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 For effective removal of noises in seismic signals, this paper proposes an adaptive threshold 

denoising algorithm that integrates wavelet transform with entropy and inter-scale correlation 

(EIS) model. Firstly, noisy signals were decomposed by discrete wavelet transform, the high-

frequency sub-bands on each scale were divided into equal subintervals, and the wavelet 

entropies of the subintervals were computed one by one. Secondly, the correlation coefficients 

of sampling points on each scale were calculated, and then compared with the high-frequency 

coefficients at corresponding positions. The comparison results, coupled with the wavelet 

entropies, were determine the noise variance of high-frequency sub-bands on each scale. 

Finally, the signals were reconstructed from the above results according to the new threshold 

function and the self-adaptive threshold rule. The experimental results show that our method 

outperformed several popular denoising approaches in terms of signal-to-distortion ratio 

(SDR), signal-to-noise ratio (SNR) and mean squared error (MSE). 
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1. INTRODUCTION 

 

It is a crucial task to recognize and trace effective seismic 

signals in seismic surveillance. However, seismic signals are 

practically affected by pneumatic pressure, surf pounding, bad 

earth of detector embedment apparatus, and the scattering 

effect of near-surface objects with irregular contours. 

Therefore, it has always been a topical issue to improve 

efficiency and precision of seismic surveillance in the field of 

seismic surveillance to denoise seismic signals [1, 2]. 

Filtering methods have long been applied by researchers in 

seismic signal denoising in spatial domain. Specifically, 

signals and noise are separated from each other according to 

different sorting between effective signals and noisy signals in 

spatial domain, such as median filtering, average filtering and 

Wiener filtering [3]. However, as a non-stationary process in 

essence, seismic shock does not fully accord with the 

theoretical foundation that traditional space-domain filtering 

methods rely on. Thus, the above filtering methods tend to 

smooth away edges or lose sensitive characteristics [4]. 

The theory of total variation, together with the deriving 

Rudin–Osher–Fatemi total variation, has become an important 

denoising method [5]. Total variation denoising has embraced 

good development due to its merit to retain the information of 

signal boundary. However, it is easy to trigger the staircase 

effect (Durand and Froment) [6, 7].  

Another denoising method is the one based on transform 

domain. Specifically, Fourier transform, etc. is first used to 

project signals into transform domain through transform 

algorithm. Next, based on different distribution characteristics 

between effective signals and interference signals in transform 

domain, transformation coefficient that represents noise is 

eliminated by using feature distribution of transformation 

coefficient. Finally, inverse transformation is used to filter 

noise [8]. The basic recognition for the establishment of 

transform domain is that useful information in signals usually 

concentrates on the low-frequency range while noisy signals 

concentrate on the high-frequency range. Thus, based on 

frequency, effective separation of signals and noise can be 

realized. 

Wavelet transform is one of the methods in transform 

domain. Once a random group of signals are decomposed by 

wavelet, the form of effective information, and noise is 

significantly different in wavelet domain. Thus, it appears that 

wavelet transform has overwhelmingly strong vitality and 

gains substantial development in the field of signal processing 

[9]. The emerging thresholding method is marked as an 

important development for wavelet transform. The method of 

wavelet domain denoising based on threshold processing, 

initialized by Dohono, can estimate the threshold value 

through wavelet transform coefficient and reconstruct signals 

with the retained wavelet coefficient. This method proves to 

reach appropriate optimum in the sense of least mean square 

errors, and endows good visual effects to denoised signals [10]. 

The key issue in wavelet threshold denoising lies in the design 

of threshold function. Traditional soft threshold will cause 

constant deviation between the estimated value and the actual 

value of wavelet coefficient, while the hard threshold, with its 

discontinuous function, will generate oscillation in 

reconstructed signals [11]. Given the above factors, 

researchers have proposed many improved schemes. For 

example, Dong and Yi put forward the eclectic non-smooth 

threshold value in [12], using a variable factor to adjust 

deviations in wavelet coefficient caused by soft threshold 

value. However, the threshold function like this was still 

discontinuous. Zhang et al. proposed a continuous threshold 

function in [13], which set evolving factors to enhance the 

denoising effect. Nevertheless, with empirical estimation 

instead of universal equation, the setting had some drawbacks. 

Shu proposed a threshold function with exponential factors in 
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[14], with the exponential items’ regulation to smooth function 

curves and reduce oscillation. But it was difficult to determine 

the value range of exponential items. Recently, Chen, Wang, 

et al proposed the denoising method based on wavelet entropie, 

which determined the threshold at various scales by 

calculating high-frequency wavelet entropies at various scales 

after signals were decomposed. However, high-frequency 

wavelet entropies at various scales like those are regarded as 

noise coefficient, excluding the factor that is part of useful 

information in the high-frequency zone. Thus, the denoising 

method based on wavelet entropie, once adopted, may cause 

loss of some details for denoised signals and even the risk of 

signal distortion. 

This paper proposed an adaptive wavelet domain denoising 

method with the wavelet entropy-inter scale correlation model. 

On the basis of the method in [15], two improvements were 

proposed. The first was a proposed denoising model that 

combined wavelet entropie with correlation among scales. The 

proposed method was different from the aforementioned 

methods in [12, 14, 15]. Instead, high-frequency relative 

coefficient at various scales was calculated to filter out useful 

information in the high-frequency zone, and standard 

deviation of noise at various scales was determined according 

to wavelet entropies. The second improvement lied in a 

proposed new differentiable threshold function that controlled 

the attenuation of high-frequency coefficient self-adaptively. 

Whereas the soft threshold function continued its application 

in [15]. 

 

 

2. RELATED WORK  

 

This section serves as an explanation of some basic 

knowledge. 

 

2.1 Theory of wavelet transformation 

 

Assuming that 𝜙(𝑡) was a square integrable function, and if 

Fourier transform 𝜙(𝜔) satisfied the requirement of [16]. 
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Then 𝜙(𝑡) was called as fundamental wavelet or mother 

wavelet. With the following transformation, the wavelet basis 

function was obtained: 
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where, a denoted scalability factor, and b denoted shift factor. 

The discrete wavelet transform was defined as: 
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And the discrete wavelet transforms coefficient of the signal 

𝑓(𝑡) was: 
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2.2 Theory of threshold denoising method 

 

Under normal conditions, the seismic signals received by 

instrument ends could be approximately represented by the 

following equation: 

 

( ) ( ) ( ) ( 1,2, )h i c i d i i N= + =                       (5) 

 

where, 𝑐(𝑖) denoted ideal signal, 𝑑(𝑖) denoted doping noise, 

and ℎ(𝑖) denoted the signals that were polluted by noise. 

Wavelet transform was used for the signal ℎ(𝑖)  in the 

following expression: 

 

( ) ( ) ( ) ( ) ( ) ( )j,k j,k j,k j,kWT h i i di c i i di d i i di  = = +        (6) 

 

where, 𝜙𝑗,𝑘 denoted discrete wavelet.  

Equation (5) could be rewritten as: 

 

, , ,j k j k j k  = +                               (7) 

 

where, 𝜔𝑗,𝑘  denoted wavelet coefficient with noised signals, 

𝜇𝑗,𝑘  and 𝜈𝑗,𝑘  denoted wavelet coefficient for effective 

information and that for noise, respectively. 

 

 

3. THE DE-NOISING METHOD USING EIS MODEL 

 

In this section, the proposed method is described in detail 

below. Here was two key points: for the first one, by 

calculating the high-frequency coefficient of the wavelet 

entropy at various scales, the maximum distribution section 

would be preliminarily determined with the maximum noise 

energy. Then, it was decided whether the above section was 

the noise-dominant one through the comparison of the sum of 

wavelet coefficient with relative coefficient. For the second 

point, a new derivable threshold function was designed, which 

helped reduce the constant deviation of wavelet coefficient 

resulted from discontinuous threshold function. 

 

3.1 The new threshold function 

 

The methods of wavelet threshold denoising was divided 

into the hard threshold method and the soft threshold method. 

The difference was small between 𝜔𝑗,𝑘  of the ideal signal 

(without noise) that was estimated by the hard threshold 

method and �̄�𝑗,𝑘  of the actual signal. However, the 

discontinuity of 𝜔𝑗,𝑘  at the threshold 𝜆 caused the estimated 

signal to generate additional oscillation at the singular point of 

the signal, thus the denoised signal failed to have the smooth 

boundary as that for the ideal signal. The wavelet coefficient 

that was obtained by the soft threshold method had a good 

global continuity. However, the constant derivation between 

𝜔𝑗,𝑘 of the ideal signal that was estimated by the hard threshold 

method and �̄�𝑗,𝑘  of the actual signal caused a low 

approximating level between the denoised signal and the ideal 

signal, and affected the precision of signal reconstruction [17, 

18]. There were two characteristics for a good threshold 

function: first, it would render the deviation between the 

estimated value and the actual value of the wavelet coefficient 

to be as small as possible; second, it was continuous in the 

wavelet domain. 
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The new threshold function was established as follows: 
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There was constant deviation between the absolute value of 

�̄�𝑗,𝑘 that was obtained totally by the soft threshold method and 

𝜔𝑗,𝑘 . Such deviation should be reduced by every means. 

However, if 𝜆𝑗 was equal to 0, the value of �̄�𝑗,𝑘 was the same 

as the value that was obtained by the hard threshold method. 

From equation (6) it could be seen that there was 𝜇𝑗,𝑘 

(represented effective information) and 𝜈𝑗,𝑘 (represented noise) 

in 𝜔𝑗,𝑘. To obtain the minimum value of ‖𝜔𝑗,𝑘 − 𝜇𝑗,𝑘‖ within 

the norm meaning of 𝑙2  was the intention of signal 

construction. From observation of equation (7), it could be 

seen that √
𝜔𝑗,𝑘
2 +(|𝜔𝑗,𝑘|−𝜆𝑗)

2

2
 was the geometric average between 

𝜔𝑗,𝑘  and |𝜔𝑗,𝑘| − 𝜆𝑗 , and 
1

𝑒
|𝜔𝑗,𝑘|−𝜆𝑗

 was a regulatory item. If 

|𝜔𝑗,𝑘| ≥ 𝜆𝑗 , as |𝜔𝑗,𝑘|  increased, 
1

𝑒
|𝜔𝑗,𝑘|−𝜆𝑗

 decreased 

continuously, working to dynamically regulate threshold. The 

new threshold function could determine the attenuation of 

wavelet coefficient self-adaptively, thus reducing lass of 

useful information in the high-frequency zone and improving 

the signal-to-noise ratio of the reconstructed signals. 

 

3.2 Calculation of wavelet entropy 

 

According to the information theory, entropy denoted the 

average information amount for each symbol in information 

sources, and also denoted the average uncertainty of 

information sources. In other words, the uniformity of 

probability distribution of the signal was decided by entropy. 

From the viewpoint of energy conservation of wavelet 

transform, after discrete wavelet transform was used for ℎ(𝑖), 
the high-frequency coefficient at the kth position under the 

decomposition scale of 𝑗(𝑗 = 1,2,⋯ 𝐿) was recorded as 𝑑𝑗,𝑘, 

and the wavelet energy under j could be expressed as: 
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Thus, the total sum of energy under all of the decomposition 

scales was: 
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Assuming that the number of sampling points for the section 

of signals was N. if the high-frequency coefficient at the j-th 

scale was divided into n subsections, the wavelet energy at the 

m-th subsection could be expressed as: 
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k
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where, 
𝑁

𝑛
 denoted the number of sampling points that were 

contained in each subsection. 

The probability density of the wavelet energy at the mth 

subsection against the total energy at its scales was then 

calculated as: 

( )j

m

j

E m
p

E
=                                    (12) 

 

Finally, the wavelet entropy (represented by 𝑆𝑚) of the mth 

subsection was calculated as: 

 

lnm m m

j

S p p= −                              (13) 

 

According to the above analysis, as the combination of 

wavelet transform and the information entropy, the wavelet 

entropy could quantitatively describe the characteristics of 

energy distribution on the time-frequency domain. The 

definition of wavelet entropy was introduced to calculate the 

noise energy of high-frequency wavelet coefficient at various 

scales. In this way, the noise dominant section at each scale 

would be judged effectively so that the noise level at each scale 

would be determined. 

 

3.3 Inter-scale correlation 

 

Research results have shown that after a specific signal went 

through wavelet transform, the wavelet coefficient that 

represented useful information was strongly related to each 

other among different scales, but the wavelet coefficient that 

represented noise were not characterized by such character 

[19]. The relative coefficient among different scales was used 

to measure such correlative characters, which was defined as 

[20]: 

 

, , 1,( ) ( ) ( 1)j k j k j kCor j d j d j+=  +                    (14) 

 

where, 𝐶𝑜𝑟𝑗,𝑘(𝑗)  denoted the relative coefficient at the k-th 

position at the j-th scale, 𝑑𝑗,𝑘(𝑗) and 𝑑𝑗,𝑘(𝑗) denoted the high-

frequency coefficient at the k-th position at the jth scale and at 

the (𝑗 + 1) -th scale, respectively. 

To facilitate calculation and comparison, the paper 

performed normalization processing on equation (13) as: 
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where, 𝑁𝐶𝑜𝑟𝑗,𝑘(𝑗)  denoted the relative coefficient for 

normalization, and each item in the radical sign denoted the 

calculation energy. 

As the magnitude calculation to normalize relative 

coefficient was complex, the paper proposed a new relative 

correlation 𝑁𝑒𝑤 − 𝐶𝑜𝑟𝑗,𝑘(𝑗) to streamline it. 𝑀𝑎𝑥 − 𝑑𝑗,𝑘 was 

defined to denote the maximum value of high-frequency 

coefficient at the k-th position at the j-th scale, and 𝑀𝑖𝑛 − 𝑑𝑗,𝑘 

denoted the minimum value as such. The new normalized 

correlation was expressed as: 

 
2 2( - ( )) ( - ( ))1

- ( )
2

j,k j,k

j,k

Max d j Min d j
New Cor j

a

+
=     (16) 

 

where, a denoted regulatory factors. When the value of 

𝑁𝑒𝑤 − 𝐶𝑜𝑟𝑗,𝑘(𝑗)  exceeded 1, the wavelet coefficient at 

various scales shared strong correlation, which represented 

where useful information was located; when the value of 

𝑁𝑒𝑤 − 𝐶𝑜𝑟𝑗,𝑘(𝑗) is small than 1, the wavelet coefficient at 

291



 

various scales shared weak correlation, which represented 

where noise was located. 

 

3.4 Adaptive threshold rule 

 

In wavelet threshold denoising, it was of great importance 

to define threshold rules that directly influence the denoising 

effects of signals. Chitsaz et al. proposed a threshold rule as 

follows [21]: 

 

2ln

ln( 1)

N
T

j
=

+
                              (17) 

 

where, T denoted the threshold value, N denoted the signal 

length, j denoted levels of decomposition, and 𝜎 denoted the 

standard deviation of noise, whose value was: 

 

median( )

0.6745

j,kd
 =                               (18) 

 

By combining the works in [22], this paper improved the 

self-adaptability of the threshold rules in equation (17). The 

high-frequency subsection of signals through wavelet 

decomposition was recorded as 𝐻𝑗. The wavelet coefficient at 

the k-th position in the subsection was recorded as 𝑑𝑗,𝑘. The 

paper also defined a neighborhood window (represented by W) 

whose center lied in the position of 𝑑𝑗,𝑘 and whose width was 

M. Thus, the variance of ℎ(𝑖) in W at 𝐻𝑗 could be expressed as: 

 
2

,j k

h

d

M
 =
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According to the aforementioned analysis, there was also 

useful information in the high-frequency zone that was 

decomposed by signals, thus the value of |𝜎ℎ − 𝜎| was not 

equal to 0. |𝜎ℎ − 𝜎| was recorded as 𝜎𝑠, denoting the variance 

of useful information in W. The improved threshold rule was 

expressed as follows: 

 
2 2

2

s

newT T
 +

=                              (20) 

 

3.5 The proposed method 

 

On the basis of the above analysis, the procedure of 

algorithm herein was summarized as follows: 

(1) Determined the appropriate wavelet basis and the scale 

of decomposition, and applied discrete wavelet transform to 

noised seismic signals until the high-frequency coefficient and 

low-frequency coefficient at various scales were obtained. 

Among them, the wavelet basis was determined by 

comparison, and the decomposition scale was determined on 

the basis of the methods proposed in [23]. 

(2) High-frequency wavelet coefficient at various scale 

were divided equally into n subsections. The wavelet entropy 

in each subsection was calculated by equation (13) until the 

subsection with maximum wavelet entropy was found out and 

was marked as m. 

(3) The correlation amounts among different scales for the 

high-frequency wavelet coefficient were calculated by 

equation (14) and equation (16). The sum of correlation 

amounts for each subsection and the sum of wavelet 

coefficient was compared in size. 

(4) Decide whether the sum of wavelet coefficient of m in 

step (2) exceeded that of correlation amounts. If so, m was then 

the noise-dominant section at this scale. The noise variant in 
m  was calculated as that of the scale. 

(5) In step (4), if not, the correlation amounts of high-

frequency coefficient at various scales that were calculated in 

step (3) was compared with the wavelet coefficient at each 

sampling point, until the points were found whose correlation 

amounts were smaller than the wavelet coefficient. Maintained 

the wavelet coefficient of the points, which denoted noise and 

was recorded as 𝑑𝑗,𝑘
′ , and abandoned that of the rest points. 

(6) On the premise of keeping the number of sampling 

points unchanged, the positions of 𝑑𝑗,𝑘
′  were fixed to constitute 

the high-frequency wavelet coefficient at various scales. Then, 

according to the method in step (2), divided the high-

frequency coefficient at various scales into n subsections 

whose average value of coefficients was calculated one by one. 

The subsection with the largest average value was determined 

as the noise-dominant section. The noise variant at the present 

scale was decided by the subsection with the largest average 

value. 

(7) Calculated the threshold value 𝑇𝑛𝑒𝑤  at various scales 

according to equation (20). Equation (8) was used to handle 

the high-frequency coefficient that was obtained in step (6) so 

that a new high-frequency coefficient was acquired. 

(8) The low-frequency coefficient of the highest 

decomposition level and the new high-frequency coefficient 

that was acquired in step (7) were together used to reconstruct 

denoised signals. 

 

 

4. EXPERIMENTS 

 

In this section, three different methods were introduced for 

comparison to detect the performance of the method herein. 

The parameters of the proposed method are set as: a=0.65 and 

M=5. The parameters of the compared methods were set as 

default to achieve optimal results. SDR (Signal to Distortion 

Ratio), SNR (Signal to Noise Ratio) and MSE (Mean Square 

Error) herein were used as objective indices to evaluate the 

quality of denoised signals. All the experiments were 

implemented on a Core i5(R) 3.2 GHz PC with 8 GB RAM. 

In seismic exploration, seismic signals that were received 

by the receiving end were the convolution of seismic wavelet 

and reflection coefficient. Studying seismic wavelet played an 

important role in implementing precise research on the rule of 

seismic wave transmission. The energy-concentrated Ricker 

wave, P wave and S wave were commonly used in seismic 

analysis as simulative signals, which would solve problems of 

reflection together with reflection function convolution. Thus, 

in the first experiment, we aim at the above three signals. The 

SDR results herein were compared with those of hard 

threshold method (HT), soft threshold method (ST), and the 

method in [18]. Figure 1 showed the comparison results. 

The SDR results in all the three images of Figure 1 showed 

that the proposed method outperformed the other methods. For 

example, with the input SNR of 0 of the Ricker signal, the SDR 

result obtained by the proposed method is 0.0996, with the 

decrease value of 0.0407, 0.0283 and 0.0186 respectively over 

the values obtained by the HT, ST and the method in [18]. Also, 

the results obtained by the proposed method outmatched the 

others for different signals with different input SNR, with the 
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average rise at 0.040, 0.022 and 0.011 on average, respective 

to in HT, ST and the method in [18]. It means when de-noised 

by the compared methods, some important details in the 

signals would disappear together with the noise. The proposed 

method helped effectively maintain structure characteristics 

and retain better useful information in signals. 

 

   
(a) Results on Ricker wave (b) Results on P wave (c) Results on S wave 

 

Figure 1. The SDR results obtained by four compared methods on three test signals 

 

The SNR and MSE results were compared with those of the 

other three methods in the second experiment that was 

performed on the same signals: “Ricker”, “P wave” and “S 

wave”. The comparison results are shown in Tab. 1, Tab. 2 and 

Tab. 3. It can be found that the results obtained by the proposed 

method are better than the other methods for the same signal 

with the same input SNR. For instance, with the input SNR of 

5 of “P wave”, the output SNR result obtained by the proposed 

method is 14.766dB, increasing by 5.637 dB, 2.242 dB and 

0.95 dB respectively compared with the values in HT, ST and 

the method in [18]. We also found that the results obtained by 

the proposed method are better than the others for different 

signal with different input SNR. For instance, the output SNR 

result obtained by the proposed method is increased by 4.393 

dB, 1.675 dB and 0.710 dB on average, respective to HT, ST 

and the method in [18]. In the meantime, the MSE result 

obtained by the proposed method is decreased by 0.205, 0.118 

and 0.041 on average, respective to HT, ST and the method in 

[18]. 

As a final experiment, we compared the de-noised effects 

achieved by the proposed method, HT, ST and the method in 

[18]. Figure 2 offers the visual comparison between them. 

From the visual results, we can see that the proposed method 

can get better results than the other methods. 

 

Table 1. Performance of the de-noised methods of Ricker wave by Output SNR (dB) and MSE 

 

Input SNR (dB) 
Output SNR (dB) MSE 

HT ST Method [18] Proposed HT ST Method [18] Proposed 

0 4.058 6.303 7.429 8.051 0.671 0.485 0.368 0.302 

5 9.832 10.992 11.246 11.935 0.426 0.366 0.306 0.273 

10 12.689 14.431 15.147 16.059 0.372 0.319 0.298 0.254 

 

Table 2. Performance of the de-noised methods of P wave by Output SNR (dB) and MSE 

 

Input SNR (dB) 
Output SNR (dB) MSE 

HT ST Method [18] Proposed HT ST Method [18] Proposed 

0 5.814 8.299 9.084 9.907 0.601 0.493 0.357 0.329 

5 9.129 12.524 13.816 14.766 0.447 0.384 0.319 0.301 

10 13.354 15.063 16.402 16.978 0.325 0.311 0.294 0.239 

 

Table 3. Performance of the de-noised methods of S wave by Output SNR (dB) and MSE 

 

Input SNR (dB) 
Output SNR (dB) MSE 

HT ST Method [18] Proposed HT ST Method [18] Proposed 

0 5.793 8.908 10.114 10.783 0.718 0.613 0.421 0.343 

5 8.366 13.429 14.741 15.626 0.475 0.352 0.314 0.295 

10 12.742 16.288 16.957 17.213 0.394 0.328 0.286 0.256 
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Figure 2. Visual comparison of the de-noising results. The 

first row: testing signal, with σ=-15, -5 and 0. The second 

row: de-noising results by using HT. The third row: de-

noising results by using ST. The fourth row: de-noising 

results by using method in [18]. The final row: de-noising 

results obtained by the proposed method 

 

 

5. CONCLUSIONS 

 

This paper proposed an improved EIS Model to denoise 

seismic signals, whose denoising effects were better than those 

of other mentioned methods. First, through discrete wavelet 

transform, seismic signals were decomposed into the low-

frequency part and the high-frequency part, following the 

division of high-frequency subbands of various decomposed 

scales into several subsections. Then, wavelet entropies of 

each subsection were calculated, their sizes being referred to 

in preliminary calibration of noise-dominant sections at 

various scales that was done to determine noise variants at 

various scales and to facilitate threshold denoising. Next, the 

paper proposed an improved equation of correlation 

magnitude to calculate correlation coefficient for each 

sampling points at various scales. Based on correlation 

coefficient and the size of wavelet coefficient, the maximum 

energy section of noise was decided, and the noise coefficient 

were calculated to the maximum precision. When the noise 

variants at various scales were calculated, the proposed new 

threshold function and the self-adaptability threshold rules 

were used to process the noise coefficient. Experiments 

showed that the proposed method helped obtain better SNR 

data and SDR data. With less abrupt denoised signals and 

better smoothness, the proposed method facilitated seismic 

researchers to draw accurate judgments. However, as it was 

required for the method to calculate correlated magnitude and 

conduct point-to-point comparison with wavelet coefficient, 

and as the maximum section of wavelet entropies should be 

combined with the comparison results before further 

calculation was done, the efficiency of the proposed method 

was weakened. In future work, the researchers herein will 

consider a method with higher sparsity adaptive signals. 
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