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 This article proposes a new and efficient iterative procedure to solve a class of discrete-time 

nonlinear optimal control problems. Based on the Pontryagin's maximum principle, the 

necessary optimality conditions are formulated in the form of a nonlinear discrete boundary 

value problem (BVP). This problem is then reduced into a sequence of linear discrete BVPs 

by applying a series expansion approach called the modal series method. Solving the 

aforementioned sequence by using the techniques of solving linear difference equations, the 

optimal control law is derived in the form of a uniformly convergent series. In order to 

demonstrate the efficiency of the proposed method in practice, an iterative algorithm with a 

fast rate of convergence is provided. In a recursive manner, only a few iterations are needed to 

find a suboptimal control law with enough accuracy. The effectiveness of this new technique 

is verified by solving some numerical examples. 
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1. INTRODUCTION 

 

In the theory of optimal control, the nonlinear control 

problems have attracted a remarkable attention since they have 

a wide variety of applications in different areas like 

mechanical engineering, biology, medicine, economy, and 

robotics [1-4]. Nowadays, due to the improvement of digital 

computers, the discrete-time optimal control problems (OCPs) 

have more advantages than the corresponding continuous-time 

ones [5-9]. Hence, the discrete OCPs with nonlinear terms 

have importance both from practical and theoretical 

viewpoints. 

Applying the indirect techniques, the discrete nonlinear 

OCPs are often converted into the Hamilton-Jacobi-Bellman 

(HJB) equation or a discrete boundary value problem (BVP). 

Many approaches have been proposed to obtain the 

approximate solution of the HJB equation such as the adaptive 

dynamic programming (DP). This technique is classified into 

several schemes including the heuristic DP [10], dual heuristic 

DP [11], action-dependent DP, and Q-learning DP [12]. 

However, the DP policy is not computationally tenable to run 

and solves the time-varying HJB equations [13].  To overcome 

this difficulty, a successive approximation approach (SAA) 

was introduced in Ref. [14]. In this method, a nonlinear 

discrete BVP is converted into a sequence of non-

homogeneous linear time-varying discrete BVPs. The 

sensitivity approach in Ref. [15] is similar to the SAA except 

that it uses a sensitivity parameter to provide the approximate 

solution. In Ref. [16], an inverse optimal control scheme for 

solving the HJB equation was needed for constructing the 

control law. In the model predictive control (MPC) or receding 

horizon control (RHC), an infinite horizon OCP was 

transformed into a sequence of finite horizon problems, but the 

stability analysis of the MPC depends on the appropriate 

designed controller [17]. A discrete-time state-dependent 

Riccati equation for the discrete nonlinear systems was 

proposed in Ref. [18]. The main disadvantage of this approach 

is the time-varying Riccati equation, which causes some 

difficulties in the practical implementation. The generating 

function (GF) method gives the optimal solutions according to 

the GFs, which are obtained numerically as the Taylor series 

expansion [19]. But this scheme is applicable to the systems 

close to linear form and it is dependent to the power series 

convergence, which is difficult to estimate its convergence 

region [20]. 

The modal series method, which was first introduced in Ref. 

[21], gives a good view of nonlinear systems' dynamical 

behaviours [22-23]. This method was firstly developed for the 

analysis of dynamical systems with nonlinear terms [24-26], 

and recently it was extended for the optimal control and MPC 

of nonlinear dynamical systems [27-29]. Motivated by the 

remarkable advantages of the model series method, we aim to 

extend this technique in this paper to solve a class of discrete 

nonlinear OCPs. By using the Pontryagin’s maximum 

principle, the optimality conditions lead to the nonlinear 

discrete BVP. This problem, using the modal series method, is 

then transformed into a sequence of linear discrete BVPs, 

which can be easily solved by the techniques of solving linear 

difference equations. The optimal solution is also obtained in 

the form of a uniformly convergent series. An iterative 

algorithm with low computational effort for finding a 

suboptimal control law is suggested. Simulation results 

confirm the effectiveness of the proposed approach. 

The rest of this paper is structured as follows. Section 2 

explains the problem statement. Section 3 focuses on 

extending the numerical method. In Sect. 4, an iterative 

algorithm with a fast convergence rate and low computational 

effort is introduced to obtain the suboptimal control law. 
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Simulation results are given in Sect. 5 to verify the validity of 

the new technique. Finally, some conclusions and future works 

are discussed in the last section. 

 

 

2. PROBLEM FORMULATION 
 

In this section, we formulate a discrete nonlinear OCP and 

implement its necessary optimality conditions. To do so, we 

consider a discrete-time nonlinear system as follows 

 

{
𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)) + 𝐵𝑢(𝑘) + 𝐻(𝑥(𝑘))𝑢(𝑘)

𝑥(0) = 𝑥0                                                                   
     (1) 

 

where, x ∈ 𝑅𝑛  is the state vector and u ∈ 𝑅𝑚  is the control 

variable, 𝑥0 ∈ 𝑅
𝑛

 is the initial state, f ∶  ℝ𝑛 → ℝ𝑛  and 

H: ℝ𝑛 → ℝ𝑛×𝑚 are, respectively, the analytic vector function 

and analytic mapping such that f(0)=0, and B∈ ℝ𝑛×𝑚  is a 

constant matrix. The nonlinear function f can be reformulated 

by 

 

𝑓(𝑥(𝑘)) = 𝐴𝑥(𝑘) + 𝑔(𝑥(𝑘))                     (2) 

 
Thus, the system (1) can be rewritten as follows 

 

{
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝑔(𝑥(𝑘)) + [𝐵 + 𝐻(𝑥(𝑘))]𝑢(𝑘)

𝑥(0) = 𝑥0                                                                               
   (3) 

 

The main objective is to minimize the following quadratic 

performance index (QPI) through finding an optimal control 

law 𝑢∗(𝑘) for system (3) 

 

               𝐽 =
1

2
∑ [𝑥𝑇(𝑘)𝑄𝑥(𝑘) + 𝑢𝑇(𝑘)𝑅𝑢(𝑘)]𝑁−1
𝑘=0           (4) 

 

where, Q ∈ ℝ𝑛×𝑛is a positive semi-definite and R ∈ ℝ𝑚×𝑚 is 

a positive-definite matrix. 

The necessary optimality conditions, using the Pontryagin's 

maximum principle, lead to the nonlinear discrete BVP in the 

following form 

 

{
 
 
 

 
 
 
𝑥(k + 1) = Ax(k) + g(x(k))                                         

−[𝐵 + 𝐻(𝑥(𝑘))]𝑅−1[𝐵 + 𝐻(𝑥(𝑘))]
𝑇
𝑝(𝑘 + 1),         

p(k) = Qx(k) + [𝐴 +
𝜕g(x(k))

𝜕x(k)
+
𝜕H(x(k))

𝜕x(k)
]
𝑇

𝑝(𝑘 + 1)

x(0) = x0, p(N) = 0,       k = 0,1, … , N − 1

(5) 

 

where, p ∈  ℝ𝑛 is the co-state vector.  

 

Also, the optimal control law is derived 

 

u(k) = −𝑅−1[𝐵 + 𝐻(𝑥(𝑘))]
𝑇
𝑝(𝑘 + 1)           (6) 

 

Reformulating the problem (5) in a compact form, we 

provide 

 

{

𝑥(𝑘 + 1) = Φ(x(k), p(k + 1)),                                 

𝑝(𝑘) = Φ̅(x(k), p(k + 1)),                                         

x(0) = x0, p(N) = 0,   k = 0,1, … , N − 1,

(7) 

 

where, Φ(x(k), p(k + 1)) and Φ̅(x(k), p(k + 1)) are  

 

{
 
 

 
 
Φ(x(k), p(k + 1)) = Ax(k) + g(x(k))                               

−[𝐵 + 𝐻(𝑥(𝑘))]𝑅−1[𝐵 + 𝐻(𝑥(𝑘))]
𝑇
𝑝(𝑘 + 1),              

Φ̅(x(k), p(k + 1)) = Qx(k) + [𝐴 +
𝜕g(x(k))

𝜕x(k)
+
𝜕H(x(k))

𝜕x(k)
]
𝑇

× 𝑝(𝑘 + 1).                                                

0  (8) 

 

Since f(x(k)) and H(x(k)) are assumed to be analytic, 

Φ: ℝ𝑛×𝑛 → ℝ𝑛  and Φ̅: ℝ𝑛×𝑛 → ℝ𝑛  are nonlinear analytic 

vector functions. 

 

 

3. THE EXTENDED NUMERICAL METHOD 

 

The nonlinear discrete BVP (7) cannot be solved 

analytically except in some simple cases. Hence, we extend 

the modal series method to transform this problem into a 

sequence of linear discrete BVPs. For this purpose, first we 

expand the nonlinear non-polynomial terms of (7) around the 

operating point (x,p)=(0,0) 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 x(k + 1) =

𝜕Φ

𝜕x
|𝑥=0
𝑝=0

𝑥(𝑘) +
𝜕Φ

𝜕p
|𝑥=0
𝑝=0

𝑝(𝑘 + 1)               

+
1

2!
[
𝑥𝑇(𝑘)Φ1

20𝑥(𝑘)
⋮

𝑥𝑇(𝑘)Φ𝑛
20𝑥(𝑘)

] + [
𝑥𝑇(𝑘)Φ1

11𝑝(𝑘 + 1)
⋮

𝑥𝑇(𝑘)Φ𝑛
11𝑝(𝑘 + 1)

]            

+
1

2!
[
𝑝𝑇(𝑘 + 1)Φ1

02𝑝(𝑘 + 1)
⋮

𝑝𝑇(𝑘 + 1)Φ𝑛
02𝑝(𝑘 + 1)

] + ⋯,                             

p(k) =
𝜕Φ̅

𝜕x
|𝑥=0
𝑝=0

𝑥(𝑘) +
𝜕Φ̅

𝜕p
|𝑥=0
𝑝=0

𝑝(𝑘 + 1)                    

+
1

2!
[
𝑥𝑇(𝑘)Φ̅1

20𝑥(𝑘)
⋮

𝑥𝑇(𝑘)Φ̅𝑛
20𝑥(𝑘)

] + [
𝑥𝑇(𝑘)Φ̅1

11𝑝(𝑘 + 1)
⋮

𝑥𝑇(𝑘)Φ̅𝑛
11𝑝(𝑘 + 1)

]             

+
1

2!
[
𝑝𝑇(𝑘 + 1)Φ̅1

02𝑝(𝑘 + 1)
⋮

𝑝𝑇(𝑘 + 1)Φ̅𝑛
02𝑝(𝑘 + 1)

] + ⋯,                              

(9) 

 
where, the coefficients in (9) are written as 

 

Φ𝑖
20 =

𝜕2Φ𝑖
𝜕x2

|𝑥=0
𝑝=0

, Φ̅𝑖
20 =

𝜕2Φ̅𝑖
𝜕x2

|𝑥=0
𝑝=0

,

Φ𝑖
11 =

𝜕2Φ𝑖
𝜕p𝜕x

|𝑥=0
𝑝=0

, Φ̅𝑖
11 =

𝜕2Φ̅𝑖
𝜕p𝜕x

|𝑥=0
𝑝=0

,

Φ𝑖
02 =

𝜕2Φ𝑖
𝜕p2

|𝑥=0
𝑝=0

, Φ̅𝑖
02 =

𝜕2Φ̅𝑖
𝜕p2

|𝑥=0
𝑝=0

  

 

 

and Φ𝑖  and Φ̅𝑖  the 𝑖 th components of the vector functions  

Φ and Φ̅, respectively. 

 

Theorem 1. The solution of the nonlinear discrete BVP (7) 

can be obtained as 

 

{

𝑥(k) = ∑ ℎ𝑗(𝑘)
∞
j=1 ,                                  

p(k + 1) = ∑ ℎ̅𝑗(𝑘 + 1),
∞
j=1                   

 (10) 
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where, ℎ𝑗(𝑘) and ℎ̅𝑗(𝑘 + 1) , for j ≥ 1, are determined from a 

sequence of a linear discrete BVPs.  

Proof. The solution of nonlinear discrete BVP (7) for an 

arbitrary initial condition x0 can be written as 

 

{
x(k) = Ω(𝑥0, 𝑘)              

p(k + 1) = Ω̅(𝑥0, 𝑘 + 1)
                       (11) 

 

Since Φand Φ̅ in (7) are analytic, Ω: ℝ𝑛 × ℝ → ℝ𝑛 and 

Ω̅: ℝ𝑛 × ℝ → ℝ𝑛 are analytic vector functions with respect to 

𝑥0 [30]. Therefore, the system (11) is expanded as Maclaurin 

series with respect to the arbitrary initial condition 𝑥0. That is 

 

𝑥(𝑘) = Ω(𝑥0, 𝑘) 
 

=
𝜕Ω(𝑥0, k)

𝜕x0
|𝑥0=0x0⏟          

ℎ1(𝑘)

 

 

+
1

2!

[
 
 
 
 𝑥0
𝑇 𝜕

2Ω1(𝑥0,𝑘)

𝜕x0
2 |𝑥0=0x0

⋮

𝑥0
𝑇 𝜕

2Ωn(𝑥0,𝑘)

𝜕x0
2 |𝑥0=0x0]

 
 
 
 

⏟              
ℎ2(𝑘)

+⋯,              (12a) 

 

𝑝(𝑘 + 1) = Ω̅(𝑥0, 𝑘 + 1) 
 

=
𝜕Ω̅(𝑥0, k + 1)

𝜕x0
|𝑥0=0x0⏟              

ℎ̅1(𝑘+1)

 

 

+
1

2!

[
 
 
 
 𝑥0
𝑇 𝜕

2Ω̅1(𝑥0,𝑘+1)

𝜕x0
2 |𝑥0=0x0

⋮

𝑥0
𝑇 𝜕

2Ω̅n(𝑥0,𝑘+1)

𝜕x0
2 |𝑥0=0x0]

 
 
 
 

⏟                
ℎ̅2(𝑘+1)

+. ..             (12b) 

 

The vector functions Ω and Ω̅ have the components Ωi and 

Ω̅i, respectively. Also, the components of ℎ𝑗(𝑘) and ℎ̅𝑗(𝑘 +

1) contain a linear combination depending on multiplication 

of j elements of the vector 𝑥0 . For instance, ℎ2(𝑘)  and 

ℎ̅2(𝑘 + 1)  contain a linear combination of  𝑥0,𝑘𝑥0,𝑙  for all 

𝑘, 𝑙 𝜖{1, … , 𝑛 } , where x0,m  is the mth element of x0 . In 

addition, the existence and uniformly convergence of the 

formulas in (12a) and (12b) are guaranteed since Ω and Ω̅ are 

analytic vector functions. 

Let 𝜃1 ⊆ ℝ
𝑛 and 𝜃2 ⊆ ℝ

𝑛 be the subsets of the initial state 

space and the convergence domains of the Maclaurin series in 

(12a) and (12b), respectively. Assume that Θ = 𝜃1 ∩ 𝜃2 is not 

empty and let x(0)= 𝜀x0 ∈ Θ be the initial condition, where 𝜀 
is an arbitrary parameter. The parameter 𝜀  exists since Θ is 

assumed to be nonempty. The value of 𝜀 does not have any 

importance and just simplifies the calculations. Therefore, 

(12a) and (12b) are rewritten with respect to the 𝜀x0 instead of 

x0 such that 

 

{
 
 

 
 
x𝜀(k) = Ω(𝜀𝑥0, 𝑘) = 𝜀ℎ1(𝑘) + 𝜀

2ℎ2(𝑘) +            

= ∑ 𝜀𝑖ℎ𝑖(𝑘)
∞
i=1                                         

p𝜀(k + 1) = Ω̅(𝜀𝑥0, 𝑘 + 1)                                 

= 𝜀ℎ̅1(𝑘 + 1) + 𝜀
2ℎ̅2(𝑘 + 1) +⋯

= ∑ 𝜀𝑖ℎ̅𝑖(𝑘 + 1)
∞
i=1                            

(13) 

Equation (13) must satisfy (9) since  𝜀x0 ∈ Θ. Substituting 

(13) in (9) and rearranging based on the order of  𝜀, we have 

 

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
𝜀ℎ1(𝑘 + 1) + 𝜀

2ℎ2(𝑘 + 1) + ⋯                                   

= 𝜀 (
𝜕Φ

𝜕x
|𝑥=0
𝑝=0

ℎ1(𝑘) +
𝜕Φ

𝜕p
|𝑥=0
𝑝=0

ℎ̅1(𝑘 + 1))                  

+𝜀2(
𝜕Φ

𝜕x
|𝑥=0
𝑝=0

ℎ2(𝑘) +
𝜕Φ

𝜕p
|𝑥=0
𝑝=0

ℎ̅2(𝑘 + 1)                    

+
1

2!
[
ℎ1
𝑇(𝑘)Φ1

20ℎ1(𝑘)
⋮

ℎ1
𝑇(𝑘)Φ𝑛

20ℎ1(𝑘)

] + [
ℎ1
𝑇(𝑘)Φ1

11ℎ̅1(𝑘 + 1)
⋮

ℎ1
𝑇(𝑘)Φ𝑛

11ℎ̅1(𝑘 + 1)

]

+
1

2!
[
ℎ̅1
𝑇
(𝑘 + 1)Φ1

02ℎ̅1(𝑘 + 1)
⋮

ℎ̅1
𝑇
(𝑘 + 1)Φ𝑛

02ℎ̅1(𝑘 + 1)

] + ⋯),                     

𝜀ℎ̅1(𝑘) + 𝜀
2ℎ̅2(𝑘) + ⋯                                                       

= 𝜀 (
𝜕Φ̅

𝜕x
|𝑥=0
𝑝=0

ℎ1(𝑘) +
𝜕Φ̅

𝜕p
|𝑥=0
𝑝=0

ℎ̅1(𝑘 + 1))                    

+𝜀2(
𝜕Φ̅

𝜕x
|𝑥=0
𝑝=0

ℎ2(𝑘) +
𝜕Φ̅

𝜕p
|𝑥=0
𝑝=0

ℎ̅2(𝑘 + 1)                      

+
1

2!
[
ℎ1
𝑇(𝑘)Φ̅1

20ℎ1(𝑘)
⋮

ℎ1
𝑇(𝑘)Φ̅𝑛

20ℎ1(𝑘)

] + [
ℎ1
𝑇(𝑘)Φ̅1

11ℎ̅1(𝑘 + 1)
⋮

ℎ1
𝑇(𝑘)Φ̅𝑛

11ℎ̅1(𝑘 + 1)

]

+
1

2!
[
ℎ̅1
𝑇
(𝑘 + 1)Φ̅1

02ℎ̅1(𝑘 + 1)
⋮

ℎ̅1
𝑇
(𝑘 + 1)Φ̅𝑛

02ℎ̅1(𝑘 + 1)

] + ⋯).              

(14) 

 

The coefficients of the same order of 𝜀  on both sides of 

equation (14) must be equal since (14) must hold for any 𝜀x0 ∈
Θ. This procedure leads to the following expressions 

 

𝜀: {

ℎ1(k + 1) =
𝜕Φ

𝜕x
|𝑥=0
𝑝=0

ℎ1(𝑘) +
𝜕Φ

𝜕p
|𝑥=0
𝑝=0

ℎ̅1(𝑘 + 1)

ℎ̅1(𝑘) =
𝜕Φ̅

𝜕x
|𝑥=0
𝑝=0

ℎ1(𝑘) +
𝜕Φ̅

𝜕p
|𝑥=0
𝑝=0

ℎ̅1(𝑘 + 1)       
 (15a) 

 

𝜀2:

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 ℎ2(k + 1) =

𝜕Φ

𝜕x
|𝑥=0
𝑝=0

ℎ2(𝑘) +
𝜕Φ

𝜕p
|𝑥=0
𝑝=0

ℎ̅2(𝑘 + 1)    

+
1

2!
[
ℎ1
𝑇(𝑘)Φ1

20ℎ1(𝑘)
⋮

ℎ1
𝑇(𝑘)Φ𝑛

20ℎ1(𝑘)
] + [

ℎ1
𝑇(𝑘)Φ1

11ℎ̅1(𝑘 + 1)
⋮

ℎ1
𝑇(𝑘)Φ𝑛

11ℎ̅1(𝑘 + 1)
]

+
1

2!
[
ℎ̅1
𝑇
(𝑘 + 1)Φ1

02ℎ̅1(𝑘 + 1)
⋮

ℎ̅1
𝑇
(𝑘 + 1)Φ𝑛

02ℎ̅1(𝑘 + 1)

]                               

ℎ̅2(𝑘) =
𝜕Φ̅

𝜕x
|𝑥=0
𝑝=0

ℎ2(𝑘) +
𝜕Φ̅

𝜕p
|𝑥=0
𝑝=0

ℎ̅2(𝑘 + 1)            

+
1

2!
[
ℎ1
𝑇(𝑘)Φ̅1

20ℎ1(𝑘)
⋮

ℎ1
𝑇(𝑘)Φ̅𝑛

20ℎ1(𝑘)
] + [

ℎ1
𝑇(𝑘)Φ̅1

11ℎ̅1(𝑘 + 1)
⋮

ℎ1
𝑇(𝑘)Φ̅𝑛

11ℎ̅1(𝑘 + 1)
]  

+
1

2!
[
ℎ̅1
𝑇
(𝑘 + 1)Φ̅1

02ℎ̅1(𝑘 + 1)
⋮

ℎ̅1
𝑇
(𝑘 + 1)Φ̅𝑛

02ℎ̅1(𝑘 + 1)

]                           

(15b) 

       ⋮ 
 

and so on (we continue the process with respect to the order of 

ε). Notice that, the expressions 15(a) and 15(b) are two 
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systems of homogeneous and non-homogeneous linear time-

invariant first-order difference equations, respectively. At the 

first step, assume that ℎ1(𝑘)  and ℎ̅1(𝑘 + 1)  have been 

obtained from (15𝑎). In the second step, ℎ2(𝑘) and ℎ̅2(𝑘 +
1)can be obtained simply from 15(b) as the non-homogeneous 

terms of 15(b) are computed from the solution of 

(15𝑎). Continuing the mentioned process, ℎ𝑖(𝑘) and ℎ̅𝑖(𝑘 +
1)  for i ≥  2 can be obtained easily by solving the non-

homogeneous linear time-invariant first-order difference 

equations in the 𝑖th step. Within a recursive procedure, the 

non-homogeneous terms are calculated by the information of 

previous steps. 

Setting k=0 and k=N-1 in (13), the boundary conditions are 

obtained in the form as below 

 

{
εx0 = 𝑥𝜀(0) = Ω(𝜀𝑥0, 0) = 𝜀ℎ1(0) + 𝜀

2ℎ2(0) + ⋯

0 = pε(𝑁) = Ω̅(𝜀𝑥0, 𝑁) = 𝜀ℎ̅1(𝑁) + 𝜀
2ℎ̅2(𝑁) + ⋯

   (16) 

 

The coefficients of the same power of 𝜀 on both sides of 

equation (16) must be equal; thus, we have 

 

{

ℎ1(0) = x0, ℎ𝑖(0) = 0                          

ℎ̅1(𝑁) = 0, ℎ̅𝑖(𝑁) = 0        i ≥ 2
         (17) 

 

and the proof is complete. 

 

Corollary 1. The optimal trajectory and control law are 

determined by 

 

{

𝑥∗(k) = ∑ ℎ𝑖(𝑘)
∞
i=1                                                            

𝑢∗(k) = −𝑅−1[𝐵 + 𝐻(∑ ℎ𝑖(𝑘)
∞
i=1 )]𝑇 ∑ ℎ̅𝑖(𝑘 + 1)

∞
i=1

 (18) 

 

where, ℎ𝑖(𝑘) and ℎ̅𝑖(𝑘 + 1) for i ≥ 1 are obtained by solving 

the recursive sequence of (15a) and (15b). 

According to the Corollary 1, the proposed method just 

requires solving a sequence of linear time-invariant discrete 

BVPs, while the other approximation methods such as the 

SAA and sensitivity approach need to solve a sequence of 

linear time-varying problems [14-15]. Thus, the proposed 

approach takes the memory space and calculating time less 

than the other approximation techniques. 

The uniform convergence of the solution in (18) is proved 

by the next theorem. 

 

Theorem 2. Define the state, co-state, and control 

sequences as follows 

 

{
 
 

 
 
𝑥(𝑙)(𝑘) ≜ ∑ ℎ𝑖(𝑘)

l
i=1                                              

𝑝(𝑙)(𝑘 + 1) ≜ ∑ ℎ̅𝑖(𝑘 + 1)  
l
i=1                            

𝑢(𝑙)(𝑘) ≜ −𝑅−1 [𝐵 + 𝐻 (𝑥(𝑙)(𝑘))]
𝑇

𝑝(𝑙)(𝑘 + 1)

(19) 

 

Then, the above-mentioned sequences converge uniformly 

to 𝑥∗(k), 𝑝∗(k + 1), and 𝑢∗(k), respectively. 

 

Proof. As can be interpreted from the proof of Theorem 1, 

the expansions ∑ ℎ𝑖(𝑘) 
 ∞
i=1 and ∑ ℎ̅𝑖(𝑘 + 1) 

∞
i=1 converge 

uniformly to the exact solution of the problem (7). This means 

 

{
  
 

  
 𝑥(𝑘) ≜ lim

𝑙→∞
∑ ℎ𝑖(𝑘)
l
i=1 ⇔ 𝑥(𝑙)(𝑘)

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦
→       𝑥(𝑘)

𝑝(𝑘 + 1) ≜ lim
𝑙→∞

∑ ℎ̅𝑖(𝑘 + 1)
l
j=1                              

⇔ 𝑝(𝑙)(𝑘 + 1)
𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦
→       𝑝(𝑘 + 1)                       

(20) 

 

Moreover, the control sequence depends on the state and co-

state vector sequences through an analytic mapping and a 

linear operator, respectively. Thus, the control sequence 

converges uniformly to the optimal control law, i.e.,  

 

𝑢∗(k) = −𝑅−1 [𝐵 + 𝐻 (∑ℎ𝑖(𝑘)

∞

i=1

)]

𝑇

∑ℎ̅𝑖(𝑘 + 1)

∞

i=1

 

= −𝑅−1 [𝐵 + 𝐻(lim
𝑙→∞

∑ℎ𝑖(𝑘)

l

i=1

)]

𝑇

lim
𝑙→∞

∑ℎ̅𝑖(𝑘 + 1)

l

j=1

 

= lim
𝑙→∞

{−𝑅−1 [𝐵 + 𝐻(∑ℎ𝑖(𝑘)

l

i=1

)]

𝑇

∑ℎ̅𝑖(𝑘 + 1)

l

j=1

} 

= lim
𝑙→∞

{−𝑅−1[𝐵 + 𝐻(𝑥(𝑙)(𝑘))]
𝑇
𝑝(𝑙)(𝑘 + 1)} 

= lim
𝑙→∞
  𝑢𝑙(k)                                 (21) 

 

Now, the proof is complete. 

 

Remark 1. Assume that the solution of discrete nonlinear 

OCP (3) and (4) with the initial condition x0 ∈ Θ is available 

as in (18). Then, it is not necessary to repeat the recursive 

process to find the solution for any other initial condition 𝜀x0, 

as long as 𝜀x0 ∈ Θ. For this problem, the optimal trajectory 

and control law can be obtained from 

 

{
𝑥∗(k) = ∑ 𝜀𝑖ℎ𝑖(𝑘)

∞
i=1                                                         

𝑢∗(k) = −𝑅−1[𝐵 + 𝐻(∑ 𝜀𝑖ℎ𝑖(𝑘)
∞
i=1 )]𝑇 ∑ 𝜀𝑖ℎ̅𝑖(𝑘 + 1)

∞
i=1

(22) 

 

 

4. SUBOPTIMAL CONTROL DESIGN 

 

This section deals with the result of previous section to be 

applicable for practical purposes. In the following, we present 

a suboptimal control law and an iterative algorithm. The 

optimal trajectory and control in (18), including the infinite 

series, are almost impossible to obtain. Substituting ∞ with a 

finite positive number M, the approximation solutions are 

attained by the Mth-order suboptimal trajectory and control 

law 

 

{

x𝑀(k) = ∑ ℎ𝑖(𝑘)
M
j=1                                                               

u𝑀(k) = −𝑅
−1[𝐵 + 𝐻(∑ ℎ𝑖(𝑘)

M
i=1 )]

𝑇
∑ ℎ̅𝑖(𝑘 + 1)
M
i=1

(23) 

 

In practical applications, the integer M is determined by a 

concrete control precision. Furthermore, the QPI can be 

calculated by 

 

𝐽𝑀 =
1

2
∑ [𝑥𝑀

𝑇 (𝑘)𝑄𝑥𝑀(𝑘) + 𝑢𝑀
𝑇 (𝑘)𝑅𝑢𝑀(𝑘)

𝑁−1
𝑘=0 ]  (24) 
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The Mth-order suboptimal control is accurate enough if the 

following condition holds for a given positive constant 𝛾 > 0 

 

|
𝐽𝑀−𝐽𝑀−1

𝐽𝑀
| < 𝛾                            (25) 

 

The values of the QPI and the Mth-order suboptimal control 

law will be very close to the 𝐽∗and 𝑢∗(𝑘), respectively, if the 

error bound is chosen small enough. 

In order to obtain 𝐽𝑀 and 𝑢𝑀(𝑘), the following iterative 

algorithm is presented. 

 

4.1 Iterative algorithm 

 

We summarize the algorithmic steps as below: 

 

i.  Consider i=1. 

ii.  Compute ℎ𝑖(𝑘) and ℎ̅𝑖(𝑘 + 1) through the proof of 

Theorem 1. 

iii. Consider M=i, obtain 𝑥𝑀(𝑘) and 𝑢𝑀(𝑘) from (23), 

and then calculate 𝐽𝑀 from (24). 

iv. Go to Step (v) if (25) holds for the given 𝛾 > 0; else, 

go to step (ii) and replace i by i+1. 

v. The control input u𝑀(k) is the desirable suboptimal 

control law. 

 

The above algorithm, based on Theorem 2, has a fast rate of 

convergence. Thus, only a small number of iterations are 

needed to get a desirable accuracy, which decreases the size of 

computations effectively. 

 

 

5. NUMERICAL RESULTS 

 

In this section, the proposed iterative algorithm is applied to 

solve two numerical examples for showing the validity and the 

effectiveness of the proposed method. 

 

Example 1. The model of an F-8 fighter aircraft was 

proposed at the first time in [31-33]. The discrete nonlinear 

OCP of the F-8 fighter aircraft is given by 

 

𝐉(𝐤) =
𝟏

𝟐
∑ [𝐱𝟏

𝟐(𝐤) + 𝐱𝟐
𝟐(𝐤) + 𝐱𝟑

𝟐(𝐤) + 𝟓𝐮𝟐(𝐤)]𝟏𝟓𝟗𝟗
𝐤=𝟎   

𝑨 = [
𝟎. 𝟗𝟗𝟔𝟓 𝟎 𝟎. 𝟎𝟎𝟓
−𝟎. 𝟎𝟎𝟎𝟏 𝟏 𝟎. 𝟎𝟎𝟓
−𝟎. 𝟎𝟐𝟏 𝟎 𝟎. 𝟗𝟗𝟖𝟎

]   

𝒈(𝒙) = [

𝟎. 𝟎𝟎𝟐𝟑𝐱𝟏
𝟐 − 𝟎. 𝟎𝟎𝟎𝟓𝒙𝟏𝒙𝟑 + 𝟎. 𝟎𝟏𝟗𝟐𝒙𝟏

𝟑

−𝟎. 𝟎𝟎𝟎𝟏𝐱𝟐
𝟐 − 𝟎. 𝟎𝟎𝟓𝐱𝟏

𝟐𝐱𝟑
𝟐

−𝟎. 𝟎𝟎𝟐𝟒𝐱𝟏
𝟐 − 𝟎. 𝟎𝟏𝟖𝐱𝟏

𝟑 + 𝟎. 𝟎𝟎𝟎𝟎𝟓𝐱𝟏
𝟐𝐱𝟑
𝟐

]

𝑯(𝒙) = [

𝟎. 𝟎𝟎𝟏𝟒𝐱𝟏
𝟐 + 𝟎. 𝟎𝟎𝟎𝟎𝟖𝐱𝟐

𝟐

𝟎. 𝟎𝟎𝟎𝟎𝟖𝐱𝟐
𝟐

𝟎. 𝟎𝟑𝟏𝟑𝐱𝟐
𝟐

]                               

𝑩 = [
−𝟎. 𝟎𝟎𝟏𝟑
−𝟎. 𝟎𝟎𝟎𝟑
−𝟎. 𝟏𝟎𝟒𝟕

] , 𝒙(𝟎) = [

𝟓𝝅

𝟑𝟔

𝟎
𝟎

]                 

   (26) 

 

 

Table 1. Simulation results at different iterations for 

Example1 

 

i (Iterations) 𝑱𝒊 |
𝑱𝒊 − 𝑱𝒊−𝟏
𝑱𝒊

| 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

12.9017 

18.0879 

22.0233 

24.8668 

26.2316 

27.2317 

28.4959 

28.7099 

28.7168 

28.7126 

28.7126 

28.7126 

- 

0.2867 

0.1786 

0.1143 

0.0520 

0.0367 

0.0269 

0.0178 

0.0074 

0.00005 

0.00003 

0.0000001 

 

Table 2. Comparative results for Example 1 between the 

proposed method and the sensitivity approach 

 
Method i QPI error 

Modal series 

method 
12 28.7126 0.1× 10−6 

Sensitivity 

approach 
20 28.7765 0.0063 

 

According to the proposed approach, the following 

sequence of linear discrete BVPs should be solved in a 

recursive manner 

 

𝜀:

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ℎ1,1(𝑘 + 1) = 0.9956ℎ1,1(𝑘) + 0.005ℎ1,3(𝑘)   

−3.38 × 10−7ℎ̅1,1(𝑘 + 1)                                        

−7.8 × 10−8ℎ̅1,2(𝑘 + 1)                                           

−0.2722 × 10−7ℎ̅1,3(𝑘 + 1),                                   

ℎ1,2(𝑘 + 1) = −0.0001ℎ1,1(𝑘) + ℎ1,2(𝑘)              
+0.005ℎ1,3(𝑘) + 0.000263ℎ̅1,1(𝑘 + 1)                 

+6 × 10−5ℎ̅1,2(𝑘 + 1)                                                

−0.6282 × 10−5ℎ̅1,3(𝑘 + 1),                                    

ℎ1,3(𝑘 + 1) = −0.021ℎ1,1(𝑘) + 0.998ℎ1,3(𝑘)     

−0.2722 × 10−4ℎ̅1,1(𝑘 + 1)                                     

−0.6282 × 10−5ℎ̅1,2(𝑘 + 1)                                      

−0.002192 × 10−7ℎ̅1,3(𝑘 + 1),                                

ℎ̅1,1(𝑘) = ℎ1,1(𝑘) + 0.9956ℎ̅1,1(𝑘 + 1)                  

−0.0001ℎ̅1,2(𝑘 + 1) − 0.021ℎ̅1,3(𝑘 + 1),             

                                 
ℎ̅1,2(𝑘) = ℎ1,2(𝑘) + ℎ̅1,2(𝑘 + 1),                               

ℎ̅1,3(𝑘) = ℎ1,3(𝑘) + 0.005ℎ̅1,1(𝑘 + 1)                      

+0.005ℎ̅1,2(𝑘 + 1) + 0.998ℎ̅1,3(𝑘 + 1),                   
 

ℎ1(0) = [

ℎ1,1(0)

ℎ1,2(0)

ℎ1,3(0)

] = [

5π

36

0
0

],                                             

ℎ̅1(1600) = [

ℎ̅1,1(1600)

ℎ̅1,2(1600)

ℎ̅1,3(1600)

] = [
0
0
0
],                               

(27) 
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𝜀2:

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ℎ2,1(𝑘 + 1) = 0.9956ℎ2,1(𝑘) + 0.005ℎ2,3(𝑘)     

−3.38 × 10−7ℎ̅2,1(𝑘 + 1)                                           

−7.8 × 10−8ℎ̅2,2(𝑘 + 1)                                             

−0.2722 × 10−7ℎ̅2,3(𝑘 + 1)                                      

+0.0023ℎ1,1
2 (𝑘) − 0.0005ℎ1,1(𝑘)ℎ1,3(𝑘),           

ℎ2,2(𝑘 + 1) = −0.0001ℎ2,1(𝑘) + ℎ2,2(𝑘)           

+0.005ℎ2,3(𝑘) + 0.000263ℎ̅2,1(𝑘 + 1)              

+6 × 10−5ℎ̅2,2(𝑘 + 1)                                             

−0.6282 × 10−5ℎ̅2,3(𝑘 + 1),                                 

    

ℎ2,3(𝑘 + 1) = −0.021ℎ2,1(𝑘) + 0.998ℎ2,3(𝑘)      

−0.2722 × 10−4ℎ̅2,1(𝑘 + 1)                                       

−0.6282 × 10−5ℎ̅2,2(𝑘 + 1)                                       

−0.002192 × 10−7ℎ̅2,3(𝑘 + 1) − 0.0024ℎ1,1
2 (𝑘),

ℎ̅2,1(𝑘) = ℎ2,1(𝑘) + 0.9956ℎ̅2,1(𝑘 + 1)                   
−0.0001ℎ̅2,2(𝑘 + 1) − 0.021ℎ̅2,3(𝑘 + 1)                 

−0.0005ℎ̅1,1(𝑘 + 1)ℎ1,3(𝑘)                                         

+0.0046ℎ̅1,1(𝑘 + 1)ℎ1,1(𝑘)                                         

−0.0048ℎ̅1,3(𝑘 + 1)ℎ1,1(𝑘),                                        

ℎ̅2,2(𝑘) = ℎ2,2(𝑘) + ℎ̅2,2(𝑘 + 1)                                 

−0.0002ℎ̅1,1(𝑘 + 1)ℎ1,2(𝑘),                                        

ℎ̅2,3(𝑘) = ℎ2,3(𝑘) + 0.005ℎ̅2,1(𝑘 + 1)                     

+0.005ℎ̅2,2(𝑘 + 1) + 0.998ℎ̅2,3(𝑘 + 1)                   

−0.0005ℎ̅1,1(𝑘 + 1)ℎ1,1(𝑘),                                        

ℎ2(0) = [

ℎ2,1(0)

ℎ2,2(0)

ℎ2,3(0)

] = [
0
0
0
],                                              

ℎ̅2(1600) = [

ℎ̅2,1(1600)

ℎ̅2,2(1600)

ℎ̅2,3(1600)

] = [
0
0
0
],                               

(28) 

        ⋮ 
 

and so on (we continue the process with respect to the order of 

ε).  The presented algorithm with the tolerance error bound 

𝛾 = 0.2 × 10−6 is used for obtaining an accurate enough 

suboptimal control law. We run the algorithm until to reach 

the error bound condition.  

After 12 iterations, the convergence is achieved since 

|
𝐽12−𝐽11

𝐽12
| = 0.1 × 10−6 < 0.2 × 10−6.  Moreover, 𝑢12(𝑘) and 

x12(k) are obtained from (23). The results up to 12th iteration 

are summarized in Table 1. Also, some comparative results 

between the modal series method and the sensitivity approach 

are shown in Table 2 and Figures 1-4. As can be seen, the 

modal series method has a faster rate of convergence than the 

sensitivity approach and converges uniformly to the optimal 

solution. In addition, in contrast with the sensitivity approach, 

the presented method converges uniformly after a few 

iterations. 

 

 
(a) Control variable 

 

 
(b) Control variable 

 

Figure 1. Comparative results for Example 1 between the (a) 

modal series method and (b) sensitivity approach for u(k) 

 

    
(a) 𝑥1(𝑘) of state vector 
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(b) 𝑥1(𝑘) of state vector 

 

Figure 2. Comparative results for Example 1 between the (a) 

modal series method and (b) sensitivity approach for 𝑥1(𝑘) 
 

 
(a) 𝑥2(𝑘) of state vector 

 

 
(b) 𝑥2(𝑘) of state vector 

 

Figure 3. Comparative results for Example 1 between the (a) 

modal series method and (b) sensitivity approach for 𝑥2(𝑘) 

 
(a) 𝑥3(𝑘) of state vector 

 

 
(b) 𝑥3(𝑘) of state vector 

 

Figure 4. Comparative results for Example 1 between the (a) 

modal series method and (b) sensitivity approach for 𝑥3(𝑘) 
 

Example 2. Making further research to test validity the 

proposed method, the fourth-order nonlinear discrete-time 

system in [15] is considered with more computational 

complexity than the previous example 

 

J(k) =
1

2
∑ [x1

2(k) + x2
2(k) + x3

2(k) + x4
2(k) + u2(k)],200

k=0

𝐴 = [

1 0.1
0 1

0 0
−0.2 0

0 0
0 0

1 0.1
1.2 1

] ,

𝑓(𝑥) = 0.04

[
 
 
 

x1
2(k)
x2(𝑘)

x3(𝑘) + x2
2(k) + x1(𝑘)x2(𝑘)x3(𝑘)

x4(𝑘) ]
 
 
 

,

𝐵 = [

0
0.15
0
−0.2

] , 𝑥(0) = [

0
0
0.1
−0.05

].

(29) 

 

According to the Pontryagin's maximum principle, the 

following discrete nonlinear system of equations should be 

solved 
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{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
x1(𝑘 + 1) = x1(𝑘) + 0.1x2(𝑘) + 0.04𝑥1

2(𝑘),                 

x2(𝑘 + 1) = −0.0225p2(𝑘 + 1) + 0.03p4(𝑘 + 1)       

 +1.04x2(𝑘) − 0.2x3(𝑘),                                                     

x3(𝑘 + 1) = 1.04x3(𝑘) + 0.1x4(𝑘) + 0.04𝑥2
2(𝑘)          

+0.04𝑥1(𝑘)x2(𝑘)x3(𝑘),                                                       

x4(𝑘 + 1) = 0.03p2(𝑘 + 1) − 0.04p4(𝑘 + 1)                

+1.2x3(𝑘) + 1.04x4(𝑘),                                                      

+0.04𝑝3(𝑘 + 1)x1(𝑘)x3(𝑘) + 0.08𝑝3(𝑘 + 1)x2(𝑘),     

p1(𝑘) = x1(𝑘) + 𝑝1(𝑘 + 1) + 0.08𝑝1(𝑘 + 1)x1(𝑘)       

+0.04𝑝3(𝑘 + 1)x2(𝑘)x3(𝑘),                                               

p2(𝑘) = x2(𝑘) + 0.1𝑝1(𝑘 + 1) + 1.04𝑝2(𝑘 + 1)          

p3(𝑘) = x3(𝑘) − 0.2𝑝2(𝑘 + 1) + 1.04𝑝3(𝑘 + 1)          

+0.04𝑝3(𝑘 + 1)x1(𝑘)x2(𝑘) + 1.2𝑝4(𝑘 + 1),                  

p4(𝑘) = x4(𝑘) + 0.1p3(𝑘 + 1) + 1.04p4(𝑘 + 1),

(30) 

 

and the optimal control law is described by 

 

𝑢∗(k) = −0.15𝑝2(𝑘 + 1) + 0.2𝑝4(𝑘 + 1)      (31) 

 

Applying the proposed algorithm with the error bound 

𝛾 =0.002, the following sequence of linear discrete BVPs 

should be solved 

 

𝜀:

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
ℎ1,1(𝑘 + 1) = ℎ1,1(𝑘) + 0.1ℎ1,2(𝑘),               

ℎ1,2(𝑘 + 1) = 1.04ℎ1,2(𝑘) − 0.2ℎ1,3(𝑘)

−0.0225ℎ̅1,2(𝑘 + 1) + 0.03ℎ̅1,4(𝑘 + 1),
        

ℎ1,3(𝑘 + 1) = 1.04ℎ1,3(𝑘) + 0.1ℎ1,4(𝑘),

ℎ1,4(𝑘 + 1) = 1.2ℎ1,3(𝑘) + 1.04ℎ1,4(𝑘)  
       

+0.03ℎ̅1,2(𝑘 + 1) − 0.04ℎ̅1,4(𝑘 + 1),             

ℎ̅1,1(𝑘) = ℎ1,1(𝑘) + ℎ̅1,1(𝑘 + 1),                      

ℎ̅1,2(𝑘) = ℎ1,2(𝑘) + 0.1ℎ̅1,1(𝑘 + 1)                 

+1.04ℎ̅1,2(𝑘 + 1),                                                

ℎ̅1,3(𝑘) = ℎ1,3(𝑘) − 0.2ℎ̅1,2(𝑘 + 1)                 
+1.04ℎ̅1,3(𝑘 + 1) + 1.2ℎ̅1,4(𝑘 + 1),              

ℎ̅1,4(𝑘) = ℎ1,3(𝑘) + 0.1ℎ̅1,3(𝑘 + 1)               

+1.04ℎ̅1,4(𝑘 + 1),                                              

ℎ1(0) =

[
 
 
 
ℎ1,1(0)

ℎ1,2(0)

ℎ1,3(0)

ℎ1,4(0)]
 
 
 

= [

0
0
0.1
−0.05

],                        

ℎ̅1(201) =

[
 
 
 
 
ℎ̅1,1(201)

ℎ̅1,2(201)

ℎ̅1,3(201)

ℎ̅1,4(201)]
 
 
 
 

= [

0
0
0
0

] ,                  

(32) 

𝜀2:

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
ℎ2,1(𝑘 + 1) = ℎ2,1(𝑘) + 0.1ℎ2,2(𝑘)  

+0.04ℎ1,1
2 (𝑘),                                       

                   

ℎ2,2(𝑘 + 1) = 1.04ℎ2,2(𝑘) − 0.2ℎ2,3(𝑘)

−0.0225ℎ̅2,2(𝑘 + 1) + 0.03ℎ̅2,4(𝑘 + 1),
               

ℎ2,3(𝑘 + 1) = 1.04ℎ2,3(𝑘) + 0.1ℎ2,4(𝑘)                    

+0.04ℎ1,2
2 (𝑘),                                                                   

ℎ2,4(𝑘 + 1) = 1.2ℎ2,3(𝑘) + 1.04ℎ2,4(𝑘)

+0.03ℎ̅2,2(𝑘 + 1) − 0.04ℎ̅2,4(𝑘 + 1),    
                   

ℎ̅2,1(𝑘) = ℎ2,1(𝑘) + ℎ̅2,1(𝑘 + 1)                                 

+0.08ℎ̅1,1(𝑘 + 1) ℎ1,1(𝑘),                                            

ℎ̅2,2(𝑘) = ℎ2,2(𝑘) + 0.1ℎ̅2,1(𝑘 + 1)                          

+1.04ℎ̅2,2(𝑘 + 1) + 0.08ℎ̅1,3(𝑘 + 1) ℎ1,2(𝑘),         

ℎ̅2,3(𝑘) = ℎ2,3(𝑘) − 0.2ℎ̅2,2(𝑘 + 1)                         

+1.04ℎ̅2,3(𝑘 + 1) + 1.2ℎ̅2,4(𝑘 + 1),

ℎ̅2,4(𝑘) = ℎ2,3(𝑘) + 0.1ℎ̅2,3(𝑘 + 1)    
+1.04ℎ̅2,4(𝑘 + 1),                                  

                       

ℎ2(0) =

[
 
 
 
ℎ2,1(0)

ℎ2,2(0)

ℎ2,3(0)

ℎ2,4(0)]
 
 
 

= [

0
0
0
0

],                                            

ℎ̅2(201) =

[
 
 
 
 
ℎ̅2,1(201)

ℎ̅2,2(201)

ℎ̅2,3(201)

ℎ̅2,4(201)]
 
 
 
 

= [

0
0
0
0

] ,                               

(33) 

 

and so on (we continue the process with respect to the order of 

ε). Simulation results at different iterations are listed in Table 

3. 

As can be seen, the suggested algorithm converges after 6 

iterations, i.e., |
𝐽6−𝐽5

𝐽6
| = 0.0019 < 0.002 

Thus, the suboptimal control law is in the form 

 

𝑢6(𝑘) ≜ −0.15∑ℎ̅𝑖,2(𝑘 + 1)

6

i=1

 

 

+0.2 ∑ ℎ̅𝑖,4(𝑘 + 1)
6
i=1                         (34) 

 

In order to compare with the other existing methods, we 

show the simulation results in Table 3, 4 and Figures 5-9. 

Unlike the SAA and sensitivity approach, the suggested 

method uniformly converges to the optimal solution. 

Moreover, the obtained results show the simplicity, efficiency, 

and high accuracy of the suggested technique. 

As it is turned out, the modal series method is very 

straightforward and reduces the computational complexity 

effectively. 

 

312



 

 
(a) Control variable 

 

 
(b) Control variable 

 

 
(c) Control variable 

 

Figure 5. Comparative results for Example 2 between the (a) 

modal series method, (b) SAA, and (c) sensitivity approach 

for u(k) 

 
(a) x1(k) of state vector 

 

 
(b) x1(k) of state vector 

 

 
(c) 𝑥1(𝑘) of state vector 

 

Figure 6. Comparative results for Example 2 between the (a) 

modal series method, (b) SAA, and (c) sensitivity approach 

for x1(k) 
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(a) x2(k) of state vector 

 

 
(b) x2(k) of state vector 

 

 
(c) x2(k) of state vector 

 

Figure 7. Comparative results for Example 2 between the (a) 

modal series method, (b) SAA, and (c) sensitivity approach 

for x2(k) 

 
(a) x3(k) of state vector 

 

 
(b) x3(k) of state vector 

 

 
(c) x3(k) of state vector 

 

Figure 8. Comparative results for Example 2 between the (a) 

modal series method, (b) SAA, and (c) sensitivity approach 

for x3(k) 
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(a) x4(k) of state vector 

 

 
(b) x4(k) of state vector 

 

 
(c) x4(k) of state vector 

 

Figure 9. Comparative results for Example 2 between the (a) 

modal series method, (b) SAA, and (c) sensitivity approach 

for x4(k) 

 

Table 3. Simulation results at 6 iterations for Example 2 

 

 i (Iterations) 𝑱𝒊 |
𝑱𝒊 − 𝑱𝒊−𝟏
𝑱𝒊

| 

1 

2 

3 

4 
5 

6 

5.5554 

7.1735 

7.5985 

7.7250 

7.7672  

7.7820 

- 

0.2256 

0.0559 

0.0164 

0.0054 

0.0019 

 

Table 4. Comparative result of 3 methods for Example 2 

 
Method i QPI Error 

Modal series method 6 7.7820 0.0019 

SAA 6 7.6626 0.3447 

Sensitivity approach 5 7.4765 0.0034 

 

 

5. CONCLUSIONS 

 

In this article, a new practical technique was introduced for 

solving a class of discrete nonlinear OCPs. Contrary to other 

approximation methods such as SAA and sensitivity approach, 

the proposed scheme avoids solving linear time-varying BVPs 

and just deals with a sequence of linear time-invariant discrete 

BVPs. Hence, only the techniques of solving linear difference 

equations are employed in this scheme. Also, the obtained 

solution was uniformly convergent to the optimal solution and 

the suggested technique had a fast rate of convergence. 

Therefore, the computational complexity of presented method 

is lower than other approximation techniques. 

Future works can be focused on the large-scale problems 

and extending the method to more general form of discrete 

nonlinear OCPs. 
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