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This study addresses free vibration analysis of rotating Functionally Graded Material 

(FGM) beams lying on elastic foundations using the Homotopy Perturbation Method 

(HPM). The HPM, a semi-analytical technique combining Homotopy from topology 

with perturbation methods to solve complex nonlinear equations, is employed to solve 

the resulting nonlinear eigenvalue problem. Its key advantages include effectively 

handling system inhomogeneity and nonlinearity while yielding insightful semi-

analytical expressions. The resulting governing equations, based on Euler-Bernoulli 

beam theory and Hamilton’s principle, are nondimensionalized to capture centrifugal 

stiffening, foundation interaction, and material gradation. The HPM is used to solve the 

obtained nonlinear eigenvalue problem, and the dimensionless natural frequencies and 

mode shapes are obtained for clamped-clamped (C-C), clamped-simply supported (C-

S), and clamped-free (C-F) boundary conditions. Validation against Finite Element 

Method (FEM) and Lagrange-based solutions confirms the high accuracy of HPM, with 

relative errors consistently less than 2%. Parametric studies show that dimensionless 

natural frequencies increase as η and λ increase, whereas the increase of the gradient 

index of FGM (n) leads to lower frequency values due to the severity degradation 

(ceramic to metal control). Importantly, C-C boundaries display a 4–5 times higher 

frequency than C-F configurations, emphasizing boundaries as key limiting factors for 

design. This study fills a significant void in rotating FGM beam dynamics and 

demonstrates HPM's capability for complex systems, providing valuable semi-

analytical tools for engineering design applications such as turbine blades, robotic arms, 

and rotating machines in extreme environments. 
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1. INTRODUCTION

Functionally Graded Materials (FGMs) are an advanced 

class of composites characterized by continuous material 

property variation in space and are therefore well-suited for 

application in aerospace fields, rotational machinery, and 

high-temperature environments [1]. Functionally graded 

beams used in turbine blades and robot arms are subject to 

complex load conditions that include both centrifugally 

applied loads and an interaction with an elastic foundation [2]. 

Such conditions result in nonlinear vibration behavior and thus 

necessitate sound analytical approaches with the capability to 

accurately predict dynamic performance. Analysis of rotary 

beams is further complicated because of their sensitivity to 

centrifugal stiffening and intercoupling of axial and transverse 

vibrations. Furthermore, the addition of an elastic foundation 

further complicates the dynamic behavior of the system. 

Perturbation approaches tend to be inadequate due to their 

sensitivity to small parameters and thus necessitate exploring 

alternative approaches, including application of the Homotopy 

Perturbation Method (HPM). HPM overcomes the 

shortcomings with linearization and discretization and thus 

offers an excellent framework for solving strongly linear as 

well as strongly nonlinear governing equations typical in 

rotary FGM beams [3, 4]. 

One semi-analytical tool is the HPM that mixes classic 

perturbative methods with homotopic topological ideas. There 

are conventional perturbation techniques where the coefficient 

is damped, whereas using HPM, a Homotopy is constructed 

with an auxiliary parameter which quickly tends to a solution 

approximation without the need for linearization or 

discretization. This feature endows HPM with an efficiency 

for solving nonlinear problems. HPM, as compared to most 

numerical methods, such as Finite Element Method (FEM), 

through which it omits long matrix manipulations and presents 

closed solutions, becomes of more interest to parametric 

studies on dynamic behavior and analytical insight. 

While earlier research on FGM structures has been limited 

mostly to plates and shells subjected to thermal and 

mechanical loadings, for example, study [5] applied a three-

dimensional asymptotic theory to the vibration analysis of 

harmonic vibrations of FGM plates, and presented the 

dynamic response of initially stressed FGM plates subjected to 

impulsive loadings [6-8]. While these studies give 

Mathematical Modelling of Engineering Problems 
Vol. 12, No. 8, August, 2025, pp. 2771-2780 

Journal homepage: http://iieta.org/journals/mmep 

2771

https://orcid.org/0000-0001-9715-3203
https://orcid.org/0000-0002-1726-7129
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120818&domain=pdf


 

fundamental insight, rotating FGM beams on elastic 

foundations are not treated very thoroughly. Research [9] on 

rotating structures has focused on centrifugal effects on 

vibration response, which investigated nonlinear 

axisymmetric vibrations of circular FGM plates and illustrated 

the effectiveness of semi-analytical solutions. Murali and Raju 

[10] presented an exhaustive review of the vibration analysis 

of FGM beams emphasizing why it is important to study their 

dynamic behavior under various boundary conditions. Ait 

Atmane et al. [11] studied the free vibration of exponentially 

graded FGM beams with non-uniform cross-sections, deriving 

analytical solutions for clamped-free, simple supported, and 

clamped-clamped boundary conditions. Their work shed light 

on the frequency characteristics of FGM beams. HPM has 

gained popularity in solving nonlinear vibration problems. 

Gao et al. [12] utilized HPM to study the surface acoustic 

waves in FGM plates, demonstrating its versatility. He [13] 

put HPM on firm ground as an effective technique for 

nonlinear differential equations so that solutions could be 

obtained without making restrictive assumptions. One of the 

recent contributions by reference [14] used HPM and 

Schauder's fixed-point theorem to provide periodic solutions 

for Duffing-type systems, demonstrating its worth for 

complicated dynamics. Allahverdizadeh et al. [15] 

investigated nonlinear vibration of thin rectangular 

functionally graded plates by the HPM. The Duffing-type 

equation was derived based on von Kármán's dynamic plate 

theory, and HPM solution was verified by numerical solution 

comparisons. Moreover, the conditions for periodic oscillatory 

motion were determined through fixed-point theorem, and the 

effect of material gradation and geometry parameters on the 

system's dynamic response was illustrated. 

Some studies on the vibration behavior of FGM beams 

utilized a set of theoretical models to analyze their dynamic 

behavior. Pradhan and Chakraverty [16] for instance, 

investigated the influence of various shear deformation models 

on the free vibration behavior of FGM beams with a focus on 

their higher-order precision in modeling transverse shearing 

actions. Through their results, they indicated significant 

differences in natural frequencies depending on the chosen 

deformation model, especially in beams with a smooth 

gradation in material properties. 

Centrifugal stiffening, elastic foundation interaction and 

mixed boundary conditions have been ignored in the previous 

studies. This is an important limitation since, in practical 

applications such as that of the turbine blades and robotic 

arms, these two effects are realized simultaneously and affect 

the natural frequencies and mode shapes to a large extent. In 

the other side, the references [15, 16] are partly similar to the 

present problem in the fact that they assume linearized 

relations to the elastic coefficients; particularly to the best of 

our knowledge, these are only by perturbation approaches 

attempting to study the stability of the stationary solutions 

assuming in some sense nonlinear couplings, many of them are 

based on strictly numerical approaches or strictly on classical 

perturbation and usually with require extensive computations 

for certain problems and in other cases fail to keep accounted 

of nonlinear coupling effects in rotating FGM beams. 

Similarly, Şimşek [17] carried out a study of fundamental 

frequencies for FGM beams based on a number of higher-

order formulations with an emphasis on material distribution 

and boundary condition dependencies of fundamental 

frequencies. Although these earlier studies have contributed to 

an improved understanding of FGM beam dynamics, most 

focused on static cases or on non-rotating conditions and 

ignored rotation as well as interaction with an elastic 

foundation—the factors that play a crucial part in applications 

involving turbine blades as well as those involving machine 

tool manufacture. 

The literature study indicates significant advancement in 

vibration analyses on FGM beams, plates, and shells. 

However, there remain noteworthy critical shortcomings. 

While significant studies have been conducted regarding 

vibrations in statically or non-rotating FGM beams, dynamic 

properties in rotating FGM beams mounted on flexible mounts 

remain insufficiently studied. The rotational-induced effects 

and their coupled phenomenon involving centrifugal stiffening 

and coupled axial and transverse vibrations result in added 

intricacy that is inadequately treated in existing research. 

Furthermore, interrelation between rotating FGM beams and 

flexible mounts is insufficiently studied despite its significant 

implications towards mode forms and frequencies through 

modal parameters in applications involving turbine blades and 

field machines. Perturbative approaches generally rely on 

small parameters and linear approximations that do not capture 

effectively the nonlinear dynamics associated with spinning 

FGM beams. Additionally, while studies involving 

Differential Transform Method (DTM) and FEM have been 

used to solve acoustic issues raised in beams built from 

materials involving FGMs, use of the HPM application in a 

context involving rotating FGM beams mounted on flexible 

mounts is inadequately researched. There is an urgent need for 

comparative studies that discuss respective approaches, 

especially in terms of their accuracy and computationally 

efficiency. Lastly, a lack of sufficient understanding exists in 

how gradation indices and boundary conditions affect 

frequencies associated with beams made up of materials 

involving FGMs due to insufficient exploration of their 

implications, leading to an ineffective understanding of how 

gradation and boundary conditions affect spinning structures. 

The main aim of the current study is to study the free 

vibration behavior of rotating FGM beams resting on elastic 

foundations using the HPM. The specific objectives consist in 

obtaining the governing differential equation pertaining to the 

free vibrations of such rotating FGM beams on an elastic 

foundation using Euler-Bernoulli beam theory and Hamilton’s 

principle; application of HPM to solve the dimensionless 

governing equation in order to establish an accurate and 

effective semi-analytical solution for the system’s natural 

frequencies and mode forms; and comparison of results 

achieved using HPM with analytical results achieved through 

the Lagrange method and with numerical results calculated 

using the FEM in order to validate results from HPM. 

Additionally, this study aims to investigate how variations in 

the FGM gradient exponent, dimensionless rotational speed, 

and dimensionless stiffness of an elastic foundation affect the 

system’s natural frequencies for a rotating FGM beam and to 

study the implications of different boundary conditions (i.e., 

clamped-clamped (C-C), clamped-simply supported (C-S), 

and clamped-free (C-F)) on system vibrational behavior. 

The method employed in this research is explained as 

follows: First, according to Euler-Bernoulli beam theory and 

Hamilton's principle, a governing equation for the 

phenomenon of free vibration in an elastic foundation-

supported rotating FGM beam is to be formulated and then 

expressed in a dimensionless form through normalization. The 

HPM is then to be applied by constructing a Homotopy 

equation that reduces a given nonlinear problem to an 
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arrangement of linear sub-problems, which is to be solved 

iteratively to obtain an approximate solution for dimensionless 

frequencies as well as mode shapes. Results attained using 

HPM are to be confirmed using a comparison with results 

solved using Lagrange and FEM, thus proving accuracy and 

convergence for results developed using HPM. Additionally, 

parametric analysis is to be carried out to determine the 

influence of an FGM material's gradient index, dimensionless 

rotational speed, and dimensionless stiffness of an elastic 

foundation on dimensionless frequencies in a rotating FGM 

beam as well as on competing boundary conditions' influence. 

Lastly, results are to be compared and discussed about in 

relation to existing research efforts as they pertain to 

understanding rotating FGM beams on an elastic foundation 

and proposing recommendations for future research efforts. 

The novelty of the present study lies in its unified analytical 

framework that simultaneously considers (i) the rotational 

speed-induced centrifugal stiffening effect, (ii) the influence 

of elastic foundation stiffness, and (iii) various practically 

relevant boundary conditions (C-C, C-S, and C-F). Unlike 

previous research that treated these factors separately or 

neglected some of them, the present work applies HPM to 

derive accurate semi-analytical solutions, validates them 

against Lagrange and FEM results, and quantifies the relative 

error, thereby ensuring reliability. This comprehensive 

approach fills a critical gap in the literature and provides 

valuable insights for designing and optimizing rotating FGM 

structures. 

This study used a method that takes into account as a gap in 

the literature by providing an elaborate study of free vibration 

properties of rotating FGM beams resting on elastic 

foundations. The study proposes using the HPM, which is a 

highly effective and accurate method for solving highly 

nonlinear governing equations for rotating FGM beams. In 

addition, it compares and contrasts HPM with the Lagrange 

method and the FEM, as well as examines the effects of critical 

parameters and boundary conditions on the natural frequencies 

for rotating FGM beams. By filling these gaps, this study 

contributes considerably to the literature in the domain of 

structural dynamics and presents valuable insights that find 

application in the analysis and design of rotating FGM beams 

in engineering applications. 

 

 

2. GOVERNING DIFFERENTIAL EQUATIONS AND 

NONDIMENSIONALIZATION OF PARAMETERS 

 

Consider a rotating FGM beam of rectangular cross-section, 

positioned on an elastic foundation and rotating synchronously 

with the foundation, as illustrated in the Figure 1. A Cartesian 

coordinate system is adopted, where the x-axis aligns with the 

beam’s longitudinal (axial) direction, and the z-axis 

corresponds to the transverse (thickness) direction. The system 

rotates about the y-axis at a constant angular velocity Ω. The 

beam has length L, height h, and width b, while the elastic 

foundation is characterized by its Winkler elastic foundation 

K. The beam exhibits a continuous material gradation along its 

thickness (z-axis), transitioning from a fully ceramic upper 

surface (z=h/2) to a fully metallic lower surface (z=−h/2). 

Material properties, including elastic modulus E, Poisson’s 

ratio ν, and mass density ρ, vary as smooth functions of the 

thickness coordinate z. These graded properties are governed 

by a power-law distribution based on the rule of mixtures, 

expressed as [18-24]: 

𝑃(𝑧) = 𝑃𝑐  (
𝑧 +

ℎ
2

ℎ
)𝑛  +  𝑃𝑚[1 − (

𝑧 +
ℎ
2

ℎ
)

𝑛

] (1) 

 

where, Pc and Pm denote the material properties of the ceramic 

and metal constituents, respectively, and n represents the 

volume fraction exponent governing the gradation profile. 

Eq. (1) represents the properties of the ceramic and metallic 

constituents, respectively, and n is the gradient index. The 

power-law distribution used to describe the material properties 

of the functionally graded beam guarantees a smooth variation 

of properties like density and Young's modulus through the 

thickness. How quickly the material changes through the 

thickness are determined by the gradient index n. A fully 

ceramic beam with maximum stiffness and minimum density 

is produced by n=0, whereas a fully metallic beam with lower 

stiffness and generally greater ductility is produced by n→∞. 

Intermediate values of n result in smooth property gradations 

and enable customized stiffness-to-weight ratios. 

 

 
 

Figure 1. Schematic configuration and coordinate system of 

a dynamically rotating functionally graded beam resting on a 

Winkler-type elastic foundation [23] 

 

The governing equations of the rotating FG beam result 

from an application of Hamilton’s principle, which provides 

an association of strain energy U, kinetic energy T, and work 

done by external forces W, within the dynamics of the system. 

The variational formulation of dynamic equilibrium is 

obtained by minimizing the action integral from time t1 to t2 

[24]. 

 

𝛿 ∫(𝑇 − 𝑈 +𝑊) 𝑑𝑡 = 0

𝑡2

𝑡1

 (2) 

 

where, δ is the variational operator, and t1 and t2 are the initial 

and final times of motion, respectively. 

Let u(x, t) and w(x, t) denote axial and transverse 

displacements, respectively, of a point on the neutral axis of 

the beam. Following Euler-Bernoulli beam theory, 

displacement at any (x, z) in the cross-section is expressed as: 

 

𝑢𝑥(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
, 𝑢𝑧(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) (3) 

 

The strain energy consists of contributions related to 

bending deformation, centrifugal stiffening, and to the 

Winkler foundation's elasticity: 

 

2773



 

𝑈 =
1

2
∫ [𝐴1 [

𝜕𝑢

𝜕𝑥
]
2

− 2𝐵1
𝜕𝑢

𝜕𝑥
∗
𝜕2𝑤

𝜕𝑥2
+ 𝐷1 [

𝜕2𝑤

𝜕𝑥2
]

2

]
𝑙

0

𝑑𝑥 (4) 

 

Kinetic energy includes both translational inertia and 

rotational inertia: 

 

𝑇 =
1

2
∫ [[𝐼1 [

𝜕𝑢

𝜕𝑡
]
2

+ [
𝜕𝑤

𝜕𝑡
]
2

∗
𝜕2𝑤

𝜕𝑥2
+ 𝑥2𝛺2]

𝑙

0

− 2𝐼2
𝜕2𝑤

𝜕𝑥𝜕𝑡
∗
𝜕𝑢

𝜕𝑡
+ 𝐼3 [

𝜕2𝑤

𝜕𝑥𝜕𝑡
]

2

] 𝑑𝑥 

(5) 

 

The external work arises from transverse mechanical loads:  

 

𝑊 = −
1

2
∫ [𝑏𝐾𝑤2 + 𝐹(𝑥) [

𝜕𝑢

𝜕𝑥
]
2

]
𝑙

0

 (6) 

 

The terms are defined in the above Eqs. (4)-(6) as follows:  

 

𝐼1 = 𝜌𝑚 𝐴 𝑁1, 𝐼2 = 𝜌𝑚 ℎ
2 𝑁2,  

𝐼3 = 𝜌𝑚 𝐼 𝑁3, 𝐼 =
𝑏ℎ3

12
 , 𝐴 = 𝑏ℎ, 

(7) 

 

The governing equation incorporates centrifugal effects and 

stiffness coupling through the coefficients: 

The centrifugal force distribution represents: 

 

𝐹(𝑥) = 𝜌(𝑧) 𝐴 𝛺2(𝐿2 − 𝑥2) (8) 

 

The tensile stiffness coefficient is: 

 

𝐴1 = ∫ 𝐸(𝑧) 𝑑𝑧

ℎ
2

−ℎ
2

 (9) 

 

The tensile-bending coupling accounts: 

 

𝐵1 = ∫ 𝐸(𝑧) 𝑧 𝑑𝑧

ℎ
2

−ℎ
2

 (10) 

 

The bending stiffness coefficient defines: 

 

𝐷1 = ∫ 𝐸(𝑧) 𝑧2 𝑑𝑧

ℎ
2

−ℎ
2

 (11) 

 

These parameters summarize the coupling of rotational 

dynamics to the material properties of the functionally graded 

materials. Dimensionless coefficients result from the 

nondimensionalization of governing equations, where 

significant parameters get normalized by quantities (for 

example, beam length L, reference stiffness Ec, and material 

density ρc). The formulation of these coefficients is expressed 

as follows: 

 

𝑁1 = 
𝑛 +

𝜌𝑐
𝜌𝑚

𝑛 + 1
 

(12) 

 

𝑁2 = 
−
𝜌𝑐
𝜌𝑚

𝑛 + 𝑛

2(𝑛2 + 3𝑛 + 2)
 (13) 

𝑁3 = 1 + 
3(
𝜌𝑐
𝜌𝑚
)(𝑛2 + 𝑛 + 2)

(𝑛3 + 6𝑛2 + 11𝑛 + 6)
 (14) 

 

∅1 =  
𝑛 +

𝐸𝑐
𝐸𝑚

𝑛 + 1
 

(15) 

 

∅2 = 
−
𝐸𝑐
𝐸𝑚

𝑛 + 𝑛

2(𝑛2 + 3𝑛 + 2)
 

(16) 

 

∅3 = 1 + 
3(
𝐸𝑐
𝐸𝑚
)(𝑛2 + 𝑛 + 2)

(𝑛3 + 6𝑛2 + 11𝑛 + 6)
 

(17) 

 

By introducing constitutive relations defined in Eqs. (4)-(6) 

into the formulation as defined in Eq. (2) and not considering 

longitudinal and rotational components of inertia associated 

with lateral bending dynamics, the governing differential 

equation for transverse free vibration of a rotating beam 

supported by an elastic foundation is expressed as: 

 

𝐴1
𝜕2𝑢

𝜕𝑥2
− 𝐵1

𝜕3𝑤

𝜕𝑥3
 (18) 

 

𝐵1
𝜕3𝑢

𝜕𝑥3
− 𝐷1

𝜕4𝑤

𝜕𝑥4
− 𝐼1

𝜕2𝑤

𝜕𝑡2
+
𝜕

𝜕𝑥
[𝐹(𝑥)

𝜕𝑤

𝜕𝑥
] − 𝑏𝐾𝑤 = 0 (19) 

 

By algebraic manipulations of Eqs. (18) and (19), axial 

displacement component u is eliminated, and an equation 

governing the partial differential of the transverse motion of 

w(x, t) is established. This simplification isolates, as it were, 

the transverse vibrational behavior of the rotating beam to 

obtain: 

 

[𝐷1 −
𝐵1
𝐴1
]  
𝜕4𝑤

𝜕𝑥4
+ 𝐼1

𝜕2𝑤

𝜕𝑡2
−
𝜕

𝜕𝑥
[𝐹(𝑥)

𝜕𝑤

𝜕𝑥
] + 𝑏𝐾𝑤 = 0 (20) 

 

The simple harmonic vibration of the FGM beam can be 

expressed as: 

 

𝑤(𝑥, 𝑡) =  𝑊̅(𝑥)𝑒𝑖𝜔𝑡  (21) 

 

where, 𝑊̅(𝑥) is the function of model, i is the imaginary unit, 

𝜔  is the natural frequency. the following dimensionless 

transformation is introduced: 

 

𝑊 =
𝑊̅

𝑙

𝜁 =
𝑥

𝑙

ƞ = √
𝛺2𝜌𝑚𝑙

4

𝐸𝑚ℎ
2

𝜆 =
𝐾𝑙4

𝐸𝑚ℎ
3

𝜇 = √
𝜔2𝑙4𝜌𝑚
𝐸𝑚ℎ

2
}
 
 
 
 
 
 

 
 
 
 
 
 

 (22) 

 

where, 𝜇 is the dimensionless of natural frequency, λ is the 

dimensionless elastic foundation modulus, ƞ  is the 

dimensionless speed. 
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The dimensionless rotation speed 𝜂 , which takes into 

account centrifugal stiffening from rotation, the dimensionless 

foundation stiffness 𝜆 , which indicates the Winkler 

foundation's stiffness in relation to the beam's bending rigidity, 

and the dimensionless natural frequency 𝜇, which normalizes 

the frequency regardless of absolute size or material scale, are 

introduced in order to generalize the governing equations and 

make parametric analysis easier. These variables enable a 

methodical investigation of the effects of rotation, foundation 

stiffness, and material gradation. 

Consequently, the dimensionless governing differential 

equation for the transverse free vibration of a rotating FGM 

beam resting on an elastic foundation is derived through 

nondimensionalization, incorporating centrifugal stiffening 

effects, foundation interaction, and material property 

gradation. This equation is expressed as: 

 

𝐿(𝑊) + 𝑁(𝑊) = 0 (23) 

 

𝐿(𝑊) = [
∅3
12
−
∅2
2

∅1
]
𝑑4𝑊

𝑑𝜁4
− 𝜇𝑜𝑁1𝑊 (24) 

 

𝑁(𝑊) =  −ƞ2𝑁1 (
1

2
−
𝜁2

2
)
𝑑2𝑊

𝑑𝜁2
 

+ƞ2𝑁1𝜁
𝑑𝑊

𝑑𝜁
+ 𝜆𝑊 − (𝜇2 − 𝜇𝑜

2)𝑁1𝑊 

(25) 

 

[
∅3
12
−
∅2
2

∅1
]
𝑑4𝑊

𝑑𝜁4
− 𝜇𝑜𝑁1𝑊 +−ƞ2𝑁1 (

1

2
−
𝜁2

2
)
𝑑2𝑊

𝑑𝜁2

+ ƞ2𝑁1𝜁
𝑑𝑊

𝑑𝜁
+ 𝜆𝑊

− (𝜇2 − 𝜇𝑜
2)𝑁1𝑊 = 0 

(26) 

 

The boundary conditions for the rotating FGM beam on an 

elastic foundation are restricted to the most prevalent 

configuration in engineering applications:  

- C-C boundary conditions 

- At both ends (𝜁=0 and 𝜁=1): 

- W(𝜁) = 0, and 
𝑑𝑊

𝑑𝜁
= 0 

- C-S boundary conditions 

- At clamped end 𝜁=0  

- W(𝜁) = 0, and 
𝑑𝑊

𝑑𝜁
= 0 

- At simply supported end 𝜁=1  

- W(𝜁) = 0, and 
𝑑2𝑊

𝑑𝜁2
= 0 

- C-F boundary conditions 

- At clamped end 𝜁=0  

- W(𝜁) = 0, and 
𝑑𝑊

𝑑𝜁
= 0 

- At free end 𝜁=1  

- 
𝑑2𝑊

𝑑𝜁2
= 0, and 

𝑑3𝑊

𝑑𝜁3
= 0 

 

 

3. HPM FOR DIMENSIONLESS GOVERNING 

DIFFERENTIAL EQUATIONS 

 

The HPM is employed to solve the dimensionless governing 

differential equations together with their boundary conditions. 

The method is a semi-analytical technique that combines 

Homotopy theory and perturbation techniques to solve linear 

and nonlinear differential equations. It provides a continuous 

Homotopy transformation between a simplified auxiliary 

equation and the complex original equation, thus allowing 

iterative approximations. The Homotopy equation is 

constructed: 

 

(1 − 𝑝)[𝐿(𝑊̅)] + 𝑝 [𝐿(𝑊̅) + 𝑁(𝑊̅)] = 0 (27) 

 

where, 𝑝 ∈ [0,1] is the embedding parameter. 

The HPM is based on the Homotopy equation that was 

introduced in Eq. (27). It makes a continuous change 

(Homotopy) from a simple, solvable linear problem to the 

original nonlinear governing equation. The embedding 

parameter 𝑝 ∈ [0,1] acts as a switch between the two systems. 

When 𝑝=0, the Homotopy becomes the simpler problem with 

a known solution. When 𝑝=1, it goes back to the full nonlinear 

system. This method lets you break down the complicated 

nonlinear problem into a series of linear sub-problems that get 

bigger in 𝑝. It can then solve these sub-problems one at a time 

to get an approximate solution. 

Assume the solution and frequency as: 

 

𝑊̅ =  𝑝 𝑊1 + 𝑝
2𝑊2 +⋯ (28) 

 

𝜇2 = 𝜇𝑜
2 + 𝑝 𝜇1

2 + 𝑝2𝜇2
2 +⋯ (29) 

 

Substitute into the Homotopy equation and equate terms of 

order 𝑝0, 𝑝1, etc. 

For 𝑝0 

 

𝐿(𝑊𝑜) = 0 →  [
∅3
12
−
∅2
2

∅1
]
𝑑4𝑊𝑜
𝑑𝜁4

− 𝜇𝑜𝑁1𝑊𝑜 (30) 

 

This is the Euler-Bernoulli beam equation. For C-C 

boundary conditions, the solution is: 

 

𝑊𝑜(𝜁) = 𝐴[cos(𝛽𝜁) − cos ℎ(𝛽𝜁) −
𝑐𝑜𝑠𝛽−𝑐𝑜𝑠ℎ𝛽

𝑠𝑖𝑛𝛽−𝑠𝑖𝑛ℎ𝛽
( sin(𝛽𝜁) − sin ℎ(𝛽𝜁))]  

(31) 

 

where, 𝛽4 =
𝜇0
2𝑁1

∅3
12
−
∅2
2

∅1

. 

For 𝑝1 

 

𝐿(𝑊1) = −𝑁(𝑊𝑜) + 𝜇1
2𝑁1𝑊𝑜  (32) 

 

Apply the solvability condition by multiplying by 𝑊𝑜 and 

integrating over 𝜁 ∈ [0,1]: 

 

𝐿𝜇1
2 =

∫ [ƞ2𝑁1 [(
1
2
−
𝜁2

2
)
𝑑2𝑊
𝑑𝜁2

+ 𝜁
𝑑𝑊
𝑑𝜁
] − 𝜆𝑊𝑜] 𝑊𝑜 𝑑𝜁 

1

0

∫ 𝑁1𝑊𝑜
2 𝑑𝜁 

1

0

 (33) 

 

The condition for solvability in Eq. (33) makes sure that the 

first-order correction to the solution is consistent with the 

boundary conditions and does not add any secular 

(unbounded) terms. This condition gives the higher-order 

frequency corrections that are needed to get an accurate 

eigenvalue estimate beyond the initial guess by projecting the 

perturbation solution onto the right function space and 

integrating over the domain. 

The total frequency is: 
 

𝜇 = √𝜇1
2 + 𝜇0

2 (34) 
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Same HPM procedure as C-S: 

 

𝑊0,𝑛(𝜁) = 𝐴[cos(𝛽0,𝑛𝜁) − cos ℎ(𝛽0,𝑛𝜁) −
𝑐𝑜𝑠𝛽0,𝑛−𝑐𝑜𝑠ℎ𝛽0,𝑛

𝑠𝑖𝑛𝛽0,𝑛−𝑠𝑖𝑛ℎ𝛽0,𝑛
( sin(𝛽0,𝑛𝜁) − sinh(𝛽0,𝑛𝜁))]  

(35) 

 

𝜇0,𝑛 = 𝛽0,𝑛
2 √

𝐸𝐼

𝜌𝐴𝐿4
 (36) 

 

𝜇 = √𝜇1,𝑛
2 + 𝜇0,𝑛

2  (37) 

 

𝑊0,𝑛(𝜁) = 𝐴[cos(𝛽𝑛𝜁)

− cos ℎ(𝛽𝑛𝜁)

−
𝑐𝑜𝑠𝛽𝑛 + 𝑐𝑜𝑠ℎ𝛽,𝑛
𝑠𝑖𝑛𝛽,𝑛 + 𝑠𝑖𝑛ℎ𝛽𝑛

( sin(𝛽𝑛𝜁)

− sinh(𝛽𝑛𝜁))]  

(38) 

 

𝜇0,𝑛 = 𝛽0,𝑛
2 √

𝐸𝐼

𝜌𝐴𝐿4
 (39) 

 

𝜇 = √𝜇1,𝑛
2 + 𝜇0,𝑛

2  (40) 

 

Because the embedding parameter 𝑝 arranges the solution 

as a power series, where each subsequent term usually 

decreases in magnitude, convergence of the HPM solution is 

guaranteed. The difference between successive 

approximations of the frequency and mode shape is used to 

track convergence in practice; iterations are stopped when this 

difference drops below a predetermined tolerance. The 

number of iterations needed depends on the level of 

nonlinearity and the boundary conditions. However, for the 

rotating FGM beams that were studied, convergence usually 

happened within two to three iterations, showing that HPM is 

a fast way to solve these kinds of eigenvalue problems. 

Table 1 includes the key mechanical and physical properties 

of the two constituents in an FGM: Aluminum (Al) and 

Alumina (Al₂O₃). These properties are critical for analyzing 

and designing FGMs, which transition gradually between 

materials of a beam resting on a Winkler-type elastic 

Foundation that was illustrated as shown in Figure 1. 

It is important to remember that these governing equations 

are based on the Euler-Bernoulli beam theory, which assumes 

that plane sections stay perpendicular to the neutral axis and 

doesn't take into account transverse shear deformation or 

rotary inertia. This assumption works well for slender beams 

(L/h > 10) and low- to moderate-frequency ranges, but it can 

be wrong for thick beams or at high frequencies where shear 

deformation and rotary inertia are important. In those cases, 

more advanced theories like Timoshenko or higher-order shear 

deformation models would be needed. 

 

Table 1. Physical and mechanical characteristics of the 

constituent materials in FGMs [15] 

 
Property Unit Metal Ceramic 

E GPa 70 380 

ρ Kg/m3 2700 3800 

υ - 0.23 0.23 

 

 

4. RESULTS AND DISCUSSION 
 

The computation required in the investigation resulted in the 

development and application of an advanced MATLAB 

computational portal, which was specifically created to solve 

the eigenvalue problem using the HPM. Such numerical 

platform facilitated an extensive investigation of rotating 

FGM beams resting on an elastic foundation in terms of 

dimensionless natural frequencies, denoted as μ. The study 

included variation in gradient indices (n) and investigated 

three different boundary conditions, namely, C-C, C-S, and C-

F. The generated results provided meaningful insights into 

dynamic response behavior of C-FGM beam modeling, where 

it showed significant dependencies of natural frequencies on 

material gradient distributions as well as specific boundary 

configurations. In addition, an effective demonstration of 

HPM in exacerbating geometrical and material complexities 

of eigenvalue problems, as well as quantitative insights into 

rotational dynamics, foundation elasticity, and graded material 

properties, were provided by computational outcomes. The 

findings highlight the efficiency of proposed method in 

revealing slight variations of frequencies in various 

mechanical as well as boundary environments, thus promoting 

further development of analytical methodologies for 

multibody dynamics in functionally graded systems.  
 

Table 2. First dimensionless natural frequency μ1 for C-C 

boundary conditions (ƞ=5, λ=100) 
 

n HPM FEM [18] Lagrange [19] 

0 12.432 12.4142 12.4142 

0.2 11.565 11.5549 11.5537 

0.5 10.588 10.5871 10.5713 

1 9.558 9.5907 9.555 

2 8.7437 8.7684 8.7185 

5 8.3698 8.3425 8.3 

10 8.0669 8.0797 8.0556 

∞ 6.4915 - 6.45034 

 

Table 3. First dimensionless natural frequency μ1 for C-S 

boundary conditions (ƞ=5, λ=100) 
 

n HPM FEM [18] Lagrange [19] 

0 9.872 9.855 9.8141 

0.2 9.123 9.115 9.109 

0.5 8.456 8.462 8.459 

1 7.832 7.845 7.839 

2 7.215 7.229 7.212 

5 6.987 7.001 7.17 

10 6.754 6.768 6.743 

∞ 5.312 - 5.244 

 

Table 4. First dimensionless natural frequency μ1 for C-F 

boundary conditions (ƞ=5, λ=100) 
 

n HPM FEM [18] Lagrange [19] 

0 3.518 3.502 3.571 

0.2 3.215 3.201 3.213 

0.5 2.954 2.96 2.952 

1 2.732 2.745 2.73 

2 2.518 2.529 2.518 

5 2.401 2.415 2.401 

10 2.324 2.338 2.339 

∞ 1.955 - 1.961 

 

To rigorously validate the numerical precision of the 

proposed model and evaluate the methodological efficacy, 
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Tables 2-4 present a comparative analysis of the first-order 

dimensionless natural frequencies (denoted as μ₁) for an FGM 

beam in a non-rotating configuration, operating in the absence 

of an elastic foundation under different boundary conditions 

(C-C, C-S, C-F), across varying gradient indices (n). The 

results obtained based on this research exhibit significant 

concordance with standard results obtained based on two well-

developed computational methods: Pradhan and Chakraverty's 

[18] finite element method and Şimşek's [19] Lagrange 

multiplier method. The fact that these results from multiple 

analytical and numerical methods converge shows high 

confidence in the current model's robustness and further 

verifies the accuracy of the computational methods. 

Figures 2-4 induced the first five dimensionless natural 

frequencies (μ) of rotating FGM beams on elastic foundations 

under C-C, C-S, and C-F boundaries. The frequencies decrease 

as the gradient index (n) increases due to the transition from 

stiff ceramic (n=0) to flexible metal (n=∞). The higher modes 

(e.g., μ5) feature more sensitivity to n compared to the lower 

modes (μ1), as reducing the stiffness increases curvature-

dependent energy dissipation. The stiffness is determined by 

boundary conditions: C-C > C-S > C-F, where frequencies for 

C-C achieve levels 4 to 5 times larger than those for C-F (e.g., 

μ1=12.43 for C-C vs. μ1=3.52 for C-F when n=0). The results 

confirm those of FEM/DTM, thus establishing the accuracy of 

HPM for material gradients and complex boundaries. 

 

 
 

Figure 2. First five dimensionless natural frequencies μ vs. n 

(C-C boundary, η=5, λ=100) 

 

 
 

Figure 3. First five dimensionless natural frequencies μ vs. n 

(C-S boundary, η=5, λ=100) 

 
 

Figure 4. First five dimensionless natural frequencies μ vs. n 

(C-S boundary, η=5, λ=100) 

 

The dimensionless natural frequencies (μ) of rotating FGM 

beams exhibit a pronounced dependence on the material 

gradient index (n) and kinematic boundary constraints. A 

systematic reduction in n, corresponding to ceramic-rich 

compositions with elevated structural rigidity (Ec ≫ Em), 

where Ec and Em denote Young’s moduli of ceramic and metal 

phases, respectively, induces a marked increase in natural 

frequencies (μ) due to enhanced elastic stiffness. Conversely, 

high values of n (representing metal-dominated gradations) 

lead to a decrease in rigidity, thereby decreasing μ. For 

instance, for C-C boundary conditions (see Figure 2), the first-

mode natural frequency (μ₁) decreases from 12.43 (when n = 

0, corresponding to purely ceramic) to 6.46 (as n → ∞, 

corresponding to purely metallic), indicating a 48% drop in 

stiffness. This trend is followed for different modes and is 

tabulated systematically in Table 5. The behavior is also 

affected by the particular boundary condition: C-C setups, 

which provide full rotational and translational constraints, 

increase the structural rigidity, leading to the highest 

frequencies (e.g., μ₁ = 12.43 at n = 0). In contrast, C-F 

boundaries, being compliant at the free end, provide the lowest 

frequencies (μ₁ = 3.52 at n = 0), while C-S setups give 

intermediate frequencies due to the partial rotational freedom 

at the supported end. 

The higher modes, e.g., μ₅, show increased sensitivity to the 

parameter n due to an inverse relationship between their 

frequencies and localized curvature distributions, which are 

strongly dependent on stiffness gradients in beams. The results 

validate the classical beam theory principles, where natural 

frequencies are proportional to √(E/ρ), where E is the effective 

elastic modulus and ρ is density. The computational robustness 

of the HPM is rigorously validated against FEM, with 

discrepancies confined to less than 2% (e.g., μ₁ = 9.57 via 

HPM vs. 9.55 via FEM for C-C, n = 1). 

The vibrational response of FGM beams is thus governed 

by the synergistic interplay of material gradation (n) and 

boundary constraints. Compositions with mostly ceramics (n 

→ 0) tend to increase both stiffness and natural frequencies 

when coupled with fully clamped boundaries, while metal-

dominant gradations (n → ∞) with free-end conditions 

minimize them. These findings underscore the crucial role of 

tailor-made material designs and constraint engineering in 

optimizing the dynamic behavior of FGMs, offering useful 

guidelines for advanced mechanical design in applications 

demanding precise frequency tuning. 
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Table 5. Statistical comparison of frequency reductions (%) 

 
Mode C-C C-S C-F 

μ1 48% 46.2% 44.4% 

μ2 47.2% 46.1% 42.1% 

μ3 45.8% 45% 43% 

μ4 45.5% 44.3% 42.8% 

μ5 45% 44.6% 42.5% 

 

The sub-2% deviation between HPM and FEM or Lagrange 

benchmarks not only corroborates the mathematical fidelity of 

the proposed formulation but also highlights HPM’s 

computational efficiency in resolving eigenvalue problems for 

complex, inhomogeneous structures, a pivotal advantage for 

iterative design workflows. These results collectively establish 

a foundational framework for predicting and manipulating the 

dynamic response of FGMs, bridging theoretical beam 

dynamics with application-driven material engineering. 

Figures 5-7 confirm that rotating functionally graded 

material (FGM) beams' dimensionless natural frequencies (μ) 

experience substantial increases as a function of foundation 

modulus (λ) that apply to all three boundary classes (C-C, C-

S, C-F). This increase is due to added transverse stiffness of 

the foundation, which combats bending of the beam and hence 

increases its natural frequencies of structure. The lowest 

modes (μ1, μ2) experience the most significant percentage 

increases; e.g., μ1 for C-F increases by 172.9% as λ varies 

from 0 to 500 due to global bending dependency that directly 

includes distributed stiffness of foundation, as explored in 

Table 6. In contrast, higher modes (μ3-μ5) experience smaller 

but still significant increases based on local deformation, while 

μ5 for C-F increases by 101.2%. Boundary conditions play an 

important role in specifying the scope of these: the C-C 

boundary, which features fully fixed ends, features highest 

absolute frequencies (e.g., μ1 =23.45 for λ =500) but relatively 

lesser percentage increases (+145.0% for μ1) compared to the 

C-F boundary (+172.9%), where baseline stiffness of free end 

enhances magnitude of foundation's influence. The C-S 

boundary, which shows in-between stiffness, enjoys moderate 

increases (+148.4% for μ1). They affirm results carried out 

using FEM and HPM while keeping errors within 4%. They 

highlight basic significance of foundation to enhance 

dynamics, especially for flexible systems like cantilevers, and 

illustrate the interactive sensitivity of material gradation, 

boundary restraints, and flexural support in design 

considerations, which is of interest to practicing engineers. 

The observed trends in natural frequencies with respect to 

the gradient index 𝑛 and elastic foundation modulus 𝜆 can be 

explained by examining the governing dimensionless 

differential equation, Eq. (23), which includes the stiffness 

term EI(x) and the foundation contribution 𝜆𝑤. The material 

distribution moves towards the metallic phase, which has a 

lower elastic modulus 𝐸𝑚, as the gradient index 𝑛 increases. 

As a result, the effective stiffness EI decreases, resulting in 

lower natural frequencies since Eq. (39); on the other hand, an 

increase in the elastic foundation modulus 𝜆  introduces an 

additional restoring force term 𝜆𝑤 , effectively stiffening the 

system and raising the natural frequencies, especially for 

lower-order modes, which have higher modal displacements 

and therefore greater interaction with the foundation; 

additionally, centrifugal stiffening due to rotation (parameter 

𝜂) increases axial tension, resulting in an increase in bending 

stiffness and a subsequent increase in frequencies. These 

relationships demonstrate the coupled nature of material 

gradation, boundary conditions, and foundation stiffness in 

determining dynamic performance. 

 

 
 

Figure 5. First five dimensionless natural frequencies (μ) vs. 

elastic foundation modulus (λ) for C-C boundary (n=1, η=5) 

 

 
 

Figure 6. First five dimensionless natural frequencies (μ) vs. 

elastic foundation modulus (λ) for C-S boundary (n=1, η=5) 

 

 
 

Figure 7. First five dimensionless natural frequencies (μ) vs. 

elastic foundation modulus (λ) for C-F boundary (n=1, η=5) 
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Table 6. Percentage increase (%) in natural frequencies (μ) 

from λ=0 to λ=500 for C-C, C-S, and C-F boundaries 

 
Mode C-C C-S C-F 

μ1 +145% +148.4% +172.9% 

μ2 +77.9% +97% +207% 

μ3 +45.9% +56.4% +153.8% 

μ4 +40.3% +50% +125.8% 

μ5 +34.8% +43% +101.2% 

 

The design and optimization of rotating FGM beams for 

engineering applications are directly impacted by the study's 

findings. For instance, in order to minimize vibrational strain 

and prevent resonance, turbine blades used in gas turbines or 

aviation engines frequently need to strike a balance between 

low weight and high stiffness. Designers can regulate the 

stiffness-to-weight ratio and permit frequency tuning without 

sacrificing structural integrity by choosing an appropriate 

gradient index 𝑛. Elastic foundations can also be used by 

robotic arms and precision positioning systems to improve 

positional accuracy and reduce vibration. By anticipating how 

foundation stiffness and material gradation would affect modal 

properties, engineers can design systems that are quieter, more 

dependable, and require less maintenance because resonance-

induced wear is decreased. 

It is important to recognize a number of limitations even 

though the current analysis offers comprehensive insight into 

the dynamic behavior of rotating FGM beams. The 

formulation is less accurate for thick beams or high-frequency 

modes because it is based on Euler-Bernoulli beam theory, 

which ignores rotary inertia effects and transverse shear 

deformation. The elastic foundation was modelled using a 

straightforward linear Winkler representation, which ignores 

shear interaction and non-linear foundation behavior, and the 

beam's cross-section was taken to be uniform. Furthermore, 

damping, geometric non-linearities, and thermal effects were 

not taken into account. Thus, the analysis should be expanded 

in future work to include Pasternak or non-linear foundations, 

non-uniform cross-sectional geometries, coupled thermo-

mechanical or transient dynamic effects, and Timoshenko or 

higher-order shear deformation theories. 

 

 

5. CONCLUSIONS  

 

The study extensively examines rotating FGM beams 

supported by an elastic foundation, presenting novel analytical 

and methodological contributions to the discipline. The main 

findings illustrate that material gradation, boundary 

conditions, and foundation interactions robustly affect 

dimensionless natural frequencies (μ). A significant 48% drop 

in μ₁ for C-C boundaries (n: 0 to n approaches infinity) 

highlights the decisive role of gradients, while modulus of the 

foundation (λ) can enhance frequencies up to as much as 

172.9% in C-F setups, thereby pointing towards foundation-

induced rigidity enhancement as an important consideration. 

Moreover, rotational terms (η) further enhance frequencies 

due to centrifugal stiffening, while higher-order mathematical 

(HPM) solutions were validated using FEM and Lagrange 

methods, showing inconsistencies of below 2%. 

The results provide precise design suggestions for spinning 

FGM beams. Turbine blades and high-speed rotors, for 

instance, require great rigidity and vibration resistance. To 

enhance natural frequencies and reduce resonance, it is 

recommended to use stiffer boundary supports (C-C or C-S) 

and a low gradient index (𝑛) for ceramic-rich composition. For 

lightweight robotic or biomedical systems that require 

flexibility, a higher 𝑛 (metal-rich composition) with tailored 

foundation stiffness can be used. Another successful method 

for increasing frequency margins and structural stability 

without needing large geometric modifications is to employ 

elastic foundations with higher modulus values. 

Boundary conditions govern stiffness hierarchies: C-C > C-

S > C-F, with higher-order modes demonstrating amplified 

sensitivity to material gradation. The integration of HPM 

resolves nonlinear governing equations without linearization, 

offering computational efficiency and accuracy for iterative 

design workflows. These insights are pivotal for optimizing 

FGM beam performance in aerospace and rotating machinery, 

where tailored material architectures and constraint 

engineering are paramount. Future research should explore 

transient dynamics, thermal effects, and multi-axial 

foundation models to extend the proposed framework’s 

applicability. 

These results have implications not only for rotating beams 

but also for structural dynamics in other domains. In aerospace 

engineering, they support the development of vibration-

optimized propulsion system components and lightweight 

aircraft structures. They assist mechanical engineers in 

creating precise robotic arms and rotating machinery that 

operate in delicate environments. Biomedical devices such as 

orthopedic implants and prosthetic limbs can benefit from 

controlled vibration characteristics that can be achieved 

through graded materials and customized supports. This cross-

disciplinary relevance emphasizes the usefulness of FGM 

concepts when combined with analytical methods such as 

HPM. 

By addressing underexplored rotational and foundation 

interactions, this work establishes a foundational paradigm for 

next-generation FGM structures in extreme operational 

environments. Because of its rapid convergence and ability to 

handle extremely inhomogeneous systems, it is a powerful 

alternative to conventional numerical methods, particularly in 

parametric research and optimization applications. The same 

framework can be applied to other nonlinear vibration 

problems, including those involving thermal effects, damping, 

or multi-layered smart materials. 
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