reliant on signal quality

high accuracy (up to 96.08%)
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Another very recent research work [20] proved the
usefulness of merged features to detect pathological voices.
The authors combined speech and EGG signal elements to
improve accuracy in comparison to prior methods. SVM was
trained using features extracted from both speech and
Electroglottography (EGG), while AlexNet was employed for
further analysis. The results indicated that employing the
combined features as input yielded a higher classification rate
in comparison to solely utilizing EGG or speech signals.
Ksibi et al. [21] created for precise identification of abnormal
speech on the SVD database, a deep learning model based on
CNN-RNN. Signal attributes, MFCC, ZCR, and RMSE were
extracted from the input voice samples and then the features
were fed as input to the CNN-RNN to perform classification.
This approach attained classification rate of 88.83%. Ding et
al. [24] created a model for voice pathology detection using
ResNet. In this model, features were computed from voice
signals, and then fed to deep connected attention-ResNet to
predict voice pathology. Table 1(a) provides a summary of
recent works on SVD database.

To synthesize the strengths and limitations of the major
existing works in the literature, we present a comparative
summary in Table 1(b). This highlights the need for an

integrated and optimized approach, which our proposed
GWOESCA-SVM aims to address effectively.

3. PROPOSED VOICE PATHOLOGY DETECTION
SYSTEM

An optimized framework is created by ML and
GWOESCA to detect voice pathology. Figure 1 illustrates the
overall operations of the proposed system and the stages are
listed below.

Data collection: Involves collecting voice samples, from
the SVD database, including pathological cases.

Feature extraction: Extracted from the speech and EGG
signals.

Feature fusion: To consolidate a cohesive feature matrix,
the extracted features are amalgamated.

Feature selection: GWOESCA is employed to choose the
most effective features.

Classification: The classifier receives its input from the
chosen features. To distinguish healthy and pathological
speech  samples, an improved SVM is used.

Training Phase

Training Phase

9 E —
*7 Data Collection —+
<
Training Data Test Data

¥

¥

3

Feature Speech Signal EEG Signal Speech Signal EEG Signal
Extraction Features Features Features Features
[ Feature Fusion > ? < > @X) < ]
(" ™
Feature HNIA h 4
Selection Selected
Phase Selected Features
Features )
¥ ¥
- . X N
Classifier - Trained
Model GWOESCA-SVM "] Classifier
Training + +
Phase Trained Healthy or
Classifier Pathelogy

Figure 1. Pipeline of the developed framework for GWOESCA-SVM system

Table 2. Dataset information of male and female voice samples

Analysis Quantity of Voice Samples
Male Female
Healthy 250 429
Functional dysphonia 45 79
Granuloma 1 1
Hyperfunctional 52 80
Hypofunctional dysphonia 9 5
Laryngitis 62 61
Leucoplakia 24 44
Pathology Psychogene dysphonia 15 48
Rhinkeodem 7 43
Rhinophonie aperta 11 20
Stim polyp 21 31
Voxsenilis 13 25
Total 510 866
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Figure 2. Male healthy and pathological voice signals (a) Speech signals and (b) EGG signals
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Figure 3. Female healthy and pathological voice signals (a) Speech signals and (b) EGG signals [25]

3.1 Data gathering

This study uses voice samples from the SVD database are
used for experimentation [26]. The voice samples were
recorded for three vowel sounds, namely /a/, /i/, /u/, at

several pitch levels including normal, low, high and low-high.

The duration of the samples ranges from 1 to 3 seconds, with
a sampling rate of 50 kHz and a resolution of 16 bits. The
present study included the utilization of a sustained vowel
sound, namely the phoneme /a/, produced at a typical pitch
level. During /a/ sound creation, a person may keep a
consistent frequency and loudness [13, 20]. The data consists
of 250 healthy and 260 pathological male samples of /a/ and
429 healthy and 437 pathological female samples of /a/
(Table 2). Figure 2 and Figure 3 show sample speech and
EGG signals for both male and female, respectively. For
enhanced clarity, signals are segmented into intervals of 0.1
seconds. The figures show notable differences between male
and female speech signals, as well as in the corresponding
EGG signals and effectiveness in voice pathology detection.
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3.2 Feature extraction

Features namely MFCC, pitch, ZCR, HNR, STE and
spectral features like Spectral centroid (SE), spectral kurtosis,
spectral skewness and spectral slope are separately derived
from both speech and EGG signals.

3.2.1 Mel-frequency Cepstral Coefficients
MFCCs are widely employed in speech recognition owing
to their capacity to convey crucial information about the
signal's structure [14, 16, 20, 21]. The MFCCs are standard
technique for extracting features from speech signal. To
compute MFCCS from the audio signals, several
preprocessing steps are typically used. Primarily, audio signal
a(n) is converted into several frames, ai(n), where i shows the
number of frames. The Discrete Fourier transform of the
frame is represented in Eq. (1):
Ai(k) = T35 ai(n) h(n)e~/2mkn/M

1<k<k ()



where, Ai(k) - DFT of the i frame, h(n)- hamming window
of M sample length, k-DFT length. The periodogram
estimate of the power spectrum, pi(k) of ai(n) can be defined
by Eq. (2):
1
Pi(k) = —A4;()|? 2)

The Mel-scale filter bank is computed. To derive MFCCs,
the logarithmic Mel spectrogram is inverted back into the
time domain. The Discrete Cosine Transform is employed to

convert them back into the time domain, effectively
removing pitch contribution.

3.2.2 Pitch

Pitch, which reflects the rate at which vocal cords vibrate
while producing voiced sounds, establishes the fundamental
frequency of the voiced signal. Various approaches exist for
calculating pitch, including spectral-based methods [27] and
autocorrelation-based methods [20]. Here, pitch is estimated
using normalized correlation function with a window length
of 53ms.

3.2.3 Spectral centroid

Spectral centroid represents the weighted mean of the
signal frequency components, where each frequency is
weighted by its magnitude. It can be represented as:

T f()x(n)

Centroid = ST ()

3

where, x(n)-magnitude of the Fourier transform at bin
number (n), f-center frequency of the bin and n-bin number.

3.2.4 Spectral entropy

Spectral entropy measures the spectral power distribution.
It can be computed in Eq. (4):
Entropy = — Y355 x(n)log,x(n) “)

3.2.5 Spectral skewness

Spectral skewness measures symmetry around the centroid.

Spectral skewness of the audio signal can be expressed in Eq.

)

SM-L(f(n)—centroid)3x(n)
(spread)3 TM-1 x(n)
e f(mx(n)
Ene x(n)
M—1 _ 2
Spread _ \/ano (f(n)—centroid)?x(n)

Tz x(n)

Skewness =

centroid =

&)

3.2.6 Spectral kurtosis
Spectral kurtosis measures the flatness of the spectrum
around its centroid. It is defined by Eq. (6):

M-L(f(n)—centroid)*x(n)
(spread)* ¥M-L x(n)

Kurtosis =

Q)

3.2.7 Zero crossing rate
The ZCR of an audio signal can be computed by Eq. (7)
and Eq. (8):

ZCR = =34 [sgn(am) - sgn(aa - D) (7)
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sgn(a () = {3 S0=0

3.2.8 Spectral slope
Spectral slope estimates the amount of decrease of the
spectrum and measured by Eq. (9):

®)

SR () - ) e () —pis)
Z%Qol(f(n)—uf)z

Slope = ©)

where, ur -Mean frequency, pi;-Mean spectral value

3.2.9 Harmonic noise ratio
The HNR is determined as the maximum of the

normalized autocorrelation within given range. It is
represented by Eq. (10):
HNR = max(autocorrelation) (10)

3.2.10 Short time energy
Mathematically, the STE can be expressed by Eq. (11):

STE = ¥M_,[x(m)w(n — m)]? (11)
where, x-signal, w(n-m)-window
3.3 Feature fusion
Speech features, denoted as SF = {x1,x2,x3......... xP} and

EGG features, represented as EF={yl,yl,y3,....yR}, may
have different lengths. To integrate features extracted from
speech and EGG signals, we employed an early fusion
strategy. Feature vectors were first standardized and, if
unequal length, zero-padding was applied to the shorter
vector to match dimensions. The speech and EGG vectors
were then concatenated to form a combined feature matrix,
denoted as FF = [SF || EF]. This fused feature representation
was used as input for feature selection and classification.

In the current implementation, simple early fusion
technique is adopted, where the extracted features from
speech and EGG signals were concatenated to form a unified
feature matrix. This was chosen for its computational
simplicity and compatibility with the GWOESCA-based
feature selection framework. Furthermore, such direct
concatenation may lead to feature redundancy or imbalanced
contribution from each modality. To mitigate this, (a) applied
feature normalization and dimensional alignment prior to
concatenation, and (b) more importantly, the GWOESCA
optimization process is responsible for selecting only the
most discriminative features from the combined pool. As a
result, redundant or less informative features were
automatically excluded during the optimization phase.

Although alternative fusion strategies such as weighted
fusion or decision-level fusion may offer more explicit
control over the relative contribution of each modality, these
approaches were not adopted in the current study for well-
considered reasons. Weighted fusion typically requires the
assignment or learning of weight coefficients for each feature
stream (e.g., speech vs. EGG), which can introduce
additional hyperparameters, require larger datasets for stable
learning, and pose a risk of overfitting in high-dimensional
settings with moderate sample sizes. In contrast, proposed
method employs a straightforward early fusion strategy
through  feature-level  concatenation, followed by



optimization using the GWOESCA algorithm, which serves a
dual purpose: it selects only the most discriminative features
and eliminates redundant or weakly informative ones. This
approach maintains computational efficiency, simplifies the
model pipeline, and is well-suited to the hybrid structure of
our dataset.

3.4 Feature selection using GWOESCA

In this study, the proposed hybrid optimization algorithm,
GWOESCA, employs a population of 30 agents and allows
up to 500 iterations. In GWO the parameter ‘a’ linearly
reduced from 2 to O across iterations to balance between
exploration and exploitation. Coefficients A and C are
randomly initialized in the range [0, 1]. In ESCA, a control

parameter D is introduced to enhance global search capability.

Classification accuracy is used as the fitness function and is

evaluated using 10-fold cross-validation during each iteration.

To minimize dimensionality and enhance the classification
rate, a feature selection algorithm is applied to identify the
optimal informative features from the combined feature set.
Here, GWOESCA is suggested for selecting the features
which have high discriminative power between healthy and
pathological voice samples. The GWO component of the
proposed method is directly inspired by the social hierarchy
and hunting behaviors observed in grey wolfs. In nature,
grey wolves exhibit a structured social hierarchy, with alpha,
beta, delta and omega individuals. The hunting behavior of
grey wolves, including the cooperative encircling and
attacking the prey, serves as a model for the optimization
process for GWO [28]. The SCA aspect of the method is
rooted in the mathematical principles of sine and cosine
functions, which have cyclic patterns like many natural
phenomena. The proposed GWOESCA combines the
hierarchical leadership structure of GWO with the cyclic
exploration patterns of SCA. This hybridization enables a
balance between exploration and exploitation, similar to the
adaptive strategies employed by natural systems to thrive in
changing environments. By synergizing these two nature-
inspired components, the proposed algorithm endeavors to
attain resilient and effective optimization performance.

3.4.1 Social hierarchy

In the establishment of the social hierarchy, grey wolves
maintain a prominent position in the food chain and adhere to
defined dominance structure. Within this structure, the most
optimal solution is designated as the leader, alpha (o),
followed by subsequent optimal solutions labeled as beta (J)

and delta (8). Different methods are categorized as omega ().

3.4.2 Encircling the prey

During the hunting process, grey wolf optimizer [28]
adopts a circular formation around the prey. The encircling
behavior of each hunt agent is represented by Eqs. (12)-(25).

D =|C.W,(t) - W(t)| (12)
W(t+1)=W,(t)—AD (13)

The vectors 4 and C can be computed as,
A=2.ar1-ad (14)
¢ =212 (15)
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where, t-current iteration, W@—position vector of the prey, W-

position of a grey wolf, and ff, C-coefficients vectors, 1, 2
are random values [0, 1] and a is a linear function of the
number of iterations, decreasing from 2 to 0 over time.

Choose the top hunt agent Wa, the second-best hunt agent Wﬁ,
and the third-best hunt agent Wg.

13

D, = |C,. W, — W| (16)
Dp=|C, W —W (17)
Ds = |Cs. Wy — W (18)
W, = W, — 4,.(D,) (19)
W, = Wy — 4,.(Dp) (20)
Wy = Wy — A;.(Ds) 1)
Update position of current hunt agent,
Wt +1) = D (22)
Hunting the prey involves both exploration and

exploitation. The exploration phase entails searching the prey
within a range of [-2a, 2a], while the exploitation phase
involves attacking the prey when a condition is met. When e

< 1, the wolves are compelled to initiate the attack.
Conversely, when 2> 1, the wolves are directed to move

away from the prey.

SCA, classified as a type of NIA algorithm [29], leverages
sine and cosine formulas to enable both exploration and
exploitation in optimization problems. However, it has a
limitation of poor global search capability. To solve such an
issue, ESCA is proposed. In ESCA, the exploration process is
improved by introducing an additional parameter, D in the
position formula,

>

_ {D.rand() x sin(rand()) x |¢; X ¥, — ¥| rand < 0.5 3
7 D.rand() X cos(rand()) x |&, x Z, — | rand = 0.5 (23)
el e2
D=<1—(§) ><1+e2(§) ) (24)
W, = W,—4,.(d,) (25)

To maximize fitness function, GWOESCA 1is used for
feature selection as well as SVM parameter optimization.
Classification accuracy is used as fitness function.
Throughout training, the model is refined on the available
date through the use of the specified fitness function. Based
on the input features it learns to make predictions and the
corresponding labels in the training set. After each training
iteration, the model’s performance is evaluated on the
validation set using the classification accuracy. As a
preventive measure overfitting is monitored early stopping is
ensured. Early stopping entails halting the training process
once the performance on the validation set starts to
deteriorate, even if the performance on the training data
continues to advance.

The algorithm, depicted in Algorithm 1, describes the



pseudocode, that is the step-by-step procedure used to
optimize both feature selection and SVM parameters using
the hybrid GWOESCA approach:

Initialization: A population of search agents (grey wolves)
is initialized with random positions representing potential
solutions (i.e., feature subsets + SVM parameters).

Fitness Evaluation: Each agent’s fitness is computed
using classification accuracy via 10-fold cross-validation on
the selected features.

GWO Updates: The agents positions are adjusted
according to the leadership hierarchy (a, B, 6 wolves) using
Grey Wolf Optimizer equations to mimic the social
behaviour of wolves during hunting.

ESCA Refinement: Each solution is further refined using
sine and cosine updates to enhance global exploration and
avoid premature convergence.

Best Solution Selection: The solution yielding the highest
classification accuracy is selected, and the corresponding
features and SVM parameters are retained.

Final Model Training: The final SVM classifier is trained
using the optimal features and parameters for voice
pathology classification.

Algorithm 1: GWOESCA-SVM Optimization
Framework

Input: Combined feature matrix FF = [SF || EF], labels Y
Output: Optimized SVM classifier

1. Initialize: population of search agents (wolves), max_iter,
parameters a, A, C, D
2. While (t < max_iter):

a. Evaluate fitness (classification accuracy via 10-fold CV) for
each agent

b. Identify a (best), B (second-best), & (third-best) solutions

c. Update positions using GWO equations (Eqs. 12-22)

d. Apply ESCA-based update using sine-cosine perturbations
(Egs. (23-25))

e. Update best fitness and store corresponding features and SVM
parameters
3. Train final SVM on selected features with optimized parameters
4. Return trained classifier

3.5 Classification

Due to the SVM classifier's high generalization abilities,
the chosen features are given as input for classification tasks
[30]. To identify the speech samples, the SVM with Radial
basis kernel function is used. The SVM has two parameters,
namely regularization parameter, C and gamma. These two
parameters are usually fixed via experimentation, which can
be time-consuming and may negatively impact the
classifier’s performance. To overcome this issue, the SVM
classifier's parameters are optimized using GWOESCA.

4. SIMULATION RESULTS
4.1 Experimental setup

Using MATLAB 2022a platform on an Intel Core i5 CPU,
2.9GHz, 16GB RAM the entire system is implemented. In
this investigation, an automated GWOESCA-SVM system is
used to distinguish between healthy and pathological voice
samples based on merged features from speech and EGG
signals, the parameters are listed below:
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GWOESCA Parameters are as follows:
e Population size: 30 search agents

Maximum iterations: 500

Exploration coefficient (a), linearly decreased from 2 to
0 over iterations (as per standard GWO design)

Random coefficients (A and C) are drawn from uniform
distribution in [0, 1]

Sine/Cosine diversity control (D) is adaptively updated
to enhance search in ESCA phase

Fitness function: Classification accuracy (evaluated
through 10-fold cross-validation)

SVM Tuning Process — parameters are as follows:

o Kernel used is Radial Basis Function (RBF)

e Hyperparameters optimized using Regularization

parameter (C) and Kernel parameter gamma

e Search range: C € [0.01, 100] and gamma € [0.0001, 1]

e These were jointly optimized along with the feature

subset selection during the GWOESCA iterations.

It is important to note that no data augmentation
techniques were applied during this study. As the proposed
work relies on a SVM optimized through feature selection,
the model architecture does not require the volume of
training data typically associated with deep learning models.
The feature optimization performed via GWOESCA
mitigates overfitting by selecting highly discriminative
features from a moderate-sized dataset.

Table 3. Performance metrics

Measures Equation
Classificati - TPHTN
assification accuracy = CPTINTFPIFN
Specificity SP = TNIFP
Recall =
TP+FN
Precision =
PR
F1-score F1=2X iR
GM GM =VSPXR
MCR MCR=1-A

4.2 Evaluation metrics

To evaluate the classification performance, 10-fold cross-
validation is employed, wherein the data is divided into 10
smaller sets. Nine sets are utilized for training the system,
leaving the tenth set exclusively for testing purposes. Each
set takes turns as the testing set, and the process is repeated
ten times. As a result, the system’s performance is evaluated
based on the average performance obtained over the 10
iterations. The utilization of cross-fold validation effectively
prevents the occurrence of data leakage through the
experimental procedure, ensuring the reliability of results.
The metrics used for assessment are listed in Table 3. True
positive samples are those with pathology, whereas True
negative samples are those without pathology.

4.3 Results and discussion

In the developed system, feature selection is conducted to
diminish the quantity of features while preserving maximum
information within the dataset, where GWOESCA is
suggested for selecting pertinent features. The simulation
parameters of GWOESCA are as follows: number of search



agents is set to 30, maximum number of iterations is set at
500 and fitness function used is classification accuracy.
Additionally, GWOESCA is used for tuning the parameters
of SVM. In optimized SVM parameters, ¢ is 0.3 and gamma
is 0.001. The healthy and pathological voice signals for male
and female at vowel /a/ are more clearly seen in Figure 4 by
showing a box plot of a few selected characteristics.
Effectiveness of the system is analysed in three cases:
Case 1: Classify the data using speech signal features
Case 2: Categorize the data using EGG signal features and
Case 3: Data classification using combined features

(Speech + EGG)

The performance metrics of introduced system (Table 3)
are calculated and reported in Table 4. In Table 4, first row
consisting of 43-dimensional speech features are extracted
from the male and female samples. Second row has 43-
dimensional EGG features computed from the male and
female samples. Third row features are created by adding
speech and EGG signals features and it has 48-dimensions.
Features are separately computed for male and female
samples.
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Figure 4. Distribution of selected features

4.3.1 Analysis based on speech features

For males, the classification accuracy was 81.43%, with
specificity, recall, precision, GM and Fl-score ranging
between 81.60% to 84.64%. For females, the accuracy was
slightly lower at 78.82% with similar performance metrics.
When considering both genders, the classifier achieved
higher performance with an accuracy of 88.82%, indicating a
slight improvement across all metrics compared to individual
gender-based classification.

4.3.2 Analysis based on EGG features

The classification performance using EGG features was
slightly lower compared to speech features. For males, the
accuracy was 74.90%, and for females, it was 70.78%, both
exhibiting similar trends in other metrics. When considering
both genders, the accuracy improved to 84.71%, indicating
better performance in gender-agnostic classification
compared to individual gender-based classification.

4.3.3 Analysis based on combined features

Combined speech and EGG features resulted in
significantly improved classification results. The result
analysis indicated that combining both speech and EGG
features resulted in superior classification performance,
especially when considering both genders simultaneously,
highlighting the importance of feature fusion for effective
voice pathology detection. For males, the accuracy surged to
92.75% with excellent performance across all metrics.
Similarly, for females, the accuracy increased to 89.80% with
notable improvements in other performance indicators. The
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classifier achieved remarkable accuracy of 96.08% when
considering both genders, with excellent performance across
all metrics, indicating the performance of the combined
feature set in gender-agnostic classification.

The classifier performed well in detecting voice pathology
disorders, showing high accuracy, specificity, recall,
precision, and Fl-score. These findings suggested that
integrating multiple features can significantly enhance the
accuracy and reliability of voice pathology detection. The
classification model's consistent low MCR across all feature
types underscored its robustness. Moreover, the utilization of
GWOESCA-SVM demonstrated its efficacy in optimizing
classifier performance across different feature sets and
gender categories.

4.4 Performance comparison with standard SVM

To confirm the developed characteristics of GWOESCA, a
typical SVM is used to compare the system's classification
effectiveness. The results are shown in Table 5 without
feature selection and parameter tuning.

4.4.1 Speech features

For males, classification accuracy was 79.22%, with
moderate specificity, recall, precision, GM, Fl-score and
MCR. For females, the accuracy was slightly lower
compared to males, with similar performance in specificity,
recall, precision, GM, F1-score and MCR. Combined features
demonstrated higher accuracy compared to individual
genders, indicating a potential synergistic effect.



Table 4. Classification outcomes obtained by different features and GWOESCA-SVM focused on gender and individual features

Features Type Accuracy (%) Specificity (%) Recall (%) Precision (%) GM (%) Fl-score (%) MCR
Male 83.14 81.60 84.62 82.71 83.09 83.65 0.17
Speech Female 78.82 76.80 80.77 78.36 78.76 79.55 0.21
Male and Female 88.82 89.20 88.46 89.49 88.83 88.97 0.11
Male 74.90 72.80 76.92 74.63 74.83 75.76 0.25
EGG Female 70.78 68.40 73.08 70.63 70.70 71.83 0.29
Male and Female 84.71 88.80 80.77 88.24 84.69 84.34 0.15
Male 92.75 92.40 93.08 92.72 92.74 92.90 0.07
Combined Female 89.80 89.20 90.38 89.69 89.79 90.04 0.10
Male and Female 96.08 96.00 96.15 96.15 96.08 96.15 0.04

Table 5. Performance of the developed system without feature selection and parameter optimization

Features Type Accuracy (%) Specificity (%) Recall (%) Precision (%) GM (%) F1-Score (%) MCR
Male 79.22 77.20 81.15 78.73 79.15 79.92 0.21
Speech Female 74.71 72.40 76.92 74.35 74.63 75.61 0.25
Male and Female 84.35 84.08 84.62 84.68 84.35 84.65 0.16
Male 71.18 69.20 73.08 71.16 71.11 72.11 0.29
EGG Female 66.75 64.16 69.23 66.77 66.65 67.98 0.33
Male and Female 80.78 80.40 81.15 81.15 80.78 81.15 0.19
Male 83.92 77.60 90.00 80.69 83.57 85.09 0.16
Combined Female 81.96 82.00 81.92 82.56 81.96 82.24 0.18
Male and Female 89.22 88.00 90.38 88.68 89.18 89.52 0.11

4.4.2 EGQG features and ML has been demonstrated to yield superior results,

For males, the system attained an accuracy of 71.18%,
with specificity and recall values around 69.20% and 73.08%,
respectively. Other metrics are moderate. For females, lower
performance compared to males, with an accuracy of 66.75%
and similar specificity and recall rates. Combined features
demonstrated improved accuracy compared to individual
genders, achieving 80.78%.

4.4.3 Combined features

Combined male features exhibited increase in accuracy
compared to individual feature types, with 83.92%. However,
the specificity is lower, while recall and precision were
higher. Combined female feature gave a high accuracy of
81.96%, with balanced specificity and recall rates.
Combined male and female features demonstrated better
results compared to individual genders, with an accuracy of
89.22%.

From the analysis, it can be noted that system without
feature selection and parameter optimization showed
moderate performance across all feature types and genders
categories. However, there is room for improvement,
particularly in optimizing parameters and selecting relevant
features, which could potentially enhance the performance
metrics.

Table 6. Performance comparison with other optimization

algorithms
Model Accuracy (%) Fl-score (%) MCR
GWOESCA-SVM 96.08 96.15 0.040
PSO-SVM 91.72 91.60 0.080
GA-SVM 90.45 90.21 0.100

Empirical findings demonstrate that the GWOESCA-SVM
gave an excellent outcome exceeding that of standard SVM
classifier, by registering classification accuracy of 88.82%
for speech features, 84.71% for EGG features and 96.08% for
combined features and for all cases of 10-cross fold
validation with feature selection and parameter optimization.
The efficacy of the introduced framework employing HNIA
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affirming that GWOESCA-SVM adeptly discriminates
between healthy and pathological voice samples. Pictorial
representation of the developed SVM and GWOESCA-SVM
is depicted in Figure 5, Figure 6 and Figure 7 for male,
female and combined samples, respectively.

4.5 Performance comparison with other optimization
algorithms

To verify the property of developed GWOESCA-SVM, the
model’s performance was compared with that of the ESCA-
SVM and GWO-SVM is shown in Figure 8. The
GWOESCA-SVM method outperformed both GWO-SCA
and ESCA-SVM in terms of all metrics, indicating its
superiority in classification performance. While GWO-SVM
closely followed GWOESCA-SVM, showing strong
performance across all metrics, the ESCA-SVM
demonstrated lower performance compared to both the
GWOESCA-SVM and GWO-SVM across various metrics.

To further validate the effectiveness of the proposed
GWOESCA-SVM framework, we extended the experimental
comparison by incorporating two additional nature-inspired
optimization-based classifiers, namely, Particle Swarm
Optimization (PSO)-SVM and Genetic Algorithm (GA)-
SVM. These models were implemented using the same
dataset and fusion strategy, with parameter tuning and feature
selection optimized via PSO and GA, respectively. The
experimental setup maintained consistent parameters for fair
comparison: a population size of 30 and a maximum of 500
iterations. The classification accuracy was used as the fitness
function evaluated using 10-fold cross-validation.

Table 6 presents the classification accuracy, F1-score, and
MCR for all three models. As shown, GWOESCA-SVM
outperformed both PSO-SVM and GA-SVM, achieving a
maximum accuracy of 96.08% and the lowest MCR of 0.04.
While PSO-SVM showed moderate performance, GA-SVM
trailed slightly behind. This indicates that the hybrid
exploration—exploitation behaviour embedded in GWOESCA
is more effective in optimizing both the feature subset and



SVM parameters for this complex, high-dimensional voice
pathology dataset. These results are further visualized in
Figure 9, which graphically compares the key performance
indicators across all three optimization strategies.

Figure 9 presents a comparative view of three
optimization-based classifiers, namely, proposed
GWOESCA-SVM, PSO-SVM, and GA-SVM, evaluated on
core performance metrics. From the graph, depicted in Figure
9, it is evident that GWOESCA-SVM outperforms the other
two techniques across all indicators. Specifically, it achieves
the highest accuracy (96.08%), along with a near-perfect F1-
score (96.15%), and maintains the lowest MCR (0.04). In
contrast, both PSO-SVM and GA-SVM perform reasonably
well, but with relatively lower precision and slightly higher
error rates. This comparison confirms the superiority of the
hybrid GWOESCA optimization approach, particularly in
handling fused speech and EGG features, which are high-
dimensional and heterogeneous. The result demonstrates that
GWOESCA offers a more balanced and effective search
strategy, leading to better model generalization. These
findings strengthen the claim that the proposed method
provides a more robust solution for voice pathology
classification, suitable for real-world diagnostic applications.

4.6 Comparison with the past approaches

In using HNIA with ML, the project seeks to develop an
automated approach for detecting speech pathology. As
reported in Table 4, the introduced framework, GWOESCA-
SVM has attained a highest classification accuracy for all
cases when compared to standard SVM. Nevertheless, the
performance is remarkably boosted when merged features are
used, features are chosen by GWOESCA and parameters of
the SVM is tuned by GWOESCA. The GWOESCA-SVM
evidences its robustness and generalization capabilities
considering all metrics in discriminating healthy from
pathological voice samples.

Table 7 provides a comparative outcome of the simulation
results for voice pathology detection between the introduced
system and the former methods considering classification
accuracy. To ensure a fair and genuine comparison of
findings, only earlier approaches that utilized SVD data and
focus on the /a/ vowel for investigation are considered. Voice
pathology detection using GMM attained a classification rate
of 67% [14]. El Emary et al. [15] categorized voice samples
into healthy and pathological one using SVM, yielded an
accuracy of 82.37%. Voice pathological detection system
based on temporal derivatives and SVM classifier gave an
accuracy of 86% [16]. Amara et al. [17] differentiated
healthy from pathological voice samples using MFCC and
SVM and obtained 95.5% accuracy. An accuracy of 90% was
attained using NBN classifier [18]. Verde et al. [19] utilized
four signal features and SVM classifier, attaining a
classification accuracy of 85.77%. Mohammed et al. [31]
adopted Resnet 34 for differentiating healthy from
pathological samples, yielding a classification accuracy of
93.72%. Voice pathology classification approach using MLP
achieved a classification rate of 82,77% [13]. Omeroglu et al.
[20] investigated the power of standard SVM in categorizing
voices samples into healthy and pathological ones and
obtained 90.10% accuracy. Islam et al. [23] used CNN for
voice categorization and yielded classification accuracy of
80.3%. Deep learning method-based voice detection methods
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yielded 73.83% accuracy [22]. Ksibi et al. [21] designed a
hybrid approach by combining CNN-RNN for voice
classification and reached an accuracy of 88.33%. The
relevant features chosen by the GWOESCA tuned SVM
resulted in a highest classification rate of 92.75% for male
speech features, 89.80% for female features and 96.08% for
combined male and female data.

The proposed method outperformed previous models by
classification accuracy for both individual genders and the
combined dataset. Several methods achieved moderate
accuracy, as reported by Ahmed et al. [17], Mohammed et al.
[31], and Hossain et al. [32]. Methods proposed by Martinez
et al. [14] and Xie et al. [22] showed relatively lower
accuracy compared to the others. The proposed GWOESCA-
SVM method demonstrated significant advancement in
accuracy compared to previous approaches, making it
promising technique for voice pathology detection.

The current experimental design is limited to the
Saarbruecken Voice Database (SVD), which was chosen due
to its high-quality recordings, availability of both speech and
Electroglottography (EGQG) signals, and extensive labelling
of multiple pathological classes across gender.

However, the cross-dataset validation plays a critical role
in confirming the robustness and applicability of any
machine learning system in real-world scenarios.
Unfortunately, as of this study, publicly available databases
with synchronized speech and EGG signal recordings are
limited, and most alternatives (e.g., MEEI, AVPD) do not
provide both modalities or are restricted in terms of
pathological diversity or demographic distribution. That said,
to partially address this limitation and are as follows:

* We performed extensive 10-fold cross-validation within
the SVD dataset across three different conditions: male-only,
female-only, and combined gender samples, using speech-
only, EGG-only, and hybrid features. This layered evaluation
framework was designed to simulate variability and ensure
the model generalizes across gender and feature types.

» Additionally, we compared our model’s performance
against several prior state-of-the-art methods (depicted in
Table 7), many of which also relied on the SVD database.
This fair benchmarking allows direct assessment of
improvements brought by the GWOESCA-SVM framework.

Table 7. Performance comparative study of GWOESCA-
SVM with former methods

Contributors Year Accuracy (%)
Martinez et al. [14] 2012 67.00
El Emary et al.[15] 2014 82.37

Souissi and Cherif [16] 2015 86.00
Amara et al. [17] 2016 95.50
Dahmani and Guerti [18] 2017 90.00
Hossain et al. [32] 2017 92.80
Verde et al. [19] 2018 85.77
Mohammed et al. [31] 2020 93.72
Lee [13] 2021 82.77
Omeroglu et al. [20] 2022 90.10
Islam et al. [23] 2022 80.30
Xie et al. [22] 2022 73.83
Ksibi et al. [21] 2023 88.83
Male 92.75

Proposed Female 89.80
Combined 96.08
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Figure 6. Performance comparison of the proposed system

with standard SVM for female samples
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4.7 Performance variations between genders

This subsection analyses the difference in classification
outcomes between male and female voice samples, based on
both numeric metrics and confusion matrices.
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Figure 10. Confusion matrix for male samples
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Figure 11. Confusion matrix for female sample

To further investigate the performance variations between
genders, we analysed the confusion matrices for male and
female samples, as shown in Figures 10 and 11, respectively.
In the male dataset (Figure 10), the system correctly
identified 117 pathological and 115 healthy samples, with
only 18 misclassifications. This reflects the relatively higher
uniformity and clarity of acoustic patterns in male voices,
making pathological deviations more detectable. In contrast,
the confusion matrix for female samples (Figure 11) reveals a
slightly lower classification accuracy, with 30 healthy
samples misclassified as pathological and 24 false negatives.
This increase in misclassification can be attributed to the
greater variability in pitch, voice modulation, and EGG
signals in female subjects, which tends to blur the decision
boundaries between healthy and pathological classes. These
visual insights reinforce the numeric performance metrics
and highlight the importance of considering gender-specific
signal characteristics when designing robust voice pathology
detection systems.

4.8 Computational efficiency and practical feasibility
To address the computational efficiency and real-world

applicability, quantitative measurements of training and
inference times for the proposed GWOESCA-SVM model is
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determined. These measurements were conducted on the
same hardware configuration used for all experiments.

(a) Training Time: For the combined feature set (speech +
EGQ), the average training time per 10-fold cross-validation
cycle was approximately 135 seconds. This includes time for
feature selection and SVM parameter optimization using
GWOESCA (population = 30, iterations = 500).

(b) Inference Time: Once trained, the average
classification time per test sample was approximately 0.012
seconds, indicating suitability for near-real-time deployment
in diagnostic tools.

(c) Discussion: While the hybrid nature-inspired
optimization phase introduces some computational overhead
during training, this cost is acceptable given the one-time
offline training requirement. The inference phase remains
lightweight, making the system practical for real-time or

embedded voice assessment scenarios in clinical or
telemedicine environments.
4.9 Robustness to noise and clinical deployment

considerations

(a) Robustness to Noisy or Low-Quality Signals: Although
the SVD used in the proposed study comprises clean, high-
quality recordings, real-world voice data, especially from
clinical or remote environments, is often subject to
background noise, recording artifacts, or variable microphone
quality. While our current system does not explicitly include
noise-handling mechanisms, it maintains a degree of
robustness due to the following:

* The use of multiple feature types (e.g., MFCC, HNR,
ZCR, spectral descriptors) provides redundancy and
resilience to mild signal distortions.

* The GWOESCA optimization process inherently selects
robust features that remain consistent across samples, which
can reduce the impact of noise.

* EGG signals, being physiological rather than acoustic,
are less susceptible to ambient noise, offering a stable
complementary signal source.

(b) Clinical Deployment Feasibility: The proposed
GWOESCA-SVM framework was designed with low
inference cost and lightweight deployment potential in mind.
Once trained, the classifier operates with an average
inference time of 0.012 seconds per sample, as discussed in
Section 4.8. This makes it well-suited for real-time screening
applications, including, (i) Outpatient voice clinics, (ii)
Telemedicine consultations, and (iii) Smartphone-based
remote voice analysis tools.

5. CONCLUSION

This paper undertook an exhaustive and meticulous
examination of speech and EGG signals, aiming to
differentiate between healthy and pathological voices through
binary categorization, exploring their diverse origins and
unique characteristics.

The data samples employed were recording of vowel /a/.
The dataset consisted of healthy records obtained from 250
men and 429 women, while the pathological group comprised
260 pathological men and 437 pathological women whose
recordings are taken at normal pitch. From these recordings,
voice-related data’s are computed using multiple feature
extractions techniques such as MFCC, spectral descriptors,
zero crossing rate and short time energy, were employed.



GWOESCA is proposed to select salient features.
Additionally, GWOESCA is used for tuning the parameters
of SVM classifier.

The maximum classification rate of 96.08% is obtained by
the GWOESCA-SVM with combined features. The second-
best accuracy of 92.75% is attained by using combined men
data. The third best accuracy of 89.80% is achieved using
merged women data. The efficacy of conducting experiments
using mixture of male and female samples proved to be more
successful than using either male or female samples.
Additionally, there is a valuable advantage in incorporating
MFCC with spectral descriptors to enhance categorization
task, as both contribute crucial information. The finding’s
revealed that employing a combination of ML and HNIA was
beneficial in distinguishing between normal and pathological
voices. In future, this study will be focussed on the
development of pathological voice detection systems capable
of classifying both the severity of a certain illness and the
voice quality. Additionally, we plan to validate the proposed
GWOESCA-SVM system on additional datasets to further

examine its generalizability across varied recording
conditions and population groups, as well.
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ML Machine Learning

MLP Multilayer Perceptron

NBN Nave Bayes Network

NIDCD National .InsFitute on Deafness and Other
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NK Normalized Kurtosis

NNE Normalised Noise Energy
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RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SE Spectral Entropy

STE Short Time Energy
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SVM Support Vector Machine
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