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One of the primary causes of visual impairment in the world today is Diabetic Retinopathy
(DR), which emphasizes the need for prompt and precise diagnosis to stop the progression
of the illness. To improve retinal vascular segmentation and lesion identification, this work
presents a unique architecture that combines Context Encoding Deep Neural Networks
(CEDNN) with 3D-Spectral Optical Coherence Tomography (SPECTRAL OCT) imaging.
The SPECTRAL OCT scans are subjected to Contrast Limited Adaptive Histogram
Equalization (CLAHE) to enhance the image quality and for more accurate feature
extraction. The CEDNN model utilizes context-encoding mechanisms to accurately segment
retinal vessels by capturing both global and localized features. For lesion detection,
specialized feature-encoding layers amplify subtle pathological signals while preserving
structural details, correctly recognizing exudates, hemorrhages, and microaneurysms as DR
indications. The CEDNN architecture enables accurate extraction of structural information
for vessel segmentation, while the context-aware layers ensure reliable lesion identification
without compromising spatial coherence. The model is validated on clinical 3D SPECTRAL
OCT images and publicly available benchmark datasets, achieving outstanding performance
with a 95% confidence interval for accuracy between 98.8% and 99.8%. The results show
an Fl-score of 99.3%, 99.4% sensitivity, 99% specificity, 99.2% precision, and 99.3%
accuracy. These results highlight the model’s robustness in capturing fine microvascular
abnormalities and DR-related lesions across varied imaging conditions. The proposed 3D
SPECTRAL OCT-based CEDNN framework offers a scalable, cost-effective solution for
large-scale clinical screening and automated DR diagnosis.

1. INTRODUCTION

changes. While lesion identification concentrates on locating
clinical features such as microaneurysms, hemorrhages, and

A microvascular consequence of diabetes mellitus, diabetic
retinopathy (DR) is defined by progressive retinal blood vessel
damage [1]. An estimated 103.12 million individuals
worldwide were forecast to have DR in 2020, making it one of
the major causes of visual impairment worldwide. This
statistic is predicted to increase as the incidence of diabetes
rises [2]. To prevent serious vision loss, early diagnosis and
treatment are essential. If treatment is not received for DR,
which affects the retinal vasculature, visual impairment and
blindness may result [3]. Due to the growing number of people
with diabetes identified globally, it is anticipated that the
prevalence of DR will continue to increase. To slow the
growth of and protect eyesight, early identification and
treatments are important.

Proliferative Diabetic Retinopathy (PDR), which is marked
by neovascularization and significant retinal damage, follows
Non-Proliferative Diabetic Retinopathy (NPDR), which is
defined by microaneurysms and hemorrhages [4]. Retinal
image analysis techniques, including vessel segmentation and
lesion detection, are vital for identifying these pathological
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exudates, automated segmentation of retinal arteries allows for
the detection of small vascular anomalies. For the analysis of
microvascular structures, which frequently show anomalies in
the early phases of DR, retinal vessel segmentation is
significant. These abnormalities include vessel dilation,
beading, and the formation of microaneurysms, which serve as
primary indicators of DR severity [5]. In contrast, lesion
identification looks for pathological features that indicate
advanced disease stages, such as bleeding, hard exudates, and
cotton wool patches.

Conventional diagnostic techniques are laborious,
subjective, and sensitive to inter-observer variability. One
example is the manual grading of fundus images by
ophthalmologists. Automated solutions that aid in DR
diagnosis have been made possible by recent developments in
medical imaging and Artificial Intelligence (AI) [6]. In this
field, OCT and fundus photography are frequently utilized
imaging techniques. Deep learning methods have transformed
medical imaging in recent years, providing new approaches to
DR monitoring and detection. Because they can learn


https://orcid.org/0000-0001-6471-043X
https://orcid.org/0000-0002-2032-3304
https://orcid.org/0000-0001-9975-6462
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420513&domain=pdf

hierarchical patterns from data, CNNs and their variations
have demonstrated notable effectiveness in segmenting retinal
structures and accurately diagnosing lesions.

The following describes the novel contribution of the
suggested approach to the 3D-SPECTRAL OCT-based
CEDNN framework for DR diagnosis:

1. Integration of 3D-Spectral OCT for detailed retinal
imaging: Utilization of 3D-Spectral OCT, which
offers high axial resolution and cross-sectional retinal
images, capturing intricate retinal layers and
microvascular alterations, providing a deeper
understanding of the retina compared to conventional
imaging methods.

Enhanced Image  Quality with CLAHE:
Implementation of CLAHE to address low contrast
and noise in 3D-Spectral OCT images, optimizing the
contrast in retinal images by locally enhancing pixel
intensities while avoiding over-amplification,
ensuring significant pathological features are more
prominent for further analysis.

Context Encoding Deep Neural Network (CEDNN)
for Multi-scale feature extraction: Development
CEDNN model with a dual-context encoding strategy
that extracts global (large-scale) and local (fine-
grained) structural information from retinal images,
improving segmentation accuracy by capturing
vascular context and ensuring precise delineation of
retinal vessels and lesions.

Specialized feature-encoding layers for lesion
detection: Introduction of feature-encoding layers
that are sensitive to subtle pathological patterns,
which are small and hard to detect in early DR stages.
These layers enhance pathological signal features
while preserving the structural context of the retina,
maintaining image integrity.

Scalable and robust model for clinical application:
The proposed model exhibits scalability by handling
large datasets, such as clinical 3D-SPECTRAL OCT
images and benchmark datasets, ensuring robust
performance in diverse clinical conditions. Its
efficiency, along with high diagnostic reliability,
positions it as a cost-effective solution for widespread
screening in clinical environments, capable of
assisting in large-scale diabetic retinopathy detection
programs.

CLAHE was chosen to enhance Spectral OCT images
because it can improve local contrast, which is essential for
precise retinal vessel segmentation and lesion detection in DR.
3D-Spectral OCT images frequently have low contrast in some
areas, particularly in subtle pathological lesions and fine
microvascular structures. It selectively enhances these areas
without amplifying noise, making small pathological features
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like microaneurysms, hemorrhages, and exudates more visible.

Unlike histogram equalization and Gaussian smoothing
approaches, CLAHE functions locally, limiting over-
amplification of noise in uniform zones and conserving the
structural integrity of retinal layers and capillaries. Its adaptive
nature, adjusting enhancement levels based on local image
features, is particularly effective for the varying content in 3D-
OCT images. Additionally, CLAHE is excellent at
highlighting subtle characteristics, which is essential for the
early identification of diabetic retinopathy. These benefits
have led to the widespread use of CLAHE in medical imaging,
which increases diagnostic precision in challenging
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circumstances when contrast enhancement is required for
accurate interpretation.

The inclusion of CEDNN in this study stands out from
existing methods like U-Net and SegNet due to its unique
architectural design, which improves segmentation and
classification of DR. CEDNN’s encoder-decoder structure
combines deep feature extraction with precise spatial
reconstruction, enabling it to detect and localize retinal
abnormalities such as microaneurysms and hemorrhages more
effectively. Unlike U-Net and SegNet, which may lose finer
spatial details during upsampling, CEDNN incorporates
optimized pathways to preserve lesion information, enhancing
segmentation accuracy. Furthermore, CEDNN is more
computationally efficient, using lightweight procedures to
lower memory and processing time requirements, which
makes it more appropriate for use in actual clinical situations.
The proposed approach overcomes these drawbacks of the
current techniques to handle high-resolution medical images
with practicality and scalability, in addition to achieving high
diagnostic accuracy.

The capacity of the ResNet-based design to handle
vanishing gradient problems through residual connections,
allowing deeper networks to train efficiently, justifies its
selection for the CEDNN. Compared to DenseNet, ResNet
provides a balanced trade-off between computational
efficiency and feature extraction capability, as DenseNet’s
dense connectivity can increase computational complexity and
memory usage, making it less practical for large-scale clinical
datasets. VGG, while straightforward and effective for feature
extraction, lacks the depth and residual learning mechanisms
of ResNet, which are essential for capturing complex
hierarchical features in retinal images. For DR segmentation
and classification tasks, ResNet-based CEDNN is the best
option as it guarantees excellent accuracy, efficient
computation, and successful learning of global and local
features.

2. LITERATURE REVIEW

Diabetic Retinopathy (DR) has been examined through a
variety of computational methods, each with unique benefits
and drawbacks. By using features extracted from retinal
images, traditional machine learning techniques like Random
Forests (RF) [7] and Support Vector Machines (SVM) [8] have
been used for DR classification. These methods work well for
conditions that are clearly defined and have relatively small
datasets.

Convolutional Neural Networks (CNNs), such as VGG16
and ResNet, have been extensively utilized for DR diagnosis
and segmentation tasks since the development of deep learning
[9, 10]. By autonomously learning hierarchical features from
data, these models increase the precision and resilience of
lesion detection and retinal vascular segmentation. Despite
being successful, the models' high computational demand
prevents real-time clinical implementation, and they
frequently require sizable annotated datasets for efficient
training. Hybrid methods combining CNNs with other
techniques, such as U-Net for segmentation and Fully
Convolutional Networks (FCNs) for pixel-wise classification,
have further improved segmentation performance. These
architectures excel at capturing spatial and contextual
information, enabling precise vessel segmentation and lesion
detection [11]. However, its performance degrades in the



presence of artifacts in retinal images.

Advanced techniques have been developed to enhance DR
detection and segmentation in addition to conventional
Machine Learning (ML) and early deep learning techniques.
To overcome the difficulties presented by the scarcity of
annotated datasets, Generative Adversarial Networks (GANs)
have been utilized to improve image quality and carry out data
augmentation [12]. GANs also enable domain adaptation,
improving generalization across diverse imaging modalities.
However, they are computationally intensive and challenging
to train, often requiring careful hyperparameter tuning. Graph
Neural Networks (GNNs) have been explored for capturing
relational and structural information in retinal images,
particularly for vessel segmentation tasks [13]. These models
use graph representations to model the connectivity of retinal
vasculature, resulting in improved segmentation accuracy.
However, GNNs are limited by their complexity and
dependency on accurate graph construction.

Transformer-based  architectures, such as Vision
Transformers (ViTs), have recently been adapted for DR
diagnosis. These models use self-attention mechanisms to
focus on important regions in retinal images, offering
improved interpretability and accuracy [14]. However, their
performance often relies on pretraining with large-scale
datasets, which may not always be available. Ensemble
learning approaches, combining multiple models like CNNss,
U-Nets, and decision trees, have also shown the potential to
improve robustness and accuracy for DR detection. Ensemble
techniques reduce the drawbacks of single-model approaches
by utilizing the advantages of individual models [15].
However, these techniques are computationally intensive and
challenging to use in clinical settings in real time.

Transfer learning speeds up model construction and
eliminates the requirement for large amounts of labeled data.
Still, these models frequently need to be adjusted to fit DR
datasets and might not adequately capture domain-specific
properties. Because CapsNets can record spatial hierarchies
and interactions between visual features, they have been
explored for DR detection [16]. Unlike CNNs, which may lose
spatial information during pooling, CapsNets preserve
positional data, improving accuracy in lesion detection.
However, the computational complexity and extended training
time limit their practical application in real-time settings.

Temporal variations in sequential imaging data have been
analyzed for DR progression analysis using models based on
Recurrent Neural Networks (RNNs), such as Long Short-Term
Memory (LSTM) networks. These methods are suitable for
longitudinal studies but are less suited for single-image
analyses and require consistent follow-up data [17]. Multitask
Learning (MTL) frameworks simultaneously perform DR
diagnosis and segmentation tasks by sharing a common feature
extractor across tasks. This approach improves computational
efficiency and reduces overfitting [18]. However, balancing
multiple loss functions can be challenging, and task
interference may degrade overall performance. DR datasets
with few annotations can benefit from Few-Shot Learning
(FSL) algorithms, which overcome data scarcity by learning
to generalize from a small number of labeled instances [19].
While promising, FSL models are sensitive to variations in
data quality and often require carefully curated support sets for
training. Active Learning (AL) strategies involve iterative
model training with user feedback to label the most
informative samples. This reduces the annotation while
maintaining model performance [20, 21]. However, the
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approach relies heavily on the availability of expert annotators
and can be time-intensive for large datasets.

To detect diabetic retinopathy, many methods for
segmenting retinal blood vessels and lesions have been
reported. These methods are differentiated using the proposed
technique to provide a comprehensive review of this wide
range of approaches.

3. DATASET

A total of 101,000 images were utilized in this proposed
research. obtained by merging the clinical and publicly
available datasets listed in Table 1. The Spectral OCT
produces volumetric scans composed of multiple B-scans;
each 3D OCT volume was decomposed into 2D cross-
sectional slices. To enable uniform training, all extracted B-
scans were resampled to fixed spatial resolutions (224x224,
384x384, or 512x512 pixels), depending on dataset origin.
This preprocessing pipeline ensures that representative 2D
slices from 3D OCT volumes were standardized and could be
used consistently as model inputs, making the experimental
setup fully reproducible.

The images represent a mix of healthy and pathological
cases, ensuring diversity for robust model training and
evaluation. The dataset is balanced across various disease
classes to standardize image dimensions for computational
analysis. This dataset enables the exploration of fine-grained
features in OCT scans, utilizing the advanced deep neural
networks. The retinal layers' anatomical structure in an OCT
image is shown in Figure 1.

Table 1. Dataset used for the proposed work

Dataset Name Total Images Image Resolution

Retinal OCT Images [22] 24,000 224x224 pixels
Duke OCT Dataset [23] 35,000 Variable

DeepDR OCT Dataset [24] 12,000 384x384 pixels
AIIMS OCT Dataset [25] 10,000 Variable

OCTID [26] 20,000 512x512 pixels

Retinal Nerve Fiber Layer Ganglion Cell Layer

Inner Plexiform Layer Inner Nuclear Layer

Outer Plexiform Layer Outer Nuclear Layer

External Limiting Membrane
i lera i
Choroid-Sclera Junction Eilipsold Zone

Outer Segments

Interdigitation Zone

Figure 1. The anatomy of an OCT image's retinal layers [27]

4. METHODOLOGIES

The proposed approach for diagnosing diabetic retinopathy
utilizing 3D-Spectral Optical Coherence Tomography (OCT)
images is shown in Figure 2. First, 3D-Spectral OCT images
are given. Next, a preprocessing phase employing CLAHE is
performed to improve image contrast and provide focus on
subtle retinal features. Following preprocessing, the images



are sent into a CEDNN for feature extraction, producing two
essential outputs: lesion identification and retinal vascular
segmentation.

Lesion detection looks for anomalies such as
microaneurysms, hemorrhages, and exudates, which are
significant markers of DR, whereas retinal vascular
segmentation concentrates on recognizing blood vessel
architecture. The final DR diagnosis is the result of an analysis
based on the combination of these results. This pipeline
ensures precise localization and classification of DR-related
features, facilitating accurate and efficient diagnosis.

Input: Spectral OCT Images

v

Preprocessing

v

Feature Extraction
CEDNN

v

Retinal Vessel Segmentation
Lesion Detection

v

Microaneurysms,
Haemorrhages, Exudates

v

Output: DR Diagnosis

Figure 2. The proposed framework for DR diagnosis
4.1 Preprocessing

The image has been divided into tiles, which are little
contextual areas that do not overlap. Let T X T be the size of
each contextual region and I(x;,y;) be the intensity of the
pixel of the original image at position (x;,y;). Determine the
histogram H(i) for every tile using Eq. (1), where
i€{0,1,...,L—1} represents the intensity levels.

H() = S (xy,y1) — D)

x,yEtitle

(1

Here 8 (k) is the Kronecker delta function.

If I(x;,y,) = i then §(I(xy,y,)) —i = 1) contributing to
the histogram bin H(i). Otherwise, the contribution is 0. This
ensures that the histogram is built by counting the exact

matches of pixel intensities within each contextual region (tile).

To prevent over-amplification of noise, clip the histogram
values at a predefined threshold C as shown in Eq. (2).
Heyip (i) = min (H(0), C) 2

The excess pixels above the threshold are redistributed
across the histogram bins. The clipped histogram is

normalized to compute and display the local Cumulative
Distribution Function (or CDF) for every tile, as shown in Eq.

3).
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Zi':o Hclip (])

CDF(i) = == :
?:5 Hclip (])

3)

The CDF maps the intensity values to its adjusted levels.
The pixel intensity is transformed using the local CDF as
shown in Eq. (4):

I'(x1,y,) = min +CDF (I(xy,y;) X (max — min) 4
where, min and max represent the image's lowest and highest
intensity values, respectively. To avoid artificial boundaries

between tiles, bilinear interpolation is applied to smooth the
transition of pixel intensities.

I”(xllyl) (5)
= interpolate(I' (x,,y,), neighboring tiles)

As shown in Figure 3, for DR 3D-OCT images, CLAHE
enhances contrast in areas with subtle variations caused by
diabetic pathologies, such as microaneurysms and exudates,
by emphasizing local differences without over-enhancing
noise. While CLAHE is more commonly applied in fundus
photography, its use in OCT preprocessing was quantitatively
evaluated through an ablation study.

Applying CLAHE improved the Dice score by +2.4% for
vessel segmentation compared to simple intensity
normalization, confirming its benefit for enhancing fine
microvascular structures. At the same time, acknowledge that
CLAHE may risk altering OCT reflectivity patterns, which
could distort anatomical interpretation. To mitigate this,
CLAHE parameters of tile size and clip limit were optimized
to balance enhancement with noise suppression.

(b)

Figure 3. Preprocessing: (a) Input OCT image [28], (b)
Preprocessed output image

4.2 CEDNN for segmentation

A CEDNN is a deep learning architecture intended for DR
diagnostic image segmentation and feature extraction.
Although the dataset originates from 3D SPECTRAL OCT
volumes, the proposed model processes data at the level of 2D
B-scan slices extracted from these volumes. In this context, 3D



refers to the acquisition modality, while segmentation is
performed slice-by-slice using CEDNN. Each B-scan is
treated as a grayscale image with input dimensions of
[HeightxWidthxChannel], where Channel=1. This design
choice avoids the computational load of 3D convolutions
while capturing volumetric information across multiple slices
during evaluation.

The encoder captures high-level characteristics and
compresses input data, while the decoder reconstructs the
input's spatial structure for segmentation. These two
components define the network. The CEDNN stands out
compared to other models for DR diagnosis due to its higher
balance between feature extraction and spatial detail
preservation.

While traditional CNNs like VGG or ResNet are excellent
for global feature extraction, they often lose spatial resolution,
which is vital for localizing small lesions such as
microaneurysms and hemorrhages.

Figure 4 illustrates the architecture of a CEDNN tailored for
3D-OCT image segmentation. The process begins with the
feature encoder, which extracts spatial features using a series
of convolutional layers with 3x3 convolution to capture local
spatial information. The encoded features are then passed to
the context extractor, which applies further convolutions and
operations like skip connections and feature aggregation to
enhance contextual understanding across scales. Next, the
processed features are passed to the feature decoder, which
reconstructs the spatial details of the segmented regions. The
decoder includes components like a 1x1 convolution for
dimensionality  reduction, 3x3  deconvolutions  with
upsampling layers, and additional 3x3 convolutions for
refining the segmentation output. The segmentation accuracy
of complicated structures in 3D-OCT images is improved by
skip connections between the encoder and decoder, which
guarantee that fine-grained information from the encoder is
preserved throughout reconstruction. This architecture is
designed to achieve high accuracy in identifying regions of
interest within 3D-OCT images by utilizing hierarchical

feature extraction and reconstruction.

CEDNN's encoder-decoder architecture mitigates this
limitation by combining downsampling in the encoder for
robust feature learning with upsampling in the decoder for
precise  spatial reconstruction. Compared to Fully
Convolutional Networks (FCNs) or U-Net, CEDNN offers
enhanced scalability and flexibility, allowing it to process
high-dimensional retinal images with greater efficiency.
CEDNN is computationally efficient and well-suited for DR
classification and segmentation tasks with limited data. The
encoder component efficiently detects patterns linked to DR,
including microaneurysms, hemorrhages, and exudates, by
capturing  hierarchical feature representations using
convolutional layers. To precisely localize problematic areas,
the decoder simultaneously reconstructs fine-grained spatial
features using upsampling and deconvolution layers. This
architectural design ensures the model retains spatial
resolution for DR image analysis while capturing global
contextual information. Furthermore, CEDNN is very
effective for lesion segmentation and DR severity grading due
to its multi-scale feature extraction and effective pixel-wise
classification, which addresses the difficulties of lesion size
and appearance variability in retinal fundus images.

Unlike standard encoder—decoder networks such as U-Net,
the proposed CEDNN introduces a dual-context encoding
module. This module integrates:

* Local context encoding through residual 3x3 convolutions,
which preserve fine lesion details such as microaneurysms and
vessel junctions.

* Global context encoding through dilated convolutions and
multi-scale aggregation, which capture long-range vascular
topology across OCT volumes.

The outputs of these two streams are mathematically
aggregated to encode both fine-grained and large-scale retinal
features simultaneously. By explicitly modeling global retinal
layer continuity in addition to localized lesion detail, CEDNN
provides a context-aware representation that standard U-Net
and SegNet architectures do not achieve.

—>| 3x3 Conv >{ 3x3 Conv %@—)

Feature Encoder 5| Context Extrac

tor j—————>! Feature Decoder

= 1x] Conv

—> 3x3DeConv |- 3x3Conv >

Figure 4. The proposed architecture of CEDNN for 3D-OCT image segmentation

4.2.1 Encoder feature extraction

The encoder uses pooling and convolutional processes to
compress the input image / into a lower-dimensional latent
representation. The convolution operation extracts feature
maps as shown in Eq. (6).
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Fp=o0W;xF_y+b) (6)

where, the input feature map to layer / is F;_4, indicates the
convolution process, while W, and b; represent the learnable
weights and biases of layer /. The activation function is
represented by 6, and ReLU is ReLU (o (x) = max(0, x)).



Eq. (7) illustrates how pooling layers preserve significant
properties while reducing the spatial dimensions.

EP°°? = Pool(F)) (7)

Common pooling methods include max pooling as shown in
Eq. (8).

R ) = max Fi(p, q) )
where, R is a small window of 2x2 over which the maximum
value is taken. This module extracts low-level features from
the input 3D-OCT images using multiple 3%3 convolutional
layers. These layers capture spatial details, such as the
boundaries of retinal layers and abnormal structures like
microaneurysms or drusen. Skip connections from the encoder
are established to pass significant spatial information to the
decoder, preserving fine details for accurate segmentation.

4.2.2 Context extractor

Accurate segmentation in 3D-OCT image processing
depends on the model's capacity to collect local and global
context, which is improved by the context extractor. The
extracted features are processed to enhance the contextual
understanding across different regions of the 3D-OCT image.
Operations like residual connections improve learning by
enabling the reuse of features and stabilizing the gradient flow.
The context extractor uses convolutional layers to capture
spatial hierarchies. The convolution operation is defined as
shown in Eq. (9).

M N
YVijk = Z Z Xivm—1,j4+n-1k " Wmmnk T b

1n=1

)

m=

where,
® Xx;;: Input feature map at position (7,j) and channel

k.

Wpnk: Convolutional kernel of size MxN (3x3).

by, Bias term for the k'™ channel.

Yijk - Output feature map after applying the

convolution.

These layers capture local spatial details in the input feature
map. By stacking multiple convolutions, the network
aggregates multi-scale context, which is particularly useful in
detecting subtle patterns in OCT images. Deeper networks are
made possible by residual connections, which also enhance
gradient flow. Eq. (10), which provides the residual operation.

Y=FX,{WH+X (10)
where,
X: Input feature map.
F (X, {W}): Non-linear transformation of the input,
such as convolutions.
{W}: Learnable weights of the transformation.
Y: Output feature map after residual addition.

Training is stabilized, and vanishing gradients are avoided
because of residual connections, which enable the model to
learn the variation between the input and output. Deep
contextual feature extraction from 3D-OCT images requires it.
Without adding more parameters, dilated atrous convolutions
improve the receptive field. Eq. (11) provides a definition for
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the operation.

K

yli] = Zx[i +re k] wik]

k=1

(11)

where,
e r: Dilation rate of =2 doubles the receptive field.

K: Kernel size.

x[i]: Input feature map.

w[k]: Kernel weights.

Dilated convolutions capture global context, which is
essential for identifying large structures or lesions in 3D-OCT
images, such as retinal detachment. The extracted features are
aggregated using either concatenation or -element-wise
addition to combine information across multiple scales, as
shown in Eq. (12):

Y,

agg

=Y, 0,0 ..0Y, (12)
where,

o (P: Aggregation operation (concatenation or

addition).

Y1, Y,, ..., Y, Feature maps from different layers.
Aggregation combines fine-grained details with broader

contextual information, crucial for distinguishing overlapping

structures in OCT images.

4.2.3 Decoder spatial reconstruction
The decoder reconstructs the high-resolution output of the
segmentation mask from the compressed feature map using
upsampling and convolution. The decoder uses upsampling
operations to increase spatial dimensions, often using
transposed convolutions, as shown in Eq. (13).
E? = oW *Fyy + b)) (13)
Here, W, represents the weights for transposed convolution,
also called deconvolution. Skip connections connect the
encoder and decoder layers to recover spatial features lost
during downsampling, as indicated in Eq. (14).

Fskip

— rrencoder decoder

(14)

This ensures the final output combines high-level and low-
level features. This module reconstructs the spatial details for
segmentation. It uses 1x1 convolutions to reduce feature
dimensions, 3x3 deconvolutions for upsampling, and
additional 3x3 convolutions to refine the segmentation output.
For the purpose of defining fine structures in 3D OCT images,
the skip connections between the encoder and decoder
guarantee that the high-resolution information from the
encoder is included throughout reconstruction.

4.2.4 Output layer

The segmentation mask or classification map is generated
by the decoder's last layer. As shown in Eq. (15), segmentation
is accomplished by using a softmax activation function pixel-
by-pixel to assign each pixel to one of the C classes.

exp (F(x,y,0))
Ti-1exp (FL(x,y, k)

F(x,y) = (15)

where, the probability of class ¢ at pixel (x,y) is denoted by



P.(x,y).The output of the last layer for class ¢ is F; (x,y, ¢).

In DR diagnosis, CEDNN enables precise retinal vessel
segmentation and lesion detection, vital for identifying
pathologies and classifying disease severity. The lesion
detection using CEDNN is designed as a pixel-wise
segmentation module that produces masks for clinically
relevant lesion categories, including microaneurysms,
hemorrhages, and exudates. This differs from bounding-box
detection or image-level classification, as each lesion pixel is
explicitly labeled. The lesion segmentation maps are then
aggregated with vessel segmentation maps to provide
complementary biomarkers, which are subsequently used in
the diagnostic stage. Figure 2 has been updated to illustrate this
dual-output pipeline more clearly.

4.2.5 Diagnostic classification

The outputs of the vessel segmentation and lesion detection
branches are not used directly for grading. Instead,
quantitative biomarkers are extracted from these segmentation
maps, including vessel density, branching patterns, lesion
count, and lesion area. These biomarkers serve as structured
input features for a random forest classifier, which assigns a
diabetic retinopathy severity grade according to standard
clinical categories. This additional classification stage ensures
that the model provides a clinically interpretable output rather
than raw segmentation maps, linking image analysis to
diagnostic decision-making.

5. EXPERIMENTAL RESULTS

The first step in producing an 11-layer 3D rendering from
OCT image data acquired using B-scans is preprocessing,
which involves normalizing and enhancing the images to
increase contrast and tissue boundary visibility. Boundary
detection is performed using edge detection techniques like
Canny or Sobel operators to identify intensity changes
indicative of tissue interfaces, followed by refinement using
morphological operations or curve fitting to reduce noise. 3D
rendering is achieved by aligning and stacking detected
boundaries from sequential B-scans to reconstruct the
volumetric structure, visualized using volume rendering
techniques for interactive exploration.

For multi-layer frame extraction, a CEDNN is used. It
captures spatial contextual information, enabling precise
segmentation of specific tissue layers. The network is trained
on annotated datasets to ensure accurate layer differentiation,
with post-processing methods applied to refine segmentation
outputs. This approach addresses challenges like noise and
adjacent layers, providing a detailed and reliable 3D
representation. The combined framework of 3D rendering,
boundary detection, and CEDNN-based multi-layer extraction
significantly enhances OCT imaging's diagnostic utility,
offering valuable insights into tissue structure and
abnormalities for clinical applications.

Figure 5 represents a volumetric reconstruction of the
retinal layers captured through 3D-OCT using B-scans. The
3D rendering provides a comprehensive visualization of the
retinal structure, enabling a better spatial understanding of the
layer’s arrangement and thickness. The visualization is
important for detecting subtle morphological changes, which
indicate pathological conditions such as macular edema or
retinal thinning in diseases like DR. In the multi-layer frame
extraction step, individual layers extracted from the segmented
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boundaries are analyzed frame-by-frame. Each extracted layer
is evaluated for specific features such as curvature, thickness,
or texture. This extraction enables targeted analysis of each
retinal layer, facilitating the identification of abnormalities
localized to specific layers. By isolating these features, the
system enhances diagnostic precision and aids in detecting
disease progression over time.

The macular layer and other relevant retinal layers are the
main focus of the model's multi-layer segmentation of a 3D-
OCT image. It incorporates a shape-prior technique, which
improves segmentation accuracy across several layers by
utilizing earlier understanding of shape at various voxel
positions. The 3D-OCT B-scan examines the reflectivity
values for every layer and spreads segmentation labels among
areas. The whole macular layer is divided throughout the scan,
which begins at the mid-slice and extends from the fovea to
the cross-section. The obtained OCT imaging scan records
voxel information with 1024x1024x5 dimensions.

The activation map allows for the 3D visualization of these
images, shown in Figure 5, illustrating the differentiation of
the retina's multiple layers. The OCT images are also used to
create a 3D blood vessel representation, from which the vessel
segmentation algorithm extracts information about the vessel's
density, diameter, and vasculature. Tested on both public and
clinical datasets, the proposed multi-layer segmentation
approach shows promise in measuring retinal features and
enhancing the precision of retinal diagnosis in ophthalmology.
Segmentation of the tumors in the 3D-OCT image, manually
labeled by experts. Figure 5(a) shows the 3D rendering of
retinal layers from OCT B-scans. Figure 5(b) shows the retinal
layer boundary detection. Figure 5(c) displays the segmented
tumors obtained using the CEDNN model, highlighting the
algorithm’s ability to accurately identify and delineate tumor
boundaries from the input image. These results demonstrate
the performance of the CEDNN approach in accurately
segmenting tumors within 3D OCT imaging data.

Figure 6 shows the results of tumor segmentation in 3D-
OCT images using a CEDNN. Figure 6(a) shows the input
image, representing the raw 3D-OCT scan of the tissue. Figure
6(b) illustrates the ground truth, which provides the reference.
Figure 6(c) provides the obtained segmented tumor regions

Figure 7 illustrates the segmented 3D-OCT images,
highlighting the choroid layer's progressive refinement across
seven iterations of the segmentation algorithm. Figure 7(a)
depicts the input image at iteration 1 (i=1). Figure 7(b)
presents the initial segmentation (i=2), where the algorithm
begins identifying the choroid layer. In Figure 7(c) (i=3), early
refinements improve the boundary localization, followed by
Figure 7(d) (i=4), which shows enhanced clarity in the
segmentation. Figure 7(e) (i=5) demonstrates near-final
refinement with precise boundary delineation, and Figure 7(f)
(i=6) represents the final segmentation result, achieving high
accuracy in defining the choroid layer. Finally, Figure 7(g)
(i=7) showcases post-final verification, ensuring the
robustness of the algorithm. These subfigures show that the
iterative method improves segmentation accuracy. The
segmentation results are in line with the ground truth. The
proposed approach is utilized to track variations in the
vasculature, lesions, and blood vessel diameters. The proposed
research measures the diameter of the newly created vessels
entering the retina. The segmentation results are contrasted
with the real-world images. These ground truth images are
identified by experts using their manual skills.

The proposed method extends 2D segmentation into 3D



space and improves segmentation accuracy by taking
advantage of the anisotropic structure of image data, enabling
better analysis of spatial relationships and depth variations in
retinal structures. To address challenges such as overlapping
layers and small lesions, the method utilizes contextual
information from neighboring regions in 3D space to
differentiate layers and refine boundaries. Post-processing
methods that guarantee spatial consistency and enhance
segmentation accuracy include Conditional Random Fields
(CRFs) and morphological procedures.

Multi-scale feature extraction and data augmentation
enhance the detection of small lesions by enabling the
algorithm to recognize variations in size and shape.
Additionally, advanced deep learning techniques, such as
CEDNN, are used for robust feature extraction, while edge
detection methods further refine boundaries. When integrating
these methodologies, the system is able to handle complex
scenarios and accurately segment tiny lesions and overlapping
layers in retinal OCT images.

Figure 5. (a) 3D rendering of retinal layers from OCT B-
scans [22], (b) Retinal layer boundary detection, (c)
Extraction of multilayer frames, (d) 3D volumetric

visualization of the retina

(®)

Figure 6. Results of 3D OCT image analysis - (a) Input
images (Row 1: [22], Row 2: [23], Row 3: [24]), (b) Ground
truth annotations, (c) Segmented tumor regions obtained
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(a) i=1 (b) i=2 (c) i=3
(d) i=4 (e) i=5 (f) i=6

(9) i=7

Figure 7. The segmented 3D-OCT [25]: Choroid layer at
different iterations

6. PERFORMANCE ANALYSIS

The proposed DR 3D-OCT image segmentation method is
assessed based on its ability to properly segment retinal
features such as blood vessels, lesions, and other DR-related
anomalies. A thorough evaluation of the algorithm's
segmentation accuracy is provided by the evaluation metrics
utilized for performance analysis, which comprise True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) values. The True Positive (TP) value
shows how many pixels in the segmented and ground truth
images were accurately classified as lesions or vasculature.
The algorithm's capacity to identify the DR-affected regions is
shown in higher TP values. The number of pixels in the
segmented picture and the ground truth that are accurately
identified as non-lesions or non-vessels is known as the True
Negative (TN). This indicates the model's capacity to properly
discriminate between normal and damaged retinal areas.
Pixels in the segmented image that are mistakenly identified
as lesions or vessels but do not match any lesion or vessel in
the ground truth are known as false positives (FP).

Better segmentation accuracy, which reduces false
detections, is indicated by a lower FP value. The number of
pixels in the ground truth that represent lesions or vasculature
but are not picked up in the segmented output is known as the
False Negative (FN). To make sure the algorithm doesn't
overlook essential DR-related characteristics  like
microaneurysms, exudates, or hemorrhages, FN must be kept
to a minimum. The performance metrics for DR segmentation
in 3D-OCT images using the proposed CEDNN model are
shown in Table 2. With a 99.3% accuracy, 99.4% sensitivity,
and 99% specificity, the approach performs well. The F1-score,
which provides an acceptable balance between precision and
recall, is 99.3%, while the algorithm's precision is 99.2%.
Additionally, the proposed technique's resilience and
dependability in precisely segmenting DR lesions and blood
vessels are demonstrated by the estimated 95% Confidence
Interval (CI) for accuracy, which ranges from 98.8% to 99.8%.

Figure 8 illustrates the model accuracy of 99.3% indicating
correct predictions for positive and negative cases. The model



also has a low error rate, with only 350 FP and 350 FN. With
precision, recall, and accuracy closely matched at 99.3%, these
findings demonstrate the model's high precision in
differentiating between positive and negative instances,
showing efficient detection and minimal misclassification.

As shown in Figure 9, the ROC curve and AUC serve as
essential measures for assessing the way DR diagnostic
classification algorithms work. The trade-off between the True
Positive Rate (TPR) and the False Positive Rate (FPR) across
various categorization thresholds can be illustrated by the
ROC curve. AUC measures the model's overall performance;
higher classification accuracy is indicated by numbers nearer
1. In DR images, the CEDNN model successfully identified
lesions, exudates, and microaneurysms while separating
healthy from afflicted regions with a high AUC of 99.6%. This
result demonstrates the extent to which the CEDNN model can
recognize and segment DR, which is essential for precise
diagnosis and treatment planning.

High performance was attained by the proposed CEDNN,
which included multiple measures to protect against data leaks.
At the patient level, training, validation, and test sets have been
split, and Table 2 presents the findings along with the 95%
Confidence Intervals (CIs). The high performance may in part
reflect dataset homogeneity and the influence of CLAHE
preprocessing. However, risks of overfitting remain,
particularly in cross-dataset generalization. To ensure fair
evaluation, baseline models including DR-VNet, U-Net,
ResNet+, and VGG16 CNN were re-implemented and trained
on the same dataset with an identical train/test split as CEDNN.
This design isolates the contribution of architectural
differences rather than dataset variations. For models that
could not be fully reproduced due to unavailable
implementation details, results from the original publications
were used and are marked in Table 3 to avoid misinterpretation.

The performance of various cutting-edge DR segmentation
methods, such as DR-VNet [27], Multiple U-Nets and SegNets
[28], DR-ResNet+ [29], and VGG16-based CNN [30], is
compared with that of the CEDNN approach in Table 3. With
the highest levels of accuracy, sensitivity, and specificity, the
CEDNN approach continuously outperforms the other
approaches on all parameters. CEDNN's AUC results
demonstrate its resilience and capacity to capture the intricate
architecture of retinal blood vessels and diseases. DR-VNet
[27] works well and produces competitive results, but it still
falls short of CEDNN in terms of accuracy, precision, and F1-
score. This indicates that CEDNN's 3D segmentation and
context encoding methods yield more accurate results,
especially for minor lesions and blood vessels. The multiple
U-Nets and SegNets method exhibits lower performance, in
precision and sensitivity, suggesting that it struggles with
accurately segmenting fine details. Similarly, DR-ResNet+
[29] and VGG16-based CNN [30] achieve good results but fall
short compared to CEDNN, particularly in capturing fine
features and maintaining high segmentation quality.

The baseline for efficiency benchmarking was defined as a
standard 3D U-Net implementation, trained and tested on the
same dataset under an identical hardware configuration as
CEDNN. This setup ensures that the comparison highlights
architectural differences rather than variations in datasets or
computing resources. Model size, training time, inference time,
GPU memory usage, and FLOPs for both CEDNN and the 3D
U-Net baseline are shown in Table 4, which highlights the
computational advantage of the proposed method. Due to its
widespread application in retinal OCT segmentation tasks, the
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3D U-Net baseline [31] serves as a meaningful benchmark for

evaluation.

Table 2. Evaluation metrics [15] and performance results of
the proposed CEDNN for DR 3D-OCT 1mage segmentation

Metric Formula Result (%)
TP
Sensitivity P—— 99.4
TPT-I}VFN
Specificity -_— 99
TN + FP
A TP+ FN 993
oeuracy (TP + FN) + (TN + FP) '
Precision L 99.2
TP + FP
F1-Score PreczIstl'on X Recall 99 3
Precision + Recall
Confidence Interval . p(1—-p)
1 p+Z- — [98.8, 99.8]

Actual Positive

Actual

Actual Neyative

Predicted Positive
Predicted

Predicted Negative

Figure 8. Confusion matrix illustrating the classification
performance of the proposed model
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Figure 9. The AU-ROC of the proposed approach

The proposed approach performs significantly better than
the current methods across a number of measures, shown by
the computational efficiency analysis in Table 4, which makes
it ideal for large data sets such as 101,000 images. The. The
model achieves a 50% reduction in size and GPU memory
usage, enabling deployment on resource-constrained devices.
Training time is reduced by 58%, and inference time is halved,
allowing for faster predictions, with the entire dataset



processed in 18 minutes compared to 36 minutes with baseline
methods. Additionally, the model's computational complexity
is minimized, with a 50% reduction in FLOPs, ensuring
quicker and more efficient operation without compromising
accuracy. These improvements highlight the model's
scalability, accessibility, and potential for real-time
applications in clinical and computational settings.

Table 3. Comparative analysis of segmentation results
obtained using CEDNN and state-of-the-art approaches [27-
30] for DR detection

DR- U-Nets &

CEDNN ResNet+VGG16-Based

Metric b oposed) ‘[’?7? Se[g;;fts [29]  CNN [30]
Accuracy 99.3 98.5 96 97.8 94.8
Sensitivity 994 983 948 975 92.7
Specificity 99 98 952 965 93.5
Precision 99.2 97.1 91.7 95 90.2
Fl-Score 993 977  93.1 96.3 91.4
AUC 996 08 93 97 94

Table 4. Computational efficiency analysis of CEDNN
compared with a 3D U-Net baseline [31], trained and
evaluated on the same dataset and hardware

Metric P&‘;‘;ﬁf};" 3D U-Net (Baseline)
Model Size (MB) 25 50
Training Time 5 hours 12 hours
Inference Time 10 ms 20 ms
Total Inference Time 18 minutes 36 minutes
GPU Memory Usage (GB) 4 8
FLOPs (Floating Point Ops) 5 billion 10 billion

The proposed method demonstrates strong performance in
segmenting DR lesions, but like any approach, it does have
certain limitations. Although the technique works well for
typical DR  symptoms, including blood vessels,
microaneurysms, and exudates, it has difficulty discriminating

(i)

tiny or subtle lesions because of low contrast or poor image
resolution. Additionally, exudates, which often appear as
bright spots, may sometimes be misclassified, especially in
images with noise or artifacts. In scenarios where the image
quality is compromised, such as low resolution or significant
motion blur, the segmentation accuracy may decrease. To
address these limitations, more advanced contextual
information is needed to improve the segmentation of small or
ambiguous lesions.

7. SUBJECTIVE EVALUATION

The proposed technique is evaluated and tested by the
ophthalmologists using segmentation results from 3D-OCT
images obtained from public datasets, as well as real-time
clinical images, as shown in Figure 10. The dataset included
normal and pathological cases. The system effectively
removes vessel depigments and accurately traces even the
smallest blood vessels, ensuring comprehensive segmentation
of retinal features.

In addition to  qualitative  assessment, three
ophthalmologists independently evaluated the segmentation
quality using a 5-point Likert scale (1 being extremely poor
and 5 being excellent). The mean rating across cases was
4.6+0.3, indicating a high perceived quality of the outputs. To
assess consistency, inter-observer agreement was computed
using Cohen’s k, which yielded 0.81, representing strong
agreement among the experts. Furthermore, to avoid confusion,
it is clarified that Figure 10 displays OCT-derived B-scan
visualizations with intermediate processing such as edge
detection and histograms. Additionally, the method is assessed
on its ability to provide a clear visualization of minute blood
vessels, maintain sharpness at vessel junctions, and accurately
segment lesions, exudates, microaneurysms, and hemorrhages.
Attention is also given to the presence of artifacts, darkened
regions near the image corners due to flagging, and the
visibility of signal distortions in the segmented output.

(iv)

(1ii) @iv)

Figure 10. OCT-derived B-scan visualizations. (a): Normal Image — (i) Source Image, (ii) Noisy Image, (iii) Edge detection, (iv)
Histogram of the surface (b) Diseased Image — (i) Source Image, (ii) Noisy Image, (iii) Edge detection, (iv) Histogram of the

surface

8. CONCLUSIONS

A novel approach to enhance retinal vascular segmentation
and lesion detection in 3D-Spectral Optical Coherence

Tomography (OCT) images is described in this work to assist
with the early and precise diagnosis of diabetic retinopathy
(DR). Local and global contextual information are efficiently
extracted from retinal images using the Context Encoding



Deep Neural Network (CEDNN) architecture, which is
included into the proposed method. This allows for precise
segmentation of retinal vessels and accurate identification of
lesions indicative of DR progression. The proposed technique
demonstrated excellent performance on a number of
evaluation parameters, demonstrating its effectiveness in
lesion identification and segmentation tasks. The experimental
findings demonstrate the approach's resilience, with an
exceptional 99.3% accuracy, 99.4% sensitivity, 99%
specificity, 99.2% precision, and 99.3% Fl-score.
Furthermore, the predicted 95% Confidence Interval (CI) for
accuracy falls between 98.8% and 99.8%. Diagnostic capacity
is improved by the precise identification of lesions, such as
microaneurysms, exudates, and hemorrhages, which enables
early DR detection and immediate action. Because of its
statistical resilience and high performance, the approach is a
useful tool for clinical usage, especially in the early detection
and treatment of DR. Despite the strong performance, the
model’s near-perfect results raise concerns of possible
overfitting and limited generalization to unseen populations.
Future work will focus on validating the framework on
independent external datasets and incorporating strategies
such as domain adaptation and cross-center evaluation to
ensure robustness across clinical settings.
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