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One of the primary causes of visual impairment in the world today is Diabetic Retinopathy 

(DR), which emphasizes the need for prompt and precise diagnosis to stop the progression 

of the illness. To improve retinal vascular segmentation and lesion identification, this work 

presents a unique architecture that combines Context Encoding Deep Neural Networks 

(CEDNN) with 3D-Spectral Optical Coherence Tomography (SPECTRAL OCT) imaging. 

The SPECTRAL OCT scans are subjected to Contrast Limited Adaptive Histogram 

Equalization (CLAHE) to enhance the image quality and for more accurate feature 

extraction. The CEDNN model utilizes context-encoding mechanisms to accurately segment 

retinal vessels by capturing both global and localized features. For lesion detection, 

specialized feature-encoding layers amplify subtle pathological signals while preserving 

structural details, correctly recognizing exudates, hemorrhages, and microaneurysms as DR 

indications. The CEDNN architecture enables accurate extraction of structural information 

for vessel segmentation, while the context-aware layers ensure reliable lesion identification 

without compromising spatial coherence. The model is validated on clinical 3D SPECTRAL 

OCT images and publicly available benchmark datasets, achieving outstanding performance 

with a 95% confidence interval for accuracy between 98.8% and 99.8%. The results show 

an F1-score of 99.3%, 99.4% sensitivity, 99% specificity, 99.2% precision, and 99.3% 

accuracy. These results highlight the model’s robustness in capturing fine microvascular 

abnormalities and DR-related lesions across varied imaging conditions. The proposed 3D 

SPECTRAL OCT-based CEDNN framework offers a scalable, cost-effective solution for 

large-scale clinical screening and automated DR diagnosis. 
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1. INTRODUCTION

A microvascular consequence of diabetes mellitus, diabetic 

retinopathy (DR) is defined by progressive retinal blood vessel 

damage [1]. An estimated 103.12 million individuals 

worldwide were forecast to have DR in 2020, making it one of 

the major causes of visual impairment worldwide. This 

statistic is predicted to increase as the incidence of diabetes 

rises [2]. To prevent serious vision loss, early diagnosis and 

treatment are essential. If treatment is not received for DR, 

which affects the retinal vasculature, visual impairment and 

blindness may result [3]. Due to the growing number of people 

with diabetes identified globally, it is anticipated that the 

prevalence of DR will continue to increase. To slow the 

growth of and protect eyesight, early identification and 

treatments are important. 

Proliferative Diabetic Retinopathy (PDR), which is marked 

by neovascularization and significant retinal damage, follows 

Non-Proliferative Diabetic Retinopathy (NPDR), which is 

defined by microaneurysms and hemorrhages [4]. Retinal 

image analysis techniques, including vessel segmentation and 

lesion detection, are vital for identifying these pathological 

changes. While lesion identification concentrates on locating 

clinical features such as microaneurysms, hemorrhages, and 

exudates, automated segmentation of retinal arteries allows for 

the detection of small vascular anomalies. For the analysis of 

microvascular structures, which frequently show anomalies in 

the early phases of DR, retinal vessel segmentation is 

significant. These abnormalities include vessel dilation, 

beading, and the formation of microaneurysms, which serve as 

primary indicators of DR severity [5]. In contrast, lesion 

identification looks for pathological features that indicate 

advanced disease stages, such as bleeding, hard exudates, and 

cotton wool patches. 

Conventional diagnostic techniques are laborious, 

subjective, and sensitive to inter-observer variability. One 

example is the manual grading of fundus images by 

ophthalmologists. Automated solutions that aid in DR 

diagnosis have been made possible by recent developments in 

medical imaging and Artificial Intelligence (AI) [6]. In this 

field, OCT and fundus photography are frequently utilized 

imaging techniques. Deep learning methods have transformed 

medical imaging in recent years, providing new approaches to 

DR monitoring and detection. Because they can learn 
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hierarchical patterns from data, CNNs and their variations 

have demonstrated notable effectiveness in segmenting retinal 

structures and accurately diagnosing lesions. 

The following describes the novel contribution of the 

suggested approach to the 3D-SPECTRAL OCT-based 

CEDNN framework for DR diagnosis: 

i. Integration of 3D-Spectral OCT for detailed retinal

imaging: Utilization of 3D-Spectral OCT, which

offers high axial resolution and cross-sectional retinal

images, capturing intricate retinal layers and

microvascular alterations, providing a deeper

understanding of the retina compared to conventional

imaging methods.

ii. Enhanced Image Quality with CLAHE:

Implementation of CLAHE to address low contrast

and noise in 3D-Spectral OCT images, optimizing the

contrast in retinal images by locally enhancing pixel

intensities while avoiding over-amplification,

ensuring significant pathological features are more

prominent for further analysis.

iii. Context Encoding Deep Neural Network (CEDNN)

for Multi-scale feature extraction: Development

CEDNN model with a dual-context encoding strategy

that extracts global (large-scale) and local (fine-

grained) structural information from retinal images,

improving segmentation accuracy by capturing

vascular context and ensuring precise delineation of

retinal vessels and lesions.

iv. Specialized feature-encoding layers for lesion

detection: Introduction of feature-encoding layers

that are sensitive to subtle pathological patterns,

which are small and hard to detect in early DR stages.

These layers enhance pathological signal features

while preserving the structural context of the retina,

maintaining image integrity.

v. Scalable and robust model for clinical application:

The proposed model exhibits scalability by handling

large datasets, such as clinical 3D-SPECTRAL OCT

images and benchmark datasets, ensuring robust

performance in diverse clinical conditions. Its

efficiency, along with high diagnostic reliability,

positions it as a cost-effective solution for widespread

screening in clinical environments, capable of

assisting in large-scale diabetic retinopathy detection

programs.

CLAHE was chosen to enhance Spectral OCT images 

because it can improve local contrast, which is essential for 

precise retinal vessel segmentation and lesion detection in DR. 

3D-Spectral OCT images frequently have low contrast in some 

areas, particularly in subtle pathological lesions and fine 

microvascular structures. It selectively enhances these areas 

without amplifying noise, making small pathological features 

like microaneurysms, hemorrhages, and exudates more visible. 

Unlike histogram equalization and Gaussian smoothing 

approaches, CLAHE functions locally, limiting over-

amplification of noise in uniform zones and conserving the 

structural integrity of retinal layers and capillaries. Its adaptive 

nature, adjusting enhancement levels based on local image 

features, is particularly effective for the varying content in 3D-

OCT images. Additionally, CLAHE is excellent at 

highlighting subtle characteristics, which is essential for the 

early identification of diabetic retinopathy. These benefits 

have led to the widespread use of CLAHE in medical imaging, 

which increases diagnostic precision in challenging 

circumstances when contrast enhancement is required for 

accurate interpretation. 

The inclusion of CEDNN in this study stands out from 

existing methods like U-Net and SegNet due to its unique 

architectural design, which improves segmentation and 

classification of DR. CEDNN’s encoder-decoder structure 

combines deep feature extraction with precise spatial 

reconstruction, enabling it to detect and localize retinal 

abnormalities such as microaneurysms and hemorrhages more 

effectively. Unlike U-Net and SegNet, which may lose finer 

spatial details during upsampling, CEDNN incorporates 

optimized pathways to preserve lesion information, enhancing 

segmentation accuracy. Furthermore, CEDNN is more 

computationally efficient, using lightweight procedures to 

lower memory and processing time requirements, which 

makes it more appropriate for use in actual clinical situations. 

The proposed approach overcomes these drawbacks of the 

current techniques to handle high-resolution medical images 

with practicality and scalability, in addition to achieving high 

diagnostic accuracy. 

The capacity of the ResNet-based design to handle 

vanishing gradient problems through residual connections, 

allowing deeper networks to train efficiently, justifies its 

selection for the CEDNN. Compared to DenseNet, ResNet 

provides a balanced trade-off between computational 

efficiency and feature extraction capability, as DenseNet’s 

dense connectivity can increase computational complexity and 

memory usage, making it less practical for large-scale clinical 

datasets. VGG, while straightforward and effective for feature 

extraction, lacks the depth and residual learning mechanisms 

of ResNet, which are essential for capturing complex 

hierarchical features in retinal images. For DR segmentation 

and classification tasks, ResNet-based CEDNN is the best 

option as it guarantees excellent accuracy, efficient 

computation, and successful learning of global and local 

features. 

2. LITERATURE REVIEW

Diabetic Retinopathy (DR) has been examined through a 

variety of computational methods, each with unique benefits 

and drawbacks. By using features extracted from retinal 

images, traditional machine learning techniques like Random 

Forests (RF) [7] and Support Vector Machines (SVM) [8] have 

been used for DR classification. These methods work well for 

conditions that are clearly defined and have relatively small 

datasets. 

Convolutional Neural Networks (CNNs), such as VGG16 

and ResNet, have been extensively utilized for DR diagnosis 

and segmentation tasks since the development of deep learning 

[9, 10]. By autonomously learning hierarchical features from 

data, these models increase the precision and resilience of 

lesion detection and retinal vascular segmentation. Despite 

being successful, the models' high computational demand 

prevents real-time clinical implementation, and they 

frequently require sizable annotated datasets for efficient 

training. Hybrid methods combining CNNs with other 

techniques, such as U-Net for segmentation and Fully 

Convolutional Networks (FCNs) for pixel-wise classification, 

have further improved segmentation performance. These 

architectures excel at capturing spatial and contextual 

information, enabling precise vessel segmentation and lesion 

detection [11]. However, its performance degrades in the 
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presence of artifacts in retinal images. 

Advanced techniques have been developed to enhance DR 

detection and segmentation in addition to conventional 

Machine Learning (ML) and early deep learning techniques. 

To overcome the difficulties presented by the scarcity of 

annotated datasets, Generative Adversarial Networks (GANs) 

have been utilized to improve image quality and carry out data 

augmentation [12]. GANs also enable domain adaptation, 

improving generalization across diverse imaging modalities. 

However, they are computationally intensive and challenging 

to train, often requiring careful hyperparameter tuning. Graph 

Neural Networks (GNNs) have been explored for capturing 

relational and structural information in retinal images, 

particularly for vessel segmentation tasks [13]. These models 

use graph representations to model the connectivity of retinal 

vasculature, resulting in improved segmentation accuracy. 

However, GNNs are limited by their complexity and 

dependency on accurate graph construction. 

Transformer-based architectures, such as Vision 

Transformers (ViTs), have recently been adapted for DR 

diagnosis. These models use self-attention mechanisms to 

focus on important regions in retinal images, offering 

improved interpretability and accuracy [14]. However, their 

performance often relies on pretraining with large-scale 

datasets, which may not always be available. Ensemble 

learning approaches, combining multiple models like CNNs, 

U-Nets, and decision trees, have also shown the potential to

improve robustness and accuracy for DR detection. Ensemble

techniques reduce the drawbacks of single-model approaches

by utilizing the advantages of individual models [15].

However, these techniques are computationally intensive and

challenging to use in clinical settings in real time.

Transfer learning speeds up model construction and 

eliminates the requirement for large amounts of labeled data. 

Still, these models frequently need to be adjusted to fit DR 

datasets and might not adequately capture domain-specific 

properties. Because CapsNets can record spatial hierarchies 

and interactions between visual features, they have been 

explored for DR detection [16]. Unlike CNNs, which may lose 

spatial information during pooling, CapsNets preserve 

positional data, improving accuracy in lesion detection. 

However, the computational complexity and extended training 

time limit their practical application in real-time settings. 

Temporal variations in sequential imaging data have been 

analyzed for DR progression analysis using models based on 

Recurrent Neural Networks (RNNs), such as Long Short-Term 

Memory (LSTM) networks. These methods are suitable for 

longitudinal studies but are less suited for single-image 

analyses and require consistent follow-up data [17]. Multitask 

Learning (MTL) frameworks simultaneously perform DR 

diagnosis and segmentation tasks by sharing a common feature 

extractor across tasks. This approach improves computational 

efficiency and reduces overfitting [18]. However, balancing 

multiple loss functions can be challenging, and task 

interference may degrade overall performance. DR datasets 

with few annotations can benefit from Few-Shot Learning 

(FSL) algorithms, which overcome data scarcity by learning 

to generalize from a small number of labeled instances [19]. 

While promising, FSL models are sensitive to variations in 

data quality and often require carefully curated support sets for 

training. Active Learning (AL) strategies involve iterative 

model training with user feedback to label the most 

informative samples. This reduces the annotation while 

maintaining model performance [20, 21]. However, the 

approach relies heavily on the availability of expert annotators 

and can be time-intensive for large datasets. 

To detect diabetic retinopathy, many methods for 

segmenting retinal blood vessels and lesions have been 

reported. These methods are differentiated using the proposed 

technique to provide a comprehensive review of this wide 

range of approaches. 

3. DATASET

A total of 101,000 images were utilized in this proposed 

research. obtained by merging the clinical and publicly 

available datasets listed in Table 1. The Spectral OCT 

produces volumetric scans composed of multiple B-scans; 

each 3D OCT volume was decomposed into 2D cross-

sectional slices. To enable uniform training, all extracted B-

scans were resampled to fixed spatial resolutions (224×224, 

384×384, or 512×512 pixels), depending on dataset origin. 

This preprocessing pipeline ensures that representative 2D 

slices from 3D OCT volumes were standardized and could be 

used consistently as model inputs, making the experimental 

setup fully reproducible. 

The images represent a mix of healthy and pathological 

cases, ensuring diversity for robust model training and 

evaluation. The dataset is balanced across various disease 

classes to standardize image dimensions for computational 

analysis. This dataset enables the exploration of fine-grained 

features in OCT scans, utilizing the advanced deep neural 

networks. The retinal layers' anatomical structure in an OCT 

image is shown in Figure 1. 

Table 1. Dataset used for the proposed work 

Dataset Name Total Images Image Resolution 

Retinal OCT Images [22] 24,000 224×224 pixels 

Duke OCT Dataset [23] 35,000 Variable 

DeepDR OCT Dataset [24] 12,000 384×384 pixels 

AIIMS OCT Dataset [25] 10,000 Variable 

OCTID [26] 20,000 512×512 pixels 

Figure 1. The anatomy of an OCT image's retinal layers [27] 

4. METHODOLOGIES

The proposed approach for diagnosing diabetic retinopathy 

utilizing 3D-Spectral Optical Coherence Tomography (OCT) 

images is shown in Figure 2. First, 3D-Spectral OCT images 

are given. Next, a preprocessing phase employing CLAHE is 

performed to improve image contrast and provide focus on 

subtle retinal features. Following preprocessing, the images 
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are sent into a CEDNN for feature extraction, producing two 

essential outputs: lesion identification and retinal vascular 

segmentation. 

Lesion detection looks for anomalies such as 

microaneurysms, hemorrhages, and exudates, which are 

significant markers of DR, whereas retinal vascular 

segmentation concentrates on recognizing blood vessel 

architecture. The final DR diagnosis is the result of an analysis 

based on the combination of these results. This pipeline 

ensures precise localization and classification of DR-related 

features, facilitating accurate and efficient diagnosis. 

Figure 2. The proposed framework for DR diagnosis 

4.1 Preprocessing 

The image has been divided into tiles, which are little 

contextual areas that do not overlap. Let 𝑇 × 𝑇 be the size of 

each contextual region and 𝐼(𝑥1, 𝑦1) be the intensity of the

pixel of the original image at position (𝑥1, 𝑦1). Determine the

histogram H(i) for every tile using Eq. (1), where 

i∈{0,1,…,L−1} represents the intensity levels. 

𝐻(𝑖) = ∑ 𝛿(𝐼(𝑥1, 𝑦1) − 𝑖)

𝑥,𝑦∈𝑡𝑖𝑡𝑙𝑒

(1) 

Here 𝛿(𝑘) is the Kronecker delta function. 

If 𝐼(𝑥1, 𝑦1) = 𝑖 𝑡ℎ𝑒𝑛 𝛿(𝐼(𝑥1, 𝑦1)) − 𝑖 = 1) contributing to

the histogram bin 𝐻(𝑖). Otherwise, the contribution is 0. This 

ensures that the histogram is built by counting the exact 

matches of pixel intensities within each contextual region (tile). 

To prevent over-amplification of noise, clip the histogram 

values at a predefined threshold 𝐶 as shown in Eq. (2). 

𝐻𝑐𝑙𝑖𝑝(𝑖) = min (𝐻(𝑖), 𝐶) (2) 

The excess pixels above the threshold are redistributed 

across the histogram bins. The clipped histogram is 

normalized to compute and display the local Cumulative 

Distribution Function (or CDF) for every tile, as shown in Eq. 

(3). 

𝐶𝐷𝐹(𝑖) =
∑ 𝐻𝑐𝑙𝑖𝑝(𝑗)𝑖

𝑗=0

∑ 𝐻𝑐𝑙𝑖𝑝(𝑗)𝐿−1
𝑗=0

(3) 

The CDF maps the intensity values to its adjusted levels. 

The pixel intensity is transformed using the local CDF as 

shown in Eq. (4): 

𝐼′(𝑥1, 𝑦1) = min +𝐶𝐷𝐹(𝐼(𝑥1, 𝑦1) × (𝑚𝑎𝑥 − min) (4) 

where, min and max represent the image's lowest and highest 

intensity values, respectively. To avoid artificial boundaries 

between tiles, bilinear interpolation is applied to smooth the 

transition of pixel intensities. 

𝐼′′(𝑥1, 𝑦1)
= 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒(𝐼′(𝑥1, 𝑦1), 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑡𝑖𝑙𝑒𝑠)

(5) 

As shown in Figure 3, for DR 3D-OCT images, CLAHE 

enhances contrast in areas with subtle variations caused by 

diabetic pathologies, such as microaneurysms and exudates, 

by emphasizing local differences without over-enhancing 

noise. While CLAHE is more commonly applied in fundus 

photography, its use in OCT preprocessing was quantitatively 

evaluated through an ablation study. 

Applying CLAHE improved the Dice score by +2.4% for 

vessel segmentation compared to simple intensity 

normalization, confirming its benefit for enhancing fine 

microvascular structures. At the same time, acknowledge that 

CLAHE may risk altering OCT reflectivity patterns, which 

could distort anatomical interpretation. To mitigate this, 

CLAHE parameters of tile size and clip limit were optimized 

to balance enhancement with noise suppression. 

(a) 

(b) 

Figure 3. Preprocessing: (a) Input OCT image [28], (b) 

Preprocessed output image 

4.2 CEDNN for segmentation 

A CEDNN is a deep learning architecture intended for DR 

diagnostic image segmentation and feature extraction. 

Although the dataset originates from 3D SPECTRAL OCT 

volumes, the proposed model processes data at the level of 2D 

B-scan slices extracted from these volumes. In this context, 3D
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refers to the acquisition modality, while segmentation is 

performed slice-by-slice using CEDNN. Each B-scan is 

treated as a grayscale image with input dimensions of 

[Height×Width×Channel], where Channel=1. This design 

choice avoids the computational load of 3D convolutions 

while capturing volumetric information across multiple slices 

during evaluation. 

The encoder captures high-level characteristics and 

compresses input data, while the decoder reconstructs the 

input's spatial structure for segmentation. These two 

components define the network. The CEDNN stands out 

compared to other models for DR diagnosis due to its higher 

balance between feature extraction and spatial detail 

preservation. 

While traditional CNNs like VGG or ResNet are excellent 

for global feature extraction, they often lose spatial resolution, 

which is vital for localizing small lesions such as 

microaneurysms and hemorrhages. 

Figure 4 illustrates the architecture of a CEDNN tailored for 

3D-OCT image segmentation. The process begins with the 

feature encoder, which extracts spatial features using a series 

of convolutional layers with 3×3 convolution to capture local 

spatial information. The encoded features are then passed to 

the context extractor, which applies further convolutions and 

operations like skip connections and feature aggregation to 

enhance contextual understanding across scales. Next, the 

processed features are passed to the feature decoder, which 

reconstructs the spatial details of the segmented regions. The 

decoder includes components like a 1×1 convolution for 

dimensionality reduction, 3×3 deconvolutions with 

upsampling layers, and additional 3×3 convolutions for 

refining the segmentation output. The segmentation accuracy 

of complicated structures in 3D-OCT images is improved by 

skip connections between the encoder and decoder, which 

guarantee that fine-grained information from the encoder is 

preserved throughout reconstruction. This architecture is 

designed to achieve high accuracy in identifying regions of 

interest within 3D-OCT images by utilizing hierarchical 

feature extraction and reconstruction. 

CEDNN's encoder-decoder architecture mitigates this 

limitation by combining downsampling in the encoder for 

robust feature learning with upsampling in the decoder for 

precise spatial reconstruction. Compared to Fully 

Convolutional Networks (FCNs) or U-Net, CEDNN offers 

enhanced scalability and flexibility, allowing it to process 

high-dimensional retinal images with greater efficiency. 

CEDNN is computationally efficient and well-suited for DR 

classification and segmentation tasks with limited data. The 

encoder component efficiently detects patterns linked to DR, 

including microaneurysms, hemorrhages, and exudates, by 

capturing hierarchical feature representations using 

convolutional layers. To precisely localize problematic areas, 

the decoder simultaneously reconstructs fine-grained spatial 

features using upsampling and deconvolution layers. This 

architectural design ensures the model retains spatial 

resolution for DR image analysis while capturing global 

contextual information. Furthermore, CEDNN is very 

effective for lesion segmentation and DR severity grading due 

to its multi-scale feature extraction and effective pixel-wise 

classification, which addresses the difficulties of lesion size 

and appearance variability in retinal fundus images. 

Unlike standard encoder–decoder networks such as U-Net, 

the proposed CEDNN introduces a dual-context encoding 

module. This module integrates: 

• Local context encoding through residual 3×3 convolutions,

which preserve fine lesion details such as microaneurysms and 

vessel junctions. 

• Global context encoding through dilated convolutions and

multi-scale aggregation, which capture long-range vascular 

topology across OCT volumes. 

The outputs of these two streams are mathematically 

aggregated to encode both fine-grained and large-scale retinal 

features simultaneously. By explicitly modeling global retinal 

layer continuity in addition to localized lesion detail, CEDNN 

provides a context-aware representation that standard U-Net 

and SegNet architectures do not achieve. 

Figure 4. The proposed architecture of CEDNN for 3D-OCT image segmentation 

4.2.1 Encoder feature extraction 

The encoder uses pooling and convolutional processes to 

compress the input image I into a lower-dimensional latent 

representation. The convolution operation extracts feature 

maps as shown in Eq. (6). 

𝐹𝑙 = 𝜎(𝑊𝑙 ∗ 𝐹𝑙−1 + 𝑏𝑙) (6) 

where, the input feature map to layer l is 𝐹𝑙−1, indicates the

convolution process, while 𝑊𝑙  and 𝑏𝑙  represent the learnable

weights and biases of layer l. The activation function is 

represented by σ, and ReLU is 𝑅𝑒𝐿𝑈(𝜎(𝑥) = max(0, 𝑥)). 
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Eq. (7) illustrates how pooling layers preserve significant 

properties while reducing the spatial dimensions. 

𝐹𝑙
𝑝𝑜𝑜𝑙𝑒𝑑

= 𝑃𝑜𝑜𝑙(𝐹𝑙) (7) 

Common pooling methods include max pooling as shown in 

Eq. (8). 

𝐹𝑙
𝑝𝑜𝑜𝑙𝑒𝑑(𝑖, 𝑗) = max

𝑝,𝑞∈𝑅
𝐹𝑙(𝑝, 𝑞) (8) 

where, R is a small window of 2×2 over which the maximum 

value is taken. This module extracts low-level features from 

the input 3D-OCT images using multiple 3×3 convolutional 

layers. These layers capture spatial details, such as the 

boundaries of retinal layers and abnormal structures like 

microaneurysms or drusen. Skip connections from the encoder 

are established to pass significant spatial information to the 

decoder, preserving fine details for accurate segmentation. 

4.2.2 Context extractor 

Accurate segmentation in 3D-OCT image processing 

depends on the model's capacity to collect local and global 

context, which is improved by the context extractor. The 

extracted features are processed to enhance the contextual 

understanding across different regions of the 3D-OCT image. 

Operations like residual connections improve learning by 

enabling the reuse of features and stabilizing the gradient flow. 

The context extractor uses convolutional layers to capture 

spatial hierarchies. The convolution operation is defined as 

shown in Eq. (9). 

𝑦𝑖,𝑗,𝑘 = ∑ ∑ 𝑥𝑖+𝑚−1,𝑗+𝑛−1,𝑘 ∙ 𝑤𝑚,𝑛,𝑘 + 𝑏𝑘

𝑁

𝑛=1

𝑀

𝑚=1

(9) 

where, 

• 𝑥𝑖,𝑗,𝑘: Input feature map at position (i,j) and channel

k.

• 𝑤𝑚,𝑛,𝑘: Convolutional kernel of size M×N (3×3).

• 𝑏𝑘: Bias term for the kth channel.

• 𝑦𝑖,𝑗,𝑘 : Output feature map after applying the

convolution.

These layers capture local spatial details in the input feature 

map. By stacking multiple convolutions, the network 

aggregates multi-scale context, which is particularly useful in 

detecting subtle patterns in OCT images. Deeper networks are 

made possible by residual connections, which also enhance 

gradient flow. Eq. (10), which provides the residual operation. 

𝑌 = 𝐹(𝑋, {𝑊}) + 𝑋 (10) 

where, 

• X: Input feature map.

• F (X, {W}): Non-linear transformation of the input,

such as convolutions.

• {W}: Learnable weights of the transformation.

• Y: Output feature map after residual addition.

Training is stabilized, and vanishing gradients are avoided 

because of residual connections, which enable the model to 

learn the variation between the input and output. Deep 

contextual feature extraction from 3D-OCT images requires it. 

Without adding more parameters, dilated atrous convolutions 

improve the receptive field. Eq. (11) provides a definition for 

the operation. 

𝑦[𝑖] = ∑ 𝑥[𝑖 + 𝑟

𝐾

𝑘=1

∙ 𝑘] ∙ 𝑤[𝑘] (11) 

where, 

• r: Dilation rate of r=2 doubles the receptive field.

• K: Kernel size.

• 𝑥[𝑖]: Input feature map.

• 𝑤[𝑘]: Kernel weights.

Dilated convolutions capture global context, which is 

essential for identifying large structures or lesions in 3D-OCT 

images, such as retinal detachment. The extracted features are 

aggregated using either concatenation or element-wise 

addition to combine information across multiple scales, as 

shown in Eq. (12): 

𝑌𝑎𝑔𝑔 = 𝑌1⨁𝑌2⨁ … ⨁𝑌𝑛 (12) 

where, 

• ⊕: Aggregation operation (concatenation or

addition).

• 𝑌1, 𝑌2, … , 𝑌𝑛: Feature maps from different layers.

Aggregation combines fine-grained details with broader 

contextual information, crucial for distinguishing overlapping 

structures in OCT images. 

4.2.3 Decoder spatial reconstruction 

The decoder reconstructs the high-resolution output of the 

segmentation mask from the compressed feature map using 

upsampling and convolution. The decoder uses upsampling 

operations to increase spatial dimensions, often using 

transposed convolutions, as shown in Eq. (13). 

𝐹𝑙
𝑢𝑝

= 𝜎(𝑊𝑙
𝑇 ∗ 𝐹𝑙+1 + 𝑏𝑙) (13) 

Here, 𝑊𝑙
𝑇 represents the weights for transposed convolution,

also called deconvolution. Skip connections connect the 

encoder and decoder layers to recover spatial features lost 

during downsampling, as indicated in Eq. (14). 

𝐹𝑙
𝑠𝑘𝑖𝑝

= 𝐹𝑙
𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + 𝐹𝑙

𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (14) 

This ensures the final output combines high-level and low-

level features. This module reconstructs the spatial details for 

segmentation. It uses 1×1 convolutions to reduce feature 

dimensions, 3×3 deconvolutions for upsampling, and 

additional 3×3 convolutions to refine the segmentation output. 

For the purpose of defining fine structures in 3D OCT images, 

the skip connections between the encoder and decoder 

guarantee that the high-resolution information from the 

encoder is included throughout reconstruction. 

4.2.4 Output layer 

The segmentation mask or classification map is generated 

by the decoder's last layer. As shown in Eq. (15), segmentation 

is accomplished by using a softmax activation function pixel-

by-pixel to assign each pixel to one of the C classes. 

𝑃𝑐(𝑥, 𝑦) =
exp (𝐹𝐿(𝑥, 𝑦, 𝑐))

∑ exp (𝐶
𝑘=1 𝐹𝐿(𝑥, 𝑦, 𝑘)

(15) 

where, the probability of class c at pixel (𝑥, 𝑦) is denoted by 
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𝑃𝑐(𝑥, 𝑦).The output of the last layer for class c is 𝐹𝐿(𝑥, 𝑦, 𝑐).

In DR diagnosis, CEDNN enables precise retinal vessel 

segmentation and lesion detection, vital for identifying 

pathologies and classifying disease severity. The lesion 

detection using CEDNN is designed as a pixel-wise 

segmentation module that produces masks for clinically 

relevant lesion categories, including microaneurysms, 

hemorrhages, and exudates. This differs from bounding-box 

detection or image-level classification, as each lesion pixel is 

explicitly labeled. The lesion segmentation maps are then 

aggregated with vessel segmentation maps to provide 

complementary biomarkers, which are subsequently used in 

the diagnostic stage. Figure 2 has been updated to illustrate this 

dual-output pipeline more clearly. 

4.2.5 Diagnostic classification 

The outputs of the vessel segmentation and lesion detection 

branches are not used directly for grading. Instead, 

quantitative biomarkers are extracted from these segmentation 

maps, including vessel density, branching patterns, lesion 

count, and lesion area. These biomarkers serve as structured 

input features for a random forest classifier, which assigns a 

diabetic retinopathy severity grade according to standard 

clinical categories. This additional classification stage ensures 

that the model provides a clinically interpretable output rather 

than raw segmentation maps, linking image analysis to 

diagnostic decision-making. 

5. EXPERIMENTAL RESULTS

The first step in producing an 11-layer 3D rendering from 

OCT image data acquired using B-scans is preprocessing, 

which involves normalizing and enhancing the images to 

increase contrast and tissue boundary visibility. Boundary 

detection is performed using edge detection techniques like 

Canny or Sobel operators to identify intensity changes 

indicative of tissue interfaces, followed by refinement using 

morphological operations or curve fitting to reduce noise. 3D 

rendering is achieved by aligning and stacking detected 

boundaries from sequential B-scans to reconstruct the 

volumetric structure, visualized using volume rendering 

techniques for interactive exploration. 

For multi-layer frame extraction, a CEDNN is used. It 

captures spatial contextual information, enabling precise 

segmentation of specific tissue layers. The network is trained 

on annotated datasets to ensure accurate layer differentiation, 

with post-processing methods applied to refine segmentation 

outputs. This approach addresses challenges like noise and 

adjacent layers, providing a detailed and reliable 3D 

representation. The combined framework of 3D rendering, 

boundary detection, and CEDNN-based multi-layer extraction 

significantly enhances OCT imaging's diagnostic utility, 

offering valuable insights into tissue structure and 

abnormalities for clinical applications. 

Figure 5 represents a volumetric reconstruction of the 

retinal layers captured through 3D-OCT using B-scans. The 

3D rendering provides a comprehensive visualization of the 

retinal structure, enabling a better spatial understanding of the 

layer’s arrangement and thickness. The visualization is 

important for detecting subtle morphological changes, which 

indicate pathological conditions such as macular edema or 

retinal thinning in diseases like DR. In the multi-layer frame 

extraction step, individual layers extracted from the segmented 

boundaries are analyzed frame-by-frame. Each extracted layer 

is evaluated for specific features such as curvature, thickness, 

or texture. This extraction enables targeted analysis of each 

retinal layer, facilitating the identification of abnormalities 

localized to specific layers. By isolating these features, the 

system enhances diagnostic precision and aids in detecting 

disease progression over time. 

The macular layer and other relevant retinal layers are the 

main focus of the model's multi-layer segmentation of a 3D-

OCT image. It incorporates a shape-prior technique, which 

improves segmentation accuracy across several layers by 

utilizing earlier understanding of shape at various voxel 

positions. The 3D-OCT B-scan examines the reflectivity 

values for every layer and spreads segmentation labels among 

areas. The whole macular layer is divided throughout the scan, 

which begins at the mid-slice and extends from the fovea to 

the cross-section. The obtained OCT imaging scan records 

voxel information with 1024×1024×5 dimensions. 

The activation map allows for the 3D visualization of these 

images, shown in Figure 5, illustrating the differentiation of 

the retina's multiple layers. The OCT images are also used to 

create a 3D blood vessel representation, from which the vessel 

segmentation algorithm extracts information about the vessel's 

density, diameter, and vasculature. Tested on both public and 

clinical datasets, the proposed multi-layer segmentation 

approach shows promise in measuring retinal features and 

enhancing the precision of retinal diagnosis in ophthalmology. 

Segmentation of the tumors in the 3D-OCT image, manually 

labeled by experts. Figure 5(a) shows the 3D rendering of 

retinal layers from OCT B-scans. Figure 5(b) shows the retinal 

layer boundary detection. Figure 5(c) displays the segmented 

tumors obtained using the CEDNN model, highlighting the 

algorithm’s ability to accurately identify and delineate tumor 

boundaries from the input image. These results demonstrate 

the performance of the CEDNN approach in accurately 

segmenting tumors within 3D OCT imaging data. 

Figure 6 shows the results of tumor segmentation in 3D-

OCT images using a CEDNN. Figure 6(a) shows the input 

image, representing the raw 3D-OCT scan of the tissue. Figure 

6(b) illustrates the ground truth, which provides the reference. 

Figure 6(c) provides the obtained segmented tumor regions  

Figure 7 illustrates the segmented 3D-OCT images, 

highlighting the choroid layer's progressive refinement across 

seven iterations of the segmentation algorithm. Figure 7(a) 

depicts the input image at iteration 1 (i=1). Figure 7(b) 

presents the initial segmentation (i=2), where the algorithm 

begins identifying the choroid layer. In Figure 7(c) (i=3), early 

refinements improve the boundary localization, followed by 

Figure 7(d) (i=4), which shows enhanced clarity in the 

segmentation. Figure 7(e) (i=5) demonstrates near-final 

refinement with precise boundary delineation, and Figure 7(f) 

(i=6) represents the final segmentation result, achieving high 

accuracy in defining the choroid layer. Finally, Figure 7(g) 

(i=7) showcases post-final verification, ensuring the 

robustness of the algorithm. These subfigures show that the 

iterative method improves segmentation accuracy. The 

segmentation results are in line with the ground truth. The 

proposed approach is utilized to track variations in the 

vasculature, lesions, and blood vessel diameters. The proposed 

research measures the diameter of the newly created vessels 

entering the retina. The segmentation results are contrasted 

with the real-world images. These ground truth images are 

identified by experts using their manual skills. 

The proposed method extends 2D segmentation into 3D 
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space and improves segmentation accuracy by taking 

advantage of the anisotropic structure of image data, enabling 

better analysis of spatial relationships and depth variations in 

retinal structures. To address challenges such as overlapping 

layers and small lesions, the method utilizes contextual 

information from neighboring regions in 3D space to 

differentiate layers and refine boundaries. Post-processing 

methods that guarantee spatial consistency and enhance 

segmentation accuracy include Conditional Random Fields 

(CRFs) and morphological procedures. 

Multi-scale feature extraction and data augmentation 

enhance the detection of small lesions by enabling the 

algorithm to recognize variations in size and shape. 

Additionally, advanced deep learning techniques, such as 

CEDNN, are used for robust feature extraction, while edge 

detection methods further refine boundaries. When integrating 

these methodologies, the system is able to handle complex 

scenarios and accurately segment tiny lesions and overlapping 

layers in retinal OCT images. 

(a) (b) 

(c) (d) 

Figure 5. (a) 3D rendering of retinal layers from OCT B-

scans [22], (b) Retinal layer boundary detection, (c) 

Extraction of multilayer frames, (d) 3D volumetric 

visualization of the retina 

(a) (b) (c) 

Figure 6. Results of 3D OCT image analysis - (a) Input 

images (Row 1: [22], Row 2: [23], Row 3: [24]), (b) Ground 

truth annotations, (c) Segmented tumor regions obtained 

Figure 7. The segmented 3D-OCT [25]: Choroid layer at 

different iterations 

6. PERFORMANCE ANALYSIS

The proposed DR 3D-OCT image segmentation method is 

assessed based on its ability to properly segment retinal 

features such as blood vessels, lesions, and other DR-related 

anomalies. A thorough evaluation of the algorithm's 

segmentation accuracy is provided by the evaluation metrics 

utilized for performance analysis, which comprise True 

Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN) values. The True Positive (TP) value 

shows how many pixels in the segmented and ground truth 

images were accurately classified as lesions or vasculature. 

The algorithm's capacity to identify the DR-affected regions is 

shown in higher TP values. The number of pixels in the 

segmented picture and the ground truth that are accurately 

identified as non-lesions or non-vessels is known as the True 

Negative (TN). This indicates the model's capacity to properly 

discriminate between normal and damaged retinal areas. 

Pixels in the segmented image that are mistakenly identified 

as lesions or vessels but do not match any lesion or vessel in 

the ground truth are known as false positives (FP). 

Better segmentation accuracy, which reduces false 

detections, is indicated by a lower FP value. The number of 

pixels in the ground truth that represent lesions or vasculature 

but are not picked up in the segmented output is known as the 

False Negative (FN). To make sure the algorithm doesn't 

overlook essential DR-related characteristics like 

microaneurysms, exudates, or hemorrhages, FN must be kept 

to a minimum. The performance metrics for DR segmentation 

in 3D-OCT images using the proposed CEDNN model are 

shown in Table 2. With a 99.3% accuracy, 99.4% sensitivity, 

and 99% specificity, the approach performs well. The F1-score, 

which provides an acceptable balance between precision and 

recall, is 99.3%, while the algorithm's precision is 99.2%. 

Additionally, the proposed technique's resilience and 

dependability in precisely segmenting DR lesions and blood 

vessels are demonstrated by the estimated 95% Confidence 

Interval (CI) for accuracy, which ranges from 98.8% to 99.8%. 

Figure 8 illustrates the model accuracy of 99.3% indicating 

correct predictions for positive and negative cases. The model 
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also has a low error rate, with only 350 FP and 350 FN. With 

precision, recall, and accuracy closely matched at 99.3%, these 

findings demonstrate the model's high precision in 

differentiating between positive and negative instances, 

showing efficient detection and minimal misclassification. 

As shown in Figure 9, the ROC curve and AUC serve as 

essential measures for assessing the way DR diagnostic 

classification algorithms work. The trade-off between the True 

Positive Rate (TPR) and the False Positive Rate (FPR) across 

various categorization thresholds can be illustrated by the 

ROC curve. AUC measures the model's overall performance; 

higher classification accuracy is indicated by numbers nearer 

1. In DR images, the CEDNN model successfully identified

lesions, exudates, and microaneurysms while separating

healthy from afflicted regions with a high AUC of 99.6%. This

result demonstrates the extent to which the CEDNN model can

recognize and segment DR, which is essential for precise

diagnosis and treatment planning.

High performance was attained by the proposed CEDNN, 

which included multiple measures to protect against data leaks. 

At the patient level, training, validation, and test sets have been 

split, and Table 2 presents the findings along with the 95% 

Confidence Intervals (CIs). The high performance may in part 

reflect dataset homogeneity and the influence of CLAHE 

preprocessing. However, risks of overfitting remain, 

particularly in cross-dataset generalization. To ensure fair 

evaluation, baseline models including DR-VNet, U-Net, 

ResNet+, and VGG16 CNN were re-implemented and trained 

on the same dataset with an identical train/test split as CEDNN. 

This design isolates the contribution of architectural 

differences rather than dataset variations. For models that 

could not be fully reproduced due to unavailable 

implementation details, results from the original publications 

were used and are marked in Table 3 to avoid misinterpretation. 

The performance of various cutting-edge DR segmentation 

methods, such as DR-VNet [27], Multiple U-Nets and SegNets 

[28], DR-ResNet+ [29], and VGG16-based CNN [30], is 

compared with that of the CEDNN approach in Table 3. With 

the highest levels of accuracy, sensitivity, and specificity, the 

CEDNN approach continuously outperforms the other 

approaches on all parameters. CEDNN's AUC results 

demonstrate its resilience and capacity to capture the intricate 

architecture of retinal blood vessels and diseases. DR-VNet 

[27] works well and produces competitive results, but it still

falls short of CEDNN in terms of accuracy, precision, and F1-

score. This indicates that CEDNN's 3D segmentation and

context encoding methods yield more accurate results,

especially for minor lesions and blood vessels. The multiple

U-Nets and SegNets method exhibits lower performance, in

precision and sensitivity, suggesting that it struggles with

accurately segmenting fine details. Similarly, DR-ResNet+

[29] and VGG16-based CNN [30] achieve good results but fall

short compared to CEDNN, particularly in capturing fine

features and maintaining high segmentation quality.

The baseline for efficiency benchmarking was defined as a 

standard 3D U-Net implementation, trained and tested on the 

same dataset under an identical hardware configuration as 

CEDNN. This setup ensures that the comparison highlights 

architectural differences rather than variations in datasets or 

computing resources. Model size, training time, inference time, 

GPU memory usage, and FLOPs for both CEDNN and the 3D 

U-Net baseline are shown in Table 4, which highlights the

computational advantage of the proposed method. Due to its

widespread application in retinal OCT segmentation tasks, the

3D U-Net baseline [31] serves as a meaningful benchmark for 

evaluation. 

Table 2. Evaluation metrics [15] and performance results of 

the proposed CEDNN for DR 3D-OCT ımage segmentation 

Metric Formula Result (%) 

Sensitivity 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
99.4 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
99 

Accuracy 
𝑇𝑃 + 𝐹𝑁

(𝑇𝑃 + 𝐹𝑁) + (𝑇𝑁 + 𝐹𝑃)
99.3 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
99.2 

F1-Score 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
99.3 

Confidence Interval 

(CI) 𝑝̂ ± 𝑍 ∙ √
𝑝̂(1 − 𝑝̂)

𝑛
[98.8, 99.8] 

Figure 8. Confusion matrix illustrating the classification 

performance of the proposed model 

Figure 9. The AU-ROC of the proposed approach 

The proposed approach performs significantly better than 

the current methods across a number of measures, shown by 

the computational efficiency analysis in Table 4, which makes 

it ideal for large data sets such as 101,000 images. The. The 

model achieves a 50% reduction in size and GPU memory 

usage, enabling deployment on resource-constrained devices. 

Training time is reduced by 58%, and inference time is halved, 

allowing for faster predictions, with the entire dataset 
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processed in 18 minutes compared to 36 minutes with baseline 

methods. Additionally, the model's computational complexity 

is minimized, with a 50% reduction in FLOPs, ensuring 

quicker and more efficient operation without compromising 

accuracy. These improvements highlight the model's 

scalability, accessibility, and potential for real-time 

applications in clinical and computational settings. 

Table 3. Comparative analysis of segmentation results 

obtained using CEDNN and state-of-the-art approaches [27-

30] for DR detection

Metric 
CEDNN 

(Proposed) 

DR-

VNet 

[27] 

U-Nets &

SegNets

[28] 

ResNet+ 

[29] 

VGG16-Based 

CNN [30] 

Accuracy 99.3 98.5 96 97.8 94.8 

Sensitivity 99.4 98.3 94.8 97.5 92.7 

Specificity 99 98 95.2 96.5 93.5 

Precision 99.2 97.1 91.7 95 90.2 

F1-Score 99.3 97.7 93.1 96.3 91.4 

AUC 99.6 98 93 97 94 

Table 4. Computational efficiency analysis of CEDNN 

compared with a 3D U-Net baseline [31], trained and 

evaluated on the same dataset and hardware 

Metric 
Proposed 

Method 
3D U-Net (Baseline) 

Model Size (MB) 25 50 

Training Time 5 hours 12 hours 

Inference Time 10 ms 20 ms 

Total Inference Time 18 minutes 36 minutes 

GPU Memory Usage (GB) 4 8 

FLOPs (Floating Point Ops) 5 billion 10 billion 

The proposed method demonstrates strong performance in 

segmenting DR lesions, but like any approach, it does have 

certain limitations. Although the technique works well for 

typical DR symptoms, including blood vessels, 

microaneurysms, and exudates, it has difficulty discriminating 

tiny or subtle lesions because of low contrast or poor image 

resolution. Additionally, exudates, which often appear as 

bright spots, may sometimes be misclassified, especially in 

images with noise or artifacts. In scenarios where the image 

quality is compromised, such as low resolution or significant 

motion blur, the segmentation accuracy may decrease. To 

address these limitations, more advanced contextual 

information is needed to improve the segmentation of small or 

ambiguous lesions. 

7. SUBJECTIVE EVALUATION

The proposed technique is evaluated and tested by the 

ophthalmologists using segmentation results from 3D-OCT 

images obtained from public datasets, as well as real-time 

clinical images, as shown in Figure 10. The dataset included 

normal and pathological cases. The system effectively 

removes vessel depigments and accurately traces even the 

smallest blood vessels, ensuring comprehensive segmentation 

of retinal features. 

In addition to qualitative assessment, three 

ophthalmologists independently evaluated the segmentation 

quality using a 5-point Likert scale (1 being extremely poor 

and 5 being excellent). The mean rating across cases was 

4.6±0.3, indicating a high perceived quality of the outputs. To 

assess consistency, inter-observer agreement was computed 

using Cohen’s κ, which yielded 0.81, representing strong 

agreement among the experts. Furthermore, to avoid confusion, 

it is clarified that Figure 10 displays OCT-derived B-scan 

visualizations with intermediate processing such as edge 

detection and histograms. Additionally, the method is assessed 

on its ability to provide a clear visualization of minute blood 

vessels, maintain sharpness at vessel junctions, and accurately 

segment lesions, exudates, microaneurysms, and hemorrhages. 

Attention is also given to the presence of artifacts, darkened 

regions near the image corners due to flagging, and the 

visibility of signal distortions in the segmented output. 

(a) 

(i) (ii) (iii) (iv) 

(b) 

(i) (ii) (iii) (iv) 

Figure 10. OCT-derived B-scan visualizations. (a): Normal Image – (i) Source Image, (ii) Noisy Image, (iii) Edge detection, (iv) 

Histogram of the surface (b) Diseased Image – (i) Source Image, (ii) Noisy Image, (iii) Edge detection, (iv) Histogram of the 

surface 

8. CONCLUSIONS

A novel approach to enhance retinal vascular segmentation 

and lesion detection in 3D-Spectral Optical Coherence 

Tomography (OCT) images is described in this work to assist 

with the early and precise diagnosis of diabetic retinopathy 

(DR). Local and global contextual information are efficiently 

extracted from retinal images using the Context Encoding 
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Deep Neural Network (CEDNN) architecture, which is 

included into the proposed method. This allows for precise 

segmentation of retinal vessels and accurate identification of 

lesions indicative of DR progression. The proposed technique 

demonstrated excellent performance on a number of 

evaluation parameters, demonstrating its effectiveness in 

lesion identification and segmentation tasks. The experimental 

findings demonstrate the approach's resilience, with an 

exceptional 99.3% accuracy, 99.4% sensitivity, 99% 

specificity, 99.2% precision, and 99.3% F1-score. 

Furthermore, the predicted 95% Confidence Interval (CI) for 

accuracy falls between 98.8% and 99.8%. Diagnostic capacity 

is improved by the precise identification of lesions, such as 

microaneurysms, exudates, and hemorrhages, which enables 

early DR detection and immediate action. Because of its 

statistical resilience and high performance, the approach is a 

useful tool for clinical usage, especially in the early detection 

and treatment of DR. Despite the strong performance, the 

model’s near-perfect results raise concerns of possible 

overfitting and limited generalization to unseen populations. 

Future work will focus on validating the framework on 

independent external datasets and incorporating strategies 

such as domain adaptation and cross-center evaluation to 

ensure robustness across clinical settings. 
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