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Most traditional and semi-traditional methods consume time in the evaluation of 

flyover/bridge defects, and they incur aggregated costs for inspection checks. In recent 

cases, due to natural disasters such as floods and earthquakes, flyovers have collapsed 

because of a lack of strict monitoring using the latest methods and technologies. The 

kinds of defects that occur during flyover life are cracks, spalling, corrosion, weakening 

in structure, deformations in structural design, poor drainage, etc. To extend the life of 

a flyover/bridge, early detection of initial defects would avoid major damage. To handle 

detection efficiently, this paper proposes a hybrid deep learning model that integrates 

Faster Region-based Convolutional Neural Network (R-CNN), Long Short-Term 

Memory (LSTM), and Transfer Learning, along with IoT sensors. In this model, Faster 

R-CNN detects and localizes multiple defects in a single frame, LSTM processes

temporal sequences of sensor data and predicts deterioration trends, and Transfer

Learning uses MobileNetV3 for reduction in power consumption and latency, where

pre-trained weights are used to enhance performance with limited annotated data. The

specific sensors used are strain gauges (for load information), accelerometers (for

inspecting vibrations), and temperature sensors (for monitoring materials contraction

and expansion —which cause structural issues—and for continuous health monitoring).

The defined hybrid model would enhance structural health monitoring using drones for

image capture, sensors for measuring the health of specific regions, and high precision

defect localization, it will also extend the infrastructure life by alerts and follow-up

process adoption. This hybrid model ensures the longevity and safety of flyovers. The

proposed hybrid approach is compared with existing models such as individual

Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), Recurrent

Neural Networks (RNNs), Random Forest, Transfer Learning, and Generative

Adversarial Network (GANs), ultimately contributing to the extension of the flyover's

lifespan.
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1. INTRODUCTION

Many reasons and factors would impact the lifetime of the 

flyover. The civil project flyover construction with specific 

additions may result in a better life for the flyover. Flyovers, 

like any other infrastructure, can experience various types of 

defects that may compromise their structural integrity, safety, 

and functionality. Some common defects that can occur in 

flyovers are material deterioration, corrosion, spalling, 

settlement, erosion, joint and expansion joints, structural 

deformations, poor drainage, and insufficient maintenance. 

The first significant issue is that cracks can develop on the 

concrete or asphalt surfaces of flyovers due to factors such as 

shrinkage, temperature fluctuations, excessive loads, or 

inadequate reinforcement. These cracks can range in size and 

severity, from superficial surface cracks to deeper structural 

cracks.  

The second issue is spalling, which refers to the chipping, 

flaking, or breaking away of concrete or other construction 

materials from the surface of the flyover. It can occur due to 
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factors such as corrosion of reinforcing steel, freeze-thaw 

cycles, or chemical reactions.  

The third issue is that corrosion affects the reinforcing steel 

embedded within the concrete components of a flyover. 

Exposure to moisture, chloride ions (e.g., from deicing salts), 

or other environmental factors can lead to corrosion. Corrosion 

weakens the steel, causing cracks, spalling, and a reduction in 

the structural strength of the flyover.  

The fourth issue is that settlement occurs when the flyover 

experiences uneven or excessive sinking of its foundation or 

supporting structure. It can occur due to factors such as soil 

consolidation, inadequate foundation design, or variations in 

soil conditions. Settlement can result in misalignment, 

increased stresses, and potential instability of the flyover.  

The fifth issue is erosion, through which flyovers located 

near water bodies or areas with poor drainage systems are 

susceptible to erosion. Inadequate erosion control measures 

and water flow can gradually erode the soil beneath the 

flyover, compromising its foundation and stability over time.  

The sixth issue is Joint and Expansion denotes Joint Issues 

through which flyovers often incorporate joints or expansion 

joints to accommodate structural movements caused by 

temperature variations or deformations. Issues can arise from 

joint failure, displacement, or insufficient maintenance, 

leading to a rough ride quality, increased noise, and reduced 

structural performance.  

The seventh issue is structural deformations. Deformations 

can occur in flyovers due to factors such as excessive loading, 

settlement, foundation issues, or inadequate structural design. 

These deformations may manifest as excessive bending, 

twisting, or sagging of structural elements, compromising the 

stability and load-carrying capacity of the flyover.  

The eighth issue identified is poor Drainage, through which 

inadequate or malfunctioning drainage systems can result in 

the accumulation of water on the surface of the flyover. 

Prolonged exposure to water can lead to increased 

deterioration, including corrosion, spalling, or erosion of the 

flyover's materials.  

The ninth issue is insufficient maintenance, through which 

neglecting regular maintenance, inspections, and timely 

repairs can exacerbate existing defects and contribute to the 

overall deterioration of the flyover. Regular maintenance of 

activities, including inspections and prompt repairs, is 

essential for preserving the structural integrity and ensuring 

the safety of flyovers. 

Addressing these defects requires thorough inspection, 

accurate assessment, and appropriate repair or rehabilitation 

measures. Regular inspections, adherence to quality 

construction practices, and proactive maintenance protocols 

are crucial for preventing defects and ensuring the long-term 

safety and functionality of flyovers. The deep learning 

approaches have proven to be effective in detecting defects 

during the construction of flyovers. Various deep learning 

techniques are employed for this purpose, ensuring accurate 

and reliable defect detection. The various deep learning 

techniques used are Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), and Generative 

Adversarial Network (GANs), Transfer Learning, Object 

detection methods, ensemble methods, etc.  

The first approach is that CNNs are widely utilized for 

image-based defect detection. By training a CNN on a diverse 

dataset of annotated images showcasing different types of 

defects in flyover construction, the model can learn to identify 

and classify defects with a high level of accuracy. This 

includes detecting cracks, spalling, corrosion, and other visual 

irregularities observed in images or videos of the construction 

process.  

The second approach is that RNNs are particularly suitable 

for analyzing sequential data, such as time-lapse videos or 

sensor data collected during flyover construction. RNNs can 

capture temporal dependencies and identify anomalies or 

deviations from expected patterns. They play a significant role 

in monitoring the construction process and detecting any 

irregularities or defects that may arise.  

The third method is GANs consist of a generator network 

and a discriminator network. They are useful for generating 

synthetic samples that closely resemble normal flyover 

construction, while the discriminator network learns to 

differentiate between real and synthetic samples. By 

comparing the generated samples with real construction data, 

GANs can identify discrepancies and potential defects in the 

construction process.  

The fourth approach is Transfer Learning, which involves 

utilizing pre-trained deep learning models on large datasets 

and fine-tuning them for the specific task of defect detection 

in flyover construction. By leveraging knowledge learned 

from a related domain, such as general object recognition, 

Transfer Learning can expedite model training and enhance 

detection accuracy for flyover construction images.  

The fifth detection method is the object detection models, 

such as Faster Region-based Convolutional Neural Network 

(R-CNN), Single Shot Multibox Detector (SSD), or YOLO, 

which are employed to detect and localize specific defects in 

the images of flyover construction. These models excel at 

identifying the presence and precise location of defects, 

enabling targeted inspection and remediation efforts.  

The sixth approach is ensemble methods combine multiple 

deep learning models to improve overall performance. By 

aggregating predictions from multiple models, ensemble 

methods enhance accuracy and robustness in defect detection 

for flyover construction. 

 

Table 1. Considered methods in Flyover defect detection 

 
Method Description Advantages Limitations 

Faster RNN 
Objects are detected using the region 

proposal concept with an RNN. 

Effective regions' defect identification 

and ensuring accuracy. 

Large datasets to be trained, and 

computation-intensive. 

Transfer Learning 
Pre-trained models are used for 

efficient feature extraction. 

Improves performance and reduces the 

training time. 

Requires fine-tuning for specific 

diseases. 

Traditional CNN For classification, CNN is preferred. 
Basic feature extraction is simple using 

this. 

Accuracy is low when compared 

with advanced models. 

SVM (Baseline) 
SVM is preferred for the 

classification of defects. 

Supports small datasets and is 

interpretable. 

Performance Issues with large, 

complex data. 

YOLO (Comparison) 
For the detection of objects, YOLO 

is preferred. 

Suitable for real-time applications with 

fast inference. 

Accuracy issues for occluded 

defects. 
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Faster R-CNN 
For the detection of regions of 

defects, CNN is preferred. 

Localization accuracy is better than 

YOLO. 

Higher resource consumption and 

slower than YOLO. 

Proposed Method 

(Faster R-CNN, LSTM, 

and Transfer Learning) 

Faster R-CNN+LSTM+ Transfer 

Learning for defect detection. 
Ensures speed & accuracy. 

GPU acceleration is required for 

fine-tuning. 

From Table 1, to assess the effectiveness of the models, one 

factor considered is the accuracy for the methods, such as the 

Proposed method (Faster R-CNN + LSTM + Transfer 

Learning) outperforms SVM, YOLO, and traditional CNN. 

The second factor is the speed at which YOLO is faster, but 

the proposed method offers a better speed-accuracy trade-off. 

The third factor is Data Efficiency, in which Transfer Learning 

reduces dependency on large, labeled datasets. The 

combination of Faster R-CNN, LSTM, and Transfer Learning 

involves handling very small defects as well as YOLO, SSD, 

with the use of pixel-level precision, determines the defect 

growth and fatigue life using LSTM, and addresses the varying 

lighting, textures using pre-trained weights, as well as 

processes the reduced the needed data.  

 

 

2. LITERATURE REVIEW 

 

There are many advancements in bridge or flyover defect 

detection. The most traditional methods, which experience 

human error, are time-consuming and labor-intensive. To 

address these issues, an automatic defect detection technique 

is needed, which makes use of deep learning, computer vision, 

and machine learning models. The significant research in 

CNNs, R-CNNs, and Transfer Learning would stimulate 

further research and advancement in providing better 

solutions. The demonstration of solutions is described in this 

context as follows: Li et al. [1] discussed the accuracy 

degradation using deep neural networks under varying texture 

and lighting. To improve adaptability and accuracy, a multi-

branch attention mechanism with deformable convolution. 

The proposed model uses the YOLOv8 architecture that 

enhances speed and ensures high precision in the results. Teng 

et al. [2] discussed the defects or cracks in the bridge surface, 

using YOLOv2, YOLOv3, and Faster R-CNN for faster speed 

and automatically. Among these, YOLOv3 was identified as 

the best accuracy, speed, and precision provider to other 

methods. It makes use of a Variant of Gaussian, such as the 

White Gaussian ratio, in the detection process. Xu et al. [3] 

discussed the issues such as the defects missing, a lack of 

accuracy, and the presence of false positives. To overcome 

these challenges, YOLOv8s is preferred with the help of 

ODConv in layer, 4D kernel usage, CBAM for channel 

attention mechanisms and spatial features, and CARAFE as an 

up-sampling for feature reconstruction, and reducing blurs. 

Rishitha et al. [4] discussed the bridge health using IoT, 

traditional methods, and a CNN deep learning model. The 

bridge's health is monitored and assessed in terms of 

deterioration and aging attributes. This study provides 

information about the bridge to the society of people and 

military personnel to know the safety of the environment. Li 

et al. [5] discussed the severity of defects in the bridges using 

an auto-encoder approach. Based on the vehicle's passage over 

the bridge and its intensity of vibrations, to determine the 

severity of the defect. In this, significant activities like noises 

are noted using the frequency domain, damage indicators are 

extracted, and the bridge health is predicted using damaged 

indicators. According to the research by Qiu et al. [6], the 

issues of multiscale bridges, leakages n small bridges, and lack 

of detection accuracy are overcome by a combination of Bi-

directional pyramid feature network, Convolutional Block 

Attention Module (CBAM), and decoupled head with YOLO 

head would improve detection accuracy in the classification of 

defects.  

Fan et al. [7] discussed the issues raised over long-span 

bridges, using anomaly detection methods. There are various 

approaches, like monitoring, inspection, and analysis. During 

assessment, the dynamic and static structural features are 

extracted, which state the health condition of the bridge. Gan 

et al. [8] discussed the various cracks to be identified at the 

bottom of the bridge, and use faster R-CNN and BIM for 

processing and classification. The UAVs are used for a close 

assessment of automatic bottom bridge crack detection. This 

model's accuracy and recall are evaluated. Karluklu et al. [9] 

demonstrated the issues of bridges during non-maintenance, 

and are monitored using drones, computer vision, and a 

machine learning approach with a color detection technique. 

This study explored especially steel bridges or iron bridges, 

where defect information is extracted, then passed to Building 

Information Modeling (BIM) for assessment. As reported by 

Li et al. [10], the abnormalities are detected using a hybrid 

model of LSTM, Expectation-Maximization Gaussian 

Mixture Model (EM-GMM) in which the former assesses the 

forces, depletions, and the latter approach for the number of 

clusters, and predicts each cluster's probability of random error 

influence. The accuracy of this model is compared against 

existing methods and applications. Santos-Vila et al. [11] 

discussed the real-time monitoring of the bridge, which avoids 

future expensive maintenance costs and ensures safety. The 

model used would use machine learning and signal processing 

concepts to eliminate labelled data and allow training over 

structural details, which define the current state of the bridge. 

Miao et al. [12] discussed the bridge performance assessment 

and possible identification of deterioration points. The used 

hybrid model involves three methods such as temporal pattern 

attention, Hidden Markov model, and LSTM. The measures, 

such as accuracy, are improved, and bridges under 30 years are 

inspected; better results are obtained. Yamane et al. [13] 

demonstrated the two methods for the extraction of images, 

and improve accuracy by asking questions, with reasons. 

Those 2 methods are Structure from Motion (SfM), and Visual 

Question Answering (VQA). The set of questions asked, and 

analyzing the cause, then estimates would achieve better 

accuracy in defect detection as well as lead to minimum 

maintenance rather than sudden, expensive budget. Amirkhani 

et al. [14] addressed various deep learning models and vision-

based models to classify and detect bridge defects from 

popular databases. The models represented in this study with 

benefits as well as limitations. The analysis of these models 

helps to design an effective integrated model for classification 

and detection. Hou et al. [15] discussed the issues in the 

detection of bridge surface defects, and improve accuracy 

using a deep learning model U2 Network with ResNet U 

blocks, and detect precise contours over the bridge using 3D 

point cloud. This study is limited to underwater bridge surface 

defect detection. Cui et al. [16] discussed techniques involved 

in monitoring and detection for cracks, and their severity, and 

their severity, and their severity, and bolts loosening, etc., are 
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determined, and analyzed. This helps to detect early, and 

minimize the loss of damage, and avoid expensive budgets. 

Wang et al. [17] discussed issues and challenges in detecting 

the defects while monitoring of railway bridges in terms of 

three approaches. First, a combination of fiber optic sensing 

and a computer vision approach for effective monitoring. 

Second, a combination of machine learning such as CNN, and 

Transfer Learning for efficient defect detection. Third, a 

combination of real-time applications and digital twins is used 

for monitoring. The challenges are addressed while using these 

approaches. 

Wu and Huang [18] discussed the challenges raised during 

monitoring of the bridges and tunnels. The benefits are 

highlighted when the defects are identified early. The damage 

identification methods, sensing technologies, and monitoring 

approaches would extend the life of the bridges. This study 

also helps to search for new solutions to overcome 

deformations of the bridge. Zhang et al. [19] demonstrated 

various techniques such as sensing approaches, devices, 

wireless transmission models, and alerting on noise or 

irregularity using data preprocessing and warning models. The 

challenges are addressed and given for future research 

refinements. Chakurkar et al. [20] found defects and cracks on 

roads using conventional computer vision methods and deep 

learning models. The advantages of deep learning techniques 

are highlighted against the traditional models. The roads with 

the texture of cement, asphalt require extensive research for 

future directions. Shen et al. [21] demonstrated weak 

structures in bridges and tunnels using various means of 

deformation detection techniques such as stochastic models, 

change detection in ground deformation, and most civilian 

public rock mountains. The summary of benefits, pitfalls, and 

their applications is discussed in this study. In regard to 

reference [22], it ensures resource optimization by maintaining 

local and global stability and achieves predictive load 

balancing using a variant of Particle Swarm Optimization. 

Based on reference [23], optimize the cloud data centers using 

a hybrid model as well as introduce a novel performance 

evaluation approach for balancing the load over the network. 

Based on reference [24], ensures accuracy and security in 

digital transactions using a hybrid model to identify fraudulent 

transactions in a digital era, and optimizes the accuracy as well 

as performance. The studies mentioned would stimulate a 

novel approach to be designed, and ensure better accuracy and 

robustness. Table 2 demonstrates the significant studies, and 

listed gaps along with methodologies applied in those. 

 

Table 2. Significant methods in the defect detection 

 
Reference Study Methodology Gap Identified 

Li et al. [1] 
Multi-branch attention mechanism with YOLOv8 addresses 

the accuracy reduction for varying textures. 

Limitations on nightmare conditions and not integrating 

with sensor data. 

Teng et al. [2] 
Uses YOLOv2, YOLOv3, and Faster R-CNN for crack 

detection. 
Failed to detect temporal defects and micro defects. 

Xu et al. [3] 
Uses a combination of OLOv8s with ODConv, CBAM, and 

CARAFE to reduce false positives and missed defects. 

Time-consuming, and failed to detect multi-scale 

defects. 

Rishitha et al. [4] 
Uses IoT and CNN for the identification of the aging of 

defects. 
Scarcity of Large labelled datasets. 

Li et al. [5] 
Uses autoencoders for defect identification over vehicle-

induced vibrations. 

Frequency domain methods failed to address, and 

vibration data alone failed to assess defect severity. 

In the proposed model, the integration of Faster R-CNN, 

LSTM, and Transfer Learning would involve the key aspects 

such as identifying the defects like spalling, cracks, using 

Faster R-CNN, defect progression over time is tracked and 

alerted using LSTM, and ensuring performance by pre-trained 

weights using Transfer Learning ResNet-50. 

 

 

3. METHODOLOGY 

 

In this section, four activities are demonstrated in one aspect 

mentioned in terms of module interaction as depicted in Figure 

1 of the proposed hybrid system, such as data collection, data 

preprocessing, real-time monitoring, multi-modal fusion, 

hybrid model detection, and evaluation of effectiveness. The 

second aspect is demonstrated in terms of the flow of actions 

performed to assess the effectiveness of the hybrid model, as 

predicted in Figure 2, which involves the installation of 

sensors and CCTVs, data collection, preprocessing, and other 

related activities to detect the defects The third aspect is 

described in Table 3, in which modules are specified with their 

purpose and technologies needed. The fourth aspect 

demonstrates its functionality through a pseudo procedure, 

PS1. 

 

Table 3. Modules, their responsibilities, and technologies used 

 
Module Responsibility Technologies Needed 

Sensor Data 

Ingestion 
Use sensors for strain, vibration, and temperature data. 

Sensors like accelerometers, strain gauges, 

MQTT protocol 

Image Acquisition Capture high-res images/videos of flyover surfaces. CCTV, LiDAR, and drones 

Data Preprocessing 
Sensor data to be normalized, images to be augmented, and 

missing values to be replaced. 
Scikit-learn, Pandas, and OpenCV 

Visual Defect 

Detection 
Cracks/spalling to be identified using object detection. 

Faster R-CNN with ResNet backbone and 

Transfer Learning 

Sensor Analytics Structural anomalies are identified from sensor time series. LSTM 

Multimodal Fusion For total assessment, must combine sensor and visual data. Attention Mechanisms and TensorFlow 

Alert System Alert every critical defect. Twilio (SMS), REST APIs, and email 

Maintenance 

Dashboard 
Defects, repairs prioritization, and costs report. Django and Tableau 
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Figure 1. Significant modules' interaction in the hybrid model for flyover defect detection 
 

 
 

Figure 2. Flow of activities in the hybrid Faster R-CNN – LSTM model for flyover defect detection 
 

From PS1, the hybrid model of LSTM, Faster RNN, and 

Transfer Learning takes input from sensors and visual images 

from CCTVs. Then, data is collected, and follows data 

preprocessing for clean data, in which Kalman filtering and 

min-max normalization for sensor data, while enhancing 

images, would use denoising, augmentation, and 

segmentation. The hybrid model processes sensor data with 

LSTM and attention mechanism, image data by faster RNN, 

and a pre-trained MobileNet for reducing training time, and 

cross-layer fusion for ensuring better classification accuracy. 

The hybrid model uses LSTM for abnormal vibrations, and 

Faster R-CNN for major defects identification, then fuses the 

predictions of the defect is severe, requiring high attention. 

The effectiveness is measured in accuracy, precision, and 

recall, and ensures better real-time flyover health monitoring 

and alerting of critical infrastructure. 

The usage of MobileNet over other pre-trained models is 

less parameter consumption due to depth-wise separable 

convolutions, supporting edge deployment with less resource-

constrained hardware environment, experiences optimistic 

fine tuning, and supports of cross layer fusion, avoiding 

computational bottlenecks. 

In overall, firstly, data preprocessing is applied for 

structural dynamic changes using Kalman filtering and min-

max normalization, localizing defects using denoising, 

augmentation and segmentation, then processing the images 

using Faster R-CNN, processing the sensor data using LSTM, 

fusion the features of LSTM, R-CNN using Cross-modal 

Transformer. In Transfer Learning using MobileNetV3, it 

ensures speed and simplifies computation on edge devices, as 

well as ensures deployment. The fusion using Query Key 

Value (QKV) would enhance context-aware defect detection, 

especially spatial-temporal relationships. 
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PS1: Flyover_defects_detection_using_Hybrid_ 

model(Hardware[][],dataset1[][], dataset2[][], Accuracy): 

Input: Hardware[][],dataset1[][], dataset2[][] in which Hardware 

denote sensors, CCTVs, Drones, Dataset1 denote data read by 

sensors, and other devices, dataset2 denote images 

Output: Accuracy computation 

Step 1: Initiate data collection from sensors and CCTV cameras, 

and deploy sensors  

           1.1 Strain gauges for load inspection, accelerometers for 

vibration measuring, temperature sensors for expansion or 

contraction,  

           1.2 Humidity sensors for induced corrosion, and Cameras 

for visual cracks. 

           1.3 Collect maintenance data 

Step 2: Initiate Data preprocessing 

           2.1 For sensor data, use Kalman Filtering for Noise 

removal, use min-max normalization for scaling sensor readings, 

and use imputation for handling missing data. 

           2.2 For visual image data, use denoise filters for image 

enhancement, use augmentation in terms of rotation, flipping, and 

brightness adjustment for images, and use segmentation to isolate 

defect regions. 

Step 3: Build a Hybrid model using LSTM, Faster R-CNN, and 

Transfer Learning 

            3.1 Apply LSTM for time-series sensor data 

            3.2 Use an attention mechanism for adjusting the weights 

for the weighted features 

            3.3 Use the pretrained model MobileNetV3 for freeze the 

initial layers 

            3.4 Use adaptations for extracting features relevant to 

flyover, and do fine-tuning 

            3.5 Cross-modal fusion, in which fused features are 

extracted from the LSTM and the CNN features 

            3.6 Use fused features based on the Query, Key, and Value 

concept. 

Step 4: Do training with the hybrid model 

            4.1 Use the Binary cross-entropy loss function for defects, 

such as present or absent 

            4.2 Use AdamW optimizer 

            4.3 Do regularization in which Dropout is applied to 

LSTM and Dense layers, and early stopping is identified there is 

more validation loss observed. 

Step 5: Checking the Inference pipeline  

            5.1 In sensor data, use LSTM and attention weights, alert 

when more than 80% vibration is observed. 

            5.2 In image monitoring, a faster RNN for fixing defect 

regions. 

            5.3 Fusion is applied to classify the defect, such as 

anomaly_score in LSTM if high, and defect score in Faster CNN 

is high, then the defect is severe. Otherwise, the defect is normal 

level. 

Step 6: Evaluate the effectiveness of the model using accuracy, 

precision, and recall. 

Accuracy=True Positives + True Negatives / Total Number of 

Cases Where  

Precision=True Positives (TP) / (True Positives (TP)+ False 

Positives (FP)) 

Recall (Sensitivity)=True Positives (TP) / (True Positives 

(TP)+False Negatives (FN)) 

 

From Figure 3, the system initiates the first hardware setup 

that includes sensors, CCTVs for data collection, and real-time 

monitoring, then preprocesses the data into quality data, then 

uses Faster R-CNN on images for defects and LSTM on 

temporal features, then fuses the significant features, then 

applies a hybrid model of Faster R-CNN and LSTM, then 

evaluates the accuracy that defines the effectiveness of the 

model. 

 

 
 

Figure 3. Flow of modules in the hybrid Faster R-CNN- 

LSTM model 

 

 

4. RESULTS 

 

In this, the various methods are considered and their 

benefits, shortfalls, and use cases are demonstrated in Table 4. 

From which, rather than individual models, the proposed 

hybrid LSTM-Faster RNN-Transfer Learning would 

outperform in accuracy, as well as be scalable for large 

infrastructures like flyovers. The effectiveness of the models 

is demonstrated in Table 5 in terms of accuracy, precision, and 

recall. In this, the dataset is considered from online sources, 

such as SDNET2018: A concrete crack image dataset for 

machine learning applications, where defects such as spalling, 

cracks, and corrosion are classified as multi-class defects. 

Tested over the dataset in terms of accuracy, which denotes 

the total number of correctly predicted instances in out of all, 

precision denotes correctly predicted instances in total 

predictions (false predictions), recall denotes actual 

predictions (missed predictions), interpretability denotes how 

best explains the predictions, and robustness denotes very less 

impact on accuracy as well as resolution. 

From Table 4, the hybrid model only performs better 

accuracy, and is suitable for small bridges to large flyovers. 

The evaluated values are demonstrated in Table 4, with better 

understandability and bias bias-free detection aspect. 

 

Table 4. Overview of methods for flyover defect detection 

 
Method Advantages Limitations Best Use Case 

Manual Inspection 

Skills and expertise are provided for 

humans to inspect. No training 

needed 

Subjective type, expensive, and 

slow 
Small-scale inspections 

Traditional ML (Support 

Vector Machines) 

Support smaller datasets and faster 

tabular sensor data 

Can’t support temporal data and 

is poor with image/video type 

Vibration anomaly detection (no 

images) 

Traditional ML (Random 

Forest) 

Handles missing data and extracts 

feature importance 

Overfits and weaknesses on 

sequential data 

Support for Corrosion risk 

prediction 

Transfer Learning (ResNet, 

VGG) 

Reuses pre-trained weights and 

ensures high accuracy 
Requires fine-tuning 

Support the quick deployment of 

visual cracking and spalling 

CNN-only 
Automatic defect detection for 

Good for image defects 

Large, labelled datasets, and 

ignores sensor data 
Support pure visual inspections 

RNN-only Support time-series patterns 
Struggles with vanishing gradient 

descent and spatial defects 

Health monitoring using sensor 

data 
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LSTM-only 
Handles past states and long-term 

dependencies 

Weak on image processing, and 

heavy computations 
Fatigue monitoring using sensors 

GANs 

Synthetic data generation with 

augmentation handles increased 

datasets 

Training is unstable and yields 

unrealistic defects 
Rare defect identification 

Faster RNN + Transfer 

Learning + Sensors 

Supports Multimodal data with 

real-time and ensures high accuracy 
Higher computational cost 

End-to-end monitoring with 

early alerts 

Hybrid model (Faster R-

CNN+ LSTM +Transfer 

Learning Mobile Net + IoT 

enabled sensors) 

Ensures the best accuracy and is 

scalable for large infrastructures 

High resource consumption and 

requires annotations 

Requires large-scale 

infrastructures like flyovers 

 

Table 5. Measures assessment over specific methods for flyover defect detection 

 
Method Accuracy (%) Precision (%) Recall (%) Interpretability Robustness 

Manual Inspection 80 85 80 High Medium 

SVM 90 90 85 Medium Medium 

Random Forest 92 94 90 High High 

Transfer Learning (ResNet/VGG) 95 96 94 Low High 

CNN-only 98 95 97 Low High 

RNN-only 90 86 92 Medium Medium 

LSTM-only 94 92 95 Medium High 

GANs 82 86 80 Very Low Medium 

Faster RNN + TL + Sensors 97 97 96 Medium Very High 

Hybrid Model (Faster R-CNN+LSTM+IoT) 99 98 98 Medium Very High 

 

 
 

Figure 4. Effectiveness of models w.r.to accuracy and performance 

 

Table 5 is demonstrated in Figure 4 for better end-user 

understanding of the effectiveness of the models. The false 

defect detection is reduced by the hybrid model. 

 

Table 6. Inference times, and precisions over specific 

methods 

 
Model mAP@0.5 Inference Time 

YOLOv8 (Xu et al. [3]) 82.1% 40 ms 

Faster R-CNN (ResNet50) 97% 62 ms 

Pure LSTM (Li et al. [5]) 92% 15 ms 

Hybrid Model (Faster R-

CNN, LSTM, and TL) 
97.7% 28 ms 

 

 

From Table 6, precision and inference times are evaluated, 

and observed that the proposed hybrid model (Faster R-CNN, 

LSTM, and TL) would perform better in implementation time 

than other models, such as YOLOv8, individual Faster R-

CNN, and individual LSTM.  

 

 

5. CONCLUSIONS 

 

A unified framework is required that ensures accuracy and 

real-time detection over visual and sensor data deployed on 

mobile devices. A hybrid LSTM, Faster R-CNN, and Transfer 

Learning model ensures the LSTM approach over sensor data, 

Transfer Learning, and Faster R-CNN over image and visual 
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data. The pre-trained MobileNetV3 provides a light-weight 

architecture and low-cost approach for defect detection, 

supporting real-time processing of edge devices. It makes the 

complex environment also simpler in terms of less parameter 

consumption, faster configured edge devices support, flexible 

resource constraint environment, and better fine-tuning. It is 

superior to heavier models like ResNet, and VGG models. 

After processing with LSTM, Faster R-CNN, and fusing the 

features using cross-layer attention, it would effectively fuse 

the sensor and image data for early defect detection over 

flyovers and avoid expensive future maintenance costs. The 

asset of this system is real-time monitoring using drones and 

CCTVs. This significant module results in flyover longevity 

and safety. The LSTM for anomaly identification, Faster RNN 

for defect regions fixing, then fusing these, would determine 

whether the defect is severe or normal, so that the safety of the 

flyover is ensured. In the future, still better to increase long-

range dependency support and reduce annotations using 

advanced lightweight modeling and contrastive learning. 
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