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Accurate modeling of photovoltaic (PV) systems is essential for performance optimization 

and fault diagnosis, yet is challenged by their nonlinear dynamics and dependency on 

environmental conditions and health status. This paper introduces a black-box, state-space 

identification approach that employs a bidirectional long short-term memory (BiLSTM) 

network. We frame the I-V curve modeling as a sequence-to-sequence task, where the 

BiLSTM predicts the current sequence (I) from a voltage sweep (V) and contextual inputs 

(irradiance, temperature, fault state). Trained on a comprehensive simulated dataset 

covering diverse operational and fault scenarios, the model demonstrates excellent 

performance, achieving a determination coefficient (R²) of over 0.99, alongside a minimal 

Root Mean Square Error (RMSE). Crucially, the model accurately predicts not only the I-

V curve shape but also its key physical parameters (Pmax, Vmpp, Voc, Isc), validating the 

physical relevance of the learned representation. This study confirms that a BiLSTM can 

create a robust and accurate "digital twin" of a PV system, offering a powerful data-driven 

alternative to traditional physics-based models, especially for real-time monitoring and 

diagnostic applications.  
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1. INTRODUCTION

As photovoltaic (PV) systems become increasingly central 

to the global energy transition, ensuring they operate 

efficiently and reliably is a top priority. We need accurate 

models to maximize the power output of these systems, 

identify faults before they become serious problems, and 

employ more intelligent control methods. Yet, building these 

models is not straightforward. A PV system's performance is 

complex and nonlinear, changing with factors like solar 

irradiance (G), temperature (T), and its physical condition. 

Traditional physics-based approaches, such as the single-

diode model, often fail to provide accurate results. Their 

parameters are difficult to pin down, and they struggle to 

replicate the system's full dynamic behavior. This is where 

black-box system identification offers a practical solution. It 

enables us to build models directly from input-output data, 

without requiring an understanding of the complex physics 

within [1]. 

Deep learning provides the right tools for this challenge. 

Recurrent neural networks (RNNs), for example, are excellent 

for approximating nonlinear dynamic systems because they 

are specifically designed to process sequential data [2]. In 

recent years, Transformer models have become a key tool for 

working with sequential data. This is because they are very 

good at finding complex connections between data points that 

are far apart, an area where they often outperform traditional 

RNNs [3]. Researchers have successfully used them for 

specific PV tasks, like predicting the maximum power point or 

forecasting short-term power output [4, 5]. The field is also 

advancing with new designs like Mamba, which cleverly 

combines state-space ideas to be more efficient [6]. However, 

one major drawback is that these models typically require very 

large amounts of data to learn properly. For our work on I-V 

curve modeling, we are using a well-structured but moderately 

sized dataset. In this situation, we found that a recurrent model 

like the BiLSTM is still a very practical and effective choice. 

Within this context of neural network modeling for PV 

systems, research has largely followed two distinct paths. The 

most common path involves input-output models, which have 

been primarily applied to two tasks. For power output 

forecasting, numerous studies have demonstrated the 

effectiveness of hybrid architectures, such as CNN-LSTMs [7-

9]. For static I-V curve characterization, other works use 

ANNs or neuro-fuzzy systems to estimate key electrical 

parameters for applications like MPPT optimization [10, 11]. 

The main drawback of these input-output models is their 

narrow focus. While successful in forecasting, their utility is 

restricted because they only describe a single output or a static 

state. They therefore fail to capture the system's internal 
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dynamics, which limits their application in physical analysis 

and diagnostics.  

In contrast, the state-space framework provides a more 

structured and powerful representation. Foundational work 

established the advantages of using neural networks within 

this framework, highlighting benefits like model parsimony 

and applicability to robust control [12, 13], and recent 

advances with deep learning have revitalized its use. What 

makes the state-space approach so powerful is that it tries to 

understand how the system works on the inside, instead of just 

memorizing the relationship between inputs and outputs. A 

major 2024 survey by Pillonetto et al. [14] points out that 

because these models learn the internal dynamics, they are 

much better at generalizing to new situations and are more 

reliable for simulations. On top of that, work by Gedon et al. 

[15] shows that deep state-space models are built to track 

complex patterns over long periods, which is something 

simpler input-output models often struggle with. This is a hot 

topic in research right now, with ongoing work focused on 

making these models even better for tricky, real-world systems 

with noise and uncertainty [16]. Even within physics-based 

modeling of PV systems, a state-space formulation is 

considered essential for capturing full dynamic behaviors [17]. 

Despite these parallel advances, a critical gap persists in the 

literature: few studies apply a data-driven state-space 

formalism to identify the complete I-V curve of a PV system, 

and even fewer validate the physical relevance of the learned 

state representation. 

Our work aims to fill this gap. We introduce a method for 

data-driven state-space identification that uses a bidirectional 

long short-term memory (BiLSTM) network to model the 

entire current-voltage (I-V) curve as a dynamic sequence. We 

frame this as a sequence-to-sequence task where the network 

learns to predict the current sequence (I) from a voltage sweep 

(V) and its context (G, T, fault state). The network's internal 

hidden state serves as an estimator of the unobservable 

physical state, implicitly learning the system's underlying 

functions. The key contribution here is proving that this 

learned representation is physically meaningful. We 

demonstrate this by successfully extracting key electrical 

parameters (Pmax, Vmpp, Voc, Isc) from the model's 

predicted I-V curves. In doing so, we create a robust and 

interpretable surrogate model—a true "digital twin" of the PV 

system. 

Specifically, this paper contributes the following: 

1. A new way to model the PV I-V curve using a state-

space framework solved by a bidirectional RNN. 

2. Proof that the network's hidden state learns a 

physically relevant representation of the system. 

3. Validation of this concept by accurately extracting 

derived electrical parameters. 

The rest of this paper is organized to walk through our 

research process and findings. Section II is dedicated to our 

complete methodology, covering everything from the state-

space formulation to the model's architecture and training 

protocol. In Section III, we present the experimental results, 

beginning with the final model configuration and its training 

convergence, before moving on to a complete evaluation of its 

performance and a detailed analysis of the learned dynamics. 

Sections IV and V then provide a deeper discussion of these 

results, where we compare our state-space model against a 

static input-output approach and further validate its physical 

relevance by checking it against experimental dynamic 

behavior. Finally, Section VI concludes the paper with a 

summary of our contributions and suggests directions for 

future work. 

 

 

2. PROPOSED METHODOLOGY 

 

In this section, we outline the proposed methodology for 

identifying photovoltaic systems. Our approach leverages the 

state-space theoretical framework to model the nonlinear 

internal dynamics of the system. We use bidirectional long 

short-term memory (BiLSTM) network to learn this model 

directly from the data. We first present the theoretical 

formulation of the problem and then describe its practical 

application to modeling the current-voltage (I-V) curve as a 

sequence-to-sequence regression task. 

 

2.1 State-space modeling for dynamic systems 

 

An effective model of a photovoltaic (PV) system must 

accomplish two key tasks: capture the immediate input-output 

response and account for the system's internal dynamics. 

Traditional approaches usually handle the first part well but 

struggle with the second. When these methods treat the system 

as a "black box," they typically only learn the direct mapping 

from input to output [1]. This approach, however, 

fundamentally limits their power, as they cannot model 

complex physical processes or yield genuinely interpretable 

results. For this reason, we adopt the state-space model, a more 

powerful representation that has proven superior for nonlinear 

system identification in terms of both parsimony and 

performance [12, 13]. This framework describes the system's 

evolution through two fundamental discrete-time equations: 

State Transition Equation: 

 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) (1) 

 

Observation Equation: 

 

𝑦(𝑘) = 𝑔(𝑥(𝑘), 𝑢(𝑘)) (2) 

 

here, x(k)∈ℝⁿ is the unobservable state vector (where n is the 

state dimension), u(k)∈ ℝᵐ is the input vector (where m is the 

number of inputs), and y(k)∈ℝᵖ is the measured output vector 

(where p is the number of outputs). The state vector x(k) 

encapsulates all necessary information about the system's past 

to predict its future, making this framework particularly 

suitable for modeling complex dynamic systems. The 

functions f and g are the nonlinear mappings we seek to 

identify. The state-space framework has seen a revival with 

modern deep learning techniques [14], with recent studies 

exploring advanced methods such as stochastic RNNs [16], 

autoencoders [18], and models for complex switching systems 

[19]. While some research in the PV field has focused on 

physics-based state-space models [17], our approach leverages 

this powerful formalism in a data-driven manner, employing 

recurrent neural networks to learn the underlying nonlinear 

functions f and g directly from operational data. 

 

2.2 Experimental setup and data acquisition 

 

The dataset used in this study was generated using a real-

time power electronics emulator of a photovoltaic array 

(PVA). This emulator, developed at the LEPCI laboratory 

(University of Sétif 1, Algeria), provides a high-fidelity 
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environment for generating I-V characteristics under a wide 

range of precisely controlled conditions. The creation and 

performance evaluation of the emulator are thoroughly 

explained by Belaout et al. [20]. The core of the emulator 

illustrated in Figure 1 is a detailed electrical model of a PV 

array, designed in MATLAB/Simulink and deployed on a 

dSPACE DS1104 real-time control board. The simulated PVA 

consists of six series-connected photovoltaic modules, with 

each module comprising 36 solar cells based on the Bishop 

model, as detailed by Belaout et al. [21] and Belaout [22]. A 

rich and varied dataset was essential for this study. To achieve 

this, the emulator was used to systematically alter 

environmental conditions and introduce a range of fault types. 

This process generated data for one healthy state and five 

major fault categories, which were further broken down by 

severity and pattern to create a total of 22 distinct operational 

classes [21, 22]. To ensure data diversity, each class was 

generated with approximately 130 unique I-V curves by 

systematically varying environmental conditions, leading to a 

total database of nearly 2860 samples. The operational 

conditions and fault scenarios are detailed as follows: 

Healthy Condition (NF): Normal operation with irradiance 

(G) varied from 100 to 1000 W/m² and temperature (T) from 

0℃ to 60℃. 

- F1: Partial Shading: 9 different shading patterns were 

simulated, varying the number of shaded cells (25%, 50%, 

75%) and the number of affected modules (one, two, or three). 

- F2: Increased Series Resistance (ISR): 5 levels of severity 

were created by increasing the series resistance of one module 

by 1 Ω, 5 Ω, 10 Ω, 15 Ω, and 20 Ω. 

- F3: Bypass Diode Short-Circuit: 1 scenario where a single 

bypass diode in the array is short-circuited. 

- F4: Bypass Diode Impedance Fault: 5 scenarios where a 

bypass diode is modeled as a faulty impedance with resistance 

values of 1 Ω, 5 Ω, 10 Ω, 15 Ω, and 20 Ω. 

- F5: PV Module Short-Circuit: 1 scenario where an entire 

module is short-circuited. 

As the examples in Figure 2 demonstrate, each of the 22 

unique operational states provides a distinct electrical 

signature based on its specific G and T conditions. It is this 

very diversity that forms the necessary empirical basis for 

training and validating the state-space model we propose. 

To illustrate the rich diversity of environmental conditions 

within each operational class, Figure 3 shows the complete set 

of 130 I-V curves generated for the Healthy Condition (NF) 

by systematically varying irradiance from 100 to 1000 W/m² 

and temperature from 0℃ to 60℃. 

 

 
 

Figure 1. Photograph of the emulator used for data 

collection: 1) buck converters, 2) load, 3) programmable 

power source, 4) scope, 5) ControlDesk, 6) DS1104 platform 

[20] 

 
 

Figure 2. Sample of characteristic I-V curves for different 

PV system states 

 

 
 

Figure 3. Complete set of I-V curves for the normal 

operation (NF) class under varying environmental conditions 

 

2.3 Data preprocessing and preparation 

 

The raw data from the emulator, initially stored in 22 

separate files corresponding to each operational state, was not 

immediately suitable for training. Therefore, a multi-step 

preparation pipeline was implemented. First, all separate files 

were consolidated into a single, unified dataset. Each sample 

in this dataset represents a full I-V curve and was then 

structured into a sequence-to-sequence format: 

An input sequence, X, is a 4 × 130 matrix, since each I-V 

curve consists of N=130 points. The four rows correspond to 

the voltage sweep (V_k) and the contextual features: 

irradiance (G), temperature (T), and the fault type 

(D_encoded). These contextual features remain constant 

throughout the sequence. 

A target sequence, Y, is a 1 × 130 vector containing the 

corresponding current values (I_k). 

Next, to ensure an unbiased evaluation of the model's 

generalization ability, the entire dataset was randomly 

partitioned using a 70/30 split. 70% of the data was allocated 

to the training set, while the remaining 30% was set aside as a 

held-out test set. Finally, to improve training stability and 

efficiency, all features were normalized using Min-Max 

scaling, according to the formula: 

 

( ) ( )/x norm x x min x max x min− − − −= − −  (3) 

 

Crucially, the normalization parameters (x_min and x_max) 

were calculated only on the training set and then applied to 

both the training and test sets. This prevents any data leakage 

from the test set into the training process. The resulting 

preprocessed data was then structured into cell arrays, the 

1679



 

format required by MATLAB's Deep Learning Toolbox for 

training sequence-to-sequence models. 

 

2.4 Bidirectional recurrent neural network architecture 

 

To learn the nonlinear state-space functions f and g from 

sequential data, we selected a bidirectional recurrent neural 

network (Bi-RNN) as the core of our identification model. 

This choice is motivated by the inherent ability of RNNs to 

handle sequential information and the specific advantages of 

gated, bidirectional architectures for our problem, a practice 

that aligns with the state-of-the-art in modern data-driven 

system identification [14]. 

 

2.4.1 Long short-term memory (LSTM) 

Our model is built using the long short-term memory 

(LSTM) cell, a sophisticated recurrent unit first introduced by 

Hochreiter and Schmidhuber [23]. Unlike a simple RNN unit, 

an LSTM cell incorporates a dedicated memory cell, c_t, 

which acts as a conveyor belt for information, and a series of 

gating mechanisms that precisely control the flow of this 

information. These gates allow the network to selectively add, 

remove, or expose parts of its memory [24], enabling it to 

capture dependencies over very long sequences [25]. This 

structure is particularly effective for learning state-space 

representations where the hidden state h(k) acts as an estimator 

of the physical state x(k) [15]. 

The core operations of an LSTM cell at a given time step t 

are governed by three main gates: 

Forget Gate (f_t): This gate's role is to decide what to 

discard from the previous cell state, c_{t-1}. To do this, it 

processes the last hidden state, h_{t-1}, and the current input, 

x_t, to compute a value between 0 (forget everything) and 1 

(keep everything). 
 

 ( )* { 1},f t W f h t x t b f− − − − −= − +  (4) 

 

Input Gate (i_t): This gate determines which new 

information to store in the cell state. It does this in two steps: 

a sigmoid layer selects which values to update, while a parallel 

tanh layer proposes a vector of new candidate values, c̃_t, to 

be added. 

 

 ( )* { 1},i t W i h t x t b t− − − − −= − +  (5) 

 

 ( )tanh * { 1},c t W c h t x t b c− − − − −= − +  (6) 

 

The cell state is then updated by combining the forgotten 

past state with the new candidate information: 

 

𝑐−𝑡 = 𝑓−𝑡
°𝑐−{𝑡 − 1} + 𝑖−𝑡

°𝑐
ˇ

−𝑡 (7) 

 

Output Gate (o_t): This gate determines the next hidden 

state, h_t, which is a filtered version of the cell state. This is 

done in two steps: first, the cell state c_t is squashed through a 

tanh function, and then this result is multiplied element-wise 

by the output of the gate's sigmoid layer. 

 

 ( )* { 1},o t W o h t x t b o− − − − −= − +  (8) 

 

( )tanhh t o t c t

− − −=  (9) 

In these equations, σ represents the sigmoid activation 

function, denotes the element-wise product, and W and b are 

the learnable weight matrices and bias vectors for each gate, 

respectively (see Figure 4). 

 

 
 

Figure 4. The internal structure of a long short-term memory 

(LSTM) cell 

 

2.4.2 The bidirectional architecture for complete contextual 

modeling 

While a standard LSTM effectively captures past 

information, our system identification task requires a more 

holistic understanding of the entire I-V curve. To achieve this, 

we implement the LSTM cells within a Bidirectional LSTM 

(BiLSTM) framework. The BiLSTM is specifically designed 

for tasks where the full context of a sequence is important, 

drawing on the concept of bidirectionality first developed for 

RNNs and later LSTMs [26, 27]. As illustrated in Figure 5, the 

architecture achieves this by using two separate, parallel 

LSTM layers, each with an independent set of parameters, to 

process the input sequence from opposite directions: 

Forward LSTM Layer: This layer processes the input 

sequence chronologically, from t=1 to N. At each step t, it 

calculates a forward hidden state h⃗t which encodes 

information from the past (x_1, ..., x_t). This process can be 

abstractly represented as: 

 

( )1,t th LSTM fwd x t h− − −=


 (10) 

 

Backward LSTM Layer: To achieve a complete, 360-degree 

view of the sequence, the model needs information from the 

future as well as the past. This is the job of the backward 

LSTM layer, which processes the sequence in reverse to 

generate a hidden state h⃖t that summarizes the upcoming 

context (x_t, ..., x_N). 
 

( )1,t th LSTM bwd x t h− − +=


 (11) 

 

Combination of Outputs: To form a complete contextual 

representation, the outputs from both directions are combined 

at each time step. As shown in Figure 5, the most common and 

effective method, used in numerous applications, is to 

concatenate the forward and backward hidden states [28, 29]. 

This creates a final hidden state vector Ht that preserves all the 

information from both contexts: 

 

;t t tH h h =
 


 (12) 

 

This concatenated vector Ht thus contains a rich 
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representation of the input xt within the context of the entire 

sequence. This capability is particularly crucial for our system 

identification task. It allows the model to accurately reproduce 

the global shape of the I-V curve, including the complex 

distortions caused by conditions like partial shading [7, 8, 11], 

which a simple unidirectional model would struggle to 

capture. The ability to see the whole picture, therefore, makes 

the BiLSTM a significantly more powerful tool for creating a 

high-fidelity model of the PV system. 

 

 

Figure 5. The internal structure of a bidirectional long short-

term memory (BiLSTM) cell 

 

2.5 Proposed model implementation 

 

The architecture implemented in this work is a stacked 

BiLSTM network designed specifically for the sequence-to-

sequence regression task. As visualized in Figure 6, the model 

is composed of layers, with key hyperparameters such as the 

number of hidden units and the dropout rate detailed in Table 

1. The specific values for the structural hyperparameters were 

determined through the systematic optimization process 

described in the following sections. 

 

 
 

Figure 6. The proposed stacked BiLSTM network 

architecture 

 

2.6 Training and optimization protocol 

 

To identify the best set of hyperparameters for our model, 

we performed a systematic search using the sample-efficient 

Bayesian optimization technique [30-32] instead of more 

common methods like grid or random search [33]. The search 

space included the number of BiLSTM hidden units, the 

dropout rate, the number of units in the fully connected layer, 

and the initial learning rate. The final model, using the optimal 

parameters found, was then trained with the Adam optimizer 

and an early stopping rule to prevent overfitting by halting the 

process if the validation loss stopped improving. 

 

Table 1. Detailed description of the layers and key 

hyperparameters of the proposed BiLSTM model 

 

Layer Type 
Key Hyper-

Parameters 
Purpose 

Sequence 

Input Layer 
Input size 

Accepts the 4×N input 

sequences 

Bilstm Layer 

 

N_units_1 hidden 

units 

Learns low-level temporal 

dependencies 

Dropout 

Layer 
Rate: D_rate_1 

Regularization to prevent 

overfitting 

Bilstm Layer 
N_units_2 hidden 

units  

Learns high-level temporal 

features 

Dropout 

Layer 
Rate: D_rate_2 Further regularization 

Fully 

Connected 

Layer 

FC_units units 
Performs a final nonlinear 

transformation 

Relu Layer  Introduces nonlinearity 

Fully 

Connected 

Layer 

unit, linear 

activation 

Maps features to a single 

scalar output (Î_k) for each 

time step 

Regression 

Layer 
 

Computes the mean 

squared Error loss for 

training 

 

2.7 Evaluation metrics 

 

We wanted to answer two questions about our model's 

performance on the test data. First, how big are the prediction 

errors on average? We used the Root Mean Square Error 

(RMSE) to find that out. Second, how well do the model's 

predictions match the real data's spread? The R-squared (R²) 

value helped us answer that by showing how much of the real-

world variation our model was able to capture.  The equations 

for both are below: 

 

( )( )2
(1/ )*RMSE sqrt P I real I pred− −= −  (13) 

 

where P is the total number of points across all test sequences. 

 

( )( ) ( )
2 22 1 /R I real I pred I real I mean− − − −= − − −   

 

Beyond these overall error metrics, we went further to check 

if our model made physical sense. To do this, we extracted key 

parameters like P_max, V_mpp, I_sc, and V_oc from both the 

predicted and the actual I-V curves. Comparing these values 

was a critical test to validate the physical relevance of our 

identified model. 

 

 

3. RESULTS AND DISCUSSION 

 

In this section, we present the findings from our state-space 

identification performed using the proposed BiLSTM model. 

The model was trained with optimal hyperparameters 

determined by Bayesian optimisation, and the final training 

process achieved a validation RMSE of 0.0475 A. 

Our analysis begins by illustrating the complexity of the 
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identification challenge itself. A look at the I-V curves in 

Figure 2, which shows a sample from our test set, immediately 

reveals how dramatically the system's behaviour changes 

across its different operational and fault conditions. The 

system's state has a profound impact on the shape of the I-V 

curve. For example, under healthy conditions, the curve is 

typically smooth and concave. A fault like partial shading, 

however, can drastically alter this shape, introducing 

significant distortions and often creating multiple local power 

maxima. The true test for any system identification approach, 

therefore, is its ability to accurately model this full range of 

complex, nonlinear behaviors, rather than just fitting a single 

curve shape [34]. 

Following this, we will assess the model's overall predictive 

performance using global metrics and conclude with a detailed 

investigation into its physical relevance and learned internal 

dynamics. 

 

3.1 Model configuration and training convergence 

 

3.1.1 Optimal model parameters 

We used a process to find the best model settings, which is 

described in the methodology. 

The final choice was made based on one key factor: 

minimizing the error on the validation data. This method 

ensures a good balance between the model's ability to learn 

and the need to prevent overfitting, as detailed in Table 2. 
 

Table 2. Final hyperparameters of the proposed BiLSTM 

model 
 

Parameter Value Description 

Input Features 4 V, G, T, Fault State 

BiLSTM Hidden 

Units 

140 per 

layer 

Number of hidden units in 

each of the two BiLSTM 

layers 

BiLSTM Layers 
2 

(stacked) 

Number of stacked BiLSTM 

layers 

Fully Connected 

Units 
58 

Number of units in the dense 

layer before the output 

Dropout Rate 0.2225 
Dropout rate applied after 

each BiLSTM layer 

Optimizer Adam 
Adaptive moment estimation 

optimizer 

Initial Learning 

Rate 
0.0026 

Initial learning rate for the 

Adam optimizer 

Mini-batch Size 32 
Number of samples per 

training iteration 

Max Epochs 100 
Maximum number of training 

epochs 

Early Stopping 

Patience 
10 

Number of epochs to wait for 

improvement before stopping 

 

3.1.2 Training convergence 

The training progress of the final model is shown in Figure 

7. The plot shows how the Root Mean Square Error (RMSE) 

and the loss function changed during the training for both the 

training and validation sets. 

At first, both the loss and RMSE dropped quickly, then the 

values became stable as the training continued. The process 

stopped automatically after 23 epochs because of the early 

stopping rule, which helped prevent the model from learning 

the training data too well (overfitting). This early stopping 

ensured that the model would perform well on new, unseen 

data. The final RMSE on the validation data at the point of 

convergence was 0.014278, showing that the training was 

successful and stable. 

 
 

Figure 7. Training progress of the BiLSTM network 

 

3.2 Overall identification performance 

 

After training the model and confirming its convergence, 

we tested it with a separate set of 1630 I-V curves. The 

predictions were then converted back to their original units 

(Amperes). The model performed well and showed it could 

generalize to new data. The performance metrics on the test 

set were as follows: 

Root Mean Square Error (RMSE): 0.0475 A 

Coefficient of Determination (R²): 0.9974 

The following figures further illustrate this high level of 

accuracy: 

The correlation plot (Figure 8) compares predicted and 

actual current values. The data points form a very dense and 

narrow cluster around the y=x line, which represents an ideal 

prediction. This tight alignment visually confirms the model's 

robustness and its ability to make highly accurate predictions, 

consistent with the high R² score [35]. 
 

 
 

Figure 8. Correlation between predicted and actual values 

 

 
 

Figure 9. Distribution of prediction errors (I_{actual} - 

I_{predicted}) 

 

The error distribution histogram (Figure 9) provides further 

insight into the model's performance.  

The distribution of prediction errors (I_actual - I_predicted) 
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is sharply peaked and centered almost perfectly at zero, 

indicating that the model is unbiased and that the vast majority 

of errors are very close to zero. This narrow spread, with most 

errors falling within a ±0.1 A range, reinforces the reliability 

of the model and is consistent with the low overall RMSE. 

A visual check of the model's performance in Figure 10 

confirms its high accuracy. Here, we've overlaid the predicted 

I-V curves on the actual curves for several random test 

samples. The two curves track each other very closely, even 

across different voltage and current ranges, which is a strong 

visual testament to the low RMSE and high R² scores [36]. 

 

 
(a) Test sample # 1323 

 
(b) Test sample # 1524 

 
(c) Test sample # 71 

 
(d) Test sample # 317 

 

Figure 10. Comparison of actual and predicted I-V curves 

for randomly selected test samples 

 

3.3 Detailed analysis and validation of the identified state-

space model 

 

Despite the confirmation of the model's statistical accuracy 

through global metrics, additional analysis is essential to 

confirm that the model has grasped a valid state-space 

representation. To validate our identified state-space model 

beyond global metrics, we carry out a detailed, three-part 

analysis. First, we check how well the model follows a typical 

example of the system's behavior. Then, we take a closer look 

at the internal state dynamics and their physical meaning by 

using time-based plots and t-SNE visualizations. Finally, we 

test how well the model can predict critical physical 

parameters. 

 

3.3.1 Dynamic identification performance 

To visually assess the model's performance on a dynamic 

trajectory, a random sample from the test set was selected for 

detailed analysis. Figure 11 illustrates the identification 

process for this sample. 

The figure's subplots show that (a) the model was subjected 

to a standard voltage sweep input. In response, (b) the model's 

predicted output ŷ(t) almost perfectly tracks the actual system 

output y(t), indicating a very high tracking accuracy. This is 

further confirmed in (c), where the prediction error e(t) 

remains small, stable, and centred around zero, demonstrating 

that the model's predictions are consistent and unbiased 

throughout the sequence. 

 

 
 

Figure 11. Dynamic identification performance of the state-

space model for a random test sample. Subplots show: (a) 

input voltage u(t); (b) comparison between actual y(t) and 

predicted ŷ(t) current; (c) prediction error e(t) 

 

3.3.2 Analysis of the learned internal state 

The main idea behind our state-space approach is that the 

hidden states of the BiLSTM can serve as estimators for the 

unobservable system state x(k).To check this, we first 

examined how the hidden states evolved for the same test 

sample (Figure 11). This analysis validates that the model has 

learned a coherent internal state-transition function.  

 

h( ) ( ( 1), ( )).k f h k u k= −  

 

This is the most insightful part of the analysis, as it shows 

how the first three components of the learned hidden state 

vector h(t) evolve. Figure 12 clearly shows that the hidden 

states don't change randomly. Instead, they follow a smooth 

and organized pattern that lines up perfectly with the input 

signal. What this tells us is that the network has successfully 

learned a stable and coherent set of internal rules—a transition 

function—which is precisely what a good state-space model 

should do. 
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Figure 12. Evolution of the first three components (h1, h2, 

h3) of the learned hidden state vector h(t) for the test sample 

shown in Figure 11 

To further validate that this learned state is physically 

meaningful, we visualized the final hidden state h(t) for all test 

samples using the t-SNE technique. The results, presented in 

Figure 13, offer a direct visualization of the learned latent 

space. 

The t-SNE visualizations provide a robust validation of our 

state-space approach, revealing that the model has learned to 

organize its latent space based on a clear physical hierarchy. 

The primary organizing factor is irradiance (a), followed by a 

secondary organization based on temperature (b) within each 

irradiance cluster, and a final, local organization based on fault 

categories (c), demonstrating that the model has learned to 

distinguish the unique dynamic signature of each health state. 

This automatically discovered structure confirms that the final 

hidden state h(t) is a physically meaningful embedding, not 

just a random vector. It demonstrates that our model has gone 

beyond simple curve-fitting to construct a true, interpretable 

internal state-space model of the PV system. 

3.3.3 Physical parameter validation 

This analysis provides strong evidence that the BiLSTM has 

successfully identified a meaningful internal state-space 

representation of the PV system. The learned hidden states are 

not arbitrary, but follow a clear dynamic structure, confirming 

that the model has learned an internal representation of the 

system's evolution, not just a static input-output mapping. 

Now that we've seen that the model has learned a coherent 

internal dynamic, the next logical step is to check its practical 

usefulness. We did this by testing if it could accurately predict 

key physical parameters from the I-V curves. This test is 

essential because it confirms that our identified model is not 

just internally consistent but also physically meaningful. 

Table 3. Performance on key physical parameter extraction 

Parameter 
Mean 

Actual 

Mean 

Predicted 

Mean 

Absolute 

Error 

Relative 

Error 

(%) 

Pmax (W) 146.96 147.1 0.13498 0.091849 

Vmpp (V) 88.54 88.032 0.50806 0.57382 

Impp (A) 2.1939 2.1908 0.003102 0.14141 

Voc (V) 81.917 81.828 0.088648 0.10822 

Isc (A) 0.2626 0.30619 0.04357 16.59 

We extracted five standard PV parameters from both the 

predicted and the actual curves for all 1630 samples in the test 

set. Table 3 summarises the results, comparing the mean of the 

actual and predicted values and showing the resulting error 

metrics calculated on these means. 

The results show a strong agreement for most parameters. 

The model predicts the mean maximum power (Pmax), 

maximum power point voltage (Vmpp), current (Impp), and 

open-circuit voltage (Voc) with relative errors on the mean of 

less than 1%. This high level of accuracy on derived physical 

quantities is strong evidence that the learned state-space 

representation is physically accurate. 

A higher relative error of 16.6% was observed for the short-

circuit current (Isc). However, as the error distribution analysis 

in Figure 14 reveals, this is not due to a model weakness but is 

primarily a statistical artefact. Looking at the error distribution 

for Isc, we see a tall, narrow peak right at zero. This shows two 

things: the model has no systematic bias, and its absolute 

errors are almost always tiny. The large percentage in the table 

is a direct result of the math involved, as the relative error 

formula exaggerates even these minor absolute errors when 

the actual Isc value is very low (≈0.26 A). This slight initial 

deviation can be attributed to a "sequence edge effect" 

occurring at the start of the voltage sweep (V ≈ 0), where the 

forward LSTM layer has less contextual information. 

(a) 

(b) 

(c) 

Figure 13. t-SNE visualization of the learned latent space, 

colored by (a) Irradiance (G), (b) Temperature (T), and (c) 

Fault category 
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Figure 14. Probability density functions of the prediction 

errors for each of the five extracted physical parameters 

To get a more complete picture, we visualize the full error 

distributions for each parameter in Figure 14. In this 

visualization, we plot the probability density functions (PDFs) 

derived from the prediction errors, which lets us directly check 

for any model bias and see how consistent the predictions are. 

The distributions in Figure 13 tell a clear story. All five are 

sharply peaked and centred on zero, a strong sign that our 

model is unbiased. Looking closer at Isc, its PDF is noticeably 

the most concentrated of the group. This confirms that the 

model's absolute performance for this specific parameter is, in 

fact, excellent. Nevertheless, the overall performance 

confirms that the model has acquired a physical understanding 

of the system, far beyond simple curve-fitting. 

4. COMPARISON WITH A STATIC INPUT-OUTPUT

MODEL

To understand the practical advantages of our state-space 

model, we needed a point of comparison. For this, we built and 

trained a standard static input-output model, a Multi-Layer 

Perceptron (MLP), on the same dataset. The MLP's role is to 

model the direct input-output relationship at each time step by 

treating each (V_k, I_k) point as an independent sample, using 

the same input features [V_k, G, T, Fault State] to predict the 

current I_k. To ensure a fair comparison, the MLP was 

designed with a comparable level of complexity and was 

trained under similar conditions as the BiLSTM model. The 

detailed architectural and training hyperparameters for the 

comparative MLP are presented in Table 4. 

Table 4. Configuration of the comparative MLP model 

Parameter Value 

Input Features 4 

Number of Hidden Layers 2 

Neurons per Hidden Layer 128 

Activation Function ReLU 

Output Layer 1 Neuron (Linear) 

Optimizer Adam 

Initial Learning Rate 0.001 

Mini-batch Size 32 

The quantitative performance comparison of the two 

models on the test set is summarized in Table 5. 

The data in Table 5 highlight the advantage of the state-

space model. The BiLSTM achieves better results, shown by 

its lower RMSE and higher R² values, thanks to its capability 

to utilize the full sequential context of the data—an inherent 

limitation in static input-output models like the MLP. This 

qualitative difference in performance is further illustrated on 

representative test samples in Figure 15. 

Table 5. Performance comparison between models 

Model Type RMSE (A) R-Squared (R²) 

State-Space (BiLSTM) 0.0475 0.9974 

Input-Output (MLP) 0.0815 0.9924 

(a) Test sample # 148

(b) Test sample # 1479

(c) Test sample # 20

(d) Test sample # 1254

Figure 15. Qualitative comparison of the BiLSTM and MLP 

models on four representative test samples 

• On a clean I-V curve (Sample #148), the BiLSTM's
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prediction is nearly perfect, while the MLP shows 

slight deviations. 

• On a complex, noisy curve (Sample #1479), the 

BiLSTM successfully captures the subtle 

nonlinearities, whereas the MLP's prediction is 

overly linear and less accurate. 

• On a highly distorted curve under a severe fault 

(Sample #20), the MLP's predictions diverge 

completely, while the BiLSTM, though challenged, 

still manages to capture the overall trend. 

• On a low-current, erratic curve (Sample #1254), both 

models struggle, but the MLP produces a simple, 

incorrect linear trend, while the BiLSTM still 

attempts to model the complex, non-zero behavior of 

the data. 

This comparison confirms that the state-space model 

(BiLSTM) is not only quantitatively more accurate but also 

qualitatively more robust. The key difference lies in the 

BiLSTM's use of sequential context, a capability that static 

input-output models lack by design, highlighting a 

fundamental advantage of the state-space approach [12, 13]. 

 

 

5. PHYSICAL RELEVANCE AND COMPARISON 

WITH EXPERIMENTAL DYNAMIC BEHAVIOR 

 

We can further validate the physical relevance of our 

identified state-space model by comparing its predictions with 

experimental results from the literature. For example, the work 

of Belaout [20] presents the dynamic response of a similar PV 

system's Maximum Power Point (MPP) to real-time changes 

in irradiance and temperature. Although our work focuses on 

static system identification, this comparison allows us to 

confirm that our model has learned the correct underlying 

physical behaviors. 

 

5.1 Comparison of physical trends 

 

The experimental data in the study [20] reveal two 

important physical trends. First, it shows a clear link between 

irradiance and current. When irradiance goes up, the 

maximum power point current (Impp) rises with it, leading to 

a direct increase in maximum power (Pmax). The second is the 

inverse relationship between temperature and voltage: as 

temperature increases, the maximum power point voltage 

(Vmpp) falls, slightly reducing Pmax. 

What this means is that our model, despite being trained 

only on static I-V curves, has still learned these fundamental 

physical relationships. The highly accurate parameter 

predictions we show in Table 3 are strong evidence that our 

data-driven model has implicitly captured the correct 

dependencies between environmental conditions and key 

electrical parameters, and that these learned relationships align 

with the dynamic behavior seen in experiments. 

 

5.2 Complementarity of the approaches 

 

This comparison also highlights the collaboration between 

system identification and control algorithm validation. An 

MPPT algorithm, like the one tested in study [20], requires a 

target—the true Maximum Power Point—to track. Our work 

provides a direct method for predicting the location of this 

MPP under any given static condition. 

Therefore, our identified BiLSTM model can be seen as a 

high-fidelity "virtual test bench" or surrogate model. It could 

be used to generate the reference I-V curves and target MPPs 

necessary for testing, validating, or even training new MPPT 

algorithms under thousands of simulated conditions. This task 

would be impractical to perform on a physical system. 

 

 

6. CONCLUSION 

 

This study introduced a state-space identification approach 

for modeling the nonlinear behavior of photovoltaic (PV) 

systems. We framed the I-V curve identification as a 

sequence-to-sequence task. We used a stacked bidirectional 

long short-term memory (BiLSTM) network to create a high-

fidelity surrogate model. The proposed model achieved 

remarkable predictive accuracy, with a Coefficient of 

Determination (R²) exceeding 0.997 and a very low Root 

Mean Square Error (RMSE). This work has successfully 

shown that a state-space approach to I-V curve modeling can 

produce a physically relevant model that outperforms 

traditional static methods. The fundamental ability of our 

model to capture the system's internal dynamics is what allows 

it to make both highly accurate I-V curves and precise 

calculations of key electrical parameters like Pmax, Voc, and 

Vmpp. This capability is precisely what static models lack, 

which explains their poor performance when dealing with the 

complex dynamics of nonlinear fault conditions. Functioning 

as a "virtual test bench," it could be used to generate realistic 

I-V data for the development and validation of next-generation 

control algorithms, such as adaptive Maximum Power Point 

Tracking (MPPT) techniques. Furthermore, the model could 

be extended to predict long-term performance degradation by 

incorporating ageing effects into the training data. Validating 

this identification approach on data from a utility-scale, field-

deployed PV plant is the critical next step to confirm its 

practical utility and scalability. Thus, a comparative analysis 

against state-of-the-art Transformer architectures would be a 

valuable future direction, especially on larger datasets.  

What this work ultimately shows is that a data-driven 

approach can provide a robust and accurate alternative to 

traditional physics-based models for PV systems. This has 

important implications for the future of renewable energy, 

opening up new possibilities for real-time diagnostics, 

performance optimization, and the development of more 

intelligent control systems. 
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NOMENCLATURE 

BiLSTM Bidirectional Long Short-Term Memory 

Network 

G Irradiance, W.m⁻² 

I-V Current-Voltage 

MLP Multilayer Perceptron 

PV Photovoltaic 

R2 Correlation Coefficient 

RMSE Root Mean Square Error 

RNN Recurrent Neural Networks 

T Temperature,℃ 
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