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The General Election (PEMILU) in Indonesia utilizes the Recapitulation Information
System (SIREKAP) to accelerate and improve the accuracy of vote counting. However, the
system often fails to recognize numbers on C1 sheets due to handwriting variations, low
image quality, and visual disturbances. This study develops a Convolutional Neural
Network (CNN) to classify digits 0-9 and the letter X, which are frequently misread. The
dataset was collected from 300 respondents who rewrote numbers with seven variations:
bold, right italic, left italic, crumpled paper, subscript, superscript, and upside down. A total
of 3,850 images were generated and divided into 70% training, 15% validation, and 15%
testing. Four CNN configurations were compared: standard, with L1 regularization, L2
regularization, and Elastic Net (L1+L2). The standard CNN achieved 94.92% training
accuracy, 72.91% validation, and 69.88% testing. The L1 model showed overfitting with
91.99% training but only 59.72% testing accuracy. L2 regularization improved results with
92.47% training and 75.84% testing accuracy. Elastic Net achieved the best balance,
reaching 95.51% training, 71.74% validation, and 77.89% testing accuracy. These findings
highlight the effectiveness of Elastic Net in enhancing generalization and reducing

misclassification, thereby supporting more reliable election vote recapitulation.

1. INTRODUCTION

The vote counting process in the Indonesian General
Election (PEMILU) is a crucial stage in the democratic
system, as it determines the final outcome of the people’s
representation in government institutions. One of the key
components of this process is the Cl form, an official
document that records vote counts directly from each Polling
Station (TPS). This form serves as the primary source for data
entry into the General Elections Commission (KPU) electronic
system, the Recapitulation Information System (SIREKAP).
[1]. The system is designed to enhance the efficiency and
transparency of the national vote recapitulation by using the
C1 form as the main reference for digitizing handwritten vote
data, which can be supported by CNN-based recognition
methods to improve accuracy [2].

However, in practice, several challenges are frequently
encountered during technical implementation, hindering the
accuracy and reliability of the vote digitization process. One
of the main issues is the system’s failure to recognize the
numbers recorded on the C1 form [3]. This problem generally
arises from both technical and non-technical factors, such as
inconsistent handwriting by officers, low-quality printouts or
scans, and visual artifacts including scratches, ink stains,
creases, or inadequate lighting during image capture [3]. These
conditions make it difficult for the system to correctly interpret
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the numbers, potentially resulting in errors in the vote
recapitulation and directly affecting the validity and integrity
of the election [4].

The misinterpretation of numbers on the C1 form is not
merely a technical challenge but also undermines public
confidence in the election results. When the system fails to
recognize a number, corrections must be performed manually
by officials, which consumes additional time and effort and
introduces the risk of inconsistencies due to human
intervention. Therefore, developing a technology-driven
solution capable of addressing this problem automatically and
accurately, even under complex visual conditions, is essential
[4].

Convolutional Neural Networks (CNNs) are a deep learning
method that has proven highly effective in digital image
processing and visual pattern recognition. CNNs are
specifically designed to extract hierarchical features from
images, ranging from simple edges and lines to more complex
structures such as numbers and letters. Previous studies have
demonstrated the effectiveness of CNNs in handwritten
character recognition, including digit classification using the
MNIST dataset [5], recognition of Arabic script [6], and
modern OCR applications on noisy documents [7]. In the
electoral context, CNNs have been increasingly applied to
improve the accuracy of document digitization, particularly in
processing voting result forms in several countries [8]. This
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highlights the relevance of applying CNNs in the context of
SIREKAP to address the challenge of misreading numbers on
Cl1 forms [9-12].

This study was carried out by developing and training a
CNN model using handwritten data designed to replicate the
appearance of digits 0-9 and the letter X, which are often
misread by SIREKAP. The dataset was collected from 300
respondents, each producing seven variations of writing
styles—bold, right italic, left italic, subscript, superscript,
reversed, and crumpled paper—with 550 samples for each
variation, resulting in a total of 3,850 images. The primary
objective of this research is to reproduce the characteristics of
handwritten numbers that are prone to recognition errors,
enabling the CNN model to classify digits more accurately,
minimize the need for manual correction, and ultimately
enhance the integrity and efficiency of Indonesia’s election
vote recapitulation system [13-16].

2. METHODOLOGY

This research began with a structured literature review to
establish a strong theoretical foundation on the Convolutional
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Neural Network (CNN) method and the application of
regularization techniques in image processing [17-20]. The
next stage involved collecting image data representing
unreadable numbers in the Recapitulation Information System
(SIREKAP), which was then systematically processed and
divided into three subsets: training, testing, and validation [21-
25]. Furthermore, the experimental process was carried out in
two main phases. The first phase examined individual CNN
regularization techniques, namely L1 regularization and L2
regularization, to observe their respective effects on model
performance. The second phase involved testing a
combination of the two techniques using the FElastic Net
(L1+L2) approach, with the objective of identifying the
configuration that produces the most optimal results [26-30].
Model performance for each configuration was
comprehensively evaluated using several assessment metrics,
including accuracy, precision, recall, and visual analysis
through a confusion matrix. This stepwise approach is
intended to provide a clear understanding of the effectiveness
of regularization techniques in enhancing the CNN’s ability to
recognize and classify numbers in C1 form images that are
otherwise difficult for the system to read [31-36]. These stages
are illustrated in Figure 1.
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Figure 1. Research method

Figure 1 above shows a systematic flowchart depicting the
research process from beginning to end. Each stage is
structured sequentially, from the literature review to the
evaluation process, with a primary focus on the application
and comparison of various regularization techniques in CNN
models. This flowchart helps provide a visual understanding
of the structure of the work performed during the experiment
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and how each stage relates to the research objectives.

3. LITERATURE STUDY REVIEW

Literature study is the initial foundation of the research on
the classification of illegible numbers in the Recapitulation



Information System (SIREKAP) on sheet C1 with a deep
learning approach, starting with the collection and analysis of
literature related to number classification methods and CNN
architecture using the Systematic Literature Review (SLR)
approach to ensure scientific validity. The literature data
preparation stage involves determining search keywords such
as classification CNN, deep learning handwriting recognition,
and "form recognition neural network" in the IEEE Xplore,
SpringerLink, Scopus, and Google Scholar databases. The
initial literature obtained was then screened based on
eligibility criteria through title and abstract review to ensure
relevance to the topic, followed by an in-depth analysis of
existing CNN methods and architectures. The final result is a
comprehensive SLR report that serves as the basis for selecting
the most relevant techniques for the experiment and
establishing an evidence-based decision-making framework.

4. DATA COLLECTION AND PREPARATION

The dataset in this study was collected through a process of
rewriting numbers that the Recapitulation Information System
(SIREKAP) previously failed to recognize on the C1 election
form. Since the original data were difficult to obtain due to
their illegibility, respondents were instructed to recopy the
numbers exactly as they appeared on the C1 form. The writing
was designed to replicate the authentic characteristics of
election documents. To simulate real-world conditions, the
numbers were written on A4 paper using various tools, such as
pens, colored markers, and colored pencils, to produce
variations in stroke, thickness, and color resembling those
found in field documents. A total of 300 respondents
participated, each writing the digits 0-9 and the letter X in
seven variations: bold (550 samples), right-slanted (550
samples), left-slanted (550 samples), crumpled paper (550
samples), subscript (550 samples), superscript (550 samples),
and reversed (550 samples), yielding a total of 3,850 samples.
All handwritten text was scanned using a standard scanner,
saved as images, and each digit was cropped from the writing
box to resemble the extracted images from C1 forms. The files
were stored in JPG format with a resolution of 64 x 64 pixels.
Once collected, the dataset was divided into three subsets:70%
for training, 15% for validation, and 15% for testing. This
division was intended to balance model development and
evaluation while minimizing the risk of overfitting.

Visually, regarding the data used in this study, several
sample images from the collected dataset are shown below.
These images demonstrate the variety of written forms of
numbers and letters produced by respondents, including
differences in stroke type, slant, and writing style, which are
important characteristics in the training process of pattern
recognition models.

Figure 2. Bold number
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Figure 2 shows bold numbers in different colors, where
varying ink stroke thickness causes the number lines to widen
and blend into the background. Different colors, such as black,
blue, red, green, or yellow, also affect the contrast of the scan
or photo. This results in images with higher noise levels, less
clear number boundaries, and potential segmentation failures,
often causing the SIREKAP system to incorrectly recognize
the numbers even though they are still visually readable by
humans.

Figure 3. Right italic numbers

Figure 3 shows that right-slanted numbers are often
unreadable by the SIREKAP system because the slant of the
writing causes the number's shape to deviate from the standard
patterns the system has learned. For example, a right-slanted
"1" can resemble a slash, or a left-slanted "7" can look like a
"1" with an added stroke. These changes in orientation cause
the line, angle, and curve features to align with the training
database, making it difficult for the system to extract the
correct pattern. Furthermore, the slant angle can also affect the
segmentation process, making numbers appear longer or
closer together, creating visual distortions that reduce
recognition accuracy.

kol

Figure 4. Left italic numbers

Figure 4 shows that numbers skewed to the left are often
unreadable by the SIREKAP system because the change in
orientation causes the number pattern to deviate significantly
from the standard shape used in the system's training process.
The left skewing causes vertical, horizontal, and curved lines
to appear displaced, so key features of the number such as the
angle in a "4" or the curves in "3" and "6”do not align with the
system's recognized pattern. Furthermore, the visual distortion
caused by the skewing can make the numbers appear denser or
overlapping, making segmentation difficult. Other factors
such as lighting during scanning or differences in ink thickness
further add noise, ultimately preventing the system from
correctly recognizing the numbers.

Figure 5 shows that upside-down numbers are often
unreadable by the SIREKAP system because their visual
orientation is completely distorted from the standard shapes



trained in the pattern recognition system. For example, an
upside-down 6 can resemble a 9, a 3 looks like the letter €, or
a 5 looks like the letter S. These changes in orientation cause
features such as lines, curves, and angles to mismatch their
normal representations in the training dataset. As a result, the
system struggles to extract the correct pattern, resulting in
confusion in classification, or even failing to recognize the
number altogether. Furthermore, when the upside-down
condition is combined with variations in ink color, stroke
thickness, or low scan quality, noise levels increase, increasing
the chance of recognition errors.
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Figure 5. Reverse numbers
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Figure 6. Subscript numbers

Figure 6 shows that subscript numbers are often illegible in
the SIREKAP system because they are written below the
normal line of text, so the system detects them as additional
text or noise, rather than as main characters. Furthermore, the
smaller size of subscripts than normal numbers cause fine line
details and is difficult for segmentation algorithms to capture.
When this condition is exacerbated by poor scan quality or
paper tilt, the system has even more difficulty distinguishing
subscript numbers from the background. As a result, subscript
numbers are often overlooked, misread, or not recognized at
all.

Figure 7. Super script numbers

Figure 7 shows that superscript numbers are often illegible
in the SIREKAP system because their position above the
normal writing line makes it difficult for the system to

recognize them as primary numbers. This protruding position
causes the number area to be misaligned with the other
characters, so the segmentation algorithm often ignores it.
Furthermore, the relatively small size of the superscript makes
the line appear thin when scanned or photographed, reducing
the visual detail needed for classification. In poor lighting
conditions or with differences in ink contrast, superscript
numbers can potentially be interpreted as noise or additional
markings, causing the system to fail to read them.

Figure 8. Numbers on crumpled paper

Figure 8 shows that numbers on crumpled paper are often
unreadable by the SIREKAP system because the uneven
surface of the paper causes shadows and creases that interfere
with the scan results. The creases can cut off or partially cover
the lines of the numbers, distorting the original shape of the
numbers. Furthermore, light falling on the crumpled paper
creates uneven contrast, making it difficult for the system to
distinguish between ink strokes and crease patterns. As a
result, the system can misrecognize the numbers or even fail
to read them altogether, even though humans can still visually
distinguish the shape of the numbers.

Various forms of writing the numbers 0 to 9 and the letter
X were collected from 300 respondents, each with 550
samples, for a total of 3,850 samples in various writing styles,
such as bold, right-slanted, left-slanted, subscript, superscript,
reversed, and even writing on crumpled paper. These
variations reflect the real-world conditions that may occur
when filling out the C1 Election Form in the field, including
disturbances in the shape, tilt, or physical condition of the
paper. This visualization aims to provide an understanding of
the challenges faced by the Recapitulation Information System
(SIREKAP) in recognizing handwriting, as well as serve as an
important basis for training artificial intelligence models to
recognize handwriting patterns with a high level of accuracy.
After the dataset was collected, the data was divided into three
parts: 70% for model training, 15% for validation, and 15%
for testing. This division was designed to maintain a balance
between training and testing while minimizing the risk of
overfitting.

4.1 Overview of the Convolutional Neural Network (CNN)
architecture

A Convolutional Neural Network (CNN) is a deep learning
architecture specifically designed to process image data by
gradually extracting important features. The process begins
with an input image that passes through a convolutional layer
to generate feature maps, followed by pooling to reduce
dimensionality while retaining important information. This
process is repeated several times to create a simpler yet more
information-rich image representation. The resulting feature
maps are then converted into vectors through a flattening



process, then processed by a fully connected layer for
classification. Ultimately, the CNN is capable of recognizing
complex patterns in images, such as the number "6," as in
Figure 9.
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Figure 9. Architecture CNN

Figure 9 shows the Convolutional Neural Network (CNN)
architecture used in this study to recognize numbers in digital
images in a step-by-step and detailed manner. The process
begins with an input image measuring 64x64 pixels with 3
color channels (RGB), which then enters the first
convolutional layer. In this layer, several filters or kernels are
applied to extract basic features from the image such as lines,
edges, and textures, resulting in 64x64 feature maps. The
resulting feature maps then go through a pooling process
(usually max pooling) which aims to reduce the data
dimension to 32x32 while retaining important information.
The pooling results are then processed by a second
convolutional layer that extracts more complex and specific
features, resulting in 16x16 feature maps, which are further
reduced through pooling to 8x8. All of these feature maps are
then flattened into one-dimensional vectors, which serve as
input to the fully connected layer. In this layer, all neurons are
connected and tasked with integrating all feature information
to determine the final class of the image. Finally, the output
layer produces a prediction of the number with the highest
probability. in this case, the network recognizes the image as
6.

5. EXPERIMENT WITH REGULARIZATION

After the dataset was prepared and divided into training,
validation, and testing data, a series of experiments were
conducted using a Convolutional Neural Network (CNN)
model to evaluate the effect of various regularization
techniques on the performance of the classification model. In
this experiment, three main configurations were tested
separately, namely a standard CNN model without
regularization as a baseline, a CNN model using regularization
L1 regularization is used to reduce model complexity while
encouraging the formation of weight sparsity, namely a
condition where most of the weight values are zero so that only
the most relevant features are retained. Meanwhile, L2
regularization is used to prevent overfitting by suppressing
excessively large weight values, thus making the model more
stable and able to generalize well. Each configuration is tested
using the same data to ensure a fair and objective comparison.
All models are then thoroughly evaluated using several key
performance metrics: accuracy to measure the overall
prediction accuracy, precision to assess accuracy in the
positive class, recall to measure the model's sensitivity in
detecting the true class, and a confusion matrix to provide a
detailed picture of the distribution of correct and incorrect
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predictions in each class. This approach is designed to gain a
more comprehensive understanding of the contribution of each
regularization technique to model performance. Testing the
performance of CNN models with various regularization
configurations is shown in Table 1. Results of CNN Models
with and without Regularization.

Table 1. CNN model results with and without regularization

Training Validation Testing
Model (%) %) (%)
CNN Standard 94.92 72.91 69.88
CNN With L1 91.99 5534 5972
Regularization
CNN With L2 92.47 69.84 7584
Regularization

Based on the results in Table 1, it can be concluded that
CNN models with different approaches show varying
performance in recognizing data patterns. The standard CNN
model without regularization recorded a training accuracy of
94.92%, while validation accuracy only reached 72.91% and
testing accuracy was 69.88%. This indicates a tendency
towards overfitting, where the model is very good at learning
the training data but is less able to generalize to the validation
and testing data. Meanwhile, the CNN model with L1
regularization showed a high training accuracy of 91.99%, but
experienced a drastic decrease in validation (55.34%) and
testing (59.72%) accuracy, indicating underfitting. This
condition occurs because the nature of L1 which encourages
excessive weight sparsity, so that some important features are
actually overlooked and reduce the model's generalization
ability. On the other hand, the CNN model with L2
regularization shows a more balanced performance, with a
training accuracy of 92.47%, validation 69.84%, and testing
75.84%, indicating that L2 is quite effective in reducing
overfitting while retaining important information in the model.
Of the three models, CNN with L2 is the most stable
alternative because it is able to provide a balance between
learning ability and generalization, although there is still room
for improvement to further improve validation and testing
accuracy. Accuracy and loss graphs can be seen in Figures 10
and 11.

Model Accuracy

—— Training
Validation

0.9

10
Epochs

Figure 10. Model accuracy CNN with L2 regularization

Figure 10 shows a graph of model accuracy during the



training and validation process over 10 epochs. It can be seen
that training accuracy consistently increases from the
beginning to the end of the epoch, reaching a value close to
0.95, indicating that the model is able to learn well from the
training data. Meanwhile, accuracy also shows a significant
increase, although the value is lower than the training
accuracy. At some points, such as in the 7th and 8th epochs, a
slight dip is observed in the validation curve, which could be
an early indication of overfitting. However, overall, the
increasing trend in both curves indicates that the model has a
fairly good generalization ability to data that has not been seen
before. This graph provides an important visualization in
evaluating the stability and performance of the model during
the training process.

Model Loss
—— Training
Validation

2.5

2.0
[l
0
3 1.5+

1.0 4

0.5 1

T T T T
0 2 4 6 8 10
Epochs

Figure 11. Model loss CNN with L2 regularization
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Figure 11 shows a graph of the model's loss values during
the training and validation processes over a period of 10
epochs. The loss value on the training data shows a sharp
decline at the beginning and continues to decrease consistently
as the number of epochs increases, indicating that the model
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successfully minimizes prediction errors on the training data.
Meanwhile, the loss on the validation data also shows a
gradual decline, albeit at a slower rate than the loss on the
training data. The widening difference between the training
and validation curves in the final epochs may indicate the
emergence of overfitting symptoms, which occurs when the
model adapts too much to the training data, resulting in
decreased performance on new data. However, the overall
decrease in loss values, both on the training and validation
data, indicates that the training process is running well and the
model has sufficient generalization potential. This graph is
important for evaluating the stability and effectiveness of the
model in learning from data and for the results of the confusion
matrix of the CNN model with L2 regularization can be seen
in Figure 12.

Based on Figure 12 confusion matrix in Figure 9, class 0
was predicted correctly 6 times but there were still 8 cases of
misprediction to class 4 and 2 cases to class X, which likely
occurred because the number 0 with its imperfect shape looks
similar to the number 4 or a cross line like the letter X. Class
1 was predicted correctly 22 times with one error to class 2 and
three errors to class X. Class 2 was predicted correctly 13 times
with one error to class 3. Class 3 was predicted correctly 15
times but still two times wrong to class 4 because the open
curve of number 3 makes it look similar to number 4. Class 4
was predicted correctly 7 times but five times wrong to class
3 and two times to class X. Class 5 was predicted correctly 19
times with one error to class X. Class 6 was predicted correctly
9 times but four times wrong to class 4 and three times to class
5, thus indicating the model's difficulty in distinguishing
numbers with similar curves. Class 7 was predicted correctly
21 times with one error to class X so it can be said to be quite
stable. Class 8 was predicted correctly 13 times but four times
incorrectly to class X. Class 9 was predicted correctly 6 times
but six times incorrectly to class 4 and once to class X which
shows the number 9 with a certain shape that can resemble the
number 4 or a cross. Class X was predicted correctly 39 times
without error so it remains the class that is most easily
recognized by the model. This shows that although L2
regularization is effective in stabilizing weights and reducing
overfitting, challenges in distinguishing similar characters
remain. Overall, this model is quite reliable in classifying, but
still has room for improvement, especially in terms of
accuracy on characters that are prone to confusion.

6. EXPERIMENT WITH COMBINATION OF L1 + L2
REGULARIZATION

Further experiments were conducted combining L1 and L2
regularization into a single modeling approach known as
Elastic Net, in an attempt to address the weaknesses found in
using L1 and L2 separately. In previous experiments, the use
of L1 regularization resulted in a model that tended to underfit
due to excessive sparsity pressure, resulting in many important
weights being zeroed and resulting in low accuracy on both
validation and test data. Meanwhile, the use of L2
regularization demonstrated more stable performance, but was
not fully able to distinguish between characters with visually
similar shapes, which led to misclassification in some classes.
Therefore, in this experimental phase, a combination of the
two regularization techniques was carried out in the hope of
utilizing the advantages of each method: L1 regularization for
efficient feature selection and L2 regularization for weight



stabilization and control over model complexity. By applying
Elastic Net, the model is expected to achieve a balance
between high accuracy, good generalization ability, and
minimal misclassification of similar characters. This approach
was tested with specific parameter configurations adjusted
through the training process, and the results were then
evaluated using accuracy metrics, a confusion matrix, and
visual analysis of model predictions. The performance testing
of the combined L1 regularization and L2 regularization
model in the form of Elastic Net is shown in Table 2. Results
of L1+L2 Elastic Net.

Table 2. L1+L2 Elastic Net results

Training Validation Testing
Model (%) (%) (%)
LI+L2 Elastic 95.51 71.74 77.89
Net

The results were obtained from the combination of L1 and
L2 regularization using the Elastic Net approach. This model
achieved the highest training accuracy of 95.51%, along with
significant improvements in validation accuracy 71.74% and
testing accuracy 77.89% compared to the other models. The
integration of L1 and L2 enables the model to perform feature
selection efficiently through the effect of L1, while
maintaining weight stability through the effect of L2. As a
result, the Elastic Net produced the most balanced and reliable
model for use with previously unseen data. Overall, the
findings indicate that the choice of regularization technique
has a substantial impact on the generalization ability of a CNN
model. Although the model without regularization appeared
superior in terms of validation and testing accuracy, its weak
training performance suggests learning deficiencies. In
contrast, the Elastic Net proved to be the most effective
configuration, delivering consistently high performance across
all metrics while avoiding both overfitting and underfitting.
The accuracy and loss curves of the L1+L2 Elastic Net model
are presented in Figure 13 and Figure 14.

Model Accuracy
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Figure 13. Model accuracy L1+L2 Elastic Net

Figure 13 above shows a graph of model accuracy on
training and validation data over 10 epochs. It can be seen that
accuracy on the training data has increased significantly and
consistently, indicating that the model is getting better at
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recognizing patterns in the training data. On the other hand,
accuracy on the validation data fluctuates, especially after the
6th epoch, indicating that the model is starting to lose its
generalization ability to untrained data. However, there is a
general increase in validation accuracy compared to the initial
training, indicating a learning process. The difference in
accuracy between training and validation in the final epoch is
quite large, indicating potential overfitting. This graph is
important for evaluating whether the model is learning
effectively and balancing between training and validation data.
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Figure 14. Model loss L1+L2 Elastic Net

Figure 14 above depicts the loss model graph applied with
combined L1 regularization and L2 regularization, known as
Elastic Net, in the loss model on the training and validation
data for 10 epochs. It can be seen that the loss value on the
training data experienced a consistent and significant decrease
from the beginning to the end of the epoch, indicating that the
model successfully learned the patterns from the training data
well. Meanwhile, the loss on the validation data also showed a
fairly steady downward trend, although slower than the
training data, and did not show any noticeable increase. This
indicates that the model does not experience significant
overfitting, as performance on unseen data continues to
improve over time. The use of Elastic Net has been shown to
have a positive effect in balancing L1 regularization (which
encourages sparsity) and L2 regularization (which prevents
model weights from becoming too large), resulting in a model
that is not only accurate on the training data but also has good
generalization ability to new data. This combination is very
useful in machine learning scenarios that are prone to
overfitting, especially when the number of features is
relatively large or the data is not completely clean. The results
of the confusion matrix can be seen in Figure 15.

Based on the confusion matrix results in Figure 15, it can be
concluded that the CNN model with L1 + L2 (Elastic Net)
regularization shows quite promising classification
performance on the numerical and symbolic data used. The
confusion matrix shows that most of the model predictions are
on the main diagonal, which indicates correct predictions of
the actual labels. This model is able to recognize several
classes very well, such as the letter X which is predicted with
perfect accuracy without error, while Class 0: 9 is correct,
there are a few errors to classes 6 and 9, the number 0



sometimes looks like 6 or 9 if the stroke is not perfect. Class
1: 21 is correct, but is incorrectly predicted to be 6 (3 cases), 8
(1 case), 9 (1 case), the thin/slanted number 1 can resemble the
strokes of other numbers. Class 2: 13 is correct, incorrectly
becomes 3 and 4, the number 2 is often confused with 3/4
because the curved shape is similar. Grade 3: 7 correct, but 6
times wrong to 2 and 4, the number 3 is often similar to 8 or 2
if not closed. Grade 4: 11 correct, but 2 times wrong (3 cases)
the stroke shape of the number 4 sometimes looks like the
number 2 when written in italics. Grade 5: 19 correct, wrong
to 6 and 8, the number 5 often looks like 6 because the circle
is not clear. Grade 6: 22 correct, but 5 times wrong to 5 and 8,
the number 6 is exchanged with 5 because the structure is
almost the same. Grade 7: 22 correct, quite stable, there is 1
error to 1. Grade 8: 17 correct, wrong to 0 and 6, the number
8 is very similar to 0/6 if the circle is not clear. Grade 9: 11
correct, but 2 times wrong to 6, the number 9 is similar to 6 if
the orientation is reversed. This indicates that the model has a
strong and balanced classification ability in recognizing
patterns from various handwritten characters.

Confusion Matrix
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Figure 15. Confusion matrix L1+L2 Elastic Net

7. EVALUATION
MEASUREMENT

AND PERFORMANCE

Evaluation and performance measurement are crucial steps
in the machine learning model development process, as they
aim to assess the model's ability to recognize patterns and
accurately classify previously unseen data. In this study,
model performance was evaluated using precision, recall, and
fl-score metrics, which provide a comprehensive overview of
prediction accuracy, model sensitivity to positive data, and the
balance between the two. The evaluation was conducted on a
test dataset consisting of 3,850 samples, covering all target
classes: the numbers 0 to 9 and the letter X.

Table 3 shows the model's performance in classifying each
character class, namely numbers 0 to 9 and the letter X. In
general, the model shows good results with high precision in
almost all classes, even reaching 1.00 in classes 0, 1, and 6.
Class 0 has a recall of 0.78 so that most samples can be
recognized correctly and produces an Fl-score of 0.72.
Classes 2, 7, 8, and X show very good performance with recall
values approaching or reaching 1.00 resulting in high F1-
scores 0f 0.79, 0.85, 0.87, and 0.99, respectively. Classes 3 and
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6 also show quite good performance with recalls of 0.71 and
0.86, respectively, resulting in Fl-scores of 0.77 and 0.82,
indicating the model's ability to recognize most samples in
both classes. Class 5 has a precision of 0.81 and a recall of
0.90, indicating a good prediction balance, although the F1-
score is still lower than other classes. Overall, the model is able
to classify characters with consistent accuracy, but there is still
room for improvement, especially by increasing the F1-score
in classes with relatively low performance, such as classes 4
and 5, to optimize model sensitivity.

Table 3. Evaluation L1+L2 (Elastic Net)

Class Precision Recall F1-score
0 1.00 0.78 0.72
1 1.00 0.81 0.89
2 0.68 0.93 0.79
3 0.83 0.71 0.77
4 0.61 0.79 0.69
5 0.81 0,90 0.66
6 1,00 0.86 0.82
7 0.73 1.00 0.85
8 0.77 1.00 0.87
9 0.92 0.85 0.88
X 0.97 1.00 0.99

Table 4. Comparative results of classification models

Training  Validation Testing

Model (%) (%) (%)

CNN Standard 94.92 7291 69.38

CNN with L1 91.99 55.34 59.72
regularization

CNN with L.2 92.47 69.84 75.84
regularization

CNN with L1+L2
Elastic Net 95.51 71.74 77.39

Table 4 compares the performance of four CNN model
configurations: the standard CNN, CNN with L1
regularization, CNN with L2 regularization, and CNN with the
combined L1+L2 (Elastic Net) approach across the training,
validation, and testing stages. The standard CNN achieved a
training accuracy of 94.92%, validation accuracy of 72.91%,
and testing accuracy of 69.88%, reflecting strong learning
capability but limited generalization during testing. The CNN
with L1 regularization obtained a lower training accuracy of
91.99% and experienced a substantial decline in validation
(55.34%) and testing (59.72%) performance, indicating its
ineffectiveness in handling data variability. In contrast, the
CNN with L2 regularization achieved a training accuracy of
92.47%, with validation accuracy of 69.84% and testing
accuracy of 75.84%, showing improved generalization
compared to the L1 model. The combined L1+L2 Elastic Net
model produced the best overall results, with a training
accuracy of 95.51%, validation accuracy of 71.74%, and
testing accuracy of 77.89%, demonstrating a balance between
effective learning and robust generalization. Overall, these
findings confirm that the Elastic Net approach provides the
most stable and effective configuration for enhancing CNN
performance in handwritten character classification tasks.

8. CONCLUSIONS

This study demonstrates that applying a Convolutional



Neural Network (CNN) with regularization techniques can
improve the accuracy of reading numbers on the C1 Election
Form, particularly those previously unreadable by the
SIREKAP system. By testing various model configurations—
standard CNN, CNN with L1 regularization, CNN with L2
regularization, and CNN with a combined L1+L2 (Elastic
Net)—an in-depth understanding was gained regarding the
impact of regularization on the model’s ability to recognize
character patterns. The experimental results showed that the
standard CNN produced relatively high validation and testing
accuracy but lower training accuracy, indicating potential
underfitting. The L1-regularized model tended to overfit,
while the L2-regularized model demonstrated more balanced
performance. The L1+L2 Elastic Net configuration achieved
the most optimal results, with training accuracy of 95.51%,
validation accuracy of 71.74%, and testing accuracy of
77.89%, as well as consistent performance across precision,
recall, Fl-score, and confusion matrix. This model
successfully recognized digits 0-9 and the letter X across
diverse handwriting variations, reducing the need for manual
intervention and improving the reliability of the vote
recapitulation process.

Nonetheless, this study has limitations, particularly the
relatively small dataset size (3,850 samples), which may not
fully represent handwriting diversity in the field. Moreover,
direct testing on original C1 form images from the SIREKAP
system was not possible due to restricted access requiring
official permission from election authorities. Future research
should employ larger and more diverse datasets and conduct
evaluations on real C1 documents to assess generalization in
real-world conditions. Overall, these findings provide a strong
foundation for developing more reliable automatic reading
systems, not only for elections but also for broader

applications requiring accurate handwritten character
recognition.
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