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The General Election (PEMILU) in Indonesia utilizes the Recapitulation Information 

System (SIREKAP) to accelerate and improve the accuracy of vote counting. However, the 

system often fails to recognize numbers on C1 sheets due to handwriting variations, low 

image quality, and visual disturbances. This study develops a Convolutional Neural 

Network (CNN) to classify digits 0–9 and the letter X, which are frequently misread. The 

dataset was collected from 300 respondents who rewrote numbers with seven variations: 

bold, right italic, left italic, crumpled paper, subscript, superscript, and upside down. A total 

of 3,850 images were generated and divided into 70% training, 15% validation, and 15% 

testing. Four CNN configurations were compared: standard, with L1 regularization, L2 

regularization, and Elastic Net (L1+L2). The standard CNN achieved 94.92% training 

accuracy, 72.91% validation, and 69.88% testing. The L1 model showed overfitting with 

91.99% training but only 59.72% testing accuracy. L2 regularization improved results with 

92.47% training and 75.84% testing accuracy. Elastic Net achieved the best balance, 

reaching 95.51% training, 71.74% validation, and 77.89% testing accuracy. These findings 

highlight the effectiveness of Elastic Net in enhancing generalization and reducing 

misclassification, thereby supporting more reliable election vote recapitulation.  
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1. INTRODUCTION

The vote counting process in the Indonesian General 

Election (PEMILU) is a crucial stage in the democratic 

system, as it determines the final outcome of the people’s 

representation in government institutions. One of the key 

components of this process is the C1 form, an official 

document that records vote counts directly from each Polling 

Station (TPS). This form serves as the primary source for data 

entry into the General Elections Commission (KPU) electronic 

system, the Recapitulation Information System (SIREKAP). 

[1]. The system is designed to enhance the efficiency and 

transparency of the national vote recapitulation by using the 

C1 form as the main reference for digitizing handwritten vote 

data, which can be supported by CNN-based recognition 

methods to improve accuracy [2]. 

However, in practice, several challenges are frequently 

encountered during technical implementation, hindering the 

accuracy and reliability of the vote digitization process. One 

of the main issues is the system’s failure to recognize the 

numbers recorded on the C1 form [3]. This problem generally 

arises from both technical and non-technical factors, such as 

inconsistent handwriting by officers, low-quality printouts or 

scans, and visual artifacts including scratches, ink stains, 

creases, or inadequate lighting during image capture [3]. These 

conditions make it difficult for the system to correctly interpret 

the numbers, potentially resulting in errors in the vote 

recapitulation and directly affecting the validity and integrity 

of the election [4]. 

The misinterpretation of numbers on the C1 form is not 

merely a technical challenge but also undermines public 

confidence in the election results. When the system fails to 

recognize a number, corrections must be performed manually 

by officials, which consumes additional time and effort and 

introduces the risk of inconsistencies due to human 

intervention. Therefore, developing a technology-driven 

solution capable of addressing this problem automatically and 

accurately, even under complex visual conditions, is essential 

[4]. 

Convolutional Neural Networks (CNNs) are a deep learning 

method that has proven highly effective in digital image 

processing and visual pattern recognition. CNNs are 

specifically designed to extract hierarchical features from 

images, ranging from simple edges and lines to more complex 

structures such as numbers and letters. Previous studies have 

demonstrated the effectiveness of CNNs in handwritten 

character recognition, including digit classification using the 

MNIST dataset [5], recognition of Arabic script [6], and 

modern OCR applications on noisy documents [7]. In the 

electoral context, CNNs have been increasingly applied to 

improve the accuracy of document digitization, particularly in 

processing voting result forms in several countries [8]. This 
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highlights the relevance of applying CNNs in the context of 

SIREKAP to address the challenge of misreading numbers on 

C1 forms [9-12]. 

This study was carried out by developing and training a 

CNN model using handwritten data designed to replicate the 

appearance of digits 0–9 and the letter X, which are often 

misread by SIREKAP. The dataset was collected from 300 

respondents, each producing seven variations of writing 

styles—bold, right italic, left italic, subscript, superscript, 

reversed, and crumpled paper—with 550 samples for each 

variation, resulting in a total of 3,850 images. The primary 

objective of this research is to reproduce the characteristics of 

handwritten numbers that are prone to recognition errors, 

enabling the CNN model to classify digits more accurately, 

minimize the need for manual correction, and ultimately 

enhance the integrity and efficiency of Indonesia’s election 

vote recapitulation system [13-16]. 

2. METHODOLOGY

This research began with a structured literature review to 

establish a strong theoretical foundation on the Convolutional 

Neural Network (CNN) method and the application of 

regularization techniques in image processing [17-20]. The 

next stage involved collecting image data representing 

unreadable numbers in the Recapitulation Information System 

(SIREKAP), which was then systematically processed and 

divided into three subsets: training, testing, and validation [21-

25]. Furthermore, the experimental process was carried out in 

two main phases. The first phase examined individual CNN 

regularization techniques, namely L1 regularization and L2 

regularization, to observe their respective effects on model 

performance. The second phase involved testing a 

combination of the two techniques using the Elastic Net 

(L1+L2) approach, with the objective of identifying the 

configuration that produces the most optimal results [26-30]. 

Model performance for each configuration was 

comprehensively evaluated using several assessment metrics, 

including accuracy, precision, recall, and visual analysis 

through a confusion matrix. This stepwise approach is 

intended to provide a clear understanding of the effectiveness 

of regularization techniques in enhancing the CNN’s ability to 

recognize and classify numbers in C1 form images that are 

otherwise difficult for the system to read [31-36]. These stages 

are illustrated in Figure 1. 

Figure 1. Research method 

Figure 1 above shows a systematic flowchart depicting the 

research process from beginning to end. Each stage is 

structured sequentially, from the literature review to the 

evaluation process, with a primary focus on the application 

and comparison of various regularization techniques in CNN 

models. This flowchart helps provide a visual understanding 

of the structure of the work performed during the experiment 

and how each stage relates to the research objectives. 

3. LITERATURE STUDY REVIEW

Literature study is the initial foundation of the research on 

the classification of illegible numbers in the Recapitulation 
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Information System (SIREKAP) on sheet C1 with a deep 

learning approach, starting with the collection and analysis of 

literature related to number classification methods and CNN 

architecture using the Systematic Literature Review (SLR) 

approach to ensure scientific validity. The literature data 

preparation stage involves determining search keywords such 

as classification CNN, deep learning handwriting recognition, 

and "form recognition neural network" in the IEEE Xplore, 

SpringerLink, Scopus, and Google Scholar databases. The 

initial literature obtained was then screened based on 

eligibility criteria through title and abstract review to ensure 

relevance to the topic, followed by an in-depth analysis of 

existing CNN methods and architectures. The final result is a 

comprehensive SLR report that serves as the basis for selecting 

the most relevant techniques for the experiment and 

establishing an evidence-based decision-making framework. 

4. DATA COLLECTION AND PREPARATION

The dataset in this study was collected through a process of 

rewriting numbers that the Recapitulation Information System 

(SIREKAP) previously failed to recognize on the C1 election 

form. Since the original data were difficult to obtain due to 

their illegibility, respondents were instructed to recopy the 

numbers exactly as they appeared on the C1 form. The writing 

was designed to replicate the authentic characteristics of 

election documents. To simulate real-world conditions, the 

numbers were written on A4 paper using various tools, such as 

pens, colored markers, and colored pencils, to produce 

variations in stroke, thickness, and color resembling those 

found in field documents. A total of 300 respondents 

participated, each writing the digits 0–9 and the letter X in 

seven variations: bold (550 samples), right-slanted (550 

samples), left-slanted (550 samples), crumpled paper (550 

samples), subscript (550 samples), superscript (550 samples), 

and reversed (550 samples), yielding a total of 3,850 samples. 

All handwritten text was scanned using a standard scanner, 

saved as images, and each digit was cropped from the writing 

box to resemble the extracted images from C1 forms. The files 

were stored in JPG format with a resolution of 64 × 64 pixels. 

Once collected, the dataset was divided into three subsets:70% 

for training, 15% for validation, and 15% for testing. This 

division was intended to balance model development and 

evaluation while minimizing the risk of overfitting. 

Visually, regarding the data used in this study, several 

sample images from the collected dataset are shown below. 

These images demonstrate the variety of written forms of 

numbers and letters produced by respondents, including 

differences in stroke type, slant, and writing style, which are 

important characteristics in the training process of pattern 

recognition models. 

Figure 2. Bold number 

Figure 2 shows bold numbers in different colors, where 

varying ink stroke thickness causes the number lines to widen 

and blend into the background. Different colors, such as black, 

blue, red, green, or yellow, also affect the contrast of the scan 

or photo. This results in images with higher noise levels, less 

clear number boundaries, and potential segmentation failures, 

often causing the SIREKAP system to incorrectly recognize 

the numbers even though they are still visually readable by 

humans. 

Figure 3. Right italic numbers 

Figure 3 shows that right-slanted numbers are often 

unreadable by the SIREKAP system because the slant of the 

writing causes the number's shape to deviate from the standard 

patterns the system has learned. For example, a right-slanted 

"1" can resemble a slash, or a left-slanted "7" can look like a 

"1" with an added stroke. These changes in orientation cause 

the line, angle, and curve features to align with the training 

database, making it difficult for the system to extract the 

correct pattern. Furthermore, the slant angle can also affect the 

segmentation process, making numbers appear longer or 

closer together, creating visual distortions that reduce 

recognition accuracy. 

Figure 4. Left italic numbers 

Figure 4 shows that numbers skewed to the left are often 

unreadable by the SIREKAP system because the change in 

orientation causes the number pattern to deviate significantly 

from the standard shape used in the system's training process. 

The left skewing causes vertical, horizontal, and curved lines 

to appear displaced, so key features of the number such as the 

angle in a "4" or the curves in "3" and "6”do not align with the 

system's recognized pattern. Furthermore, the visual distortion 

caused by the skewing can make the numbers appear denser or 

overlapping, making segmentation difficult. Other factors 

such as lighting during scanning or differences in ink thickness 

further add noise, ultimately preventing the system from 

correctly recognizing the numbers. 

Figure 5 shows that upside-down numbers are often 

unreadable by the SIREKAP system because their visual 

orientation is completely distorted from the standard shapes 
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trained in the pattern recognition system. For example, an 

upside-down 6 can resemble a 9, a 3 looks like the letter Ɛ, or 

a 5 looks like the letter S. These changes in orientation cause 

features such as lines, curves, and angles to mismatch their 

normal representations in the training dataset. As a result, the 

system struggles to extract the correct pattern, resulting in 

confusion in classification, or even failing to recognize the 

number altogether. Furthermore, when the upside-down 

condition is combined with variations in ink color, stroke 

thickness, or low scan quality, noise levels increase, increasing 

the chance of recognition errors. 

Figure 5. Reverse numbers 

Figure 6. Subscript numbers 

Figure 6 shows that subscript numbers are often illegible in 

the SIREKAP system because they are written below the 

normal line of text, so the system detects them as additional 

text or noise, rather than as main characters. Furthermore, the 

smaller size of subscripts than normal numbers cause fine line 

details and is difficult for segmentation algorithms to capture. 

When this condition is exacerbated by poor scan quality or 

paper tilt, the system has even more difficulty distinguishing 

subscript numbers from the background. As a result, subscript 

numbers are often overlooked, misread, or not recognized at 

all. 

Figure 7. Super script numbers 

Figure 7 shows that superscript numbers are often illegible 

in the SIREKAP system because their position above the 

normal writing line makes it difficult for the system to 

recognize them as primary numbers. This protruding position 

causes the number area to be misaligned with the other 

characters, so the segmentation algorithm often ignores it. 

Furthermore, the relatively small size of the superscript makes 

the line appear thin when scanned or photographed, reducing 

the visual detail needed for classification. In poor lighting 

conditions or with differences in ink contrast, superscript 

numbers can potentially be interpreted as noise or additional 

markings, causing the system to fail to read them. 

Figure 8. Numbers on crumpled paper 

Figure 8 shows that numbers on crumpled paper are often 

unreadable by the SIREKAP system because the uneven 

surface of the paper causes shadows and creases that interfere 

with the scan results. The creases can cut off or partially cover 

the lines of the numbers, distorting the original shape of the 

numbers. Furthermore, light falling on the crumpled paper 

creates uneven contrast, making it difficult for the system to 

distinguish between ink strokes and crease patterns. As a 

result, the system can misrecognize the numbers or even fail 

to read them altogether, even though humans can still visually 

distinguish the shape of the numbers. 

Various forms of writing the numbers 0 to 9 and the letter 

X were collected from 300 respondents, each with 550 

samples, for a total of 3,850 samples in various writing styles, 

such as bold, right-slanted, left-slanted, subscript, superscript, 

reversed, and even writing on crumpled paper. These 

variations reflect the real-world conditions that may occur 

when filling out the C1 Election Form in the field, including 

disturbances in the shape, tilt, or physical condition of the 

paper. This visualization aims to provide an understanding of 

the challenges faced by the Recapitulation Information System 

(SIREKAP) in recognizing handwriting, as well as serve as an 

important basis for training artificial intelligence models to 

recognize handwriting patterns with a high level of accuracy. 

After the dataset was collected, the data was divided into three 

parts: 70% for model training, 15% for validation, and 15% 

for testing. This division was designed to maintain a balance 

between training and testing while minimizing the risk of 

overfitting.  

4.1 Overview of the Convolutional Neural Network (CNN) 

architecture 

A Convolutional Neural Network (CNN) is a deep learning 

architecture specifically designed to process image data by 

gradually extracting important features. The process begins 

with an input image that passes through a convolutional layer 

to generate feature maps, followed by pooling to reduce 

dimensionality while retaining important information. This 

process is repeated several times to create a simpler yet more 

information-rich image representation. The resulting feature 

maps are then converted into vectors through a flattening 
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process, then processed by a fully connected layer for 

classification. Ultimately, the CNN is capable of recognizing 

complex patterns in images, such as the number "6," as in 

Figure 9. 

Figure 9. Architecture CNN 

Figure 9 shows the Convolutional Neural Network (CNN) 

architecture used in this study to recognize numbers in digital 

images in a step-by-step and detailed manner. The process 

begins with an input image measuring 64×64 pixels with 3 

color channels (RGB), which then enters the first 

convolutional layer. In this layer, several filters or kernels are 

applied to extract basic features from the image such as lines, 

edges, and textures, resulting in 64×64 feature maps. The 

resulting feature maps then go through a pooling process 

(usually max pooling) which aims to reduce the data 

dimension to 32×32 while retaining important information. 

The pooling results are then processed by a second 

convolutional layer that extracts more complex and specific 

features, resulting in 16×16 feature maps, which are further 

reduced through pooling to 8×8. All of these feature maps are 

then flattened into one-dimensional vectors, which serve as 

input to the fully connected layer. In this layer, all neurons are 

connected and tasked with integrating all feature information 

to determine the final class of the image. Finally, the output 

layer produces a prediction of the number with the highest 

probability. in this case, the network recognizes the image as 

6. 

5. EXPERIMENT WITH REGULARIZATION

After the dataset was prepared and divided into training, 

validation, and testing data, a series of experiments were 

conducted using a Convolutional Neural Network (CNN) 

model to evaluate the effect of various regularization 

techniques on the performance of the classification model. In 

this experiment, three main configurations were tested 

separately, namely a standard CNN model without 

regularization as a baseline, a CNN model using regularization 

L1 regularization is used to reduce model complexity while 

encouraging the formation of weight sparsity, namely a 

condition where most of the weight values are zero so that only 

the most relevant features are retained. Meanwhile, L2 

regularization is used to prevent overfitting by suppressing 

excessively large weight values, thus making the model more 

stable and able to generalize well. Each configuration is tested 

using the same data to ensure a fair and objective comparison. 

All models are then thoroughly evaluated using several key 

performance metrics: accuracy to measure the overall 

prediction accuracy, precision to assess accuracy in the 

positive class, recall to measure the model's sensitivity in 

detecting the true class, and a confusion matrix to provide a 

detailed picture of the distribution of correct and incorrect 

predictions in each class. This approach is designed to gain a 

more comprehensive understanding of the contribution of each 

regularization technique to model performance. Testing the 

performance of CNN models with various regularization 

configurations is shown in Table 1. Results of CNN Models 

with and without Regularization. 

Table 1. CNN model results with and without regularization 

Model 
Training 

(%) 

Validation 

(%) 

Testing 

(%) 

CNN Standard 94.92 72.91 69.88 

CNN With L1 

Regularization 
91.99 55.34 59.72 

CNN With L2 

Regularization 
92.47 69.84 75.84 

Based on the results in Table 1, it can be concluded that 

CNN models with different approaches show varying 

performance in recognizing data patterns. The standard CNN 

model without regularization recorded a training accuracy of 

94.92%, while validation accuracy only reached 72.91% and 

testing accuracy was 69.88%. This indicates a tendency 

towards overfitting, where the model is very good at learning 

the training data but is less able to generalize to the validation 

and testing data. Meanwhile, the CNN model with L1 

regularization showed a high training accuracy of 91.99%, but 

experienced a drastic decrease in validation (55.34%) and 

testing (59.72%) accuracy, indicating underfitting. This 

condition occurs because the nature of L1 which encourages 

excessive weight sparsity, so that some important features are 

actually overlooked and reduce the model's generalization 

ability. On the other hand, the CNN model with L2 

regularization shows a more balanced performance, with a 

training accuracy of 92.47%, validation 69.84%, and testing 

75.84%, indicating that L2 is quite effective in reducing 

overfitting while retaining important information in the model. 

Of the three models, CNN with L2 is the most stable 

alternative because it is able to provide a balance between 

learning ability and generalization, although there is still room 

for improvement to further improve validation and testing 

accuracy. Accuracy and loss graphs can be seen in Figures 10 

and 11. 

Figure 10. Model accuracy CNN with L2 regularization 

Figure 10 shows a graph of model accuracy during the 
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training and validation process over 10 epochs. It can be seen 

that training accuracy consistently increases from the 

beginning to the end of the epoch, reaching a value close to 

0.95, indicating that the model is able to learn well from the 

training data. Meanwhile, accuracy also shows a significant 

increase, although the value is lower than the training 

accuracy. At some points, such as in the 7th and 8th epochs, a 

slight dip is observed in the validation curve, which could be 

an early indication of overfitting. However, overall, the 

increasing trend in both curves indicates that the model has a 

fairly good generalization ability to data that has not been seen 

before. This graph provides an important visualization in 

evaluating the stability and performance of the model during 

the training process. 

 

 
 

Figure 11. Model loss CNN with L2 regularization 

 

 
 

Figure 12. Confusion martrix CNN with L2 regularization 

 

Figure 11 shows a graph of the model's loss values during 

the training and validation processes over a period of 10 

epochs. The loss value on the training data shows a sharp 

decline at the beginning and continues to decrease consistently 

as the number of epochs increases, indicating that the model 

successfully minimizes prediction errors on the training data. 

Meanwhile, the loss on the validation data also shows a 

gradual decline, albeit at a slower rate than the loss on the 

training data. The widening difference between the training 

and validation curves in the final epochs may indicate the 

emergence of overfitting symptoms, which occurs when the 

model adapts too much to the training data, resulting in 

decreased performance on new data. However, the overall 

decrease in loss values, both on the training and validation 

data, indicates that the training process is running well and the 

model has sufficient generalization potential. This graph is 

important for evaluating the stability and effectiveness of the 

model in learning from data and for the results of the confusion 

matrix of the CNN model with L2 regularization can be seen 

in Figure 12. 

Based on Figure 12 confusion matrix in Figure 9, class 0 

was predicted correctly 6 times but there were still 8 cases of 

misprediction to class 4 and 2 cases to class X, which likely 

occurred because the number 0 with its imperfect shape looks 

similar to the number 4 or a cross line like the letter X. Class 

1 was predicted correctly 22 times with one error to class 2 and 

three errors to class X. Class 2 was predicted correctly 13 times 

with one error to class 3. Class 3 was predicted correctly 15 

times but still two times wrong to class 4 because the open 

curve of number 3 makes it look similar to number 4. Class 4 

was predicted correctly 7 times but five times wrong to class 

3 and two times to class X. Class 5 was predicted correctly 19 

times with one error to class X. Class 6 was predicted correctly 

9 times but four times wrong to class 4 and three times to class 

5, thus indicating the model's difficulty in distinguishing 

numbers with similar curves. Class 7 was predicted correctly 

21 times with one error to class X so it can be said to be quite 

stable. Class 8 was predicted correctly 13 times but four times 

incorrectly to class X. Class 9 was predicted correctly 6 times 

but six times incorrectly to class 4 and once to class X which 

shows the number 9 with a certain shape that can resemble the 

number 4 or a cross. Class X was predicted correctly 39 times 

without error so it remains the class that is most easily 

recognized by the model. This shows that although L2 

regularization is effective in stabilizing weights and reducing 

overfitting, challenges in distinguishing similar characters 

remain. Overall, this model is quite reliable in classifying, but 

still has room for improvement, especially in terms of 

accuracy on characters that are prone to confusion. 

 

 

6. EXPERIMENT WITH COMBINATION OF L1 + L2 

REGULARIZATION 

 

Further experiments were conducted combining L1 and L2 

regularization into a single modeling approach known as 

Elastic Net, in an attempt to address the weaknesses found in 

using L1 and L2 separately. In previous experiments, the use 

of L1 regularization resulted in a model that tended to underfit 

due to excessive sparsity pressure, resulting in many important 

weights being zeroed and resulting in low accuracy on both 

validation and test data. Meanwhile, the use of L2 

regularization demonstrated more stable performance, but was 

not fully able to distinguish between characters with visually 

similar shapes, which led to misclassification in some classes. 

Therefore, in this experimental phase, a combination of the 

two regularization techniques was carried out in the hope of 

utilizing the advantages of each method: L1 regularization for 

efficient feature selection and L2 regularization for weight 
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stabilization and control over model complexity. By applying 

Elastic Net, the model is expected to achieve a balance 

between high accuracy, good generalization ability, and 

minimal misclassification of similar characters. This approach 

was tested with specific parameter configurations adjusted 

through the training process, and the results were then 

evaluated using accuracy metrics, a confusion matrix, and 

visual analysis of model predictions. The performance testing 

of the combined L1 regularization and L2 regularization 

model in the form of Elastic Net is shown in Table 2. Results 

of L1+L2 Elastic Net. 

Table 2. L1+L2 Elastic Net results 

Model 
Training 

(%) 

Validation 

(%) 

Testing 

(%) 

L1+L2 Elastic 

Net 
95.51 71.74 77.89 

The results were obtained from the combination of L1 and 

L2 regularization using the Elastic Net approach. This model 

achieved the highest training accuracy of 95.51%, along with 

significant improvements in validation accuracy 71.74% and 

testing accuracy 77.89% compared to the other models. The 

integration of L1 and L2 enables the model to perform feature 

selection efficiently through the effect of L1, while 

maintaining weight stability through the effect of L2. As a 

result, the Elastic Net produced the most balanced and reliable 

model for use with previously unseen data. Overall, the 

findings indicate that the choice of regularization technique 

has a substantial impact on the generalization ability of a CNN 

model. Although the model without regularization appeared 

superior in terms of validation and testing accuracy, its weak 

training performance suggests learning deficiencies. In 

contrast, the Elastic Net proved to be the most effective 

configuration, delivering consistently high performance across 

all metrics while avoiding both overfitting and underfitting. 

The accuracy and loss curves of the L1+L2 Elastic Net model 

are presented in Figure 13 and Figure 14. 

Figure 13. Model accuracy L1+L2 Elastic Net 

Figure 13 above shows a graph of model accuracy on 

training and validation data over 10 epochs. It can be seen that 

accuracy on the training data has increased significantly and 

consistently, indicating that the model is getting better at 

recognizing patterns in the training data. On the other hand, 

accuracy on the validation data fluctuates, especially after the 

6th epoch, indicating that the model is starting to lose its 

generalization ability to untrained data. However, there is a 

general increase in validation accuracy compared to the initial 

training, indicating a learning process. The difference in 

accuracy between training and validation in the final epoch is 

quite large, indicating potential overfitting. This graph is 

important for evaluating whether the model is learning 

effectively and balancing between training and validation data. 

Figure 14. Model loss L1+L2 Elastic Net 

Figure 14 above depicts the loss model graph applied with 

combined L1 regularization and L2 regularization, known as 

Elastic Net, in the loss model on the training and validation 

data for 10 epochs. It can be seen that the loss value on the 

training data experienced a consistent and significant decrease 

from the beginning to the end of the epoch, indicating that the 

model successfully learned the patterns from the training data 

well. Meanwhile, the loss on the validation data also showed a 

fairly steady downward trend, although slower than the 

training data, and did not show any noticeable increase. This 

indicates that the model does not experience significant 

overfitting, as performance on unseen data continues to 

improve over time. The use of Elastic Net has been shown to 

have a positive effect in balancing L1 regularization (which 

encourages sparsity) and L2 regularization (which prevents 

model weights from becoming too large), resulting in a model 

that is not only accurate on the training data but also has good 

generalization ability to new data. This combination is very 

useful in machine learning scenarios that are prone to 

overfitting, especially when the number of features is 

relatively large or the data is not completely clean. The results 

of the confusion matrix can be seen in Figure 15. 

Based on the confusion matrix results in Figure 15, it can be 

concluded that the CNN model with L1 + L2 (Elastic Net) 

regularization shows quite promising classification 

performance on the numerical and symbolic data used. The 

confusion matrix shows that most of the model predictions are 

on the main diagonal, which indicates correct predictions of 

the actual labels. This model is able to recognize several 

classes very well, such as the letter X which is predicted with 

perfect accuracy without error, while Class 0: 9 is correct, 

there are a few errors to classes 6 and 9, the number 0 
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sometimes looks like 6 or 9 if the stroke is not perfect. Class 

1: 21 is correct, but is incorrectly predicted to be 6 (3 cases), 8 

(1 case), 9 (1 case), the thin/slanted number 1 can resemble the 

strokes of other numbers. Class 2: 13 is correct, incorrectly 

becomes 3 and 4, the number 2 is often confused with 3/4 

because the curved shape is similar. Grade 3: 7 correct, but 6 

times wrong to 2 and 4, the number 3 is often similar to 8 or 2 

if not closed. Grade 4: 11 correct, but 2 times wrong (3 cases) 

the stroke shape of the number 4 sometimes looks like the 

number 2 when written in italics. Grade 5: 19 correct, wrong 

to 6 and 8, the number 5 often looks like 6 because the circle 

is not clear. Grade 6: 22 correct, but 5 times wrong to 5 and 8, 

the number 6 is exchanged with 5 because the structure is 

almost the same. Grade 7: 22 correct, quite stable, there is 1 

error to 1. Grade 8: 17 correct, wrong to 0 and 6, the number 

8 is very similar to 0/6 if the circle is not clear. Grade 9: 11 

correct, but 2 times wrong to 6, the number 9 is similar to 6 if 

the orientation is reversed. This indicates that the model has a 

strong and balanced classification ability in recognizing 

patterns from various handwritten characters. 

 

 
 

Figure 15. Confusion matrix L1+L2 Elastic Net 

 

 

7. EVALUATION AND PERFORMANCE 

MEASUREMENT 

 

Evaluation and performance measurement are crucial steps 

in the machine learning model development process, as they 

aim to assess the model's ability to recognize patterns and 

accurately classify previously unseen data. In this study, 

model performance was evaluated using precision, recall, and 

f1-score metrics, which provide a comprehensive overview of 

prediction accuracy, model sensitivity to positive data, and the 

balance between the two. The evaluation was conducted on a 

test dataset consisting of 3,850 samples, covering all target 

classes: the numbers 0 to 9 and the letter X. 

Table 3 shows the model's performance in classifying each 

character class, namely numbers 0 to 9 and the letter X. In 

general, the model shows good results with high precision in 

almost all classes, even reaching 1.00 in classes 0, 1, and 6. 

Class 0 has a recall of 0.78 so that most samples can be 

recognized correctly and produces an F1-score of 0.72. 

Classes 2, 7, 8, and X show very good performance with recall 

values approaching or reaching 1.00 resulting in high F1-

scores of 0.79, 0.85, 0.87, and 0.99, respectively. Classes 3 and 

6 also show quite good performance with recalls of 0.71 and 

0.86, respectively, resulting in F1-scores of 0.77 and 0.82, 

indicating the model's ability to recognize most samples in 

both classes. Class 5 has a precision of 0.81 and a recall of 

0.90, indicating a good prediction balance, although the F1-

score is still lower than other classes. Overall, the model is able 

to classify characters with consistent accuracy, but there is still 

room for improvement, especially by increasing the F1-score 

in classes with relatively low performance, such as classes 4 

and 5, to optimize model sensitivity. 

 

Table 3. Evaluation L1+L2 (Elastic Net) 

 

Class Precision Recall F1-score    

0 1.00 0.78 0.72 

1 1.00 0.81 0.89 

2 0.68 0.93 0.79 

3 0.83 0.71 0.77 

4 0.61 0.79 0.69 

5 0.81 0,90 0.66 

6 1,00 0.86 0.82 

7 0.73 1.00 0.85 

8 0.77 1.00 0.87 

9 0.92 0.85 0.88 

X 0.97 1.00 0.99 

 

Table 4. Comparative results of classification models 

 

Model 
Training 

(%) 

Validation 

(%) 

Testing 

(%) 

CNN Standard 94.92 72.91 69.88 

CNN with L1 

regularization 
91.99 55.34 59.72 

CNN with L2 

regularization 
92.47 69.84 75.84 

CNN with L1+L2 

Elastic Net 
95.51 71.74 77.89 

 

Table 4 compares the performance of four CNN model 

configurations: the standard CNN, CNN with L1 

regularization, CNN with L2 regularization, and CNN with the 

combined L1+L2 (Elastic Net) approach across the training, 

validation, and testing stages. The standard CNN achieved a 

training accuracy of 94.92%, validation accuracy of 72.91%, 

and testing accuracy of 69.88%, reflecting strong learning 

capability but limited generalization during testing. The CNN 

with L1 regularization obtained a lower training accuracy of 

91.99% and experienced a substantial decline in validation 

(55.34%) and testing (59.72%) performance, indicating its 

ineffectiveness in handling data variability. In contrast, the 

CNN with L2 regularization achieved a training accuracy of 

92.47%, with validation accuracy of 69.84% and testing 

accuracy of 75.84%, showing improved generalization 

compared to the L1 model. The combined L1+L2 Elastic Net 

model produced the best overall results, with a training 

accuracy of 95.51%, validation accuracy of 71.74%, and 

testing accuracy of 77.89%, demonstrating a balance between 

effective learning and robust generalization. Overall, these 

findings confirm that the Elastic Net approach provides the 

most stable and effective configuration for enhancing CNN 

performance in handwritten character classification tasks. 

 

 

8. CONCLUSIONS 

 

This study demonstrates that applying a Convolutional 
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Neural Network (CNN) with regularization techniques can 

improve the accuracy of reading numbers on the C1 Election 

Form, particularly those previously unreadable by the 

SIREKAP system. By testing various model configurations—

standard CNN, CNN with L1 regularization, CNN with L2 

regularization, and CNN with a combined L1+L2 (Elastic 

Net)—an in-depth understanding was gained regarding the 

impact of regularization on the model’s ability to recognize 

character patterns. The experimental results showed that the 

standard CNN produced relatively high validation and testing 

accuracy but lower training accuracy, indicating potential 

underfitting. The L1-regularized model tended to overfit, 

while the L2-regularized model demonstrated more balanced 

performance. The L1+L2 Elastic Net configuration achieved 

the most optimal results, with training accuracy of 95.51%, 

validation accuracy of 71.74%, and testing accuracy of 

77.89%, as well as consistent performance across precision, 

recall, F1-score, and confusion matrix. This model 

successfully recognized digits 0–9 and the letter X across 

diverse handwriting variations, reducing the need for manual 

intervention and improving the reliability of the vote 

recapitulation process. 

Nonetheless, this study has limitations, particularly the 

relatively small dataset size (3,850 samples), which may not 

fully represent handwriting diversity in the field. Moreover, 

direct testing on original C1 form images from the SIREKAP 

system was not possible due to restricted access requiring 

official permission from election authorities. Future research 

should employ larger and more diverse datasets and conduct 

evaluations on real C1 documents to assess generalization in 

real-world conditions. Overall, these findings provide a strong 

foundation for developing more reliable automatic reading 

systems, not only for elections but also for broader 

applications requiring accurate handwritten character 

recognition. 
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