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Accurate modeling of photovoltaic (PV) systems is essential for performance optimization
and fault diagnosis, yet is challenged by their nonlinear dynamics and dependency on
environmental conditions and health status. This paper introduces a black-box, state-space
identification approach that employs a bidirectional long short-term memory (BiLSTM)
network. We frame the I-V curve modeling as a sequence-to-sequence task, where the
BiLSTM predicts the current sequence (I) from a voltage sweep (V) and contextual inputs
(irradiance, temperature, fault state). Trained on a comprehensive simulated dataset
covering diverse operational and fault scenarios, the model demonstrates excellent
performance, achieving a determination coefficient (R?) of over 0.99, alongside a minimal
Root Mean Square Error (RMSE). Crucially, the model accurately predicts not only the I-
V curve shape but also its key physical parameters (Pmax, Vmpp, Voc, Isc), validating the
physical relevance of the learned representation. This study confirms that a BILSTM can
create a robust and accurate "digital twin" of a PV system, offering a powerful data-driven
alternative to traditional physics-based models, especially for real-time monitoring and

diagnostic applications.

1. INTRODUCTION

As photovoltaic (PV) systems become increasingly central
to the global energy transition, ensuring they operate
efficiently and reliably is a top priority. We need accurate
models to maximize the power output of these systems,
identify faults before they become serious problems, and
employ more intelligent control methods. Yet, building these
models is not straightforward. A PV system's performance is
complex and nonlinear, changing with factors like solar
irradiance (G), temperature (T), and its physical condition.
Traditional physics-based approaches, such as the single-
diode model, often fail to provide accurate results. Their
parameters are difficult to pin down, and they struggle to
replicate the system's full dynamic behavior. This is where
black-box system identification offers a practical solution. It
enables us to build models directly from input-output data,
without requiring an understanding of the complex physics
within [1].

Deep learning provides the right tools for this challenge.
Recurrent neural networks (RNNSs), for example, are excellent
for approximating nonlinear dynamic systems because they
are specifically designed to process sequential data [2]. In
recent years, Transformer models have become a key tool for
working with sequential data. This is because they are very
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good at finding complex connections between data points that
are far apart, an area where they often outperform traditional
RNNs [3]. Researchers have successfully used them for
specific PV tasks, like predicting the maximum power point or
forecasting short-term power output [4, 5]. The field is also
advancing with new designs like Mamba, which cleverly
combines state-space ideas to be more efficient [6]. However,
one major drawback is that these models typically require very
large amounts of data to learn properly. For our work on I-V
curve modeling, we are using a well-structured but moderately
sized dataset. In this situation, we found that a recurrent model
like the BiLSTM is still a very practical and effective choice.
Within this context of neural network modeling for PV
systems, research has largely followed two distinct paths. The
most common path involves input-output models, which have
been primarily applied to two tasks. For power output
forecasting, numerous studies have demonstrated the
effectiveness of hybrid architectures, such as CNN-LSTMs [7-
9]. For static I-V curve characterization, other works use
ANNs or neuro-fuzzy systems to estimate key electrical
parameters for applications like MPPT optimization [10, 11].
The main drawback of these input-output models is their
narrow focus. While successful in forecasting, their utility is
restricted because they only describe a single output or a static
state. They therefore fail to capture the system's internal
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dynamics, which limits their application in physical analysis
and diagnostics.

In contrast, the state-space framework provides a more
structured and powerful representation. Foundational work
established the advantages of using neural networks within
this framework, highlighting benefits like model parsimony
and applicability to robust control [12, 13], and recent
advances with deep learning have revitalized its use. What
makes the state-space approach so powerful is that it tries to
understand how the system works on the inside, instead of just
memorizing the relationship between inputs and outputs. A
major 2024 survey by Pillonetto et al. [14] points out that
because these models learn the internal dynamics, they are
much better at generalizing to new situations and are more
reliable for simulations. On top of that, work by Gedon et al.
[15] shows that deep state-space models are built to track
complex patterns over long periods, which is something
simpler input-output models often struggle with. This is a hot
topic in research right now, with ongoing work focused on
making these models even better for tricky, real-world systems
with noise and uncertainty [16]. Even within physics-based
modeling of PV systems, a state-space formulation is
considered essential for capturing full dynamic behaviors [17].
Despite these parallel advances, a critical gap persists in the
literature: few studies apply a data-driven state-space
formalism to identify the complete I-V curve of a PV system,
and even fewer validate the physical relevance of the learned
state representation.

Our work aims to fill this gap. We introduce a method for
data-driven state-space identification that uses a bidirectional
long short-term memory (BiLSTM) network to model the
entire current-voltage (I-V) curve as a dynamic sequence. We
frame this as a sequence-to-sequence task where the network
learns to predict the current sequence (I) from a voltage sweep
(V) and its context (G, T, fault state). The network's internal
hidden state serves as an estimator of the unobservable
physical state, implicitly learning the system's underlying
functions. The key contribution here is proving that this
learned representation is physically meaningful. We
demonstrate this by successfully extracting key electrical
parameters (Pmax, Vmpp, Voc, Isc) from the model's
predicted I-V curves. In doing so, we create a robust and
interpretable surrogate model—a true "digital twin" of the PV
system.

Specifically, this paper contributes the following:

1. A new way to model the PV I-V curve using a state-
space framework solved by a bidirectional RNN.

2. Proof that the network's hidden state learns a
physically relevant representation of the system.
3. Validation of this concept by accurately extracting

derived electrical parameters.

The rest of this paper is organized to walk through our
research process and findings. Section II is dedicated to our
complete methodology, covering everything from the state-
space formulation to the model's architecture and training
protocol. In Section III, we present the experimental results,
beginning with the final model configuration and its training
convergence, before moving on to a complete evaluation of its
performance and a detailed analysis of the learned dynamics.
Sections IV and V then provide a deeper discussion of these
results, where we compare our state-space model against a
static input-output approach and further validate its physical
relevance by checking it against experimental dynamic
behavior. Finally, Section VI concludes the paper with a
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summary of our contributions and suggests directions for
future work.

2. PROPOSED METHODOLOGY

In this section, we outline the proposed methodology for
identifying photovoltaic systems. Our approach leverages the
state-space theoretical framework to model the nonlinear
internal dynamics of the system. We use bidirectional long
short-term memory (BiLSTM) network to learn this model
directly from the data. We first present the theoretical
formulation of the problem and then describe its practical
application to modeling the current-voltage (I-V) curve as a
sequence-to-sequence regression task.

2.1 State-space modeling for dynamic systems

An effective model of a photovoltaic (PV) system must
accomplish two key tasks: capture the immediate input-output
response and account for the system's internal dynamics.
Traditional approaches usually handle the first part well but
struggle with the second. When these methods treat the system
as a "black box," they typically only learn the direct mapping
from input to output [1]. This approach, however,
fundamentally limits their power, as they cannot model
complex physical processes or yield genuinely interpretable
results. For this reason, we adopt the state-space model, a more
powerful representation that has proven superior for nonlinear
system identification in terms of both parsimony and
performance [12, 13]. This framework describes the system's
evolution through two fundamental discrete-time equations:

State Transition Equation:

x(k+1) = f(x(k),u(k)) (1
Observation Equation:
y(k) = g(x(k), u(k)) 2

here, x(k) € R~ is the unobservable state vector (where n is the
state dimension), u(k) € R™ is the input vector (where m is the
number of inputs), and y(k) € Rr is the measured output vector
(where p is the number of outputs). The state vector x(k)
encapsulates all necessary information about the system's past
to predict its future, making this framework particularly
suitable for modeling complex dynamic systems. The
functions f and g are the nonlinear mappings we seek to
identify. The state-space framework has seen a revival with
modern deep learning techniques [14], with recent studies
exploring advanced methods such as stochastic RNNs [16],
autoencoders [18], and models for complex switching systems
[19]. While some research in the PV field has focused on
physics-based state-space models [17], our approach leverages
this powerful formalism in a data-driven manner, employing
recurrent neural networks to learn the underlying nonlinear
functions f and g directly from operational data.

2.2 Experimental setup and data acquisition

The dataset used in this study was generated using a real-
time power electronics emulator of a photovoltaic array
(PVA). This emulator, developed at the LEPCI laboratory
(University of Sétif 1, Algeria), provides a high-fidelity



environment for generating I-V characteristics under a wide
range of precisely controlled conditions. The creation and
performance evaluation of the emulator are thoroughly
explained by Belaout et al. [20]. The core of the emulator
illustrated in Figure 1 is a detailed electrical model of a PV
array, designed in MATLAB/Simulink and deployed on a
dSPACE DS1104 real-time control board. The simulated PVA
consists of six series-connected photovoltaic modules, with
each module comprising 36 solar cells based on the Bishop
model, as detailed by Belaout et al. [21] and Belaout [22]. A
rich and varied dataset was essential for this study. To achieve
this, the emulator was wused to systematically alter
environmental conditions and introduce a range of fault types.
This process generated data for one healthy state and five
major fault categories, which were further broken down by
severity and pattern to create a total of 22 distinct operational
classes [21, 22]. To ensure data diversity, each class was
generated with approximately 130 unique I-V curves by
systematically varying environmental conditions, leading to a
total database of nearly 2860 samples. The operational
conditions and fault scenarios are detailed as follows:

Healthy Condition (NF): Normal operation with irradiance
(G) varied from 100 to 1000 W/m? and temperature (T) from
0°C to 60°C.

- F1: Partial Shading: 9 different shading patterns were
simulated, varying the number of shaded cells (25%, 50%,
75%) and the number of affected modules (one, two, or three).

- F2: Increased Series Resistance (ISR): 5 levels of severity
were created by increasing the series resistance of one module
by 1Q,5Q,10Q,15Q, and 20 Q.

- F3: Bypass Diode Short-Circuit: 1 scenario where a single
bypass diode in the array is short-circuited.

- F4: Bypass Diode Impedance Fault: 5 scenarios where a
bypass diode is modeled as a faulty impedance with resistance
valuesof 1 Q,5Q,10Q, 15 Q, and 20 Q.

- F5: PV Module Short-Circuit: 1 scenario where an entire
module is short-circuited.

As the examples in Figure 2 demonstrate, each of the 22
unique operational states provides a distinct electrical
signature based on its specific G and T conditions. It is this
very diversity that forms the necessary empirical basis for
training and validating the state-space model we propose.

To illustrate the rich diversity of environmental conditions
within each operational class, Figure 3 shows the complete set
of 130 I-V curves generated for the Healthy Condition (NF)
by systematically varying irradiance from 100 to 1000 W/m?
and temperature from 0°C to 60°C.

Figure 1. Photograph of the emulator used for data
collection: 1) buck converters, 2) load, 3) programmable
power source, 4) scope, 5) ControlDesk, 6) DS1104 platform
(20]
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Figure 2. Sample of characteristic I-V curves for different
PV system states
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Figure 3. Complete set of I-V curves for the normal
operation (NF) class under varying environmental conditions

2.3 Data preprocessing and preparation

The raw data from the emulator, initially stored in 22
separate files corresponding to each operational state, was not
immediately suitable for training. Therefore, a multi-step
preparation pipeline was implemented. First, all separate files
were consolidated into a single, unified dataset. Each sample
in this dataset represents a full I-V curve and was then
structured into a sequence-to-sequence format:

An input sequence, X, is a 4 x 130 matrix, since each I-V
curve consists of N=130 points. The four rows correspond to
the voltage sweep (V_k) and the contextual features:
irradiance (G), temperature (T), and the fault type
(D_encoded). These contextual features remain constant
throughout the sequence.

A target sequence, Y, is a 1 x 130 vector containing the
corresponding current values (I_k).

Next, to ensure an unbiased evaluation of the model's
generalization ability, the entire dataset was randomly
partitioned using a 70/30 split. 70% of the data was allocated
to the training set, while the remaining 30% was set aside as a
held-out test set. Finally, to improve training stability and
efficiency, all features were normalized using Min-Max
scaling, according to the formula:

X_norm = (x —x_min) / (x_max—x_min)

3)

Crucially, the normalization parameters (x_min and X_max)
were calculated only on the training set and then applied to
both the training and test sets. This prevents any data leakage
from the test set into the training process. The resulting
preprocessed data was then structured into cell arrays, the



format required by MATLAB's Deep Learning Toolbox for
training sequence-to-sequence models.

2.4 Bidirectional recurrent neural network architecture

To learn the nonlinear state-space functions f and g from
sequential data, we selected a bidirectional recurrent neural
network (Bi-RNN) as the core of our identification model.
This choice is motivated by the inherent ability of RNNs to
handle sequential information and the specific advantages of
gated, bidirectional architectures for our problem, a practice
that aligns with the state-of-the-art in modern data-driven
system identification [14].

2.4.1 Long short-term memory (LSTM)

Our model is built using the long short-term memory
(LSTM) cell, a sophisticated recurrent unit first introduced by
Hochreiter and Schmidhuber [23]. Unlike a simple RNN unit,
an LSTM cell incorporates a dedicated memory cell, c t,
which acts as a conveyor belt for information, and a series of
gating mechanisms that precisely control the flow of this
information. These gates allow the network to selectively add,
remove, or expose parts of its memory [24], enabling it to
capture dependencies over very long sequences [25]. This
structure is particularly effective for learning state-space
representations where the hidden state h(k) acts as an estimator
of the physical state x(k) [15].

The core operations of an LSTM cell at a given time step t
are governed by three main gates:

Forget Gate (f t): This gate's role is to decide what to
discard from the previous cell state, ¢ {t-1}. To do this, it
processes the last hidden state, h_{t-1}, and the current input,
X _t, to compute a value between 0 (forget everything) and 1
(keep everything).

fr=c(W.f*[hit-1},x1t]+b_f) 4)

Input Gate (i t): This gate determines which new
information to store in the cell state. It does this in two steps:
a sigmoid layer selects which values to update, while a parallel
tanh layer proposes a vector of new candidate values, C t, to
be added.

it=c(Wi*[h {t-1},x.t]+bt) (5)

¢t =tanh(W.c*[h_{t—1},x.t]+b.c) (6)

The cell state is then updated by combining the forgotten
past state with the new candidate information:

cet=ftc{t—1}+itc_t (7

Output Gate (o_t): This gate determines the next hidden
state, h_t, which is a filtered version of the cell state. This is
done in two steps: first, the cell state c_t is squashed through a
tanh function, and then this result is multiplied element-wise
by the output of the gate's sigmoid layer.

ot=c(Wo*[h {t-1},xt]+b.o) (8)

ht=o.t tanh(c.t) )
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In these equations, o represents the sigmoid activation
function, denotes the element-wise product, and W and b are
the learnable weight matrices and bias vectors for each gate,
respectively (see Figure 4).

Cell
star

h(.x

Hidden
state

forget Input
gate  gate

Input

Figure 4. The internal structure of a long short-term memory
(LSTM) cell

2.4.2 The bidirectional architecture for complete contextual
modeling

While a standard LSTM effectively captures past
information, our system identification task requires a more
holistic understanding of the entire I-V curve. To achieve this,
we implement the LSTM cells within a Bidirectional LSTM
(BILSTM) framework. The BiLSTM is specifically designed
for tasks where the full context of a sequence is important,
drawing on the concept of bidirectionality first developed for
RNNSs and later LSTMs [26, 27]. As illustrated in Figure 5, the
architecture achieves this by using two separate, parallel
LSTM layers, each with an independent set of parameters, to
process the input sequence from opposite directions:

Forward LSTM Layer: This layer processes the input
sequence chronologically, from t=1 to N. At each step t, it
calculates a forward hidden state h”y which encodes
information from the past (x_i, ..., X_¢). This process can be
abstractly represented as:

B, = LSTM_fwd (x i, (10)

Backward LSTM Layer: To achieve a complete, 360-degree
view of the sequence, the model needs information from the
future as well as the past. This is the job of the backward
LSTM layer, which processes the sequence in reverse to
generate a hidden state h that summarizes the upcoming
context (X g, ..., X_N).

Combination of Outputs: To form a complete contextual
representation, the outputs from both directions are combined
at each time step. As shown in Figure 5, the most common and
effective method, used in numerous applications, is to
concatenate the forward and backward hidden states [28, 29].
This creates a final hidden state vector H; that preserves all the
information from both contexts:

-
ht+1

h = LSTM?bwd(xﬁt, (11)

H, =| I3, | (12)

This concatenated vector H; thus contains a rich



representation of the input x; within the context of the entire
sequence. This capability is particularly crucial for our system
identification task. It allows the model to accurately reproduce
the global shape of the I-V curve, including the complex
distortions caused by conditions like partial shading [7, 8, 11],
which a simple unidirectional model would struggle to
capture. The ability to see the whole picture, therefore, makes
the BILSTM a significantly more powerful tool for creating a
high-fidelity model of the PV system.

e Il W Yl
Activation P
layer h“t 1 by I
3 -
| S| 0 LS| 7.
Backward ¢— ISTH T LSTH —1 LSTM €---- | LSTM
Forward
layer LSTM LSTM LSTM LST™M
Input Xt Xy Xl i 3t

Figure 5. The internal structure of a bidirectional long short-
term memory (BiLSTM) cell

2.5 Proposed model implementation

The architecture implemented in this work is a stacked
BiLSTM network designed specifically for the sequence-to-
sequence regression task. As visualized in Figure 6, the model
is composed of layers, with key hyperparameters such as the
number of hidden units and the dropout rate detailed in Table
1. The specific values for the structural hyperparameters were
determined through the systematic optimization process
described in the following sections.

Input Sequence
Size :4xN

Bidirectional LSTM Layer 1
N-units 1 Hidden Units

+
Dropout l
L Rate: D_rate1l
1

Bidirectional LSTM Layer 2
N-units 2 Hidden Units

<

[ Dropout ]
Rate: D_rate 2

Fully Connected Layer
FC_units 1 Units, Relu

‘ Output Layer ]

1 Unit, Linear

Figure 6. The proposed stacked BiLSTM network
architecture

2.6 Training and optimization protocol

To identify the best set of hyperparameters for our model,
we performed a systematic search using the sample-efficient
Bayesian optimization technique [30-32] instead of more
common methods like grid or random search [33]. The search
space included the number of BiLSTM hidden units, the
dropout rate, the number of units in the fully connected layer,

and the initial learning rate. The final model, using the optimal
parameters found, was then trained with the Adam optimizer
and an early stopping rule to prevent overfitting by halting the
process if the validation loss stopped improving.

Table 1. Detailed description of the layers and key
hyperparameters of the proposed BiLSTM model

Key Hyper-
Layer Type Parameters Purpose
Sequence Tnput size Accepts the 4xN input
Input Layer sequences
Bilstm Layer N _units_1 hidden Learns low-level temporal
units dependencies
Dropout Rate: D rate 1 Regularization .to prevent
Layer - = overfitting
Bilstm Layer NﬁunltsﬁZ hidden Learns high-level temporal
units features
Dropout Rate: D rate 2 Further regularization
Layer - -
Fully . . Performs a final nonlinear
Connected FC_units units .
- transformation
Layer
Relu Layer Introduces nonlinearity
Fully unit. Tinear Maps features to a single
Connected ’ scalar output (I_k) for each

activation -
Layer time step

Computes the mean
squared Error loss for
training

Regression
Layer

2.7 Evaluation metrics

We wanted to answer two questions about our model's
performance on the test data. First, how big are the prediction
errors on average? We used the Root Mean Square Error
(RMSE) to find that out. Second, how well do the model's
predictions match the real data's spread? The R-squared (R?)
value helped us answer that by showing how much of the real-
world variation our model was able to capture. The equations
for both are below:

RMSE:sqrt((I/P)*Z(Lreal—lfpred)z) (13)
where P is the total number of points across all test sequences.

R? = 1—(Z(l_real —I_pred)2 ) / Z(I_real —I_meam)2

Beyond these overall error metrics, we went further to check
if our model made physical sense. To do this, we extracted key
parameters like P_max, V_mpp, I sc, and V_oc from both the
predicted and the actual I-V curves. Comparing these values
was a critical test to validate the physical relevance of our
identified model.

3. RESULTS AND DISCUSSION

In this section, we present the findings from our state-space
identification performed using the proposed BiLSTM model.
The model was trained with optimal hyperparameters
determined by Bayesian optimisation, and the final training
process achieved a validation RMSE of 0.0475 A.

Our analysis begins by illustrating the complexity of the



identification challenge itself. A look at the I-V curves in
Figure 2, which shows a sample from our test set, immediately
reveals how dramatically the system's behaviour changes
across its different operational and fault conditions. The
system's state has a profound impact on the shape of the I-V
curve. For example, under healthy conditions, the curve is
typically smooth and concave. A fault like partial shading,
however, can drastically alter this shape, introducing
significant distortions and often creating multiple local power
maxima. The true test for any system identification approach,
therefore, is its ability to accurately model this full range of
complex, nonlinear behaviors, rather than just fitting a single
curve shape [34].

Following this, we will assess the model's overall predictive
performance using global metrics and conclude with a detailed
investigation into its physical relevance and learned internal
dynamics.

3.1 Model configuration and training convergence

3.1.1 Optimal model parameters

We used a process to find the best model settings, which is
described in the methodology.

The final choice was made based on one key factor:
minimizing the error on the validation data. This method
ensures a good balance between the model's ability to learn
and the need to prevent overfitting, as detailed in Table 2.

Table 2. Final hyperparameters of the proposed BiLSTM

model
Parameter Value Description
Input Features 4 V, G, T, Fault State
. . Number of hidden units in
BILSTM. Hidden 140 per each of the two BiLSTM
Units layer
layers
. 2 Number of stacked BiLSTM
Bil.STM Layers (stacked) layers
Fully Connected 53 Number of units in the dense
Units layer before the output
Dropout rate applied after
Dropout Rate 0.2225 cach BiLSTM layer
Optimizer Adam Adaptive moment estimation
optimizer
Initial Learning Initial learning rate for the
0.0026 L
Rate Adam optimizer
Mini-batch Size 32 Number of samples per
training iteration
Max Epochs 100 Maximum number of training
epochs
Early Stopping 10 Number of epochs to wait for

Patience improvement before stopping

3.1.2 Training convergence

The training progress of the final model is shown in Figure
7. The plot shows how the Root Mean Square Error (RMSE)
and the loss function changed during the training for both the
training and validation sets.

At first, both the loss and RMSE dropped quickly, then the
values became stable as the training continued. The process
stopped automatically after 23 epochs because of the early
stopping rule, which helped prevent the model from learning
the training data too well (overfitting). This early stopping
ensured that the model would perform well on new, unseen
data. The final RMSE on the validation data at the point of
convergence was 0.014278, showing that the training was
successful and stable.
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Figure 7. Training progress of the BILSTM network
3.2 Overall identification performance

After training the model and confirming its convergence,
we tested it with a separate set of 1630 I-V curves. The
predictions were then converted back to their original units
(Amperes). The model performed well and showed it could
generalize to new data. The performance metrics on the test
set were as follows:

Root Mean Square Error (RMSE): 0.0475 A

Coefficient of Determination (R?): 0.9974

The following figures further illustrate this high level of
accuracy:

The correlation plot (Figure 8) compares predicted and
actual current values. The data points form a very dense and
narrow cluster around the y=x line, which represents an ideal
prediction. This tight alignment visually confirms the model's
robustness and its ability to make highly accurate predictions,
consistent with the high R? score [35].

Correlation between Predicted and Actual Values

Predicted Current (A)

1 1.5 2 25 3
Actual Current (A)

Figure 8. Correlation between predicted and actual values

«ip¢ Distribution of Prediction Errors (Licwar = lpredicted)
: . . . .

Frequency
e = g p A
228 8 .8 = E B ow

e
=

02 <01 0 0 02

Current Prediction Error (A)

&
w

Figure 9. Distribution of prediction errors (I_{actual} -
I {predicted})

The error distribution histogram (Figure 9) provides further
insight into the model's performance.
The distribution of prediction errors (I_actual - I_predicted)



is sharply peaked and centered almost perfectly at zero,
indicating that the model is unbiased and that the vast majority
of errors are very close to zero. This narrow spread, with most
errors falling within a +0.1 A range, reinforces the reliability
of the model and is consistent with the low overall RMSE.

A visual check of the model's performance in Figure 10
confirms its high accuracy. Here, we've overlaid the predicted
I-V curves on the actual curves for several random test
samples. The two curves track each other very closely, even
across different voltage and current ranges, which is a strong
visual testament to the low RMSE and high R? scores [36].
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(b) Test sample # 1524
Current Curve |
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3.l J
<
T2t
g
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&
'1 |8
[1]3
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(c) Test sample # 71
ik
<
Sar
3

5 10 15 20 25 30

’ Voltage (V)
(d) Test sample # 317

Figure 10. Comparison of actual and predicted I-V curves
for randomly selected test samples

3.3 Detailed analysis and validation of the identified state-
space model

Despite the confirmation of the model's statistical accuracy
through global metrics, additional analysis is essential to
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confirm that the model has grasped a wvalid state-space
representation. To validate our identified state-space model
beyond global metrics, we carry out a detailed, three-part
analysis. First, we check how well the model follows a typical
example of the system's behavior. Then, we take a closer look
at the internal state dynamics and their physical meaning by
using time-based plots and t-SNE visualizations. Finally, we
test how well the model can predict critical physical
parameters.

3.3.1 Dynamic identification performance

To visually assess the model's performance on a dynamic
trajectory, a random sample from the test set was selected for
detailed analysis. Figure 11 illustrates the identification
process for this sample.

The figure's subplots show that (a) the model was subjected
to a standard voltage sweep input. In response, (b) the model's
predicted output J(t) almost perfectly tracks the actual system
output y(t), indicating a very high tracking accuracy. This is
further confirmed in (c), where the prediction error e(t)
remains small, stable, and centred around zero, demonstrating
that the model's predictions are consistent and unbiased
throughout the sequence.
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Figure 11. Dynamic identification performance of the state-
space model for a random test sample. Subplots show: (a)
input voltage u(t); (b) comparison between actual y(t) and

predicted $(t) current; (c) prediction error e(t)

3.3.2 Analysis of the learned internal state

The main idea behind our state-space approach is that the
hidden states of the BILSTM can serve as estimators for the
unobservable system state x(k).To check this, we first
examined how the hidden states evolved for the same test
sample (Figure 11). This analysis validates that the model has
learned a coherent internal state-transition function.

h(k) = f (h(k 1), u(k)).

This is the most insightful part of the analysis, as it shows
how the first three components of the learned hidden state
vector h(t) evolve. Figure 12 clearly shows that the hidden
states don't change randomly. Instead, they follow a smooth
and organized pattern that lines up perfectly with the input
signal. What this tells us is that the network has successfully
learned a stable and coherent set of internal rules—a transition
function—which is precisely what a good state-space model
should do.
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Figure 12. Evolution of the first three components (h1, h2,
h3) of the learned hidden state vector h(t) for the test sample
shown in Figure 11

To further validate that this learned state is physically
meaningful, we visualized the final hidden state h(t) for all test
samples using the t-SNE technique. The results, presented in
Figure 13, offer a direct visualization of the learned latent
space.

The t-SNE visualizations provide a robust validation of our
state-space approach, revealing that the model has learned to
organize its latent space based on a clear physical hierarchy.
The primary organizing factor is irradiance (a), followed by a
secondary organization based on temperature (b) within each
irradiance cluster, and a final, local organization based on fault
categories (c), demonstrating that the model has learned to
distinguish the unique dynamic signature of each health state.
This automatically discovered structure confirms that the final
hidden state h(t) is a physically meaningful embedding, not
just a random vector. It demonstrates that our model has gone
beyond simple curve-fitting to construct a true, interpretable
internal state-space model of the PV system.

3.3.3 Physical parameter validation

This analysis provides strong evidence that the BILSTM has
successfully identified a meaningful internal state-space
representation of the PV system. The learned hidden states are
not arbitrary, but follow a clear dynamic structure, confirming
that the model has learned an internal representation of the
system's evolution, not just a static input-output mapping.

Now that we've seen that the model has learned a coherent
internal dynamic, the next logical step is to check its practical
usefulness. We did this by testing if it could accurately predict
key physical parameters from the I-V curves. This test is
essential because it confirms that our identified model is not
just internally consistent but also physically meaningful.

Table 3. Performance on key physical parameter extraction

Mean Relative
Mean Mean
Parameter R Absolute Error
Actual Predicted
Error (%)
Pmax (W) 146.96 147.1 0.13498 0.091849
Vmpp (V) 88.54 88.032 0.50806 0.57382
Impp (A) 2.1939 2.1908 0.003102 0.14141
Voc (V) 81.917 81.828 0.088648 0.10822
Isc (A) 0.2626 0.30619 0.04357 16.59

We extracted five standard PV parameters from both the
predicted and the actual curves for all 1630 samples in the test
set. Table 3 summarises the results, comparing the mean of the
actual and predicted values and showing the resulting error
metrics calculated on these means.

The results show a strong agreement for most parameters.
The model predicts the mean maximum power (Pmax),
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maximum power point voltage (Vmpp), current (Impp), and
open-circuit voltage (Voc) with relative errors on the mean of
less than 1%. This high level of accuracy on derived physical
quantities is strong evidence that the learned state-space
representation is physically accurate.

A higher relative error of 16.6% was observed for the short-
circuit current (Isc). However, as the error distribution analysis
in Figure 14 reveals, this is not due to a model weakness but is
primarily a statistical artefact. Looking at the error distribution
for Isc, we see a tall, narrow peak right at zero. This shows two
things: the model has no systematic bias, and its absolute
errors are almost always tiny. The large percentage in the table
is a direct result of the math involved, as the relative error
formula exaggerates even these minor absolute errors when
the actual Isc value is very low (=0.26 A). This slight initial
deviation can be attributed to a "sequence edge effect"
occurring at the start of the voltage sweep (V = 0), where the
forward LSTM layer has less contextual information.
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Figure 14. Probability density functions of the prediction

errors for each of the five extracted physical parameters

To get a more complete picture, we visualize the full error
distributions for each parameter in Figure 14. In this
visualization, we plot the probability density functions (PDFs)
derived from the prediction errors, which lets us directly check
for any model bias and see how consistent the predictions are.

The distributions in Figure 13 tell a clear story. All five are
sharply peaked and centred on zero, a strong sign that our
model is unbiased. Looking closer at Isc, its PDF is noticeably
the most concentrated of the group. This confirms that the
model's absolute performance for this specific parameter is, in
fact, excellent. Nevertheless, the overall performance
confirms that the model has acquired a physical understanding
of the system, far beyond simple curve-fitting.

4. COMPARISON WITH A STATIC INPUT-OUTPUT
MODEL

To understand the practical advantages of our state-space
model, we needed a point of comparison. For this, we built and
trained a standard static input-output model, a Multi-Layer
Perceptron (MLP), on the same dataset. The MLP's role is to
model the direct input-output relationship at each time step by
treating each (V_k, I k) point as an independent sample, using
the same input features [V_k, G, T, Fault State] to predict the
current I k. To ensure a fair comparison, the MLP was
designed with a comparable level of complexity and was
trained under similar conditions as the BILSTM model. The
detailed architectural and training hyperparameters for the
comparative MLP are presented in Table 4.

Table 4. Configuration of the comparative MLP model

Parameter Value
Input Features 4
Number of Hidden Layers 2
Neurons per Hidden Layer 128
Activation Function ReLU
Output Layer 1 Neuron (Linear)
Optimizer Adam
Initial Learning Rate 0.001
Mini-batch Size 32

The quantitative performance comparison of the two
models on the test set is summarized in Table 5.

The data in Table 5 highlight the advantage of the state-
space model. The BiLSTM achieves better results, shown by
its lower RMSE and higher R? values, thanks to its capability
to utilize the full sequential context of the data—an inherent
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limitation in static input-output models like the MLP. This
qualitative difference in performance is further illustrated on
representative test samples in Figure 15.

Table 5. Performance comparison between models

Model Type RMSE (A) R-Squared (R?)
State-Space (BiLSTM) 0.0475 0.9974
Input-Output (MLP) 0.0815 0.9924
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Figure 15. Qualitative comparison of the BiLSTM and MLP
models on four representative test samples

On a clean I-V curve (Sample #148), the BILSTM's



prediction is nearly perfect, while the MLP shows
slight deviations.

On a complex, noisy curve (Sample #1479), the
BiLSTM  successfully captures the subtle
nonlinearities, whereas the MLP's prediction is
overly linear and less accurate.

On a highly distorted curve under a severe fault
(Sample #20), the MLP's predictions diverge
completely, while the BILSTM, though challenged,
still manages to capture the overall trend.

On a low-current, erratic curve (Sample #1254), both
models struggle, but the MLP produces a simple,
incorrect linear trend, while the BiLSTM still
attempts to model the complex, non-zero behavior of
the data.

This comparison confirms that the state-space model
(BiLSTM) is not only quantitatively more accurate but also
qualitatively more robust. The key difference lies in the
BiLSTM's use of sequential context, a capability that static
input-output models lack by design, highlighting a
fundamental advantage of the state-space approach [12, 13].

5. PHYSICAL RELEVANCE AND COMPARISON
WITH EXPERIMENTAL DYNAMIC BEHAVIOR

We can further validate the physical relevance of our
identified state-space model by comparing its predictions with
experimental results from the literature. For example, the work
of Belaout [20] presents the dynamic response of a similar PV
system's Maximum Power Point (MPP) to real-time changes
in irradiance and temperature. Although our work focuses on
static system identification, this comparison allows us to
confirm that our model has learned the correct underlying
physical behaviors.

5.1 Comparison of physical trends

The experimental data in the study [20] reveal two
important physical trends. First, it shows a clear link between
irradiance and current. When irradiance goes up, the
maximum power point current (Impp) rises with it, leading to
a direct increase in maximum power (Pmax). The second is the
inverse relationship between temperature and voltage: as
temperature increases, the maximum power point voltage
(Vmpp) falls, slightly reducing Pmax.

What this means is that our model, despite being trained
only on static I-V curves, has still learned these fundamental
physical relationships. The highly accurate parameter
predictions we show in Table 3 are strong evidence that our
data-driven model has implicitly captured the -correct
dependencies between environmental conditions and key
electrical parameters, and that these learned relationships align
with the dynamic behavior seen in experiments.

5.2 Complementarity of the approaches

This comparison also highlights the collaboration between
system identification and control algorithm validation. An
MPPT algorithm, like the one tested in study [20], requires a
target—the true Maximum Power Point—to track. Our work
provides a direct method for predicting the location of this
MPP under any given static condition.

Therefore, our identified BILSTM model can be seen as a
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high-fidelity "virtual test bench" or surrogate model. It could
be used to generate the reference I-V curves and target MPPs
necessary for testing, validating, or even training new MPPT
algorithms under thousands of simulated conditions. This task
would be impractical to perform on a physical system.

6. CONCLUSION

This study introduced a state-space identification approach
for modeling the nonlinear behavior of photovoltaic (PV)
systems. We framed the I[-V curve identification as a
sequence-to-sequence task. We used a stacked bidirectional
long short-term memory (BiLSTM) network to create a high-
fidelity surrogate model. The proposed model achieved
remarkable predictive accuracy, with a Coefficient of
Determination (R?) exceeding 0.997 and a very low Root
Mean Square Error (RMSE). This work has successfully
shown that a state-space approach to I-V curve modeling can
produce a physically relevant model that outperforms
traditional static methods. The fundamental ability of our
model to capture the system's internal dynamics is what allows
it to make both highly accurate [-V curves and precise
calculations of key electrical parameters like Pmax, Voc, and
Vmpp. This capability is precisely what static models lack,
which explains their poor performance when dealing with the
complex dynamics of nonlinear fault conditions. Functioning
as a "virtual test bench," it could be used to generate realistic
I-V data for the development and validation of next-generation
control algorithms, such as adaptive Maximum Power Point
Tracking (MPPT) techniques. Furthermore, the model could
be extended to predict long-term performance degradation by
incorporating ageing effects into the training data. Validating
this identification approach on data from a utility-scale, field-
deployed PV plant is the critical next step to confirm its
practical utility and scalability. Thus, a comparative analysis
against state-of-the-art Transformer architectures would be a
valuable future direction, especially on larger datasets.

What this work ultimately shows is that a data-driven
approach can provide a robust and accurate alternative to
traditional physics-based models for PV systems. This has
important implications for the future of renewable energy,
opening up new possibilities for real-time diagnostics,
performance optimization, and the development of more
intelligent control systems.
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NOMENCLATURE

BiLSTM Bidirectional Long Short-Term Memory
Network

G Irradiance, W.m™

I-v Current-Voltage

MLP Multilayer Perceptron

PV Photovoltaic

R? Correlation Coefficient

RMSE Root Mean Square Error

RNN Recurrent Neural Networks

T Temperature,C





