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The assumption of homoscedastic errors is fundamental in many time series models, 

but financial data often exhibit heteroscedasticity. This study focuses on the 

development of Singular Spectrum Analysis (SSA)-based time series modeling with 

heteroscedasticity. The proposed model, termed Singular Spectrum Analysis–

Autoregressive Integrated Moving Average–Generalized Autoregressive Conditional 

Heteroscedasticity (SSA-ARIMA-GARCH), uses SSA to decompose the time series 

into signal and noise. The modeling focuses on signals because they contribute 

significantly to the overall structure of the time series. Two algorithms are discussed in 

this study. The first algorithm is to model the signal with ARIMA and ignore the noise 

by assuming that the model built from the signal will better represent the actual data 

because it has been free from noise. The second algorithm is to model the signal and 

noise separately, each using a distinct ARIMA model. The two models are then applied 

to simulations and the daily stock price data of PT Astra International Tbk (ASII). Each 

model is evaluated based on mean absolute error (MAE), and the results are then 

compared with those obtained by ARIMA as the benchmark model. To demonstrate 

that the proposed SSA-ARIMA-GARCH can reduce the effects of heteroscedasticity in 

the data, we observed the p-value obtained by the Ljung-Box test. The larger the p-

value, the smaller the heteroscedasticity effect. The experimental results showed that 

the proposed SSA-ARIMA-GARCH produced a p-value that was 39 percent larger than 

that of ARIMA-GARCH, and it reduced the MAE by nearly 34 percent.  

Keywords: 

heteroscedasticity, hybrid models, Singular 

Spectrum Analysis (SSA), Autoregressive 

Integrated Moving Average (ARIMA), 

Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH), time series 

forecasting, stock price prediction 

1. INTRODUCTION

A time series is an ordered sequence of observations, and 

there has been a lot of activity in the field of time series 

analysis in recent years. The general assumption in time series 

modeling is that the variance of errors is constant. 

Unfortunately, this does not always occur with financial data. 

Generally, financial data is dynamic with high volatility or 

heteroscedasticity, so mean and variance forecasting is 

required to obtain accurate forecasts. The commonly used 

model is Autoregressive Integrated Moving Average-

ARIMA-Generalized Autoregressive Conditional 

Heteroscedasticity (ARIMA-GARCH) to deal with 

heteroscedasticity, with the ARIMA as the mean model and 

GARCH as the variance model. Box and Jenkins introduced 

the ARIMA method in 1970. The GARCH model is an 

expansion of the Autoregressive Conditional 

Heteroscedasticity (ARCH). The ARCH introduced by Engle 

[1] and Bollerslev [2] first proposed the GARCH model.

GARCH theory was described by Enders [3] and Paolella [4].

According to the research [3], ARCH is the model that uses

conditional variance as an autoregressive process using

squares of the estimated residuals, whereas the generalized

ARCH (GARCH) allows for both autoregressive and moving

average components in the heteroscedastic variance. 

Abreu et al. [5] applied ARIMA-GARCH and Singular 

Spectrum Analysis (SSA) methods to model minute-level 

EUR/USD exchange rate data. They evaluated the models 

across three distinct market conditions—upward trend, 

downward trend, and neutral or undefined trend—using 

closing ask prices. In their study, SSA was employed as a 

standalone method, not in a hybridized form. According to 

Hassani and Thomakos [6], SSA is a relatively recent yet 

effective tool in time series analysis, having found applications 

across diverse fields [7-10]. Elsner [11] notes that SSA 

primarily aims to break down a time series into multiple 

reconstructed components. As explained by Golyandina and 

Zhigljavsky [12], the technique relies on the singular value 

decomposition (SVD) of a trajectory matrix derived from the 

original series. Since SSA does not assume an underlying 

statistical model, it offers a high degree of flexibility in its 

applications. The foundational theory of SSA is elaborated in 

several key references, including Golyandina and Zhigljavsky 

[12], Degiannakis et al. [13], Golyandina et al. [14], Hassani 

[15], and Golyandina and Korobeynikov [16]. 

SSA has been effectively applied to analyze complex 

datasets. For instance, Sulandari et al. [17-19] integrated SSA 

with neural networks (NN) to deal with time series data 
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containing nonlinear patterns. Meanwhile, Suhartono et al. 

[20] introduced a hybrid method called SSA–TSR–ARIMA,

which is aimed at forecasting time series with both trend and

seasonal characteristics. In this method, SSA breaks down the

original series into core components: trend, seasonality, and

noise. The trend and calendar effects are then modeled using

Time Series Regression (TSR), while the seasonal and noise

parts are handled by ARIMA. Irmawati et al. [21] developed a

combined SSA–ARIMA approach to enhance prediction

accuracy of the Farmer’s Terms of Trade (FTT) in East Java.

Their model involves two steps: first, SSA is used to separate

the series into signal (trend and seasonality) and noise, then

ARIMA is applied to model the residuals. Arteche and Garcia-

Enriquez [22] applied SSA in estimating Value at Risk within

Stochastic Volatility Models.

This study discusses the use of the SSA–ARIMA model for 

time series data with heteroscedasticity, and the GARCH 

model is applied to model the variance of the residuals from 

the SSA–ARIMA approach, a step that is not addressed in the 

works of Suhartono et al. [20] and Irmawati et al. [21]. 

Meanwhile, variance modeling for heteroscedasticity is very 

important for financial data, so a modification of the hybrid 

model is necessary.  

The decomposition into signal and noise aims to identify the 

part of the data that carries important information (signal) 

more easily. Signals contribute significantly to the data, while 

noise makes a small contribution. SSA is a decomposition 

method that can decompose data into signal and noise. 

Therefore, this paper proposes a hybrid SSA-ARIMA-

GARCH model to overcome time series with 

heteroscedasticity effects. In the hybrid SSA-ARIMA-

GARCH model, SSA-ARIMA is the mean model, and 

GARCH is the variance model. We decompose the time series 

using SSA into signal and noise and construct a model that 

better represents the signal. 

The novelty of this study lies in the application of SSA as 

an approach to address the issue of heteroscedasticity in time 

series data. In this study, SSA is used to decompose the time 

series into two main components: signal and noise. After the 

decomposition process, the next step is modeling using the 

ARIMA approach, which is applied in two different 

treatments. In the first treatment, the ARIMA model is built 

only on the signal component, while the noise component is 

ignored. In the second treatment, ARIMA is applied to both 

the signal and noise components. This second treatment is 

performed when there is autocorrelation in the noise 

component. Furthermore, if the residuals from the ARIMA 

model still exhibit ARCH effects, they are further modeled 

using the GARCH model to accommodate the 

heteroscedasticity. This approach is referred to as the hybrid 

SSA–ARIMA–GARCH model. 

2. METHODS

2.1 Singular spectrum analysis 

The SSA algorithm involves four main steps: embedding, 

singular value decomposition, grouping, and diagonal 

averaging. Details of this algorithm are explained in 

Golyandina and Zhigljavsky [12], Golyandina et al. [14], and 

Hassani [15]. The steps are outlined as follows: Let 𝑋 = 𝑋𝑁 =
(𝑥1, … , 𝑥𝑁) be a real-valued time series of length 𝑁. Assume

that 𝑁 > 2 and 𝑋 is not a zero series. The window length is 

represented by 𝐿, where 𝐿 ≤ 𝑁/2, and 𝑁 is the total number 

of data points in the time series. 

In the embedding step, the original time series is 

transformed into a set of lagged vectors, each of which is 

multidimensional. This process creates 𝐾 = 𝑁 − 𝐿 + 1 

lagged vectors: 

𝑋𝑖 = (𝑥𝑖 , … , 𝑥𝑖+𝐿−1)
𝑇 , (1 ≤ 𝑖 ≤ 𝐾) (1) 

where, each vector has a dimension of L. These vectors are 

used to construct the L-trajectory matrix of the time series 𝑋, 

defined as: 

𝐗 = (𝑥𝑖𝑗)𝑖,𝑗=1
𝐿,𝐾 =

[
 
 
 
 
𝑥1 𝑥2 𝑥3 … 𝑥𝐾
𝑥2 𝑥3 𝑥4 … 𝑥𝐾+1
𝑥3 𝑥4 𝑥5 … 𝑥𝐾+2
⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝐿 𝑥𝐿+1 𝑥𝐿+2 … 𝑥𝑁 ]

 
 
 
 

Here, the lagged vectors 𝑋𝑖 are the columns of the matrix 𝐗.

Both the rows and columns represent subseries of the original 

series. This matrix 𝐗 is a type of Hankel matrix, as explained 

further by Hassani et al. [23]. 

The second step is to perform Singular Value 

Decomposition (SVD) on the trajectory matrix 𝐗 . Let 𝐒 =
𝐗𝐗𝐓, and let λ1, λ2, … , λL be the eigenvalues of 𝐒 arranged in

decreasing order (λ1 ≥ ⋯ ≥ λL ≥ 0 ). The corresponding

eigenvectors of 𝐒  are denoted as 𝑈1, … , 𝑈𝐿 , forming an

orthonormal set. Define d as the rank of 𝐒, that is, 𝑑 = rank 

𝐗 = max⁡{i,⁡ such that ⁡λi > 0} . Then, for each 𝑖 = 1,… , 𝑑 ,

define 𝑉𝑖 = 𝐗𝑇𝑈𝑖/√λi⁡(𝑖 = 1,… , 𝑑). Using these values, the

SVD of matrix 𝐗 can be expressed as: 

𝐗 = 𝐗1 + 𝐗2 +⋯+ 𝐗𝑑 (2) 

where, each component 𝐗𝐢 = √λi𝑈𝑖𝑉𝑖
𝑇 . The set (√λi, 𝑈𝑖 , 𝑉𝑖)

is known as the i-th eigen triple of the SVD. Golyandina et al. 

[14] considered the decomposition in Eq. (2). Two time series

F₁ and F₂ are said to be separable if there is a subset of indices

𝐼 ⊂ {1, … , 𝑑} such that 𝐗1 = ∑ 𝐗𝑖𝑖∈𝐼  and 𝐗2 = ∑ 𝐗𝑖𝑖∉𝐼 . When

such separation is possible, the proportion of contribution

explained by 𝐗1  can be measured using the ratio of eigen

values:

∑ 𝜆𝑖𝑖∈𝐼 /∑ λ𝑖
𝐿
𝑖=1  (3) 

In the grouping step, the index set {1, … , 𝑑} is divided into 

m separate, non-overlapping subsets: 𝐼1, … , 𝐼𝑚. Based on Eq.

(2), this results in the following decomposition: 

𝚾 = 𝚾I1 +⋯+⁡𝚾I𝑚 (4) 

This selection of the index subsets 𝑰1, … , 𝑰𝑚 is referred to as

eigen triple grouping. 

𝑦𝑘=

{
 
 
 
 

 
 
 
 1

𝑘
∑ 𝑦𝑚,𝑘−𝑚+1

∗ ⁡𝑓𝑜𝑟⁡1 ≤ 𝑘 < 𝐿∗
𝑘

𝑚=1

1

𝐿∗
∑ 𝑦𝑚,𝑘−𝑚+1

∗ ⁡𝑓𝑜𝑟⁡𝐿∗ ≤ 𝑘 < 𝐾∗
𝐿∗

𝑚=1

1

𝑁 − 𝑘 + 1
∑ 𝑦𝑚,𝑘−𝑚+1

∗ ⁡𝑓𝑜𝑟⁡𝐾∗ < 𝑘 ≤ 𝑁

𝑁−𝐾∗+1

𝑚=𝑘−𝐾∗+1

(5) 

2662



The final step is to convert each matrix from the group 

decomposition in Eq. (4) into a time series of length N. Let Y 

be an L × K matrix with elements 𝑦𝑖𝑗, where 1 ≤ 𝑖 ≤ 𝐿, 1 ≤

𝑗 ≤ 𝐾, and let N = L + K – 1. Define 𝑦𝑖𝑗
∗ = 𝑦𝑖𝑗  when 𝐿 < 𝐾,

and 𝑦𝑖𝑗
∗ = 𝑦𝑗𝑖  otherwise. This matrix 𝐘  is then transformed

into a time series 𝑦1, … , 𝑦𝑁 using the above equations.

Applying this diagonal averaging process Eq. (5) to each 

matrix results in a reconstructed time series 𝑋̃𝑘 =

(𝑥̃1
(𝑘), … , 𝑥̃𝑁

(𝑘)). As a result, the original series 𝑥1, … , 𝑥𝑁 can be

represented as the sum of m reconstructed components: 

𝑥𝑛 =∑𝑥̃𝑛
(𝑘)(𝑛 = 1,2, … , 𝑁)

𝑚

𝑘=1

(6) 

2.2 ARIMA-GARCH hybrid model 

The general ARIMA (p,d,q) model can be found by Wei 

[24], Brockwell and Davis [25] as follows: 

𝜙𝑝𝐵(1 − 𝐵)
𝑑𝑋𝑡 = 𝜃0 + 𝜃𝑞(𝐵)𝑎𝑡 (7) 

where, 

𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝 (8) 

and 

𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 −⋯− 𝜃𝑞𝐵
𝑞 (9) 

𝜙  is a parameter of the autoregressive model, 𝜃  is the 

parameter of the moving average, 𝑝 and 𝑞 are used to indicate 

the autoregressive and moving average orders, respectively. In 

the study conducted by Tsay [26], the basic idea of ARCH 

models is that the residuals of the mean equation (𝑎𝑡)  are

serially uncorrelated, but dependent, and the dependence of 𝑎𝑡
can be described by a quadratic function of its lagged values. 

An ARCH(𝑝) model assumes that: 

𝑎𝑡 = 𝜎𝑡𝑣𝑡 (10) 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑎𝑡−1

2 +⋯+ 𝛼𝑝𝑎𝑡−𝑝
2 (11) 

where, {𝑣𝑡}  is a sequence of independent and identically

distributed (iid) random variables with mean 0 and variance 1. 

The ARCH model was introduced by Engle [1], and then the 

GARCH model is an expansion of the ARCH model and was 

introduced by Bollerslev [2]. Tsay [26] let 𝑎𝑡 the residuals of

the mean equation, 𝑎𝑡 uncorrelated and follow a GARCH (p,

q) model if:

𝑎𝑡 = 𝜎𝑡𝑣𝑡 (12) 

𝜎𝑡
2 = 𝛼0 +∑𝛼𝑖𝑎𝑡−𝑖

2

𝑝

𝑖=1

+∑𝛽𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

(13) 

where, {𝑣𝑡} is a sequence of iid random variables with mean 0

and variance 1. The explanation of the GARCH model can be 

found by Francq and Zakoïan [27], Paolella [4], and Neusser 

[28]. 

3. MAIN RESULTS

A hybrid SSA-ARIMA-GARCH model, with SSA-ARIMA 

serving as the mean model and GARCH serving as the 

variance model, is the goal of this research. We use SSA to 

decompose time series into signal and noise. 

3.1 The proposed algorithm 

(1). Decomposing ARIMA-GARCH generated series using 

SSA. 

𝑍𝑡 = 𝑍𝑡
(1)
+ 𝑍𝑡

(2) (14) 

where, 

𝑍𝑡 = ARIMA-GARCH generated series,

𝑍𝑡
(1)

 = the signal of the ARIMA-GARCH generated series, and

𝑍𝑡
(2)

 = the noise of the ARIMA-GARCH generated series.

(2). There are two treatments. 

a. The first treatment, modeling ARIMA exclusively on the

signal (𝑍𝑡
(1))  and ignoring the noise. This is based on the

theory of separability, which states that if the residuals from 

SSA are white noise, then the signal and noise can be perfectly 

separated. In such cases, the noise component is structureless 

and does not require further modeling. This is discussed in 

Golyandina et al. [14]. 

b. The second treatment considers both the signal 𝑍𝑡
(1)

 and

the noise 𝑍𝑡
(2)

, using an ARIMA model for each forecast. In

this second treatment, ARIMA is used to model the noise

component only when it shows autocorrelation, since this

suggests the noise has useful patterns that can improve

forecasting.

(3). Evaluating the forecasting accuracy. This work 

considers MAE as the forecasting accuracy value. 

(4). Examining residuals for heteroscedasticity effects 

based on autocorrelation of quadratic residuals, with the 

statistic. 

𝑄 = 𝑇(𝑇 + 2)∑
𝜌̂𝑋2
2 (ℎ)

𝑇 − ℎ

𝑁

ℎ=1

(15) 

𝜌̂𝑋2(ℎ) =
∑ (𝑋̂𝑡

2 − 𝜎̂2)(𝑋̂𝑡−ℎ
2 − 𝜎̂2)𝑇

𝑡=ℎ+1

∑ (𝑋̂𝑡
2 − 𝜎̂2)

2𝑇
𝑡=1

(16) 

and 

𝜎̂2 =
1

𝑇
∑𝑋̂𝑡

2

𝑇

𝑡=1

(17) 

where, 

𝑇 = sample size, 

𝑋𝑡 = residuals,

𝜎2 = variance,

𝜌𝑧 = correlation function of process {𝑍𝑡}.
(5). Constructing a GARCH model (13) if the residuals have 

heteroscedasticity effects. 

Checking for residuals heteroscedasticity effects remaining 

after estimating the GARCH model using Eq. (16), if none 

remain, it suggests that the GARCH model is suitable for 

describing the series volatility. 
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(6). Interpreting the obtained SSA-ARIMA-GARCH 

model. 

This study introduces a hybrid SSA-ARIMA approach as 

the underlying forecasting model, where SSA is first employed 

to separate the time series into its signal and noise components. 

Forecast performance is evaluated using the Mean Absolute 

Error (MAE) metric.  

MAE =
1

𝑛
∑|𝑍𝑡 − 𝑍̂𝑡|

𝑛

𝑖=1

(18) 

where, 

𝑍𝑡 = actual data for period t,

𝑍̂𝑡 = prediction for period t,

𝑛⁡ = the number of periods. 

3.2 Proposition 

Let⁡𝑍𝑡 be a time series with 𝑡 = 1,… , 𝑛. 𝑍𝑡 is decomposed

using SSA into: 

𝑍𝑡 = 𝑍𝑡
(1)
+ 𝑍𝑡

(2) (19) 

where, 𝑍𝑡
(1)

 as the signal and 𝑍𝑡
(2)⁡as the noise, assuming that

there is autocorrelation in the noise. 

Considered in two treatments: 

i. First treatment: 𝑍̂𝑡 = 𝑍̂𝑡
(1)

ii. Second treatment: 𝑍̂𝑡 = 𝑍̂𝑡
(1) + 𝑍̂𝑡

(2)

where, 𝑍̂𝑡
(1)

 as the forecast from the signal and 𝑍̂𝑡
(2)

 as the 

forecast from the noise. If the MAE from first treatment 
(MAEI):

MAEI =
1

𝑛
∑|𝑍𝑡 − 𝑍̂𝑡(𝐼)|

𝑛

𝑡=1

(20) 

and MAE second treatment (MAEII)

MAEII =
1

𝑛
∑|𝑍𝑡 − 𝑍̂𝑡(𝐼𝐼)|

𝑛

𝑡=1

(21) 

then 

MAEI ≥ MAEII (22) 

Proof: 

MAEII =
1

𝑛
∑|𝑍𝑡 − 𝑍̂𝑡(𝐼𝐼)|

𝑛

𝑡=1

(23) 

MAEII =
1

𝑛
∑|(𝑍𝑡

(1) − 𝑍̂𝑡
(1)) + (𝑍𝑡

(2) − 𝑍̂𝑡
(2))|

𝑛

𝑡=1

(24) 

MAEII =
1

𝑛
∑|𝑍𝑡

(1) − 𝑍̂𝑡
(1) + 𝑍𝑡

(2) − 𝑍̂𝑡
(2)|

𝑛

𝑡=1

(25) 

MAEI =
1

𝑛
∑|𝑍𝑡 − 𝑍̂𝑡(𝐼)|

𝑛

𝑡=1

(26) 

MAEI =
1

𝑛
∑|𝑍𝑡

(1) − 𝑍̂𝑡
(1) + 𝑍𝑡

(2)|

𝑛

𝑡=1

(27) 

MAEI =
1

𝑛
∑|𝑍𝑡

(1) − 𝑍̂𝑡
(1) + 𝑍𝑡

(2) + 𝑍̂𝑡
(2) − 𝑍̂𝑡

(2)|

𝑛

𝑡=1

(28) 

MAEI =
1

𝑛
∑|(𝑍𝑡

(1) − 𝑍̂𝑡
(1) + 𝑍𝑡

(2) − 𝑍̂𝑡
(2)) + (𝑍̂𝑡

(2))|

𝑛

𝑡=1

(29) 

MAEI =
1

𝑛
∑|(𝑍𝑡

(1)
− 𝑍̂𝑡

(1)
+ 𝑍𝑡

(2)
− 𝑍̂𝑡

(2)) − (−𝑍̂𝑡
(2))|

𝑛

𝑡=1

(30) 

MAEI ≥
1

𝑛
∑|(𝑍𝑡

(1)
− 𝑍̂𝑡

(1)
+ 𝑍𝑡

(2)
− 𝑍̂𝑡

(2))|

𝑛

𝑡=1

−
1

𝑛
∑|𝑍̂𝑡

(2)
|

𝑛

𝑡=1

(31) 

MAEI ≥ MAEII −
1

𝑛
∑|𝑍̂𝑡

(2)|

𝑛

𝑖=1

(32) 

Since component 
1

𝑛
∑ |𝑍̂𝑡

(2)|𝑛
𝑖=1  always has a positive value, 

and according to Golyandina et al. [14], noise has a small 

contribution value (3), then it is proven that: 

MAEI ≥ MAEII (33) 

4. EXPERIMENTAL RESULTS

The steps conducted in the experimental results are as 

follows: decomposition is performed using SSA with a 

window length parameter 𝐿 ≤ 𝑁/2 , followed by ARIMA 

modeling. The optimal ARIMA order is determined by 

selecting the model that produces the smallest MAE. The 

residuals of the resulting SSA–ARIMA model are then 

examined using the Ljung–Box test on the squared residuals 

and the ARCH–Lagrange Multiplier (LM) test to detect the 

presence of any remaining ARCH effects. If ARCH effects are 

detected, a GARCH model is applied to the residuals of the 

SSA–ARIMA model. The best GARCH model is selected 

based on the lowest AIC value, and its adequacy is confirmed 

by ensuring that the residuals no longer exhibit ARCH effects, 

as indicated by the results of the Ljung–Box and ARCH–LM 

tests.  

4.1 Simulated data 

In this research, the simulation study uses the four ARIMA-

GARCH models with ARIMA (7) as the mean model and 

GARCH (13) as the variance model. The simulation data were 

generated using R software with the time series plot can be 

seen in Figure 1. 

(a) ARIMA(1,0,1)-GARCH(2,1) model with parameter
[𝜙1, 𝜃1, 𝛼0, 𝛼1, 𝛼2, 𝛽1]=[0.8, 0.18, 5, 0.21, 0.1407, 0.6]

(b) ARIMA(1,0,1)-GARCH(3,1) model with parameter
[𝜙1, 𝜃1, 𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛽1] = [0.8, 0.18, 5, 0.123, 0.28899,

0.198, 0.39] 

(c) ARIMA(2,0,2)-GARCH(2,1) model with parameter
[𝜙1, 𝜙2, 𝜃1, 𝜃2, 𝛼0, 𝛼1, 𝛼2, 𝛽1] =
[0.8897, -0.4858, -0.2279, 0.2488, 5, 0.21, 0.1407, 0.6] 

2664



(d) ARIMA(2,0,)-GARCH(3,1) model with parameter
[𝜙1, 𝜙2, 𝜃1, 𝜃2, 𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛽1] =
[0.8897, -0.4858, -0.2279, 0.2488, 5, 0.123, 0.28899, 0.198, 

0.39] 

The SSA model was constructed on each series generated, 

with window length 𝐿(𝐿 ≤ 𝑁/2) . The series of ARIMA 

(2,0,2)-GARCH(3,1) model can be decomposed into two 

component groups: the first component is signal, and the 

second component is noise. Components from decomposition 

SSA depicted in Figure 2. 

(a) 

(b) 

(c) 

(d) 

Figure 1. Time series plot of simulated data 

Figure 2. Components resulting from decomposition SSA 

Table 1. MAE value for the generated series 

Model of the 

Generated Series 

MAE 

ARIMA 
SSA-ARIMA 

(I) 

SSA-ARIMA 

(II) 

ARIMA(1,0,1)-

GARCH(2,1) 
6.01 5.58 5.52 

ARIMA(1,0,1)-

GARCH(3,1) 
6.00 5.12 5.06 

ARIMA(2,0,2)-

GARCH(2,1) 
5.97 5.28 5.21 

ARIMA(2,0,2)-

GARCH(3,1) 
5.41 4.71 4.62 

In this paper, we conducted both ARIMA modeling without 

SSA decomposition and SSA-ARIMA modeling, which 

applies ARIMA after SSA decomposes the data. 

Decomposition of the time series was performed using SSA to 

separate the signal and noise, followed by ARIMA modeling 

on the signal. Based on the residual independence check, the 

noise still contained correlation, so ARIMA modeling was 

performed on the noise. Forecasting is the sum of forecasting 

on signal and noise.  

In the fourth set of generated data, it can be seen in Table 1 

that the SSA-ARIMA has smaller MAE value than ARIMA, 

which can be interpreted as the model having the highest 

forecasting accuracy. The independence of the residuals did 

not contain a correlation. Afterward, the heteroscedasticity 

effect was investigated using the squared residuals test for 

serial correlation. The residuals displayed heteroscedasticity, 

and a GARCH model will explain the dynamic nature of the 

standard deviations. In the fourth generated data set, the 

GARCH model order decreases, initially from order (2,1) and 

(3,1) to order (1,1). 

4.2 Real data 

Since the simulation study shows that SSA-ARIMA-

GARCH raises the accuracy value of the mean model 

prediction in time series data and reduces the order of the 

GARCH model, we apply SSA-ARIMA-GARCH to 

heteroscedastic real-time series data. In this paper, the SSA-

ARIMA-GARCH method is applied to PT Astra International 

Tbk (ASII) stock price, taken from https://finance.yahoo.com/. 

This study uses 882 daily stock prices from August 1, 2018 to 

August 1, 2024, of which 862 observations are used for 

training data and 20 observations for testing data. 
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Figure 3. Time series plot of ASII 

Figure 4. Components resulting from decomposition SSA 

In the time series plot (Figure 3) can be seen that in such 

data there is a volatility of a large value over a certain period 

and a small value over another period. An ARIMA model was 

constructed for ASII stock data, resulting in ARIMA (1,1,0) as 

the best model. After checking the residuals, it was found that 

there was a heteroscedasticity effect, so a GARCH model was 

used for the variance model. The GARCH(1,1) model was 

obtained as the best variance model. 

Next, we construct the SSA-ARIMA model by 

decomposing ASII stock data using SSA. There are two 

groups of components into which the series can be 

decomposed: the signal component and the noise component.  

Figure 4 shows the decomposition of SSA components. 

ARIMA modeling was applied to the data after time series was 

decomposed using SSA to separate the signal from the noise. 

The noise still correlated, hence, ARIMA modeling was done 

on the noise. Forecasting is the total of forecasting for both 

signal and noise. Then the residuals were checked again and 

there was no longer any correlation. MAE as the accuracy 

value of forecasting in the ARIMA and SSA-ARIMA on the 

training and testing data can be seen in Table 2. The MAE 

value of the SSA-ARIMA model is lower than that of the 

ARIMA model, indicating better forecasting accuracy. 

Thereafter, the heteroscedasticity effect was examined using 

the squared residuals test for serial correlation. There was a 

heteroscedasticity effect, so a GARCH model was used for the 

variance model. The mean model's MAE decreased by around 

34 percent. 

Table 2. MAE value for ASII stock price 

Model Training Testing 

ARIMA 87.05 253.59 

SSA-ARIMA (I) 66.91 169.44 

SSA-ARIMA (II) 57.08 167.73 

The ARIMA model for the signal is as follows: 

𝑌𝑡 = 𝑌𝑡−1 + 0.9541𝑌𝑡−1 − 0.9541𝑌𝑡−2 + 0.9972𝜀𝑡−1 + 𝜀𝑡 (34) 

here is the ARIMA model for noise: 

𝑌𝑡 = 0.0555 + 1.0128𝑌𝑡−1 − 0.3178𝑌𝑡−2 − 0.0847𝑌𝑡−3
− 𝜀𝑡−1 + 𝜀𝑡

(35) 

and here is the variance model: 

𝜎𝑡
2 = 144.003322 + 0.03489𝜀𝑡−1

2 + 0.93818𝜎𝑡−1
2 (36) 

After the GARCH model was established, a residual check 

was performed to assess whether any heteroscedasticity effects 

remained in the residuals. This was done using the Ljung–Box 

test on the squared residuals and the ARCH–LM test. Table 3 

indicates that there are no remaining heteroscedastic effects in 

the residuals. The SSA-ARIMA-GARCH model features a 

larger p-value than the ARIMA-GARCH model, suggesting a 

reduction in the heteroscedasticity effects on the residuals. An 

increase of 39 percent was observed in the Ljung-Box test p-

value for squared residuals from the GARCH model used to 

model variance. 

Table 3. p-value of squared residuals Ljung-Box and ARCH-

LM test for GARCH model 

Ljung-Box Test 

Lag ARIMA-GARCH 
SSA-ARIMA-

GARCH (I) 

SSA-ARIMA-

GARCH (II) 

10 0.54 0.72 0.75 

15 0.42 0.66 0.70 

20 0.30 0.86 0.89 

ARCH-LM Test 

0.70 0.83 0.85 

To compare the predictive performance of the ARIMA-

GARCH and SSA-ARIMA-GARCH models, the Diebold–

Mariano (DM) test was conducted using the squared forecast 

errors as the loss function. The test yielded a DM statistic of 

9.9427 with a p-value less than 2.2×10⁻¹⁶, indicating a 

statistically significant difference in forecast accuracy 

between the two models at the 1% significance level. 

Furthermore, the mean of the loss differential, computed as the 

squared error of the ARIMA-GARCH model minus that of the 

SSA-ARIMA-GARCH model, was positive (8648.331), 

suggesting that the SSA-ARIMA-GARCH model consistently 

produced more accurate forecasts. Therefore, it can be 

concluded that the SSA-ARIMA-GARCH model outperforms 

the ARIMA-GARCH model in terms of predictive accuracy. 

Q-Q plots of residuals (Figure 5) show that the residuals

from the SSA–ARIMA–GARCH model are more normally 

distributed than those of the ARIMA–GARCH model, 

indicating an improved model fit due to the incorporation of 

SSA. 

As shown in Figure 6, Q-Q plots of squared residuals 

indicate that the SSA–ARIMA–GARCH model addresses 

heteroskedasticity more effectively than the ARIMA–

GARCH model, with squared residuals more closely 

resembling a normal distribution. 

This study introduces a novel approach by employing SSA 

to handle heteroscedasticity in time series data. SSA is utilized 

to decompose the original series into two primary components: 

signal and noise. Following this decomposition, ARIMA 

modeling is conducted under two distinct treatments. The first 

treatment involves fitting the ARIMA model exclusively to the 

signal component, disregarding the noise. In the second 

treatment, ARIMA is applied to both the signal and noise 

components, particularly when autocorrelation is detected 
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within the noise. If the ARIMA residuals continue to exhibit 

ARCH effects, the GARCH model is subsequently employed 

to model the conditional variance. This comprehensive 

strategy constitutes the hybrid SSA–ARIMA–GARCH model. 

Figure 5. Q-Q plots of residuals 

Figure 6. Q-Q plots of squared residuals 

5. CONCLUSIONS

Time series models commonly assume constant error 

variance; however, financial data often exhibit 

heteroscedasticity. This study discusses the use of the SSA–

ARIMA model for time series data exhibiting 

heteroscedasticity. To capture the variance of the residuals 

from the SSA–ARIMA approach, the GARCH model is 

subsequently applied—a step not addressed in previous 

studies. The resulting model, referred to as SSA–ARIMA–

GARCH, utilizes SSA to separate the original time series into 

signal and noise components. In this paper, before ARIMA-

GARCH modeling, decomposition is performed using SSA, 

where the data is decomposed into signal and noise. Two SSA-

ARIMA-GARCH models are proposed in this paper. The first 

model ignores the noise and only models ARIMA on the 

signal. The second model considers both signal and noise 

using an ARIMA model for each, the forecast is the total of 

the predictions for noise and signals. This second model can 

be built when there is autocorrelation in the noise. In case of 

autocorrelation in noise, the mean absolute error of the second 

model is smaller than that of the first model. 

The simulation data based on mean absolute error show that 

SSA-ARIMA-GARCH, which combines ARIMA-GARCH 

with SSA, is more effective than ARIMA-GARCH without 

SSA. Likewise for the real data, that is, ASII stock price, the 

mean absolute error of the mean model on with decreased by 

about 34 percent, and the p-value of squared residuals Ljung 

box test on the GARCH as variance model increased by 39 

percent. 
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