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Urban expansion in BSD City, Indonesia, has generated major environmental and behavioral 

shifts. This study employed Landsat 8 surface reflectance imagery (2020–2023) and spatial 

statistics to assess vegetation cover, built-up growth, land surface temperature (LST), and 

consumer demand for eco-friendly housing. Preprocessing included atmospheric correction, 

emissivity adjustment, and cloud masking, while indices were validated with high-resolution 

imagery to ensure accuracy. NDVI values ranged from –0.125 to 0.375 (peak 0.188), NDBI 

from –0.219 to 0.094 (peak –0.063), and the Urban Index from 0.188 to 0.500 (peak 0.375), 

indicating compact urban development with stressed vegetation. LST ranged between 32–

68℃, with a dominant mode at 40℃, revealing thermal stress concentrated in urban cores. 

Spatial heterogeneity was confirmed through coefficient of variation (NDVI max 0.625), 

Moran’s I (–0.004 to 0.016), and Gi* hotspots (–2.0 to 1.75). Geographically Weighted 

Regression (GWR) showed localized associations between vegetation decline, built-up 

intensity, and LST anomalies. Annual reports suggested eco-branding strategies were most 

effective in greener and cooler districts, linking environmental attributes with housing demand. 

Findings should be interpreted cautiously since consumer data were aggregated and lacked 

neighborhood-scale resolution. The study highlights the role of integrating remote sensing, 

spatial modelling, and behavioral insights in guiding sustainable urban planning and eco-

oriented marketing. 
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1. INTRODUCTION

Urbanization is widely recognized as the primary driver of 

environmental change in rapidly developing regions. The 

expansion of built-up areas directly reduces vegetation cover, 

leading to fragmentation and ecological stress [1]. This 

process intensifies the vulnerability of tropical metropolitan 

areas to rising temperatures and the decline of ecosystem 

services [2]. Scholars argue that rapid urban development is 

often correlated with increased environmental degradation and 

social challenges [3, 4]. This link illustrates how urban growth 

acts as both an economic driver and an environmental risk 

factor. Therefore, evaluating the impacts of urbanization is 

fundamental for ensuring sustainable urban planning. 

Remote sensing has emerged as an indispensable tool for 

analyzing changes in the urban environment. Vegetation 

indices, such as the Normalized Difference Vegetation Index 

(NDVI), are extensively used to monitor ecosystem health and 

detect patterns of green cover loss [5]. Built-up indicators, 

such as the Normalized Difference Built-up Index (NDBI) [6] 

and the Modified Normalized Difference Water Index 

(MNDWI) provide insights into land conversion and water 

dynamics [7]. The remote sensing approach enables a 

thorough evaluation of the ecological effects of urban 

development. In addition, the methodological integration of 

remote sensing enhances the spatial understanding of urban 

transformation. Therefore, remote sensing provides a 

scientific foundation for evidence-based planning and 

environmental management. 

The UHI phenomenon represents one of the most critical 

environmental consequences of land-cover modification. 

Impervious surfaces trap and re-emit heat, generating higher 

land surface temperatures than those of surrounding non-urban 

areas [8]. The UHI anomaly diminishes outdoor comfort and 

increases the energy demand for cooling systems [9]. Strong 

associations between UHI intensity and public health risks, 

such as heat-related illnesses, have been consistently reported. 

Quantification of temperature variation is vital for 

understanding urban sustainability challenges. The land 

surface temperature derived from satellite images is a vital 

signifier in environmental planning processes. 

Complex spatial heterogeneity characterizes urban 

environments that require localized analysis. Conventional 

global or regional models often overlook fine-scale vegetation, 

urban density, and thermal patterns variations. GWR offers a 

robust framework for capturing local differences within 

broader urban systems [10, 11]. GWR identifies clusters, 

hotspots, and gradients with greater accuracy by integrating 
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spatial autocorrelation [12]. The analytical capacity improves 

decision-making by highlighting context-specific drivers of 

environmental change. Therefore, GWR strengthens the 

integration of geo-informatics into SUD. 

BSD City in Banten Province, Indonesia, exemplifies rapid 

urban transformation within the Jakarta metropolitan area. 

Planned as a satellite city, BSD has expanded by converting 

agricultural and natural landscapes into residential and 

commercial complexes [13]. The expansion introduces 

significant ecological pressures, including vegetation 

reduction and increased heat stress [14]. Given its strategic 

metropolitan role, BSD is a critical case study for analyzing 

urban spatial patterns. Investigating its dynamics provides 

insights into local and regional sustainability issues. As such, 

BSD City is a valuable laboratory for testing remote sensing 

and GWR applications. 

The methodological framework is based on established 

approaches in remote sensing and urban analysis. Studies on 

land surface temperature retrieval and urban heat island 

impacts form a solid base for this investigation [15]. The 

geographically weighted regression's conceptual background 

enhances the analytical design by facilitating the identification 

of local spatial differences [16]. Previous research on hedonic 

pricing and environmental amenities underscores the 

significance of correlating ecological characteristics with 

market outcomes in terms of consumer behavior and housing 

requirements [17-20]. Current uses of spatial regression in 

urban climate research highlight the merging of environmental 

and socio-economic factors. Including these viewpoints 

strengthens the study's theoretical soundness and places it 

within the context of both traditional and modern scientific 

discussion. 

The trajectory of urban development in planned townships 

like BSD City is increasingly influenced by consumer 

preferences. Consumer buying habits are increasingly affected 

not only by factors like accessibility and infrastructure, but 

also by environmental concerns and brand stories. Eco-

branding, a marketing approach that focuses on 

environmentally friendly living, thermal comfort, and 

sustainable surroundings, has a substantial impact on 

consumer purchasing decisions. Marketing approaches that 

emphasise ecological benefits strongly appeal to the 

expectations of environmentally aware consumers. Combining 

these dimensions with spatial analysis offers a chance to link 

environmental facts with market trends. As a result, 

sustainable marketing strategies are seen as both a motivator 

of consumer choice and a complement to sustainable urban 

planning. 

This investigation examines the spatial variability of 

vegetation, built-up land, and thermal conditions in BSD City 

over the period of 2020 to 2023. The indices, including NDVI, 

NDBI, MNDWI, the urban index, and land surface 

temperature, are applied to evaluate ecological and urban 

conditions. Statistics that deal with spatial data, including 

Moran's I, Geographically Weighted Hotspots, local variance, 

and Coefficient of Variation, help identify clustering and 

fragmentation patterns. A gradient analysis was conducted in 

order to capture transitional boundaries within ecological and 

urban landscapes. The examination also included consumer 

preferences and eco-branding strategies in order to associate 

environmental attributes with sustainable marketing methods. 

In conclusion, this research further develops the function of 

geo-informatics in facilitating both sustainable urban growth 

and environmentally responsible consumer actions. 

2. STUDY AREA

BSD City is a planned urban township in South Tangerang, 

Banten Province, covering an area of 6000 hectares within the 

Jakarta Metropolitan Region. The housing development plays 

a crucial role in meeting the demands of growing populations 

and providing suitable housing [21]. Continuous land use 

conversion has been ongoing in the city, resulting in 

agricultural areas being transformed into residential and 

commercial zones. Planners have designed major 

infrastructure projects to incorporate mixed-use complexes 

within the central zone itself [22]. These initiatives had a 

significant impact on the spatial arrangement of cities and 

ecosystems. BSD City serves as a dynamic setting for tracking 

changes in land cover and spatial variations. 

The city's rapid expansion has been accompanied by 

substantial growth in economic value and physical assets. 

Significant areas of land have been designated for 

development, illustrating the ongoing transformation of peri-

urban environments. The expansion has resulted in a decrease 

of green cover and fragmentation of the ecological areas. 

Indices obtained through remote sensing, like the NDVI and 

NDBI, are vital for consistently measuring alterations. 

Decreasing NDVI values point to the strain being placed on 

vegetation, whereas rising NDBI values support the expansion 

of impervious surfaces. The study area therefore offers a 

suitable environment for evaluating ecological stress 

associated with urban expansion. 

Figure 1. Spatial distribution of vegetation in BSD City 

derived from the Normalized Difference Vegetation Index 

(NDVI) for the period 2020–2023 
Source: Processed from Landsat 8 imagery (2020–2023) using Google Earth 

Engine and visualized with QGIS. 

Figure 1 shows the spatial distribution of vegetation in BSD 

City as indicated by NDVI values for the period 2020–2023. 

BSD City's tropical monsoon climate makes it extremely 

vulnerable to surface heating due to urbanisation. Built-up 

intensity has significantly increased the urban heat island 

effect, with developed areas showing notably higher land 

surface temperatures. Thermal band data from remote sensing 

enable the precise mapping of these thermal anomalies. 

Combining LST analysis with vegetation and urban indices 

offers insights into localized heating processes. This 

relationship highlights the dual challenges of urban expansion 

and environmental sustainability. Therefore, BSD emphasizes 

the significance of thermal monitoring in urban planning 

strategies. 
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Variations in the central and peripheral areas give rise to 

spatial heterogeneity within BSD City. The urban center is 

characterised by high-density constructions, in contrast, the 

peripheral zones preserve agricultural and vegetated land. 

New residential and commercial projects are now 

predominantly straining the surrounding areas. The 

fragmented land-use structure can be effectively analyzed 

using the COV and local variance. These spatial statistics aid 

in capturing local variations in ecological stability and 

resilience. The city thus serves as an optimal example for 

assessing transformations between natural and metropolitan 

settings. 

Figure 2. Spatial distribution of built-up density in BSD City 

derived from the Normalized Difference Built-up Index 

(NDBI) for the period 2020–2023 
Source: Processed from Landsat 8 imagery (2020–2023) using Google Earth 

Engine and visualized with QGIS. 

Figure 2 shows the spatial distribution of built-up density in 

BSD City as indicated by NDBI values for the period 2020–

2023, processed from Landsat 8 imagery using Google Earth 

Engine and visualized with QGIS. The spatial layout of BSD 

City is designed to accommodate complex spatial statistical 

analysis. The Local Moran's I statistic is employed to identify 

areas of vegetation decline and clusters of urban development. 

A hotspot analysis revealed substantial concentrations of 

developed areas and nascent thermal hotspots. Gradient 

analysis emphasizes the steepness of ecological-urban 

transitions, whereas distance-based measures focus on 

compactness near the city's center. These methods expose the 

interaction between urban expansion and diverse levels of 

environmental pressure. Consequently, spatial statistical tools 

are crucial for comprehending the intricate urban dynamics of 

BSD City. 

In summary, BSD City embodies the integration of 

structured urban development, economic growth, and 

environmentally conscious initiatives. RSIs combined with 

ground water recharge provide a framework for analysing the 

local impacts of development. Economic indicators are 

consistent with the expansion of an urban footprint, illustrating 

a connection between financial growth and varying spatial 

conditions. Incorporating sustainability principles at the same 

time has helped to balance development with the need for 

ecological resilience. BSD City serves as a model for urban 

development and a proving ground for sustainable urban 

planning strategies. Therefore, this area is highly significant 

for developing geo-informatics applications in environmental 

management and spatial planning. 

3. MATERIAL AND METHOD

The research used a dual methodology that integrated 

satellite imagery with additional secondary data sources. 

Images retrieved from 2020 to 2023 using the Google Earth 

Engine include those from the Landsat 8 Operational Land 

Imager (OLI) and Thermal Infrared Sensor (TIRS) [23]. The 

imagery provided consistent temporal coverage for mapping 

land cover and tracking thermal changes [24, 25]. Data from 

secondary sources were collected from the BSD City Annual 

Reports for the years 2020 and 2024. The reports encompassed 

financial indicators, land development scope, and sustainable 

initiatives. Integrating spatial and corporate data enabled a 

comprehensive approach to examining urban environments. 

The initial processing of satellite images was conducted to 

guarantee the quality and homogeneity of the data. Cloud 

masking and atmospheric correction procedures led to a 

decrease in noise and inaccuracy levels. Digital numbers were 

converted through radiometric calibration to obtain surface 

reflectance values. The imagery was confined to the 

administrative limits of BSD City in order to increase its 

spatial importance. The study excluded scenes with more than 

15% cloud cover. The actions taken resulted in the 

development of reliable datasets, which can be used in 

subsequent calculations of indices and thermal variables. 

Figure 3. Workflow of data collection, preprocessing, and 

spatial analysis integrating Landsat 8 (2020–2023) and 

Annual Reports (2020–2024) for the assessment of urban-

environmental heterogeneity in BSD City 
Source: Constructed by the authors based on the research workflow. 
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Figure 3 shows the workflow of data collection, 

preprocessing, and spatial analysis that integrates Landsat 8 

imagery (2020–2023) with Annual Reports (2020–2024) for 

assessing urban-environmental heterogeneity in BSD City. 

Indices derived from Landsat imagery included four, 

representing ecological and urban conditions. NDVI was used 

to assess vegetation health, whereas NDBI was employed to 

detect impervious surfaces. The MNDWI provided 

information on the distribution of surface water and its 

displacement resulting from urbanization. An Urban Index 

was also created to measure the relationship between 

vegetation loss and urban development expansion. Together, 

these indices provide a comprehensive view of land 

transformation in BSD City. They served as the main dataset 

for environmental monitoring purposes. 

The urban index was used as the dependent variable in the 

GWR model, with NDVI, NDBI, MNDWI, and LST as 

predictor variables. A fixed Gaussian kernel with a bandwidth 

of 300 m was applied, and the corrected AICc was minimized 

to optimize the bandwidth. To ensure independence among 

explanatory variables, multicollinearity diagnostics were 

conducted using variance-invariant factor analysis. Model 

performance was assessed using local and global R² values and 

AICc scores, which provided model fit indicators. The residual 

spatial autocorrelation was examined using Moran's I to verify 

the absence of spatial clustering in the residuals. This setup 

enhanced the regression robustness and improved the 

interpretability of local parameter estimates. 

Figure 4. Urban Index map of BSD City generated from 

Landsat 8 imagery (2020–2023) for methodological 

illustration 
Source: Processed from Landsat 8 OLI/TIRS surface reflectance imagery 

(2020–2023) using Google Earth Engine and visualized in QGIS. 

Figure 4 shows the Urban Index map of BSD City generated 

from Landsat 8 imagery (2020–2023) as a methodological 

illustration. The LST was measured using the ST_B10 thermal 

band from the Level-2 dataset of Landsat 8 Collection 2. The 

surface reflectance product already incorporated atmospheric 

correction through the LaSRC algorithm, while cloud 

contamination was mitigated using the QA band filtering. The 

brightness temperature was converted into LST values by 

applying a radiometric rescaling factor (0.00341802) and 

additive constant (149.0), followed by the conversion of 

Kelvin to Celsius. Emissivity adjustments were derived from 

the NDVI threshold methods to differentiate between 

vegetated and impervious surfaces. The procedure was carried 

out within the GEE environment to guarantee standard 

atmospheric correction and the parameterization of emissivity. 

The adopted workflow reduced noise and allowed the LST 

dataset to be reproducible across the study period. 

Thermal data from Landsat's band ST_B10 were utilised to 

calculate the Land Surface Temperature (LST). The data were 

converted into Celsius by applying standard calibration and 

correction formulas. The LST values were used as indicators 

of the intensity of the urban heat island within the study area. 

Analyzing correlations with NDVI and NDBI revealed trade-

offs between declining vegetation and rising temperatures. 

The integration highlighted areas where heat stress is 

occurring due to the rapid expansion of cities. Therefore, LST 

offers a crucial aspect for assessing sustainability. 

Figure 5. Geographically Weighted Regression (GWR) 

results for the Urban Index in BSD City (2020–2023) for 

methodological illustration 
Source: Processed from Landsat 8 OLI/TIRS surface reflectance imagery 

(2020–2023) using Google Earth Engine and visualized in QGIS. 

Figure 5 shows the Geographically Weighted Regression 

(GWR) results for the Urban Index in BSD City (2020–2023) 

as a methodological illustration. A number of spatial statistics 

were used to investigate heterogeneity and clustering. Spatial 

correlation between vegetation and urban indices was detected 

using Local Moran's I. The Gi* statistic pinpointed notable 

areas of both urban growth and ecological strain. The 

coefficient of variation, representing local variance, assesses 

ecological characteristics. Analyses of gradient and distance-

from-center patterns revealed compactness in urban areas. 

These spatial methods captured detailed variation across BSD 

City. As a result, they reinforced the interpretation of urban-

environmental dynamics. 

The analysis of spatial variability in relationships among 

variables was conducted with Geographically Weighted 

Regression. The Urban Index was used as the dependent 

variable, with NDVI, NDBI, MNDWI, and LST functioning 

as independent predictor variables. The study area was 

analyzed using a fixed spatial kernel to calculate local 

coefficients. The outputs included parameter surfaces that 

highlighted spatial heterogeneity. The GWR findings were 

linked with Annual Report data, thereby situating the results 

within the context of economic growth and sustainability 

agendas. The methodological framework therefore offered a 

robust integration of spatial evidence and planning realities. 

Validation of NDVI, NDBI, and MNDWI calculations was 

performed using high-resolution Sentinel-2 imagery and 

Google Earth reference data from 2020 to 2023. Points were 

randomly selected within the study area and then verified 

against reference images through visual inspection. The 
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accuracy of classification was measured using an error matrix, 

which yielded overall accuracy rates exceeding 85% and 

Kappa statistics higher than 0.70. This confirmed the 

reliability of spectral indices for representing vegetation, built-

up, and water features. Further examination of local variance 

and coefficient of variation calculations was conducted to 

minimize scale dependency errors. These steps ensured that 

spatial metrics derived from Landsat imagery were valid and 

reproducible for use in subsequent statistical analyses. 

The analytical workflow was fully implemented within the 

GEE platform to guarantee transparency and reproducibility. 

All codes applied for image preprocessing, index derivation, 

spatial statistics, and GWR analysis were created within the 

GEE environment. The outputs were exported in both CSV 

and GeoTIFF formats, allowing for tabular samples and raster 

layers, and subsequent validation using external GIS software. 

Enabling code-based analysis and cloud processing allows the 

research to be re-run at any time under identical 

circumstances. Standardized satellite archives guarantee the 

reproducibility of the datasets in question. This approach 

guarantees that data and methods can be replicated, thereby 

meeting the fundamental prerequisites for scientific 

robustness. 

4. RESULTS AND DISCUSSION

The study's findings are presented in two accompanying 

sections to offer a complete insight into urban–environmental 

dynamics in BSD City. The initial section employs spectral 

indices and spatial statistics to concentrate on the spatial 

distribution of vegetation cover, urban areas, and land surface 

temperature. The descriptive analysis reveals clustering 

patterns, hotspots, and fragmentation, effectively capturing the 

essential characteristics of urbanization and ecological 

transformation. The second section employs GWR to examine 

localised connections between environmental factors and 

urban growth. The analysis combines descriptive and 

explanatory methods, showing the patterns and processes 

behind spatial heterogeneity. These results therefore highlight 

their significance for sustainable urban planning and 

environmental management.  

4.1 Spatial patterns of vegetation, built-up areas, and land 

surface temperature 

The spatial distribution of vegetation in BSD City 

demonstrates clear signs of ecological pressure during the 

period 2020–2023. NDVI values ranged between –0.125 and 

0.375, with the highest frequency occurring around 0.188. The 

pattern indicates moderate vegetation cover dominated by 

fragmented green spaces rather than continuous patches. 

Urban expansion has progressively reduced natural vegetation 

and agricultural land, concentrating green cover in peripheral 

zones. Such conditions suggest that urban growth is occurring 

at the expense of ecological resilience. Therefore, NDVI 

confirms the decline of vegetation in BSD City under rapid 

urbanization. 

Figure 6 shows the NDVI distribution in BSD City for the 

period 2020–2023, reflecting mixed-pixel conditions from 

Landsat 8 imagery at 30 m resolution. In BSD City, the 

relatively low maximum NDVI value of 0.375 is attributed to 

the growing prevalence of impervious surfaces, which have 

increasingly replaced vegetated and agricultural land. 

Vegetation in dense forests is generally confined to isolated 

areas near the forest perimeters, which leads to a reduced 

chance of higher NDVI values. High LST values, reaching as 

high as 68℃, likely point to variations in emissivity and 

localised impervious heat storage within densely populated 

urban areas. The extreme values correspond to thermal 

anomalies seen in other tropical cities, primarily because of 

uncertainties in atmospheric and emissivity values. Peak 

temperatures in moderate land surface temperatures (LST) 

reach approximately 40℃, indicating more realistic surface 

heating levels that were prevalent throughout the study area. 

The clarification emphasizes that the results consider both 

methodological limitations and the actual degree of urban 

ecological stress. 

Figure 6. NDVI distribution (Data: 2020-2023) 
Source: Processed from Landsat 8 imagery in Google Earth Engine. Values reflect mixed-pixel conditions due to 30 m resolution, which may reduce the upper 

range of vegetation index values in fragmented peri-urban areas. 
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Figure 7. NDBI distribution (Data: 2020-2023) 
Source: Derived from Landsat 8 reflectance data using Google Earth Engine. Higher values indicate impervious surfaces, while moderate ranges may be 

influenced by transitional zones and resolution-induced spectral mixing. 

Figure 7 shows the NDBI distribution in BSD City for the 

period 2020–2023, highlighting impervious surfaces and 

transitional zones influenced by spectral mixing. The built-up 

environment is represented by the Normalized Difference 

Built-up Index (NDBI). The values varied from -0.219 to 

0.094, with the highest frequency at -0.063. The predominance 

of negative to low-positive values reflects a mixture of semi-

developed land and dense built-up cores. Clusters of high 

NDBI values were identified in the central business districts 

and planned residential complexes. These areas draw attention 

to the concentration of impervious surfaces causing ecological 

transformation. The data from NDBI indicate a rise in the 

built-up density within BSD City.  

The measured NDVI values, reaching up to 0.375, suggest 

that impervious surfaces predominate in BSD City and are 

constrained by a 30 m spatial resolution. Mixed pixels in peri-

urban zones can weaken vegetation signals, leading to a 

reduced maximum NDVI compared with dense forest 

ecosystems. Extreme LST values above 60℃ are also 

attributed to heterogeneity in emissivity, residual atmospheric 

impacts, and localized heat retention by impervious surfaces. 

These outliers may not be indicative of actual ground-level air 

temperature, but they do illustrate the thermal stress found in 

densely populated city centres. A 300 m kernel radius was 

selected to strike a balance between capturing local variation 

and ensuring statistical stability in spatial diagnostics. These 

clarifications take into account methodological limitations and 

still confirm that the overall spatial patterns remain consistent 

with urban ecological stress. 

Figure 8 shows the Urban Index distribution in BSD City 

for the period 2020–2023, calculated from Landsat 8 imagery. 

The Urban Index, developed as a composite measure of 

vegetation decline and built-up expansion, revealed strong 

patterns of land conversion. Index values spanned a range of 

0.188 to 0.500, with the highest frequency occurring at 0.375. 

Higher values were consistently concentrated in central zones, 

corresponding with compact urban growth. Peripheral areas 

recorded lower values, reflecting transitional landscapes 

where vegetation still persists. This gradient illustrates how 

urban growth radiates outward from the core of BSD City. 

Thus, the Urban Index confirms the duality of compact urban 

development and peri-urban transition. 

Figure 9 shows the temperature distribution in BSD City for 

the period 2020–2023, derived from Landsat 8 thermal band 

(ST_B10) with radiometric calibration and emissivity 

adjustment. Thermal analysis highlighted the emergence of 

Urban Heat Island conditions within the study area. Land 

Surface Temperature (LST) ranged between 32℃ and 68℃, 

with the most frequent occurrence at 40℃. Hotspots of 

elevated temperature corresponded closely with areas of high 

built-up density. Conversely, patches with moderate to low 

temperatures aligned with remaining vegetated zones. This 

spatial correlation emphasizes the link between impervious 

surfaces and surface heating. Consequently, LST reinforces 

the significance of thermal stress as a by-product of urban 

expansion. 

Measures of spatial heterogeneity provided deeper insights 

into ecological fragmentation. The coefficient of variation for 

NDVI reached a maximum of 0.625, peaking at 0.125, 

highlighting uneven vegetation distribution. Local variance of 

NDVI recorded a maximum of 0.014, confirming 

fragmentation of ecological patches. Local Moran’s I values 

ranged from –0.004 to 0.016, with the peak at 0.000, indicating 

clustering of urban–ecological contrasts. These findings 

demonstrate that spatial autocorrelation is weak at the global 

scale but significant at local scales. Therefore, spatial statistics 

underscore the fragmented nature of BSD City’s landscape. 

Figure 10 shows the distribution of Gi* Hotspots in BSD 

City for the period 2020–2023, computed from NDVI and the 

Urban Index using spatial statistics in Google Earth Engine. 

Hotspot analysis using the Gi* statistic identified zones of 

statistically significant clustering. Values ranged between –2.0 

and 1.75, peaking at 0.25, with positive hotspots aligned to 

dense urban cores. Negative clusters corresponded to 

peripheral vegetated areas, showing clear spatial polarization. 

Results from a gradient analysis showed significant transitions 

between green and urban areas. A distance-from-center 

analysis verified the compactness of development, with peak 

activity centred within five kilometres of the urban core. 

Taken together, these spatial statistics demonstrate the uneven 

and varied nature of urban growth in BSD City. 
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Figure 8. Urban Index distribution (Data: 2020-2023) 
Source: Calculated from Landsat 8 imagery (2020–2023) using Google Earth Engine. 

Figure 9. Temperature distribution (Data: 2020-2023) 
Source: Calculated from Landsat 8 thermal band (ST_B10) with radiometric calibration and emissivity adjustment. Extreme values may reflect emissivity 

heterogeneity and impervious heat retention rather than ambient air temperature. 

Figure 10. Distribution of Gi* Hotspot (Data: 2020-2023) 
Source: Computed from NDVI and Urban Index using Gi* spatial statistics in Google Earth Engine. Hotspots represent statistically significant clustering; results 

should be interpreted with caution due to kernel size effects. 
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Figure 11. Local Moran’s I (Data: 2020-2023) 
Source: Generated from Urban Index in Google Earth Engine. Clusters of positive and negative spatial autocorrelation highlight local anomalies, but values 

remain sensitive to scale and spatial resolution. 

Figure 12. Local variance NDVI (Data: 2020-2023) 
Source: Calculated from Landsat 8 imagery (2020–2023) using Google Earth Engine. 

Figure 11 shows the Local Moran’s I results for BSD City 

(2020–2023), generated from the Urban Index to highlight 

clusters of positive and negative spatial autocorrelation. The 

results of a Local Moran’s I spatial autocorrelation analysis 

indicated significant clustering patterns in BSD City. Areas 

with high or low urban index values show similar patterns 

when Positive Moran’s I values are present, indicating a lack 

of spatial variability. In contrast, small clusters with negative 

values indicated the presence of local anomalies, where urban 

density diverged from surrounding regions. Urbanization in 

BSD City is not a uniform process; instead, it manifests as 

distinct development clusters. The presence of such clustered 

dynamics reinforces the evidence for polycentric growth 

within the township. Moran's I thus confirmed the spatially 

dependent nature of urban expansion within the study area. 

Figure 12 shows the local variance of NDVI in BSD City 

for the period 2020–2023, calculated from Landsat 8 imagery 

using Google Earth Engine. Examinations of NDVI, NDBI, 

Urban Index, LST, Gi* Hotspot, and Local Moran's I indicate 

the intricate complexity of urban–environmental interactions 

within BSD City. The research suggests that urbanisation is 

characterised by the decline of vegetation, growing built-up 

areas, and increasing surface temperatures, which collectively 

give rise to the formation of clustered spatial configurations. 

These descriptive analyses provide a basic comprehension of 

urban growth patterns, but fail to adequately capture the varied 

strengths of relationships within specific locations. 

Geographically Weighted Regression (GWR) was utilised to 

address this constraint and examine spatial variability 

throughout the study area [26]. The model enables a more in-

depth analysis of the impact of environmental factors on the 

Urban Index in different spatial contexts [27, 28]. This section 

delves into spatially varying relationships and provides more 

in-depth insights into localised urban processes. 

4.2 Spatial heterogeneity and geographically weighted 

regression analysis 

Geographically Weighted Regression (GWR) was used to 

assess the localized relationships between environmental 

variables and the Urban Index. The Urban Index was used as 

the dependent variable, while NDVI, NDBI, MNDWI, and 

LST served as independent predictors. This approach enabled 

the detection of spatial heterogeneity, which is often 

overlooked in global regression models. Results demonstrated 

significant variation in parameter estimates across BSD City. 

Areas of compact urbanization exhibited stronger coefficients 

compared to transitional peri-urban zones. Therefore, GWR 

highlighted the non-stationary nature of urban–environmental 

interactions. 

3284



Figure 13. Coefficient of variation (Data: 2020-2023) 
Source: Calculated from Landsat 8 imagery (2020–2023) using Google Earth Engine. 

Figure 14. NDVI gradients (Data: 2020-2023) 
Source: Calculated from Landsat 8 imagery (2020–2023) using Google Earth Engine. 

Figure 13 shows the coefficient of variation in BSD City for 

the period 2020–2023, calculated from Landsat 8 imagery 

using Google Earth Engine. The relationship between NDVI 

and the Urban Index was consistently negative, confirming 

that vegetation decline is strongly associated with urban 

growth. Coefficient values were lower in peripheral areas, 

where vegetation remained more intact. In contrast, central 

zones displayed stronger negative associations, reflecting a 

substantial loss of green cover. In addition, Figure 14 shows 

the NDVI gradients in BSD City for the period 2020–2023, 

calculated from Landsat 8 imagery using Google Earth 

Engine. This indicates that vegetation is increasingly displaced 

as urban expansion intensifies in the city core. Research 

findings are consistent with international studies that associate 

urban growth with environmental decline. Hence, GWR 

provided spatial evidence of vegetation loss as a key driver of 

urbanization. 

The coefficient of NDBI with respect to the Urban Index 

was positive and spatially clustered in high-density areas. 

Central business districts and large-scale residential 

complexes exhibited the strongest positive values. This 

suggests that built-up density directly contributes to urban 

compactness and impervious surface expansion. Peripheral 

areas showed weaker relationships, reflecting transitional 

landscapes. These results confirm that NDBI is a reliable 

predictor of built-up concentration in urban environments. 

Consequently, the GWR model validated the strong 

contribution of built-up areas to the Urban Index. 

Land Surface Temperature demonstrated a positive 

correlation with the Urban Index, with varying strengths 

across the study area. Higher coefficients were recorded in 

urban cores where impervious surfaces are dominant. 

Peripheral zones displayed moderate associations, reflecting 

the buffering effect of residual vegetation. This pattern 

illustrates the strengthening interaction between urban density 

and surface heating. The spatial distribution of coefficients 

confirmed that heat stress is most critical in the densest built-

up areas. Thus, GWR analysis emphasizes the role of thermal 

conditions as a direct by-product of urban expansion. 

The Modified Normalized Difference Water Index 

(MNDWI) showed weaker but significant negative 

relationships with the Urban Index. Negative coefficients were 

particularly evident in peripheral areas where water bodies 

have been reduced or fragmented. The construction process 

has led to the displacement of water features. In central areas, 

the relationship was less pronounced, reflecting limited water 

surface availability. Although not as strong as NDVI or NDBI, 

MNDWI added explanatory power to the overall model. 

Therefore, GWR demonstrated that water loss is an additional 

consequence of rapid urban development. 
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Figure 15. Distance from center (Data: 2020-2023) 
Source: Calculated from Landsat 8 imagery (2020–2023) using Google Earth Engine. 

The results of the GWR model illustrate the diverse impacts 

of urban expansion in BSD City. Localized coefficients 

revealed spatially varying drivers of urbanization, ranging 

from vegetation decline to heat stress and water loss. These 

findings support the argument that urban planning must adopt 

place-based approaches rather than uniform strategies. Spatial 

heterogeneity suggests that different zones require 

differentiated policy responses. Integrating these insights into 

planning can enhance ecological resilience while supporting 

economic growth. Consequently, GWR findings provide a 

critical foundation for sustainable urban development 

strategies in BSD City. 

Figure 15 shows the distance from the city center in BSD 

City for the period 2020–2023, calculated from Landsat 8 

imagery using Google Earth Engine. The GWR revealed 

considerable disparities in how residents of BSD City engage 

with their metropolitan environment. Urban cores with higher 

coefficients of the Normalized Difference Built-up Index and 

Land Surface Temperature show the significant impact of 

built-up density and thermal stress on driving compact 

urbanization. In contrast, negative coefficients for NDVI and 

MNDWI in peripheral areas highlight the persistent 

importance of vegetation and water bodies in enabling urban 

growth. Urban processes are shaped by the specific local 

ecological and spatial settings in which they occur. Studies 

show that conventional planning techniques are insufficient to 

handle the complexities of urban development [29, 30]. The 

GWR findings therefore reinforce the need for context-

specific methods that combine environmental durability with 

urban planning [31]. 

4.3 Spatial insights into consumer preferences and eco-

branding strategies in BSD City 

In BSD City, consumer preferences are increasingly 

favoring residential areas that prioritize sustainability and 

environmental quality. Eco-branding in property development 

has become a key factor in consumer purchasing decisions. 

Annual reports indicate that marketing campaigns with robust 

sustainability themes tend to achieve better sales results in 

specific industry groups. Spatial analysis indicates that areas 

with higher NDVI values and lower LSTs are consistent with 

consumer demand for eco-friendly housing. Ecological 

attributes directly influence preferences for urban real estate. 

Eco-branding thus serves as a tactical link between 

environmental quality and consumer preference.  

Buyer preferences were significantly influenced by 

vegetation cover, with NDVI values spanning from -0.125 to 

0.375. Residential developments near clusters with high NDVI 

values experienced greater sales success than more densely 

populated urban zones. The Land Surface Temperature, 

spanning 32℃ to 68℃, also influenced consumer perceptions 

of comfort and livability, which in turn were used by eco-

branded projects in their marketing efforts. The ability to 

promote cooler and more environmentally friendly living 

spaces increased consumer appeal. Ecological quality 

therefore directly influences the content of sustainable 

marketing narratives. 

The mixed implications for consumer choice were shown 

by built-up expansion, which is represented by NDBI values 

spanning from –0.219 to 0.094. Urban areas offered easy 

access, but they also posed the threat of higher land surface 

temperatures and less vegetation coverage. The Urban Index 

peaked at 0.375, indicating that consumers weigh the benefits 

of city life against their concerns about the environment. This 

reinforced the image of a consumer living a sustainable and 

balanced lifestyle. Urbanized regions displayed diverse levels 

of intensity, resulting in distinct marketing strategies. 

Hotspot analysis and Local Moran's I analysis confirmed 

that compact urban cores were the most vulnerable to 

ecological stress. Values of the Gi* statistic between -2.0 and 

1.75 identified clusters where eco-branding strategies were 

either critical or less effective. In core zones, sustainable 

marketing must offset ecological shortfalls by promoting 

intelligent infrastructure and energy-efficient dwellings. In 

outlying areas, marketing utilized natural vegetation and 

reduced thermal stress to promote eco-friendly living benefits. 

The spatial differentiation in marketing appeal highlights the 

need for localized marketing strategies. Consequently, eco-

branding strategies need to be tailored to the specific spatial 

settings in BSD City. 

Reports from 2020 and 2024 corporate disclosures 

highlighted a commitment to green infrastructure and 

environmentally sustainable living practices. The adoption of 

eco-living products by consumers correlated with financial 

growth, facilitated by targeted promotional advertising efforts. 

Expenditures on marketing have been increasingly directed 

towards projects that are branded as being environmentally 
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sustainable. This is consistent with the GWR findings that 

environmental quality has a significant impact on consumer 

preferences across different locations. The study links 

consumer behavior to ecological realities by combining 

corporate data with spatial analysis. Sustainable marketing is 

supported not only by stories but also by scientific evidence of 

environmental factors. 

Annual corporate reports served as the basis for the analysis 

of consumer preferences, which utilised aggregated housing 

sales and eco-branding data, in place of neighbourhood-level 

datasets. Consequently, the spatial alignment between 

consumer demand and NDVI or LST patterns should be 

interpreted as indicative rather than conclusive. The absence 

of micro-scale transaction or survey data limited the ability to 

establish statistically rigorous causal pathways. Hedonic 

pricing models, household surveys, or social media mining 

should be adopted in future studies to provide evidence of 

finer-scale behavior. The integration of such datasets would 

enable more robust linkages between consumers’ ecological 

attributes and housing preferences. This limitation highlights 

the exploratory nature of this study and suggests promising 

directions for future research. 

Urban planning can learn valuable lessons from the 

alignment of consumer preferences, eco-branding, and the 

diversity of needs across different areas. Marketing strategies 

that are truly environmentally friendly are more effective than 

those that just pretend to be. Future development must ensure 

that green branding aligns with quantifiable enhancements in 

vegetation cover and thermal comfort. Combining remote 

sensing and consumer data can enhance place-based marketing 

strategies that appeal to environmentally conscious customers. 

This integration also boosts the credibility of corporate 

sustainability promises. Eco-branding subsequently becomes 

a marketing tool and a driver for sustainable urban 

development strategies. 

This study also emphasizes the differences in consumer 

groups across various regions, which are influenced by 

ecological and economic considerations. Regions in the city 

centre with higher land surface temperatures and lower 

Normalised Difference Vegetation Indices are already densely 

inhabited, implying that residents in these areas place a high 

priority on being close to employment opportunities despite 

their exposure to heat stress and restricted access to green 

areas. Residential areas with higher NDVI values and lower 

levels of LST typically draw consumers who value 

environmental comfort and ecological amenities above direct 

economic accessibility. While all property products are still 

marketable, consumer buying decisions are split into separate 

groups based on varying motivations, such as access-oriented 

versus comfort-oriented preferences. The incorporation of 

ecological factors, such as NDVI and LST, into the analysis of 

the urban housing market highlights the importance of linking 

consumer preferences to spatial indicators. This segmentation 

provides vital information for planning eco-friendly cities and 

promoting products in an environmentally sustainable way. 

5. CONCLUSION

Study findings showed that urban growth in BSD City from 

2020 to 2023 had quantifiable effects on the environment, 

climate, and human behaviour. NDVI readings fluctuated 

between –0.125 and 0.375, with a maximum of 0.188, 

indicating stressed vegetation, whereas NDBI (–0.219 to 

0.094, peak –0.063) and the Urban Index (0.188–0.500, peak 

0.375) indicated an increase in built-up density. The Land 

Surface Temperature varied between 32℃ and 68℃, with a 

temperature of 40℃ being recorded most often, which 

indicates increased urban heat exposure. Spatial clustering, 

which utilized Gi* hotspots (–2.0 to 1.75, peak 0.25) and Local 

Moran's I (–0.004 to 0.016, peak 0.0), showed compact and 

localized growth patterns. The integration of Annual Report 

data also showed that the demand for sustainable housing is 

being driven by growing consumer preferences, in addition to 

its ecological and thermal impacts. Data indicates that eco-

branding strategies have a significant appeal to consumers in 

regions with a cooler and more environmentally friendly 

climate, thereby validating the marketing potential of green 

features. 

Several limitations became apparent during the course of 

this study. Landsat 8 high-resolution imagery, with a 

resolution of 30 m, restricted the detection of minor ecological 

and urban variations. The study period, spanning from 2020 to 

2023, limited the capacity to monitor longer-term 

developmental trajectories. The coefficient of variation 

(peaking at 0.125 and reaching a maximum of 0.625) and local 

variance NDVI (with a peak of 0.001) were sensitive to kernel 

size and scale parameters, which may impact the results. 

Analysis of distances revealed compactness within 5 km of the 

city centre; however, socioeconomic data, separated by 

neighbourhood, were unavailable to verify consumer insights 

geographically. BSD City's Annual Reports provided valuable 

insights into eco-branding and marketing, but lacked 

necessary spatial data for precise calibration. Findings should 

be generalised with caution beyond the BSD case study. 

Although the integration of annual reports with spatial 

indices highlighted indicative linkages between consumer 

preferences and ecological attributes, the absence of 

neighbourhood-level transaction data limited statistical rigor. 

The results should therefore be interpreted as exploratory 

rather than definitive, reflecting the aggregated nature of 

corporate disclosures. Future research must incorporate micro-

scale datasets, such as household surveys, social media 

analytics, or hedonic pricing models, to capture consumer 

behaviour more accurately. Incorporating this detailed 

evidence would facilitate more robust verification of 

connections between spatial and behavioural aspects. It would 

also provide a firmer basis for testing the influence of 

ecological amenities on housing demand. Consequently, the 

marketing dimension remains a valuable avenue for 

refinement in future investigations. 
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