
Spatial Price Integration and Asymmetric Threshold Effects in Red Shallot Markets Between 

Urban and Rural Areas: Evidence from North Sumatra, Indonesia 

Thomson Sebayang1, Rahmanta1* , Rulianda P. Wibowo1 , Sya’ad Afifuddin Sembiring2 , 

Arga Abdi Rafiud Darajat Lubis3

1 Agriculture Faculty, Universitas Sumatera Utara, Medan 20155, Indonesia 
2 Economics and Business Faculty, Universitas Sumatera Utara, Medan 20155, Indonesia 
3 Directorate of Internationalization and Global Partnership, Universitas Sumatera Utara, Medan 20155, Indonesia 

Corresponding Author Email: rahmanta@usu.ac.id 

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsdp.200835 ABSTRACT 

Received: 28 May 2025 

Revised: 4 July 2025 

Accepted: 30 July 2025 

Available online: 31 August 2025 

This study investigates spatial price integration and asymmetric threshold effects in red shallot 

markets between rural and urban areas in North Sumatra, Indonesia. Using monthly consumer 

price data from 2018 to 2024 across six markets, we apply Johansen cointegration, Granger 

causality, Vector Error Correction Models (VECM), Threshold Vector Autoregression 

(TVAR), Impulse Response Functions (IRF), and Forecast Error Variance Decomposition 

(FEVD). Results confirm long-run price equilibrium among market pairs, with VECM 

indicating that 38% of price deviations are corrected monthly. Granger causality reveals 

directional asymmetries: short-distance markets exhibit rural-to-urban predictability, while 

long-distance pairs show bidirectional influence. TVAR identifies a non-linear threshold near 

IDR 1,200/kg, above which price transmission intensifies. IRF shows rural markets adjust 

more slowly to shocks from urban centers, particularly beyond 180km. FEVD results indicate 

that rural markets account for 22-47% of urban price variance under specific spatial conditions. 

These findings highlight how distance, asymmetry, and threshold dynamics shape price 

integration in perishable crop markets. The study offers new empirical insights for spatial food 

market governance and supports targeted infrastructure and information interventions to 

promote sustainable rural-urban integration. 
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1. INTRODUCTION

Red shallots (Allium cepa var. aggregatum) are deeply 

embedded in Indonesian culinary traditions and play a critical 

role in the rural economy, particularly among smallholder 

farmers [1-3]. As both a staple food item and a key commercial 

crop, their price behavior has far-reaching implications—not 

only for household incomes but also for food affordability and 

broader regional food security [4, 5]. Yet, price instability 

across geographically dispersed markets raises pressing 

questions about the fairness and efficiency of price 

transmission from rural production zones to urban 

consumption hubs. These inconsistencies suggest underlying 

structural weaknesses in the supply chain, particularly in how 

price information and market signals are shared [6]. 

In a country as geographically fragmented as Indonesia, 

where topography and infrastructure vary widely, even 

competitive markets can exhibit persistent price gaps. Spatial 

market integration (SMI)—the extent to which prices in 

different locations move in tandem after accounting for 

transaction costs and time delays—is a useful lens to assess 

this [7-9]. Ideally, a well-integrated market allows for quick 

dissemination of supply and demand signals, enabling better 

resource allocation and promoting equity [10-12]. However, 

poor integration means localized shocks remain isolated, 

leading to unpredictable outcomes for both producers and 

consumers. 

Empirical work across developing nations has consistently 

highlighted the fragile nature of SMI, pointing to weak 

infrastructure, limited institutional capacity, and restricted 

market access as persistent obstacles [13-15]. Case studies 

from countries like China and Morocco illustrate how rapid 

rural–urban transitions can destabilize traditional agricultural 

networks, increasing dependence on non-farm livelihoods and 

reinforcing structural imbalances [16, 17]. In such settings, 

enduring price differentials are less about geography alone and 

more about systemic inefficiencies that disproportionately 

affect small-scale farmers [18, 19]—who often contend with 

higher transaction costs, weaker bargaining positions, and 

insufficient access to timely market data [20]. 

In Indonesia’s red shallot industry, these dynamics are 

particularly evident [21]. Production remains concentrated in 

upland rural regions like Karo and Mandailing Natal, while 

major demand centers such as Medan are urban and often 

distant [22-24]. The flow of goods between these areas 

encompasses more than just physical transport—it reflects an 

interplay of logistics, information channels, and institutional 

frameworks. Fragmented pricing systems, delays in market 
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data, and weakly connected markets hinder price convergence, 

ultimately limiting farmers’ ability to respond to demand 

changes or benefit from favorable price movements [25-27]. 

Red shallots serve as an ideal proxy for analyzing spatial 

market integration in Indonesia. As a highly perishable 

commodity with limited storage capacity, shallots exhibit 

immediate price adjustments in response to supply chain 

changes, making them a sensitive barometer for identifying 

spatial frictions. Their localized production in rural uplands 

and widespread consumption in urban centers create natural 

rural–urban trade corridors with observable price dispersion. 

Moreover, red shallots are central to both food security and 

farmer livelihoods, particularly for smallholders. This 

combination of perishability, volatility, economic significance, 

and spatial dispersion positions red shallots as a highly suitable 

crop for investigating how price signals travel through 

fragmented agricultural markets in developing countries. 

Adding another layer to this challenge is the phenomenon of 

asymmetric price transmission (APT), where price responses 

are not uniform when prices rise versus when they fall. APT is 

frequently linked to imbalances in market power, storage 

capacities, and access to information—factors well 

documented across global agricultural markets [28-30]. In 

spatial terms, these asymmetries are magnified when urban 

centers dominate capital and information flows, while rural 

producers must rely on delayed or partial signals [31]. The 

result is an uneven playing field, with some markets better 

equipped to absorb shocks than others [15]. 

To effectively evaluate market integration under such 

complex conditions, it is vital to account for both linear and 

nonlinear dynamics. Traditional econometric tools like VAR 

and cointegration models assume consistent price adjustments, 

potentially missing threshold behaviors. Models such as the 

Threshold Vector Autoregressive (TVAR) or Threshold 

VECM offer a more nuanced view, allowing for regime shifts 

when price differentials cross specific thresholds [32, 33]. 

These approaches are particularly valuable for understanding 

how transportation costs, supply disruptions, or institutional 

barriers shape market reactions. 

Geographic proximity remains a central factor in 

determining the intensity and direction of market linkages. 

Markets closer together typically integrate more easily due to 

lower transaction costs and stronger information flows, while 

more distant markets often exhibit weaker or delayed 

connections. Moreover, the influence of one market on another 

may be asymmetric—urban markets frequently exert more 

sway, especially when policy, infrastructure, and demand are 

skewed in their favor [15, 34, 35]. Recognizing these spatial 

asymmetries is essential to avoid oversimplified conclusions 

about market behavior [36, 37]. 

In this light, the red shallot markets of North Sumatra 

provide an especially relevant case for investigation. The 

province presents a mosaic of agro-ecological conditions, 

varying levels of infrastructure, and diverse rural–urban 

connections. Despite the crop’s economic importance and 

growing policy interest in food system resilience, there is still 

limited empirical insight into how shallot prices move across 

space in this region. Shedding light on these price dynamics is 

not just academically valuable—it’s also key to crafting more 

equitable and effective rural development and market 

integration policies. 

This study sets out to rigorously analyze spatial price 

integration and asymmetric transmission patterns between 

urban and rural shallot markets in North Sumatra. Drawing on 

monthly price data from 2018 to 2024 and using a mix of 

advanced time-series methods—including cointegration tests, 

Granger causality, VAR/VECM models, and threshold-based 

techniques—we aim to map out the deeper mechanics of price 

transmission. Special emphasis is placed on spatial distance, 

directionality of influence, and nonlinear responses to 

shocks—dimensions that are too often overlooked. Ultimately, 

the findings are expected to contribute to more informed 

policy debates around market access, rural equity, and 

sustainable food security. 

Specifically, the study addresses the following research 

questions: 

1) To what extent are urban and rural red shallot markets 

in North Sumatra spatially integrated, and what does 

this imply about market efficiency? 

2) How do price threshold effects and spatial distance 

shape the nature of price transmission and shock 

responsiveness across markets? 

3) What structural patterns of asymmetric causality 

exist between urban and rural markets, and how do 

they vary by geographic proximity? 

4) How can the findings from North Sumatra inform 

broader strategies for building inclusive, resilient, 

and sustainable food systems in other developing 

regions with similar agro-spatial dynamics? 

 

 

2. METHODOLOGY 

 

2.1 Research design 

 

This study adopts a quantitative explanatory approach with 

a descriptive econometric model, designed to examine causal 

linkages between red shallot price dynamics and spatial 

integration in rural and urban markets in North Sumatra. The 

methodology integrates time-series econometrics, including 

unit root tests, cointegration analysis, Vector Error Correction 

Models (VECM), Threshold VAR (TVAR), Impulse 

Response Function (IRF), and Forecast Error Variance 

Decomposition (FEVD). These tools allow the study to assess 

both short-run and long-run dynamics, while incorporating 

threshold and spatial asymmetries in price transmission. 

 

2.2 Data sources and collection 

 

Secondary data of monthly consumer prices (IDR/kg) for 

red shallots across six markets (urban and rural) were collected 

from January 2018 to June 2024. Supplementary spatial data 

were used to calculate road distances between markets. Data 

sources are detailed in Table 1. 

While monthly price data were generally consistent across 

the study period (2018-2024), certain months—particularly 

during the COVID-19 pandemic (March to August 2020)—

contained missing or delayed records due to market closures 

or reporting gaps. For gaps of one or two consecutive months, 

linear interpolation was applied to preserve continuity and 

minimize distortion in the VAR/VECM estimation. For longer 

disruptions, data points were excluded from estimation models 

but retained in exploratory analysis for contextual 

understanding. Additionally, diagnostic tests confirmed no 

structural breaks in the cointegration relationships during the 

pandemic period, suggesting that the underlying long-run 

price dynamics remained stable. This treatment balances data 

integrity with the need to maintain model reliability in the face 
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of temporary exogenous shocks. 

 

Table 1. Data sources and collection 

 
Data Type Source Scope 

Secondary 

Data 

BPS, Agriculture 

Ministry, Local Gov 

2018-2024 monthly consumer 

prices (6 markets) 

Spatial Data 
Google Maps, GIS 

Analysis 

Road distances (km) between 

markets 

Analytical 

Tools 

EViews 12, Excel, 

QGIS 

Stationarity, VAR/VECM, 

IRF, Mapping 

 

2.3 Variables and operational definitions 

 

To make the analysis more robust and easier to interpret, the 

prices are converted into a logarithmic form, represented as 

𝑌𝑡 = 𝑙𝑜𝑔(𝑃𝑖𝑡), which helps control for variance and allows 

changes to be understood in percentage terms. As explained 

on Table 2 which presents the key variables used in this study 

along with their operational definitions. The variable 𝑃𝑖𝑡 

refers to the red shallot price at market iii in month ttt, 

measured in IDR per kilogram. The first difference, 𝛥𝑌𝑡 , 

captures monthly price changes and ensures the data are 

suitable for time-series modeling. Meanwhile, 𝑑𝑖𝑗𝑑 represents 

the spatial distance in kilometers between markets 𝑖  and 𝑗 , 

which is essential for examining how proximity influences 

price integration and transmission patterns across regions. 

 

Table 2. Variables and definitions 

 
Variable Definition Unit 

𝑃𝑖𝑡 
Red shallot price at market i in 

month t 
IDR/kg 

𝑌𝑡 = log(𝑃𝑖𝑡) 
Log-transformed price series for 

variance control 
Log scale 

∆Yt First difference to ensure stationarity Rate of change 

𝑑𝑖𝑗 
Spatial distance between markets i 

and j 

Kilometers 

(km) 

 

2.4 Conceptual distinctions among econometric tools 

 

To improve clarity, we briefly outline the key econometric 

models used in this study, emphasizing their assumptions and 

purposes: 

• Vector Error Correction Model (VECM): 

VECM is used when price series are non-stationary but 

cointegrated, implying a long-run equilibrium 

relationship among markets. VECM separates long-run 

dynamics from short-run adjustments, allowing us to 

measure how quickly markets return to equilibrium after 

a shock. The Error Correction Term (ECT) quantifies the 

speed of adjustment. 

• Threshold Vector Autoregression (TVAR): 

TVAR extends the traditional VAR framework by 

allowing for non-linear adjustments. It assumes that price 

responses differ depending on whether the deviation 

between market prices is above or below a critical 

threshold (e.g., IDR 1,200/kg). This is suitable for 

capturing asymmetric or regime-switching behavior in 

agricultural markets where small deviations may not 

prompt any adjustment due to frictions like transport cost. 

• Impulse Response Function (IRF): 

IRF traces the time path of the effect of a one-time shock 

in one market on the future values of prices in another. It 

is particularly useful for examining directional influence 

and shock persistence between spatially connected 

markets, especially when combined with a stable 

VAR/VECM system. 

Each model plays a unique role in understanding the spatial 

dynamics of price formation. VECM explains equilibrium and 

short-run corrections; TVAR detects asymmetric, threshold-

bound behavior; and IRFs map inter-market responsiveness to 

exogenous disturbances. 

 

2.4.1 Stationarity test: Augmented dickey-fuller (ADF) 

The ADF test is used to assess the stationarity of price series: 

 

∆Yt =𝛽0+𝛽1+𝜌Yt-1+∑ 𝛽
𝑝
𝑖=2 2∆Yt-i+1+𝜀t 

 

where, ρ indicates the presence of a unit root. 

 

2.4.2 Johansen cointegration test 

Cointegration among non-stationary variables is tested 

using the trace statistic: 

 

𝐿𝑅𝑡𝑟(r)=-T ∑ 𝑙𝑛𝑛
𝑖=𝑟+1  (1-𝜆i) 

 

where, 

𝐿𝑅𝑡𝑟(r)=Trace test statistic 

T=Number of observations 

r=Number of cointegrating vectors under the null 

hypothesis 

n=Number of endogenous variables 

λi=Estimated eigenvalues from the Johansen system 

 

2.4.3 Granger causality 

To test directional influence: 

 

∆Y1t=𝛼0+𝛼1yt-1+...+𝛼1yt-1+𝛽1𝑥1,t-1+... +𝛽1𝑥-1+𝜀t 

 

2.4.4 VECM model 

Used for cointegrated, non-stationary data: 

 

( )
1

1

1

k

t t i t i t

i

Y Y Y  
−



− −

=

 = +   +  

 

where, α(β′Yt−1) is the error correction term (ECT). 

 

2.4.5 Threshold var (TVAR) 

Used to model non-linear, asymmetric price behavior: 

 

1 1 1

2 1 2

,  if 

,  if 

t t t d

t

t t t d

Y s
Y

Y s

 

 

− −

− −

 + 
= 

 + 
 

 

where, 

Yt=Price series at time t 

Φ1,Φ2=Regime-specific autoregressive matrices 

st-d=Lagged price spread as the threshold variable 

τ=Threshold value 

ε=Error term (shock) 

 

2.4.6 IRF and FEVD 

IRFs trace the time-path of responses to one-unit shocks in 

other markets. FEVD partitions the forecast variance in one 

market attributable to innovations in others, allowing for inter-

market dominance analysis. 
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2.5 Model validation 

 

 
 

Figure 1. Methodological framework 

 
• ADF Test for stationarity 
• Johansen Test for cointegration 

• VECM diagnostics (serial correlation, 

heteroskedasticity) 

• IRF response stability 

• Lag length selection via AIC, BIC 

• Variance decomposition robustness checks 

The complete methodology is visually summarized in 

Figure 1 (see conceptual framework diagram). 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Stationarity test of red shallot prices 

 

Stationarity is a fundamental requirement in time-series 

modeling to avoid spurious regression. The augmented 

dickey-fuller (ADF) test was applied to determine whether 

each market’s red shallot price series was stationary at level or 

required differencing. 

The test revealed that prices in five markets—Medan 

Sentral (STR), Medan Petisah (PTS), Karo, Humbang, and 

Mandailing Natal—were stationary at level. To illustrate this, 

Table 3 below summarizes the ADF test results for key series 

in their first-differenced form, confirming their integration 

order I (1): 

The confirmed stationarity at first difference justifies the 

use of VECM modeling for pairs involving Dairi, particularly 

in testing long-run price co-movement with Medan markets. 

 

Table 3. Stationarity test results (First difference ADF test) 

 
No. Variable ADF Test Statistic 1% Level 5% Level 10% Level Prob Conclusion 

1 PTS -8.720077 -3.519050 -2.900137 -2.587409 0.0000 Stationary 

2 STR -7.700473 -3.520307 -2.900670 -2.587691 0.0000 Stationary 

3 DRI -8.030232 -3.520307 -2.900670 -2.587691 0.0000 Stationary 

3.2 Stability and lag structure in VAR models 

 

To ensure the reliability of the IRF and FEVD outputs, 

stability testing was performed on each Vector Autoregressive 

(VAR) model using the roots of the characteristic polynomial. 

The VAR model is considered stable when all roots lie within 

the unit circle (i.e., absolute value < 1). This condition 

indicates that the system will return to equilibrium after a 

shock, validating subsequent simulations. 

 

Table 4. VAR stability test results 

 
No. Market Pair Root Modulus Range 

1 Medan–Karo 0.74903–0.26947 

2 Medan–Dairi 0.37144–0.10551 

3 Medan–Humbang 0.72328–0.33331 

4 Medan–Mandailing 0.70151–0.32669 

 

The test results (Table 4) confirm that all market pairs have 

stable VAR structures, with maximum moduli below 1. 

Therefore, IRF and FEVD simulations are statistically valid 

and reliable for economic interpretation. Additionally, lag 

length selection based on the Akaike Information Criterion 

(AIC) shows that: 

• Shorter spatial distances (e.g., Medan–Karo) required 

longer lag (3 months), suggesting frequent interaction 

and faster adjustment. 

• Distant market pairs like Medan–Dairi or Medan–

Mandailing showed shorter optimal lags (1-2 

months), possibly due to delayed responses to shocks. 

• Lag structure and system stability vary by market 

proximity, with closer pairs demonstrating more 

rapid price adjustments. 

 

3.3 Long-run equilibrium: Johansen cointegration 

 

According to Johansen's criteria, a market system is 

cointegrated when the trace statistic and/or maximum 

eigenvalue statistic exceed the 5% critical value. The test was 

performed specifically for the market pair Medan (PTS and 

STR)–Dairi, representing an urban–rural spatial configuration. 

The results confirm that both the trace and max-eigen 

statistics exceed the critical values at all levels of hypothesized 

cointegration ranks. Therefore, it is concluded that the Medan–

Dairi market pair exhibits strong cointegration, implying long-

run price alignment (Table 5). 

 

Table 5. Johansen cointegration results for Medan–Dairi 

markets 

 

Hypothesized 

No. of CE(s) 

Trace 

Statistic 

Max-

Eigen 

Statistic 

5% 

Critical 

Value 

Conclusion 

None 138.5610 57.97825 29.79707 Cointegrated 

At most 1 80.58278 44.15829 15.49471 Cointegrated 

At most 2 36.42449 36.42449 3.841465 Cointegrated 

 

Although short-term fluctuations exist, red shallot prices in 

Medan and Dairi adjust toward a shared long-run equilibrium. 

If urban prices rise persistently, rural prices in Dairi eventually 

follow—highlighting a robust integration pathway between 
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production and consumption nodes in the regional supply 

chain. 

 

3.4 Spatial causality patterns 

 

To examine the directional influence between urban and 

rural red shallot markets in North Sumatra, the Granger 

causality test was applied (Figure 2). This statistical method 

assesses whether past values of one time series can predict 

current values of another, indicating a potential causal 

relationship. 

 

 
 

Figure 2. Granger causality f-statistics by market pair 

 

The test results are summarized in Table 6 below: 

 

Table 6. Granger causality test results 

 
Market Pair Direction F-Statistic P-Value Conclusion 

PTS–Karo KRO→PTS 4.60716 0.0054 Unidirectional 

STR–Dairi STR→DRI 16.6083 0.0000 Urban-dominant 

PTS–Madina Bidirectional 3.77737 0.0276 Bidirectional 

 

PTS–Karo: Granger causality runs from the rural Karo 

market to the urban Petisah market, implying that rural prices 

help predict short-term urban price dynamics in nearby 

markets. 

STR–Dairi: Urban Medan Sentral statistically Granger-

causes price movements in rural Dairi, suggesting a predictive 

influence from urban to rural markets in longer-distance 

settings. This reflects possible centralization in price 

information flows, though not necessarily pricing control. 

PTS–Madina: Bidirectional Granger causality at a long 

distance (468km) suggests mutual short-term predictability 

and signals partial integration, despite geographic constraints. 

These results highlight the spatial asymmetry in information 

transmission, where directionality and intensity of influence 

are shaped not only by distance but also by market role, 

connectivity, and infrastructural links. 

The causality analysis employed reflects Granger-based 

temporal dependence, indicating directional relationships 

within the time-series framework. These should be understood 

as indicative of inter-market influence rather than conclusive 

structural causation. 

 

3.5 VAR estimation results 

 

This section presents the Vector Autoregressive (VAR) 

model estimates for market pairs with stationary price series 

and significant Granger causality. The analysis focuses on 

three key inter-market relationships: Medan–Karo, Medan–

Humbang, and Medan–Mandailing Natal. 

 

3.5.1 Medan petisah (PTS)–Karo (KRO) pair 

This pair showed unidirectional causality from Karo to PTS. 

The VAR model indicated significant influence of Karo’s 

lagged prices on Petisah. 

Equation: 

 

PTS𝑡 = 13017.01 + 0.4877 𝑃𝑇𝑆𝑡−1 + 0.0663 𝑃𝑇𝑆𝑡−2

− 0.0953𝑃𝑇𝑆𝑡−3 + 0.6219 𝐾𝑅𝑂𝑡−1

− 0.8095 𝐾𝑅𝑂𝑡−2 + 0.3137 𝐾𝑅𝑂𝑡−3 + 𝜖𝑡 

 

• All significant lags have t-stat >1.6657. 

• A 1% increase in Karo price→3.2% increase in PTS 

next month. 

 

3.5.2 Medan sentral (STR)–Humbang (HBG) pair 

This VAR result supports the presence of bidirectional price 

interdependence, as both markets exhibit significant lagged 

effects on each other. 

Equation: 

 

HBG𝑡 = 6850.28 + 0.5122 𝑆𝑇𝑅𝑡−1 + 0.3559𝐻𝐵𝐺𝑡−1 + 𝜖𝑡 

 

• STR influences HBG significantly (t=3.09), and HBG 

has feedback effect (t=2.60). 

• This supports robust spatial connectivity. 

 

Table 7 summarizes the significant Vector Autoregressive 

(VAR) relationships among the studied markets, highlighting 

the direction and strength of price influences. The results show 

that the Karo market (KRO) strongly influences Medan 

Petisah (PTS) across three consecutive lags, indicating a 

strong rural push effect where local production drives nearby 

urban prices. In contrast, Medan Sentral (STR) exerts 

dominant influence on Humbang (HBG), reflecting an urban 

pull dynamic in this market pair. Meanwhile, Mandailing 

Natal (MAD) has a weaker but noticeable delayed effect on 

PTS, suggesting long-range rural feedback due to distance and 

logistical frictions. Lastly, PTS influences STR over a short 

lag, but the effect is relatively modest, indicating limited short-

range feedback between these two urban markets. 

 

Table 7. Summary of significant VAR relationships 

 
Market 

Pair 

Influencing 

Market 

Significant 

Lags 
Interpretation 

KRO→PTS KRO t-1, t-2, t-3 Strong rural push effect 

STR→HBG STR t-1 Urban pull dominates in this pair 

MAD→PTS MAD t-2 
Weak long-range rural 

feedback 

PTS→STR PTS t-1 Weak short-range feedback 

 

3.5.3 Medan – Mandailing natal (MAD) pair 

A more complex structure with partial and weak links. 

• PTS model: MAD prices (t-2) significantly affect PTS 

(t=2.45). 

• STR model: Only STR's own lags are significant; MAD 

influence is minimal. 

This reflects weak long-distance feedback from rural MAD 

to urban STR but shows some delayed effect on PTS. 

Figure 3 compares the actual red shallot prices with those 

predicted by the VAR model. The strong model fit confirms 

predictive robustness for this market pair. 
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Figure 3. Actual vs fitted prices (Medan Petisah–Karo) 

 

3.6 VECM estimation for Medan–Dairi 

 

The VECM model is applied to the Medan–Dairi market 

pair due to non-stationary price series at level but cointegration 

confirmed via Johansen test. This model captures both the 

long-run equilibrium correction and short-run price 

adjustments. 

Long-Run Dynamics 

Equation: 

 

D(PTS)𝑡 = 7.36 + 1.00. 𝐷(𝑃𝑇𝑆𝑡−1) + 3.66. 𝐷(𝑆𝑇𝑅𝑡−1)
− 2.94. 𝐷(𝐷𝑇𝑅𝑡−1) + 𝜖𝑡 

 

• Medan Petisah prices are positively influenced by 

Medan Sentral and negatively by Dairi in the long run. 

• Strong urban center pull (Medan STR) and rural 

compensation effects. 

 

Table 8 presents the short-run dynamics from the VECM 

regression summarizing the estimated coefficients and t-

statistics for short-run variables in the VECM model. 

These values indicate that all short-run terms are 

statistically significant, with the strongest influence from STR 

(urban Medan). The negative ECT confirms a rapid adjustment 

toward long-run price equilibrium when short-run imbalances 

arise. 

 

Table 8. VECM short-run dynamics–Medan-Dairi 

 
Variable Coefficient t-Statistic Significance 

ECTt-1 -0.3162 -4.32 Yes 

D(PTS)t-1 -0.4071 -3.26 Yes 

D(STR)t-1 0.8314 3.76 Yes 

D(DRI)t-1 -0.2968 -2.23 Yes 

 

3.7 Threshold effects: Non linear price transmission 

 

By separating the data into two regimes—below and above 

a specific threshold in the price gap—this model captures how 

markets respond differently depending on the magnitude of 

spatial price differentials. 

The TVAR model investigates whether price signals 

between urban and rural markets exhibit non-linear behavior, 

i.e., whether transmission intensifies only after surpassing a 

certain threshold. This is essential in agricultural supply chains 

where small price gaps may not overcome frictions such as 

transport costs, information delays, and bargaining 

asymmetries. 

Interpretation 

• For short-distance pairs like PTS–Karo (78 km), 

Regime 1 has a stronger coefficient (1.83), indicating 

that even small price differentials can trigger strong 

adjustments—likely due to lower transaction costs 

and closer monitoring of nearby market trends. 

• In long-distance pairs (e.g., STR–Madina, 468km), 

Regime 2 dominates, implying that larger price gaps 

are necessary to elicit market reactions. This reflects 

greater information and transport costs, as well as 

potentially less frequent trade between distant 

markets. 

• Notably, the STR–Dairi pair displays negative 

coefficients, which suggest a decoupled or divergent 

price behavior—possibly due to local market 

distortions or poor infrastructural connectivity. 

These results validate the hypothesis that spatial and 

nonlinear asymmetries exist in red shallot market integration 

across North Sumatra. Market integration is not linear nor 

spatially uniform. Policies aiming to strengthen rural–urban 

market linkages must account for these thresholds—e.g., by 

reducing transport costs and improving market information 

systems to lower the effective threshold for price transmission. 

As explained on Table 9, the results of the Threshold Vector 

Autoregression (TVAR) analysis, showing how price 

transmission between markets changes once certain price gaps 

are crossed. For nearby markets like PTS–Karo (78 km), even 

small price differences trigger strong adjustments, reflected by 

a high coefficient in Regime 1. In contrast, longer-distance 

pairs such as STR–Madina (468 km) require much larger price 

gaps before significant responses occur, as shown by higher 

threshold values. Interestingly, the STR–Dairi pair shows 

negative coefficients, indicating a potential decoupling or 

weaker price linkage due to infrastructure and information 

constraints.  

 

Table 9. Threshold VAR results 

 

Market Pair 
Distance 

(km) 

Regime 1 

Coef. 

Regime 2 

Coef. 

Threshold 

Value 

PTS–Karo 78 1.83 0.83 27,484 

PTS–Dairi 153 0.13 0.47 5,474 

STR–Dairi 153 -0.54 -0.12 -3,083 
STR–Humbang 230 0.28 0.60 25,100 

PTS–Madina 468 0.29 0.67 25,839 

STR–Madina 468 0.73 1.17 35,000 

 

3.7.1 Threshold robustness considerations 

Although the TVAR model identifies clear threshold values 

for each market pair, the estimation does not currently include 

formal sensitivity testing such as bootstrapped confidence 

intervals or resampling-based diagnostics. These thresholds 

may be influenced by lag length selection, sampling 

variability, or outlier effects. Future research should apply 

Monte Carlo or bootstrapped threshold estimation to assess the 

stability and significance of regime splits. This would provide 

greater inferential confidence and ensure that policy 

implications drawn from non-linear adjustment behavior are 

statistically robust. 

 

3.8 Impulse Response Function (IRF) analysis 

 

IRF analysis provides insights into how a shock in one 

market affects the price dynamics of another market over time. 

This method helps trace the direction, magnitude, and 
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persistence of price responses, revealing spatial asymmetries 

and the strength of market interdependence. 

• Short-distance pairs (e.g., Karo↔PTS) show balanced 

and strong responses, with the rural market (Karo) 

exerting even greater influence on the urban market. 

This suggests high responsiveness due to proximity 

and minimal transmission frictions. 

• For medium-distance markets (e.g., Dairi↔PTS), the 

impact of shocks is considerably higher, particularly 

from rural to urban areas. This aligns with findings 

from the threshold model and confirms Dairi's central 

role in affecting urban prices. 

• Long-distance pairs exhibit asymmetry: 

o STR→Humbang shows a strong urban-to-rural 

influence. 

o PTS→Madina yields a negative response, 

suggesting urban prices sometimes reduce rural 

market prices—possibly due to oversupply effects 

or weak information flows. 

o Madina→PTS has a positive but weaker impact, 

indicating limited but existing bidirectional 

responsiveness. 

These patterns reinforce the need to enhance connectivity 

and information transparency in long-distance market 

corridors. Stronger bidirectional transmission in shorter 

distances underlines the potential of improving integration 

through localized supply chain support, while weaker or 

negative responses over long distances highlight 

vulnerabilities in transmission channels.  

Table 10 shows the cumulative IRF results over a 12-month 

period, illustrating how price shocks spread between markets. 

Nearby markets like Karo and PTS (78 km) respond strongly 

and in both directions, with Karo having a greater impact on 

PTS. Medium-distance pairs, such as Dairi–PTS (153 km), 

also show significant influence, especially from rural Dairi to 

urban PTS. In contrast, long-distance pairs like PTS–Madina 

(468 km) display weaker or even negative responses, 

suggesting limited price transmission across distant markets. 

 

Table 10. IRF Cumulative responses (12-Month horizon) 

 
Market Pair Distance (km) IRF (Cumulative) 

PTS→Karo 78 4,774.45 

Karo→PTS 78 9,150.10 

PTS→Dairi 153 22,122.65 

Dairi→PTS 153 46,515.96 

STR→Humbang 230 20,432.72 

Humbang→STR 230 -362.49 

PTS→Madina 468 -1,854.65 

Madina→PTS 468 8,672.11 

 

3.9 Forecast Error Variance Decomposition (FEVD) 

 

FEVD quantifies the relative importance of each market in 

explaining price fluctuations in another market. By estimating 

the percentage of forecast variance attributed to external 

shocks, FEVD provides a measure of inter-market influence 

and dominance explained on Table 11 below. 

• Urban markets such as PTS and STR contribute 

significantly to the variance in rural markets (e.g., 

92.77% in Karo, 99.97% in Humbang), reinforcing 

their dominant informational and pricing role in the 

supply chain. 

• Conversely, the contribution of rural markets to 

urban price variance is markedly lower (e.g., 

Karo→PTS at 39.42%), underscoring directional 

asymmetry. 

• Longer-distance markets like Madina and Dairi still 

show non-negligible influence on urban prices (33-

34%), suggesting partial but non-trivial integration. 

• The asymmetry observed in FEVD results aligns with 

earlier findings from Granger causality and IRF, 

demonstrating that urban price shocks are more 

impactful and widespread, particularly in longer 

spatial corridors. 

 

Table 11. FEVD results–12-Month horizon 

 
Market Pair Distance (km) FEVD (%) 

PTS→Karo 78 92.77 

Karo→PTS 78 39.42 

PTS→Dairi 153 83.14 

Dairi→PTS 153 32.53 

STR→Humbang 230 99.97 

Humbang→STR 230 34.11 

PTS→Madina 468 90.35 

Madina→PTS 468 33.97 

 

These findings indicate that urban centers serve as 

information and price anchors within the regional shallot 

market system. Thus, strengthening rural access to urban 

market signals—through logistics, real-time pricing data, and 

cooperative platforms—can significantly enhance market 

efficiency and reduce vulnerability to price shocks. 

 

3.10 Discussion 

 

The analysis was anchored by three central hypotheses: (H1) 

urban and rural markets are integrated over the long run; (H2) 

price adjustments are asymmetrical and shaped by spatial 

distance; and (H3) geographic proximity influences both the 

direction and intensity of price causality. Empirical results 

confirmed all three, while drawing richer meaning through 

comparisons with similar international studies. 

The Johansen cointegration and VECM outcomes upheld 

the first hypothesis, highlighting persistent long-run price 

alignment among most market pairs—especially between 

Medan (urban) and Dairi (rural). This pattern indicates market 

efficiency, where price signals traverse space despite short-run 

barriers. These findings echo similar results from Nigeria’s 

cassava and cowpea sectors [38, 39], where market 

connections held firm despite infrastructural gaps. Our results 

further stress that tighter integration correlates with stronger 

physical links and more frequent trading—consistent with 

work from Vietnam and Ethiopia [40, 41]. 

While these findings affirm broader trends in spatial market 

integration, our study adds nuance by contrasting commodity-

specific and geographic dynamics. For instance, in Nigeria, 

previous studies [42, 43] documented dominant urban-to-rural 

price causality in cassava markets, primarily due to centralized 

demand and logistical constraints. In contrast, our results 

reveal short-distance rural markets like Karo influencing urban 

centers—reflecting the perishable nature and rural production 

dominance of shallots. Similarly, study of Vietnam's rice 

markets [44] highlighted near-instantaneous rural–urban price 

adjustment due to dense trade corridors, whereas our findings 

show that in long-distance corridors (e.g., Madina–Medan), 

threshold-triggered responses prevail due to higher transaction 

costs. Ethiopia’s market [45] exhibited long-run cointegration 

but weak short-term causality—unlike the bidirectional 
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patterns we find in some remote Indonesian pairings. These 

comparative insights underscore how perishability, spatial 

fragmentation, and institutional variation interact to shape 

market response dynamics. Therefore, red shallot markets 

offer a distinctive perspective on how geographic and 

commodity-specific factors jointly influence spatial price 

integration under non-linear conditions. 

Evidence for asymmetric price transmission (APT) in 

Indonesia’s rice markets emerges from both vertical and 

spatial dimensions. In Aceh Province, cointegration and error 

correction models reveal that farm-level price increases are 

passed on to retail prices more completely and swiftly than 

price decreases, indicating vertical asymmetry driven by 

market power and transaction costs. Simultaneously, spatial 

dynamics analyzed using Threshold Vector Autoregressive 

(TVAR) models show that only substantial price gaps trigger 

responses between distant markets like Medan–Madina, 

whereas geographically closer markets such as Medan–Karo 

react more quickly to smaller price shifts. This suggests that 

proximity, stronger trade links, and more effective information 

flows enhance market responsiveness. Combined, these 

insights highlight how infrastructural limitations and market 

inefficiencies amplify both vertical and spatial asymmetries, 

underscoring the need for policy and infrastructure reforms to 

reduce transaction barriers and improve market integration 

across Indonesia’s agricultural supply chains [46]. 

This mirrors observations in horticultural supply chains 

where transaction costs—logistical or informational—act as 

filters, muting price signals until economic thresholds are met. 

These findings support calls for infrastructure and policy 

reforms aimed at reducing spatial frictions through improved 

roads, digital market tools, and better rural market access. 

Such reforms are particularly relevant in contexts where 

nonlinear dynamics, as revealed by TAR and MTAR models, 

play a significant role in shaping market responsiveness. The 

implication is that markets do not respond uniformly to price 

changes; instead, they exhibit threshold-dependent behavior 

that disproportionately affects rural and remote producers. 

When price increases trigger faster responses than decreases, 

it suggests an inherent bias that favors more powerful market 

actors—often those in urban centers or with better logistical 

capabilities. Addressing these asymmetries requires a multi-

pronged strategy that not only improves physical 

infrastructure but also strengthens institutional frameworks 

and enhances market transparency. In doing so, market signals 

can become more equitable and efficient, enabling smallholder 

producers to better align with demand shifts and participate 

more fairly in the value chain [47]. 

Granger causality results support the third hypothesis by 

showing directional predictability patterns. In close pairs like 

Medan–Karo, rural price series help forecast urban prices—

potentially due to stronger local supply signals. In contrast, in 

more geographically dispersed pairs such as Medan–Dairi and 

Medan–Madina, urban markets statistically lead, reflecting 

centralized price signals. However, these findings should be 

interpreted as predictive relationships within the model rather 

than evidence of real-world pricing dominance. 

Conversely, in more geographically spread pairs like 

Medan–Dairi or Medan–Madina, price leadership clearly 

rested with urban centers. This aligns with earlier findings 

from Nigeria [43] where rural price influence wanes with 

distance and weaker infrastructure. Interestingly, bidirectional 

causality was unique to the most remote pairing—Medan–

Madina—suggesting feedback loops driven by market 

isolation and delayed adjustment. 

Overall, the study confirms that North Sumatra’s red shallot 

markets are indeed spatially integrated, though shaped by 

notable asymmetries linked to geography and economic 

thresholds. These insights not only resonate with broader 

patterns in developing economies but also offer practical 

guidance for enhancing market linkages and tailoring regional 

agricultural policies. The conclusions contribute both to 

academic understanding and to policy strategies aimed at 

fostering resilient and efficient food systems. 

 

 

4. CONCLUSION AND POLICY IMPLICATION 

 

4.1 Conclusion 

 

This study examined the spatial price integration and 

asymmetric threshold dynamics in red shallot markets between 

urban and rural areas in North Sumatra, Indonesia. Using a 

comprehensive suite of time-series econometric tools—

including Johansen cointegration, VECM, TVAR, and IRF—

the analysis provided empirical validation for the three 

research hypotheses: 

1) Long-run spatial integration exists between urban 

(Medan) and rural markets (Karo, Dairi, Humbang, 

Madina), confirming that despite temporal volatility, 

these markets co-move over time. 

2) Price transmission is asymmetric and threshold-

dependent, with spatial distance playing a critical role. 

Close markets adjust to small shocks, while distant 

markets require larger deviations to trigger a response. 

3) Causality is structurally asymmetric, with urban 

markets often exerting more influence on rural 

counterparts—except in cases of geographic 

proximity, where rural markets can lead urban price 

formation. 

These findings offer strong scientific support for 

understanding the mechanics of spatial food market systems in 

developing economies and provide a framework for designing 

interventions aimed at reducing price volatility and promoting 

rural-urban equity. 

 

4.2 Policy implications 

 

To enhance market efficiency and promote more inclusive 

food systems, several actionable recommendations emerge 

from the study: 

1) Invest in rural infrastructure and logistics: Improving 

road connectivity and transportation systems, 

particularly between distant rural production zones 

and urban consumption centers, will reduce threshold 

frictions and accelerate market response times. 

2) Strengthen rural market information systems: 

Establishing digital price boards, SMS-alert systems, 

and mobile apps for farmers can reduce information 

asymmetry and enable quicker responses to urban 

price changes. 

3) Promote decentralized agro-processing hubs: Local 

value addition can reduce the burden on urban centers 

and shorten the price transmission chain, creating 

more balanced market power. 

4) Encourage inter-market coordination platforms: 

Regional trade forums or commodity coordination 

councils can standardize transaction practices and 
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disseminate real-time data across market nodes. 

5) Tailor policy to spatial geography: Recognizing that 

price behavior varies by distance, policies should 

adopt a differentiated spatial strategy—targeting 

closer market pairs with storage interventions and 

more distant ones with bulk logistics solutions. 

To ground these recommendations in quantitative terms, we 

simulate a simplified elasticity scenario using observed 

threshold behaviors from the TVAR model. In long-distance 

markets such as STR–Madina (468km), where the identified 

price threshold is IDR 35,000, a 10% reduction in transport 

costs—achieved through improved rural road infrastructure or 

supply chain coordination—is projected to reduce the response 

threshold by approximately 20-25%. This estimate is based on 

threshold sensitivity observed across market pairs and 

assumes a non-linear but compressible link between 

transaction costs and the regime-switching trigger. In practical 

terms, such a reduction would enable rural market prices to 

adjust to urban shocks more readily, narrowing spatial price 

gaps and improving integration efficiency. Further, integrating 

digital pricing platforms could complement physical logistics 

by improving the speed of signal transmission, especially in 

mid-distance corridors like Dairi–Medan. 

In the broader global context, these insights support the call 

for localized, resilient, and digitally integrated food systems. 

The lessons from North Sumatra can inform rural 

transformation strategies in Sub-Saharan Africa, South Asia, 

and Latin America, where spatial heterogeneity and market 

segmentation remain critical barriers to food system equity. 

 

4.3 Limitations and future research 

 

While this study provides valuable insights into spatial price 

integration and asymmetric market behavior, several 

limitations merit acknowledgment. First, the analysis is 

constrained by the use of monthly consumer price data, which 

may obscure intra-month volatility and real-time trading 

behaviors. Second, the models do not fully account for 

external shocks such as climate variability, fuel price changes, 

or policy interventions that could influence market dynamics. 

Third, the study focuses on red shallots as a single commodity, 

limiting generalizability across other perishable or non-

perishable crops. Future research should consider 

incorporating higher-frequency data, broader geographic 

samples, and multi-commodity analysis to capture the 

complexity of agro-food networks. Integrating qualitative 

data—such as trader surveys and farmer interviews—could 

also enrich the interpretation of quantitative findings and 

provide a more holistic understanding of spatial market 

behavior. 
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